

Intel® Quartus® Prime Standard
Edition User Guides - Combined

This auto-generated document contains the following user guides. To
download individual standalone documents, click on the respective
PDF/HTML links.

• Getting Started (PDF|HTML)
• Platform Designer (PDF|HTML)
• Deign Recommendations (PDF|HTML)
• Design Compilation (PDF|HTML)
• Design Optimization (PDF|HTML)
• Programmer (PDF|HTML)
• Partial Reconfiguration (PDF|HTML)
• Third-party Simulation (PDF|HTML)
• Third-party Synthesis (PDF|HTML)
• Debug Tools (PDF|HTML)
• Timing Analyzer (PDF|HTML)
• Power Analysis and Optimization (PDF|HTML)
• Design Constraints (PDF|HTML)
• PCB Design Tools (PDF|HTML)
• Scripting (PDF|HTML)

Auto-generated Date: May 18, 2024

https://cdrdv2.intel.com/v1/dl/getContent/683475
https://www.intel.com/content/www/us/en/docs/programmable/683475.html
https://cdrdv2.intel.com/v1/dl/getContent/683364
https://www.intel.com/content/www/us/en/docs/programmable/683364.html
https://cdrdv2.intel.com/v1/dl/getContent/683323
https://www.intel.com/content/www/us/en/docs/programmable/683323.html
https://cdrdv2.intel.com/v1/dl/getContent/683283
https://www.intel.com/content/www/us/en/docs/programmable/683283.html
https://cdrdv2.intel.com/v1/dl/getContent/683230
https://www.intel.com/content/www/us/en/docs/programmable/683230.html
https://cdrdv2.intel.com/v1/dl/getContent/683528
https://www.intel.com/content/www/us/en/docs/programmable/683528.html
https://cdrdv2.intel.com/v1/dl/getContent/683499
https://www.intel.com/content/www/us/en/docs/programmable/683499.html
https://cdrdv2.intel.com/v1/dl/getContent/683080
https://www.intel.com/content/www/us/en/docs/programmable/683080.html
https://cdrdv2.intel.com/v1/dl/getContent/683796
https://www.intel.com/content/www/us/en/docs/programmable/683796.html
https://cdrdv2.intel.com/v1/dl/getContent/683552
https://www.intel.com/content/www/us/en/docs/programmable/683552.html
https://cdrdv2.intel.com/v1/dl/getContent/683068
https://www.intel.com/content/www/us/en/docs/programmable/683068.html
https://cdrdv2.intel.com/v1/dl/getContent/683506
https://www.intel.com/content/www/us/en/docs/programmable/683506.html
https://cdrdv2.intel.com/v1/dl/getContent/683492
https://www.intel.com/content/www/us/en/docs/programmable/683492.html
https://cdrdv2.intel.com/v1/dl/getContent/683619
https://www.intel.com/content/www/us/en/docs/programmable/683619.html
https://cdrdv2.intel.com/v1/dl/getContent/683325
https://www.intel.com/content/www/us/en/docs/programmable/683325.html

Intel® Quartus® Prime Standard
Edition User Guide
Getting Started

Updated for Intel® Quartus® Prime Design Suite: 19.4

This document is part of a collection - Intel® Quartus® Prime Standard Edition User Guides -
Combined PDF link

Online Version

Send Feedback UG-20173

683475

2019.12.16

https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683475.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Introduction to Intel® Quartus® Prime Standard Edition...5
1.1. Selecting an Intel Quartus Prime Software Edition..7
1.2. Introduction to Intel Quartus Prime Standard Edition Revision History...........................8

2. Managing Intel Quartus Prime Projects.. 9
2.1. Viewing Basic Project Information.. 10

2.1.1. Viewing Project Reports.. 11
2.1.2. Viewing Project Messages... 12
2.1.3. Automated Problem Reports.. 13

2.2. Intel Quartus Prime Project Contents..13
2.2.1. Project File Best Practices..14

2.3. Managing Project Settings...14
2.3.1. Specifying the Target Device or Board...15
2.3.2. Optimizing Project Settings... 17

2.4. Managing Logic Design Files.. 19
2.4.1. Including Design Libraries... 20
2.4.2. Creating a Project Copy.. 20

2.5. Managing Timing Constraints...20
2.6. Integrating Other EDA Tools.. 21
2.7. Exporting Compilation Results... 22

2.7.1. Exporting a Version-Compatible Compilation Database 23
2.7.2. Importing a Version-Compatible Compilation Database23
2.7.3. Exporting a Design Partition.. 23
2.7.4. Clearing Compilation Results... 24

2.8. Migrating Projects Across Operating Systems...25
2.8.1. Migrating Design Files and Libraries..25
2.8.2. Design Library Migration Guidelines.. 26

2.9. Archiving Projects.. 27
2.9.1. Manually Adding Files To Archives.. 27
2.9.2. Archiving Compilation Results..28
2.9.3. Archiving Projects for Service Requests...28
2.9.4. Using External Revision Control..29

2.10. Command-Line Interface...30
2.10.1. Project Revision Commands...30
2.10.2. Project Archive Commands.. 31
2.10.3. Project Database Commands... 31
2.10.4. Project Library Commands...32

2.11. Managing Projects Revision History...33

3. Design Planning.. 35
3.1. Design Planning...35
3.2. Create a Design Specification and Test Plan... 35
3.3. Plan for the Target Device... 35

3.3.1. Device Migration Planning... 37
3.4. Plan for Intellectual Property Cores.. 37
3.5. Plan for Standard Interfaces..38
3.6. Plan for Device Programming...38
3.7. Plan for Device Power Consumption..39

Contents

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.8. Plan for Interface I/O Pins...41
3.8.1. Simultaneous Switching Noise Analysis... 42

3.9. Plan for other EDA Tools... 43
3.9.1. Third-Party Synthesis Tools... 43
3.9.2. Third-Party Simulation Tools.. 43

3.10. Plan for On-Chip Debugging Tools...43
3.11. Plan HDL Coding Styles...44

3.11.1. Design Recommendations..45
3.11.2. Recommended HDL Coding Styles.. 45
3.11.3. Managing Metastability... 45

3.12. Plan for Hierarchical and Team-Based Designs..46
3.12.1. Flat Compilation without Design Partitions... 46
3.12.2. Incremental Compilation with Design Partitions.. 47
3.12.3. Planning Design Partitions and Floorplan Location Assignments.....................47

3.13. Design Planning Revision History..48

4. Introduction to Intel FPGA IP Cores..51
4.1. IP Catalog and Parameter Editor.. 52

4.1.1. The Parameter Editor..52
4.2. Installing and Licensing Intel FPGA IP Cores.. 53

4.2.1. Intel FPGA IP Evaluation Mode... 54
4.3. IP General Settings.. 57
4.4. Adding Your Own IP to IP Catalog...57
4.5. Best Practices for Intel FPGA IP..59
4.6. Generating IP Cores (Intel Quartus Prime Standard Edition)...................................... 60

4.6.1. IP Core Generation Output (Intel Quartus Prime Standard Edition)..................61
4.7. Modifying an IP Variation.. 62
4.8. Upgrading IP Cores.. 63

4.8.1. Upgrading IP Cores at Command-Line...65
4.8.2. Migrating IP Cores to a Different Device.. 66
4.8.3. Troubleshooting IP or Platform Designer System Upgrade..............................67

4.9. Simulating Intel FPGA IP Cores.. 69
4.9.1. Generating IP Simulation Files... 69
4.9.2. Using NativeLink Simulation (Intel Quartus Prime Standard Edition)................70

4.10. Synthesizing IP Cores in Other EDA Tools.. 72
4.11. Instantiating IP Cores in HDL...72

4.11.1. Example Top-Level Verilog HDL Module... 72
4.11.2. Example Top-Level VHDL Module..72

4.12. Introduction to Intel FPGA IP Cores Revision History... 73

5. Migrating to Intel Quartus Prime Pro Edition.. 74
5.1. Keep Pro Edition Project Files Separate... 74
5.2. Upgrade Project Assignments and Constraints..74

5.2.1. Modify Entity Name Assignments... 75
5.2.2. Resolve Timing Constraint Entity Names..75
5.2.3. Verify Generated Node Name Assignments.. 76
5.2.4. Replace Logic Lock (Standard) Regions... 76
5.2.5. Modify Signal Tap Logic Analyzer Files...78
5.2.6. Remove References to .qip Files...79
5.2.7. Remove Unsupported Feature Assignments... 79

5.3. Upgrade IP Cores and Platform Designer (Standard) Systems.................................... 80

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4. Upgrade Non-Compliant Design RTL... 81
5.4.1. Verify Verilog Compilation Unit ..81
5.4.2. Update Entity Auto-Discovery.. 82
5.4.3. Ensure Distinct VHDL Namespace for Each Library..83
5.4.4. Remove Unsupported Parameter Passing...83
5.4.5. Remove Unsized Constant from WYSIWYG Instantiation................................ 83
5.4.6. Remove Non-Standard Pragmas...84
5.4.7. Declare Objects Before Initial Values.. 84
5.4.8. Confine SystemVerilog Features to SystemVerilog Files................................. 84
5.4.9. Avoid Assignment Mixing in Always Blocks...85
5.4.10. Avoid Unconnected, Non-Existent Ports... 85
5.4.11. Avoid Illegal Parameter Ranges.. 85
5.4.12. Update Verilog HDL and VHDL Type Mapping..86

5.5. Migrating to Intel Quartus Prime Pro Edition Revision History..................................... 86

A. Intel Quartus Prime Pro Edition User Guide: Getting Started Documentation Archive...87

B. Intel Quartus Prime Standard Edition User Guides..88

Contents

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Introduction to Intel® Quartus® Prime Standard Edition
This user guide describes basic concepts and operation of the Intel® Quartus® Prime
Standard Edition design software, including GUI and project structure basics, initial
design planning, use of Intel FPGA IP, and migration to Intel Quartus Prime Pro
Edition. The Intel Quartus Prime Standard Edition software provides a complete design
environment for the following device families:

• Intel Arria® 10, Arria V, and Arria II

• Intel Cyclone® 10 LP, Cyclone IV, and Cyclone V

• MAX® series

The Intel Quartus Prime software GUI supports easy design entry, fast design
processing, straightforward device programming, and integration with other industry-
standard EDA tools. The user interface makes it easy for you to focus on your design—
not on the design tool. The modular Compiler streamlines the FPGA development
process, and ensures the highest performance for the least effort.

Figure 1. Intel Quartus Prime Standard Edition Software GUI

683475 | 2019.12.16

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The Intel Quartus Prime Standard Edition software offers a full range of features at
each phase of the design flow to shorten your design cycle and achieve the highest
performance:

• Easy Project Setup—quickly create a new project, add design files, and specify the
target Intel device with the New Project Wizard. Create different revisions of your
project to compare results with different settings. Save the current state of your
project and project files as a single, compressed file. Refer to Managing Intel
Quartus Prime Projects on page 9 for more information.

• Design Planning Tools— plan for initial I/O pin layout, power consumption, and
area utilization in the Early Power Estimator, the Power Analyzer Tool, and the Pin
Planner. Refer to Design Planning on page 35 for more information.

• Design Constraint Entry—specify timing, placement, and other constraints with the
Settings dialog box, Assignment Editor, Pin Planner, and Timing Analyzer.
Visualize and modify logic placement within a view of the device floorplan in the
Chip Planner and Timing Closure Floorplan. Refer to Intel Quartus Prime Standard
Edition User Guide: Design Constraints for more information.

• Integrated Synthesis—provides efficient synthesis support for VHDL (1987, 1993,
2008), Verilog HDL (1995, 2001), and SystemVerilog (2005) design entry
languages. Refer to Intel Quartus Prime Standard Edition User Guide: Compiler for
more information.

• Incremental Compilation—preserve the results and performance for unchanged
logic in your design as you make changes elsewhere, facilitating top-down or
bottom-up team-based design methodologies. Refer to Intel Quartus Prime
Standard Edition User Guide: Compiler for more information.

• Optimizing Results—Design Space Explorer automatically determines the best
combination of settings for your design. Design Assistant validates your project
against predetermined design rules for gated clocks, reset signals, asynchronous
design practices, and signal race conditions. Refer to Intel Quartus Prime Standard
Edition User Guide: Design Optimization for more information.

• Design Debugging—The Signal Tap logic analyzer captures and displays real-time
signal behavior in an FPGA design, allowing to examine the behavior of internal
signals during normal device operation without the need for extra I/O pins or
external lab equipment. The Transceiver Toolkit provides real-time control,
monitoring, and debugging of the transceiver links running on your board. Refer to
Intel Quartus Prime Standard Edition User Guide: Debug Tools for more
information.

• System and IP Integration—define and generate a complete system in much less
time than using traditional, manual integration methods with Platform Designer
(Standard). Refer to Introduction to Intel FPGA IP Cores on page 51 and Intel
Quartus Prime Standard Edition User Guide: Platform Designer for more
information.

• Third-party EDA Tool Support—integrate with supported versions of third-party
EDA synthesis, simulation, and board-level timing analysis tools. Refer to Third-
Party Simulation and Third-Party Synthesis user guides for more information.

The Intel Quartus Prime Pro Edition software expands on these capabilities of the Intel
Quartus Prime Standard Edition, and provides unique features that support the latest
Intel FPGAs. Select the Intel Quartus Prime software edition that provides the device
support and features you require, as Selecting an Intel Quartus Prime Software Edition
on page 7 describes.

1. Introduction to Intel® Quartus® Prime Standard Edition

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

6

https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.1. Selecting an Intel Quartus Prime Software Edition

Depending on your device support and software feature requirements, you can choose
either the Intel Quartus Prime Pro Edition or Intel Quartus Prime Standard Edition
software for your design. Consider the requirements and timeline of your project in
determining whether to select the Intel Quartus Prime Standard Edition or Intel
Quartus Prime Pro Edition software:

• Select the Intel Quartus Prime Pro Edition if you are beginning a new Intel Arria
10, Intel Cyclone 10 GX, Intel Stratix® 10 or Intel Agilex™ design, or to take
advantage of the unique features of Intel Quartus Prime Pro Edition.

Figure 2. Intel Quartus Prime Feature Support Matrix

Software Features Intel Quartus® Prime
Standard Edition

Intel Quartus Prime
Pro Edition

New Hybrid Placer & Global Router

New Timing Analyzer

New Physical Synthesis

Incremental Fitter Optimization

Interface Planner (formerly BluePrint)

Intel Agilex™ Device Support

OpenCL support

Platform Designer (formerly Qsys)

Partial Reconfiguration

Block-Based (Hierarchical) Design Flows

Intel Stratix® 10 Device Support

• Select the Intel Quartus Prime Standard Edition software if your design must
target Arria V, Arria, Intel Cyclone 10 LP, Cyclone IV, Cyclone V, or MAX series
devices, and you do not want to migrate you design to a device that Intel Quartus
Prime Pro Edition supports.

• Intel Quartus Prime Pro Edition software does not support the following Intel
Quartus Prime Standard Edition features:

— I/O Timing Analysis

— NativeLink third party tool integration (other third-party tool integration
available)

— Video and Image Processing Suite IP Cores

— Talkback features

— Various register merging and duplication settings

— Saving a node-level netlist as .vqm

1. Introduction to Intel® Quartus® Prime Standard Edition

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Intel replaces the following Altera tool names in the Intel Quartus Prime software:

Table 1. Intel Quartus Prime Tool Name Updates

Altera Name Intel Name

Qsys Platform Designer

TimeQuest Timing Analyzer

EyeQ Eye Viewer

JNEye Advanced Link Analyzer

Related Information

Migrating to Intel Quartus Prime Pro Edition on page 74

1.2. Introduction to Intel Quartus Prime Standard Edition Revision
History

Document Version Intel Quartus Prime
Version

Changes

2019.12.16 19.4.0 • Added programming file generation support for Intel Agilex
devices.

2018.09.24 18.1.0 Initial release for Intel Quartus Prime Standard Edition.

1. Introduction to Intel® Quartus® Prime Standard Edition

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Managing Intel Quartus Prime Projects
The Intel Quartus Prime software organizes and manages the elements of your design
within a project. The project encapsulates information about your design files,
hierarchy, libraries, constraints, and project settings. This chapter describes the basics
of working with Intel Quartus Prime software projects, including initial project setup,
viewing project information, adding design files and constraints, and exporting
compilation results.

Click File > New Project Wizard to quickly setup and open a new project.

Figure 3. New Project Wizard

After you create or open a project, the GUI displays integrated information and
controls for the open project.

683475 | 2019.12.16

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2.1. Viewing Basic Project Information

You can view basic information about your project in the Tasks pane, Project
Navigator, Report panel, and Messages window.

Project Tasks Pane

The Tasks pane (View ➤ Tasks) provides one-click launch of common project tasks,
such as creating design files, specifying project settings, running compilation, debug
and timing closure, and device programming.

The Project Navigator
The Project Navigator (View ➤ Utility Windows ➤ Project Navigator) displays
information about the elements of your project, such as the design files, IP
components, and your project hierarchy (after elaboration). You can right-click items
in the Project Navigator to locate or perform actions on the elements of your
project. The Project Navigator organizes information on the Files, Hierarchy, Design
Units, and IP Components tabs.

Table 2. Project Navigator Tabs

Project Navigator Tab Description

Files Lists all design files in the current project. Right-click design files in this tab to
run these commands:
• Open the file
• Remove the file from project
• View file Properties
• Create AHDL Include Files for Current File
• Create Symbol Files for Current File
• Create Verilog Instantiation Template Files for Current File
• Create VHDL Component Declaration Files for Current File

Hierarchy Provides a visual representation of the project hierarchy, specific resource usage
information, and device and device family information. Right-click items in the
hierarchy to Locate, Set as Top-Level Entity, or define Logic Lock regions or
design partitions.

Design Units Displays the design units in the project. Right-click a design unit to Locate in
Design File.

IP Components Displays the design files that make up the IP instantiated in the project,
including Intel FPGA IP, Platform Designer (Standard) components, and third-
party IP. Click Launch IP Upgrade Tool from this tab to upgrade outdated IP
components. Right-click any IP component to Edit in Parameter Editor.

Revisions Displays the current project revisions.

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4. Project Navigator Hierarchy, Files, Design Units, IP Components, and
Revisions Tabs

2.1.1. Viewing Project Reports

The Compilation Report panel updates dynamically to display detailed reports during
project processing. To access Compilation Reports, click (Processing ➤ Compilation
Report).

Review the detailed information in these the compilation reports to determine correct
implementation. Right-click report data to locate and edit the source in project files.

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. Compilation Report

2.1.2. Viewing Project Messages

The Messages window (View ➤ Utility Windows ➤ Messages) displays information,
warning, and error messages about Intel Quartus Prime processes. Right-click
messages to locate the source or get message help.

• Processing tab—displays messages from the most recent process

• System tab—displays messages unrelated to design processing

• Search—locates specific messages

Figure 6. Messages Window

2.1.2.1. Suppressing Message Display

You can suppress display of unimportant messages from the Messages window, so that
you can focus on the messages that are important to you. To suppress one or more
messages from displaying in the Messages window, right-click the message, and then
click any of the following commands:

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Suppress Message—suppresses all messages that match the exact text you
specify.

• Suppress Messages with Matching ID—suppresses all messages that match
the message ID number you specify, ignoring variables.

• Suppress Messages with Matching Keyword—suppresses all messages that
match the keyword or hierarchy you specify.

2.1.3. Automated Problem Reports

By default, the Problem report feature automatically sends a text based problem
report to Intel whenever an internal error occurs in the Intel Quartus Prime software.
You can disable Problem report to stop sending problem reports.

To disable or enable automatic sending of problem reports, follow these steps:

1. Click Tools ➤ Options.

2. Click the Internet Connectivity tab.

3. Under Problem report, turn on or off Always send report to Intel when
internal error occurs (command-line only).

Figure 7. Problem Report Option

2.2. Intel Quartus Prime Project Contents

The Intel Quartus Prime software organizes your design work within a project. You can
create and compare multiple revisions of your project, to experiment with settings
that achieve your design goals. When you create a new project in the GUI, the Intel
Quartus Prime software automatically creates an Intel Quartus Prime Project File
(.qpf) for that project. The .qpf references the Intel Quartus Prime Settings File
(.qsf). The .qsf lists the project's design, constraint, and IP files, and stores
project-wide and entity-specific settings that you specify in the GUI. You do not need
to edit the text-based .qpf or .qsf files directly. The Intel Quartus Prime software
creates and updates these files automatically as you make changes in the GUI.

Table 3. Intel Quartus Prime Project Files

File Type Contains To Edit Format

Project file Project and revision name File ➤ New Project
Wizard

Intel Quartus Prime Project File (.qpf)

Settings file Lists design files, entity
settings, target device,
synthesis directives,
placement constraints

Assignments ➤ Settings Intel Quartus Prime Settings File (.qsf)

Quartus
database

Project compilation results Project ➤ Export
Database

export_db directory

continued...

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Type Contains To Edit Format

Partition
database

Partition compilation results Project ➤ Export Design
Partition

Exported Partition File (.qxp)

Timing
constraints

Clock properties, exceptions,
setup/hold

Tools ➤ Timing Analyzer Synopsys Design Constraints File (.sdc)

Logic design
files

RTL and other design source
files

File ➤ New All supported HDL files

Programming
files

Device programming image
and information

Tools ➤ Programmer SRAM Object File (.sof)
Programmer Object File (.pof)

IP core files IP core variation
parameterization

Tools ➤ IP Catalog Intel Quartus Prime IP File (.qip)

Platform
Designer system
files

System definition Tools ➤ Platform
Designer

Platform Designer System File (.qsys)

EDA tool files Scripts for third-party EDA
tools

Assignments ➤ Settings
➤ EDA Tool Settings

Verilog Output File (.vo)
VHDL Output File (.vho)
Verilog Quartus Mapping File (.vqm)

Archive files Complete project as single
compressed file

Project ➤ Archive Project Intel Quartus Prime Archive File (.qar)

2.2.1. Project File Best Practices

The Intel Quartus Prime software provides various options for specifying project
settings and constraints. The following best practices help ensure automated
management and portability of your project files.

• Avoid manually editing Intel Quartus Prime data files, such as the Intel Quartus
Prime Project File (.qpf), Intel Quartus Prime Settings File (.qsf), Quartus IP
File (.ip), or Platform Designer (Standard) System File (.qsys). Syntax errors in
these files cause errors during compilation. For example, the software may ignore
improperly formatted settings and assignments.

• Do not compile multiple projects into the same directory. Instead, use a separate
directory for each project.

• By default, the Intel Quartus Prime software saves all project output files, such as
Text-Format Report Files (.rpt), in the project directory. If you want to change
the location of output files, instead of manually moving project output files, click
Assignments ➤ Settings ➤ Compilation Process Settings, and specify the
Save project output files in specified directory option.

2.3. Managing Project Settings

The New Project Wizard guides you to make initial project settings when you setup a
new project. You can modify these and other global project settings in the Settings
and Device dialog boxes, respectively. The .qsf stores the settings for each project
revision. The optimization of these project settings helps the Compiler to generate
programming files that meet or exceed your specifications.

Global Project Settings

To access global project settings, click Assignments ➤ Settings, or click Settings on
the Tasks pane.

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8. Settings Dialog Box for Global Project Settings

The Settings dialog box provides access to settings that control project design files,
synthesis, Fitter, and timing constraints, operating conditions, EDA tool file generation,
programming file generation, and other project-level settings.

Additionally, the Assignment Editor (Assignments ➤ Assignment Editor) provides a
spreadsheet-like interface for specifying instance-specific settings and constraints.

Figure 9. Assignment Editor

2.3.1. Specifying the Target Device or Board

Specify the target Intel device or board for your project in the Device dialog box.
Click the Device and Pin Options button in the dialog to specify preferences for the
device configuration scheme, programming file generation, I/O timing, voltage, and
other options.

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Open a project in the Intel Quartus Prime software.

2. Click Assignments ➤ Device.

Figure 10. Device Dialog Box

3. Specify either a target Intel FPGA board or device for your project. When you
specify a board, the Intel Quartus Prime software generates the appropriate pin
assignments script for that board automatically.

• To specify an Intel FPGA board or development kit for your project:

a. Click the Board tab.

b. Select the target device Family and a supported Development Kit. Click
Yes if prompted to remove existing Location and I/O Standard pin
assignments. The Intel Quartus Prime software creates the kit's baseline
design and stores the design in <current_project_dir>/devkits/
<design_name>. To retain all your existing pin assignments, click No.

c. Select the desired development kit and click OK.

• To specify a device family for your project:

a. On the Device tab, select the Family and Device name. The list of
Available devices reflects your selections.

b. To further refine your selection, specify options for the Package, Pin
count, Core speed grade, Name filter, and Show advanced devices
filters.

c. From the Available devices, select your target device Name and click
OK.

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.2. Optimizing Project Settings

Optimize project settings to meet your design goals. The Intel Quartus Prime Design
Space Explorer II iteratively compiles your project with various setting combinations
to find the optimal settings for your goals. Alternatively, you can create a project
revision or project copy to manually compare various project settings and design
combinations.

The Intel Quartus Prime software includes several advisors to help you optimize your
design and reduce compilation time. The advisors listed in the Tools ➤ Advisors
menu can provide recommendations based on your project settings and design
constraints.

2.3.2.1. Optimize Settings with Design Space Explorer II

Use Design Space Explorer II (Tools > Launch Design Space Explorer II) to find
optimal project settings for resource, performance, or power optimization goals.
Design Space Explorer II (DSE II) processes your design using various setting and
constraint combinations, and reports the best settings for your design.

DSE II attempts multiple seeds to identify one meeting your requirements. DSE II can
run different compilations on multiple computers in parallel to streamline timing
closure.

Figure 11. Design Space Explorer II

2.3.2.2. Optimize Settings with Project Revisions

You can save multiple, named project revisions within your Intel Quartus Prime project
(Project > Revisions). Each project revision captures a unique set of project settings
and constraints, while using the same set of logic design files.

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use revisions to experiment with different settings while preserving the original.
Optimize different revisions for separate applications:

• Create a unique revision to optimize a design for different criteria, such as by area
in one revision and by fMAX in another revision.

• When you create a new revision the default Intel Quartus Prime settings initially
apply.

• Create a revision of a revision to experiment with settings and constraints. The
child revision includes all the assignments and settings of the parent revision.

You create, delete, and edit revisions in the Revisions dialog box. Each time you
create a new project revision, the Intel Quartus Prime software creates a new .qsf
using the revision name.

To compare each revision’s synthesis, fitting, and timing analysis results side-by-side,
click Project > Revisions and then click Compare. In addition to viewing the
compilation Results of each revision, you can also compare the Assignments for
each revision. This comparison reveals how different optimization options affect your
design.

Figure 12. Comparing Project Revisions

Related Information

Project Revision Commands on page 30

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.2.3. Back-Annotating Compiler Assignments

The Compiler maps the elements of your design to specific device resources during
fitting. After compilation, you can back-annotate (copy) the Compiler's device and
resource assignments to the project .qsf if you want to preserve that same
implementation in subsequent compilations.

Click Assignments ➤ Back-Annotate Assignments to copy the device resource
assignments from the last compilation to the .qsf for use in the next compilation.
Select the back-annotation type in the Back-annotation type list.

2.4. Managing Logic Design Files

The Intel Quartus Prime software helps you create and manage the logic design files in
your project. Logic design files contain the logic that implements your design. When
you add a logic design file to the project, the Compiler automatically includes that file
in the next compilation. The Compiler synthesizes your logic design files to generate
programming files for your target device.

The Intel Quartus Prime software includes full-featured schematic and text editors, as
well as HDL templates to accelerate your design work. The Intel Quartus Prime
software supports VHDL Design Files (.vhd), Verilog HDL Design Files (.v),
SystemVerilog (.sv) and schematic Block Design Files (.bdf). The Intel Quartus
Prime software also supports Verilog Quartus Mapping (.vqm) design files generated
by other design entry and synthesis tools. In addition, you can combine your logic
design files with Intel and third-party IP core design files, including combining
components into a Platform Designer (Standard) system (.qsys).

The New Project Wizard prompts you to identify logic design files. Add or remove
project files by clicking Project > Add/Remove Files in Project. View the project’s
logic design files in the Project Navigator.

Figure 13. Design and IP Files in Project Navigator

Right-click files in the Project Navigator to:

• Open and edit the file

• Remove File from Project

• Set as Top-Level Entity for the project revision

• Create a Symbol File for Current File for display in schematic editors

• Edit file Properties

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.1. Including Design Libraries

Include design files libraries in your project. Specify libraries for a single project, or for
all Intel Quartus Prime projects. The .qsf stores project library information.

The quartus2.ini file stores global library information.

1. Click Assignment > Settings.

2. Click Libraries and specify the Project Library name or Global Library name.
Alternatively, you can specify project libraries with SEARCH_PATH in the .qsf,
and global libraries in the quartus2.ini file.

Related Information

Design Library Migration Guidelines on page 26

2.4.2. Creating a Project Copy

Click Project > Copy Project to create a separate copy of your project, rather than
just a revision within the same project.

The project copy includes separate copies of all design files, any .qsf files, and
project revisions. You can use this technique to optimize project copies for different
applications that require design file differences. For example, you can optimize one
project to interface with a 32-bit data bus, and optimize a project copy to interface
with a 64-bit data bus.

2.5. Managing Timing Constraints

Apply appropriate timing constraints to correctly optimize fitting and analyze timing
for your design. The Fitter optimizes the placement of logic in the device to meet your
specified timing and routing constraints.

Specify timing constraints in the Timing Analyzer (Tools > Timing Analyzer), or in
an .sdc file. Specify constraints for clock characteristics, timing exceptions, and
external signal setup and hold times before running analysis. The Timing Analyzer
reports detailed information about the performance of your design compared with
constraints in the Compilation Report panel.

Save the constraints you specify in the GUI in an industry-standard Synopsys Design
Constraints File (.sdc). You can subsequently edit the text-based .sdc file directly. If
you refer to multiple .sdc files in a parent .sdc file, the Timing Analyzer reads
the .sdc files in the order you list.

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14. Timing Analyzer

2.6. Integrating Other EDA Tools

Optionally integrate supported EDA design entry, synthesis, simulation, physical
synthesis, and formal verification tools into the Intel Quartus Prime design flow. The
Intel Quartus Prime software supports netlist files from other EDA design entry and
synthesis tools. The Intel Quartus Prime software optionally generates various files for
use in other EDA tools.

The Intel Quartus Prime software manages EDA tool files and provides the following
integration capabilities:

• Automatically generate files for synthesis and simulation and automatically launch
other EDA tools (Assignments > Settings > EDA Tool Settings > NativeLink
Settings). The Intel Quartus Prime Pro Edition software does not support
NativeLink.

• Compile all RTL and gate-level simulation model libraries for your device,
simulator, and design language automatically (Tools > Launch Simulation
Library Compiler).

• Include files generated by other EDA design entry or synthesis tools in your
project as synthesized design files (Project > Add/Remove File from Project) .

• Automatically generate optional files for board-level verification (Assignments >
Settings > EDA Tool Settings).

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15. EDA Tool Settings

2.7. Exporting Compilation Results

When you run compilation, the Compiler preserves a database of results in a Quartus
Database File (.qdb). The .qdb contains the data to reproduce similar results in
another project, or in a later software version. You can export your project's
compilation results database for import to another project or migration to a later Intel
Quartus Prime software version.

You can export the .qdb for your entire project or for a design partition that you
define in your project. When migrating the database for an entire project, you can
export the compilation database in a version-compatible format to ensure
compatibility for import to a later software version.

Table 4. Exporting Compilation Results

To Export
Compilation Results

For

Method Description

Complete Design Click Project ➤ Export Database Saves compilation results for the entire project in a
version-compatible format. You can migrate the results to
a later version of the Intel Quartus Prime software.

Design Partition Click Project ➤ Export Design
Partition

Saves compilation results for a design partition as a
Quartus Prime Exported Partition File (.qxp) that you can
import to another project. You can export the results for
the post-fit or post-synthesis netlist.

Related Information

Project Database Commands on page 31

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.7.1. Exporting a Version-Compatible Compilation Database

To export a project compilation database to a format that ensures version-
compatibility with a later version of the Intel Quartus Prime software:

1. In the Intel Quartus Prime software, open the project that you want to export.

2. Generate synthesis or final compilation results by running one of the following
commands:

• Click Processing ➤ Start ➤ Start Analysis & Synthesis to generate
synthesized compilation results.

• Click Processing ➤ Start Compilation to generate final compilation results.

3. Click Project ➤ Export Database, specify the Export directory name, and click
OK. The database files export to the location you specify. You can now import this
exported database into a later version of the Intel Quartus Prime software.

Note: You can turn on Assignments > Settings > Compilation Process Settings >
Export version-compatible database if you want to always export a version-
compatible database following compilation.

2.7.2. Importing a Version-Compatible Compilation Database

Follow these steps to import a project compilation database into a newer version of
the Intel Quartus Prime software:

1. Export a version-compatible compilation database for a complete design, as
Exporting a Version-Compatible Compilation Database on page 23 describes.

2. In a newer version of the Intel Quartus Prime software, open the original project.
Click Yes if prompted to open a project created with a different software version.

3. If you have previously compiled the design you want to export, click Project ➤
Clean Project to clean the old compilation database before import.

4. Click Project > Import Database and select the exported database directory (by
default, <project directory>/export_db/). Timing analysis mode is
available to disable legality checks for certain configuration rule changes from
prior versions of the Intel Quartus Prime software. Enable this option only if your
design does not successfully import with the option disabled. After you import a
design with Timing analysis mode, you cannot the project to generate
programming files.

5. Click OK.

2.7.3. Exporting a Design Partition

The following steps describe export of design partitions that you create in your
project.

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Manual Design Partition Export

Follow these steps to manually export a design partition with the Export Design
Partition dialog box:

1. Open a project and create one or more design partitions.

2. Run synthesis (Processing ➤ Start ➤ Start Analysis & Synthesis) or full
compilation (Processing ➤ Start Compilation), depending on which compilation
results that you want to export.

3. Click Project ➤ Export Design Partition, and specify one or more options in the
Export Design Partition dialog box:

Figure 16. Export Design Partition Dialog Box

• Under Quartus Prime Exported Partition File, specify a file name.

• Select the Partition hierarchy to export.

• Under Netlist to export, select the Post-fit netlist or Post-synthesis
netlist for export.

4. Click OK. The compilation results for the design partition exports to the file that
you specify.

2.7.4. Clearing Compilation Results

You can clean the project database if you want to remove prior compilation results for
all project revisions or for specific revisions. For example, you must clear previous
compilation results before importing a version-compatible database to an existing
project.

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Click Project > Clean Project.

2. Select All revisions to clear the databases for all revisions of the current project,
or specify a Revision name to clear only the revision’s database you specify.

3. Click OK. A message indicates when the database is clean.

Figure 17. Clean Project Dialog Box Cleans the Project Database

2.8. Migrating Projects Across Operating Systems

Consider the following cross-platform issues when moving your project from one
operating system to another (for example, from Windows* to Linux*).

2.8.1. Migrating Design Files and Libraries

Consider file naming differences when migrating projects across operating systems.

• Use appropriate case for your platform in file path references.

• Use a character set common to both platforms.

• Do not change the forward-slash (/) and back-slash (\) path separators in
the .qsf. The Intel Quartus Prime software automatically changes all back-slash
(\) path separators to forward-slashes (/)in the .qsf.

• Observe the target platform’s file name length limit.

• Use underscore instead of spaces in file and directory names.

• Change library absolute path references to relative paths in the .qsf.

• Ensure that any external project library exists in the new platform’s file system.

• Specify file and directory paths as relative to the project directory. For example,
for a project titled foo_design, specify the source files as: top.v,
foo_folder /foo1.v, foo_folder /foo2.v, and foo_folder/
bar_folder/bar1.vhdl.

• Ensure that all the subdirectories are in the same hierarchical structure and
relative path as in the original platform.

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. All Inclusive Project Directory Structure

2.8.1.1. Use Relative Paths

Express file paths using relative path notation (../).

For example, in the directory structure shown you can specify top.v as ../source/
top.v and foo1.v as ../source/foo_folder/foo1.v.

Figure 19. Intel Quartus Prime Project Directory Separate from Design Files

2.8.2. Design Library Migration Guidelines

The following guidelines apply to library migration across computing platforms:

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. The project directory takes precedence over the project libraries.

2. For Linux, the Intel Quartus Prime software creates the file in the
altera.quartus directory under the <home> directory.

3. All library files are relative to the libraries. For example, if you specify the
user_lib1 directory as a project library and you want to add the /user_lib1/
foo1.v file to the library, you can specify the foo1.v file in the .qsf as foo1.v.
The Intel Quartus Prime software includes files in specified libraries.

4. If the directory is outside of the project directory, an absolute path is created by
default. Change the absolute path to a relative path before migration.

5. When copying projects that include libraries, you must either copy your project
library files along with the project directory or ensure that your project library files
exist in the target platform.

• On Windows, the Intel Quartus Prime software searches for the
quartus2.ini file in the following directories and order:

• USERPROFILE, for example, C:\Documents and Settings\<user name>

• Directory specified by the TMP environmental variable

• Directory specified by the TEMP environmental variable

• Root directory, for example, C:\

2.9. Archiving Projects

You can optionally save the elements of a project in a single, compressed Intel
Quartus Prime Archive File (.qar) by clicking Project > Archive Project. The .qar
preserves logic design, project, and settings files required to restore the project.

Use this technique to share projects between designers, or to transfer your project to
a new version of the Intel Quartus Prime software, or to Intel support. Optionally add
compilation results, Platform Designer system files, and third-party EDA tool files to
the archive.

If you restore the archive in a different version of the Intel Quartus Prime software,
you must include the original .qdf in the archive to preserve original compilation
results.

Related Information

Project Archive Commands on page 31

2.9.1. Manually Adding Files To Archives

Follow these steps to add files to a project archive manually:

1. Click Project ➤ Archive Project and specify the archive file name.

2. Click Advanced.

3. Select the File set for archive or select Custom. Turn on File subsets for the
archive.

4. Click Add and select Platform Designer system or EDA tool files. Click OK.

5. Click Archive.

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.2. Archiving Compilation Results

Optionally include compilation results in a project archive to avoid recompilation and
preserve original results in the restored project. To archive compilation results, export
the post-synthesis or post-fit version compatible database and include this file in the
archive.

1. Export the project database.

2. Click Project > Archive Project and specify the archive file name.

3. Click Advanced.

4. Under File subsets, turn on Version-compatible database files and click OK.

5. Click Archive.

To restore an archive containing a version-compatible database, follow these steps:

1. Click Project > Restore Archived Project.

2. Select the archive name and destination folder and click OK.

3. After restoring the archived project, click Project > Import Database and
import the version-compatible database.

Related Information

Exporting a Version-Compatible Compilation Database on page 23

2.9.3. Archiving Projects for Service Requests

When archiving projects for a service request, include all needed file types for proper
debugging by customer support.

To identify and include appropriate archive files for an Intel service request:

1. Click Project > Archive Project and specify the archive file name.

2. Click Advanced.

3. In File set, select Service request to include files for Intel Support.

• Project source and setting files
(.v, .vhd, .vqm, .qsf, .sdc, .qip, .qpf, .cmp)

• Automatically detected source files (various)

• Programming output files (.jdi, .sof, .pof)

• Report files (.rpt, .pin, .summary, .smsg)

• Platform Designer system and IP files (.qsys, .qip)

4. Click OK, and then click Archive.

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. Archiving Project for Service Request

2.9.4. Using External Revision Control

Your project may involve different team members with distributed responsibilities,
such as sub-module design, device and system integration, simulation, and timing
closure. In such cases, it may be useful to track and protect file revisions in an
external revision control system.

While Intel Quartus Prime project revisions preserve various project setting and
constraint combinations, external revision control systems can also track and merge
RTL source code, simulation testbenches, and build scripts. External revision control
supports design file version experimentation through branching and merging different
versions of source code from multiple designers. Refer to your external revision
control documentation for setup information.

2.9.4.1. Files to Include In External Revision Control

Include the following project file types in external revision control systems:

• Logic design files (.v, .vdh, .bdf, .edf, .vqm)

• Timing constraint files (.sdc)

• Quartus project settings and constraints (.qdf, .qpf, .qsf)

• IP files (.ip, .v, .sv, .vhd, .qip, .sip, .qsys)

• Platform Designer (Standard)-generated files (.qsys, .ip, .sip)

• EDA tool files (.vo, .vho)

Generate or modify these files manually if you use a scripted design flow. If you use
an external source code control system, check-in project files anytime you modify
assignments and settings.

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10. Command-Line Interface

You can optionally use command-line executables or scripts to run project commands,
rather than using the GUI. This technique can be helpful if you have many settings
and wish to track them in a single file or spreadsheet for iterative comparison.
The .qsf supports only a limited subset of Tcl commands. Therefore, pass settings
and constraints using a Tcl script:

1. Create a text file with the extension .tcl that contains your assignments in Tcl
format.

2. Source the Tcl script file by adding the following line to the .qsf:
set_global_assignment -name SOURCE_TCL_SCR IPT_FILE <file
name>.

2.10.1. Project Revision Commands

create_revision Command

create_revision defines the properties of a new project revision.

create_revision <name> -based_on <revision_name> -copy_results -set_current

Table 5. create_revision Command Options

Option Description

based_on (optional) Specifies the revision name on which the new revision bases its settings.

set_current (optional) Sets the new revision as the current revision.

copy_results Copies the results from the based_on revision.

-new_rev_type Specifies a base or impl (implementation) type for a new revision.

root_partition_qdb_file Specifies the name of a static region .qdb if already known when creating a
revision.

get_project_revisions Command

get_project_revisions returns a list of all revisions in the project.

get_project_revisions <project_name>

delete_revision Command

delete_revision deletes the revision you specify from your project.

delete_revision <revision name>

set_current_revision Command

set_current_revision sets the revision you specify as the current revision.

set_current_revision -force <revision name>

Related Information

Optimize Settings with Project Revisions on page 17

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.2. Project Archive Commands

project_archive Command

project_archive archives your project into a single, compressed .qar file.

project_archive <name>.qar

Table 6. project_archive Command Options

Options Description

-all_revisions Includes all revisions of the current project in the archive.

-auto_common_directory Preserves original project directory structure in archive.

-common_directory /<name> Preserves original project directory structure in specified
subdirectory.

-include_libraries Includes libraries in archive.

-include_outputs Includes output files in archive.

-use_file_set <file_set> Includes specified fileset in archive.

-version_compatible_database Includes version-compatible database files in archive.

Note: Version-compatible databases are not available for some device families. If you
require the database files to reproduce the compilation results in the same Intel
Quartus Prime software version, use the -use_file_set full_db option to archive
the complete database.

restore_archive Command

Restores an archived project to a destination directory with optional overwriting of
current contents.

project_restore <name>.qar -destination <directory name> -overwrite

Related Information

Archiving Projects on page 27

2.10.3. Project Database Commands

Related Information

Exporting Compilation Results on page 22

2.10.3.1. Import and Export Version-Compatible Databases from a Flow Package

The following are Tcl commands from the flow package to import or export version-
compatible databases. If you use the flow package, you must specify the database
directory variable name. flow and database_manager packages contain commands
to manage version-compatible databases.

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• set_global_assignment -name VER_COMPATIBLE_DB_DIR <directory>

• execute_flow –flow export_database

• execute_flow –flow import_database

2.10.3.2. quartus_cdb and quartus_sh Executables to Manage Version-
Compatible Databases

Use the following commands to manage version-compatible databases:

• quartus_cdb <project> -c <revision> --
export_database=<directory>

• quartus_cdb <project> -c <revision> --
import_database=<directory>

• quartus_sh –flow export_database <project> -c \ <revision>

• quartus_sh –flow import_database <project> -c \ <revision>

2.10.4. Project Library Commands

Use the following commands to script project library changes.

2.10.4.1. Specify Project Libraries With SEARCH_PATH Assignment

In Tcl, use commands in the :: quartus ::project package to specify project
libraries, and the set_global_assignment command.

Use the following commands to script project library changes:

• set_global_assignment -name SEARCH_PATH "../other_dir/
library1"

• set_global_assignment -name SEARCH_PATH "../other_dir/
library2"

• set_global_assignment -name SEARCH_PATH "../other_dir/
library3"

2.10.4.2. Report Specified Project Libraries Commands

To report any project libraries specified for a project and any global libraries specified
for the current installation of the Quartus software, use the
get_global_assignment and get_user_option Tcl commands.

Use the following commands to report specified project libraries:

• get_global_assignment -name SEARCH_PATH

• get_user_option -name SEARCH_PATH

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.4.3. Generate Version-Compatible Database After Compilation

Use the following commands to generate a version-compatible database after
compilation:

• set_global_assignment -name AUTO_EXPORT_VER_COMPATIBLE_DB ON

• set_global_assignment-name VER_COMPATIBLE_DB_DIR <directory>

2.11. Managing Projects Revision History

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Subdivided "Exporting, Archiving, and Migrating Projects" into separate
sections.

• Added "Specifying the Target Device or Board" topic.
• Divided "Introduction to Intel FPGA IP Cores" into separate chapter.
• Moved "IP Core Best Practices" topic to Introduction to Intel FPGA IP

Cores chapter.
• Moved "Factors Affecting Compilation Results" topic to Design

Compilation: Intel Quartus Prime Standard Edition User Guide.

2018.02.11 18.0.0 • Added description of | as root partition hierarchy path in Design
Partitions Window.

• Removed "Scripting IP Simulation" and "Generating a Combined
Simulation Script" topics. These features are supported only for Intel
Arria 10 devices in Intel Quartus Prime Standard Edition.

• Added link to "Scripting IP Simulation" in the Introduction to Intel FPGA
IP Cores.

Date Version Changes

2017.11.06 17.1.0 • Revised product branding for Intel standards.
• Changed instances of Qsys to Platform Designer (Standard)
• Revised topics on Intel FPGA IP Evaluation Mode (formerly

OpenCore).
• Removed -compatible attribute from export_design command

content.
• Updated IP Core Upgrade Status table with new icons, and added

row for IP Component Outdated status.

2017.05.08 17.0.0 • Added topic on Back-Annotate Assignments command.

2016.10.31 16.1.0 • Updated screenshots.

2016.05.03 16.0.0 Removed statements about serial equivalence when using multiple
processors.

2016.02.09 15.1.1 • Clarified instructions for Generating a Combined Simulator Setup
Script.

• Clarified location of Save project output files in specified
directory option.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2015.05.04 15.0.0 • Added description of design templates feature.
• Updated screenshot for DSE II GUI.
• Added qsys_script IP core instantiation information.
• Described changes to generating and processing of instance and

entity names.

continued...

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

• Added description of upgrading IP cores at the command line.
• Updated procedures for upgrading and migrating IP cores.
• Gate level timing simulation supported only for Cyclone IV and

Stratix IV devices.

2014.12.15 14.1.0 • Updated content for DSE II GUI and optimizations.
• Added information about new Assignments ➤ Settings ➤ IP

Settings that control frequency of synthesis file regeneration and
automatic addition of IP files to the project.

2014.08.18 14.0a10.0 • Added information about specifying parameters for IP cores
targeting Arria 10 devices.

• Added information about the latest IP output for version 14.0a10
targeting Arria 10 devices.

• Added information about individual migration of IP cores to the
latest devices.

• Added information about editing existing IP variations.

2014.06.30 14.0.0 • Replaced MegaWizard Plug-In Manager information with IP Catalog.
• Added standard information about upgrading IP cores.
• Added standard installation and licensing information.
• Removed outdated device support level information. IP core device

support is now available in IP Catalog and parameter editor.

November 2013 13.1.0 • Conversion to DITA format

May 2013 13.0.0 • Overhaul for improved usability and updated information.

June 2012 12.0.0 • Removed survey link.
• Updated information about VERILOG_INCLUDE_FILE.

November 2011 10.1.1 Template update.

December 2010 10.1.0 • Changed to new document template.
• Removed Figure 4–1, Figure 4–6, Table 4–2.
• Moved “Hiding Messages” to Help.
• Removed references about the set_user_option command.
• Removed Classic Timing Analyzer references.

2. Managing Intel Quartus Prime Projects

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Design Planning

3.1. Design Planning

Design planning is an essential step in advanced FPGA design. System architects must
consider the target device characteristics in order to plan for interface I/O, integration
of IP, on-chip debugging tools, and use of other EDA tools. Designers must consider
device power consumption and programming methods when planning the layout. You
can solve potential problems early in the design cycle by following the design planning
considerations in this chapter.

By default, the Intel Quartus Prime software optimizes designs for the best overall
results; however, you can adjust settings to better optimize one aspect of your design,
such as performance, routability, area, or power utilization. Consider your own design
priorities and trade-offs when reviewing the techniques in this chapter. For example,
certain device features, density, and performance requirements can increase system
cost. Signal integrity and board issues can impact I/O pin locations. Power, timing
performance, and area utilization all affect one another. Compilation time is affected
when optimizing these priorities.

Determining your design priorities early on helps you to choose the best device, tools,
features, and methodologies for your design.

3.2. Create a Design Specification and Test Plan

Before you create your design logic or complete your system design, it is best practice
to create detailed design specifications that define the system, specify the I/O
interfaces for the FPGA, identify the different clock domains, and include a block
diagram of basic design functions.

In addition, creating a test plan helps you to design for verification and ease of
manufacture. For example, your test plan can include validation of interfaces
incorporated in your design. To perform any built-in self-test functions to drive
interfaces, you can use a UART interface with a Nios® II processor inside the FPGA
device.

If more than one designer contributes to the design, consider a common design
directory structure or source control system to make design integration easier.
Consider whether you want to standardize on an interface protocol for each design
block.

3.3. Plan for the Target Device

Intel offers a broad portfolio of FPGA and PLD devices. The Intel device that you select
determines factors of performance, density, and board layout. To avoid costly design
changes, it is best to carefully consider and determine the target device family early in

683475 | 2019.12.16

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

the design cycle. Intel FPGA device families differ in cost, size, density, performance,
power consumption, packaging, I/O standards, and other factors. Select the device
family that best suits your most critical design requirements.

Device Family Selection Guidelines

• Refer to the Product Selector tool on the Intel website to quickly find and compare
the specifications and features of Intel FPGA devices and development kits.

• Once you identify the target device family, refer to the device family technical
documentation for detailed device characteristics. Each device family includes
complete documentation, including a datasheet and user guide or handbook. You
can also view a summary of each device's resources by selecting a device in the
Device dialog box (Assignments ➤ Device)

Figure 21. Device Dialog Box

• Consider whether the device family meets any requirements you have for high-
speed transceivers, global or regional clock networks, and the number of phase-
locked loops (PLLs)

• Consider the density requirements of your design. Devices with more logic
resources and higher I/O counts can implement larger and more complex designs,
but at a higher cost. Smaller devices use lower static power. Select a device larger
than what your design requires if you may want to add more logic later in the
design cycle, or to reserve logic and memory for on-chip debugging.

• Consider requirements for types of dedicated logic blocks, such as memory blocks
of different sizes, or digital signal processing (DSP) blocks to implement certain
arithmetic functions.

3. Design Planning

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

36

https://ark.intel.com/content/www/us/en/ark.html#@Intel%C2%AEFPGAs
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Product Selector Guide Tool
To help you choose your device.

3.3.1. Device Migration Planning

Determine whether you want to migrate your design to another device density to allow
flexibility when your design nears completion. You may want to target a smaller (and
less expensive) device and then move to a larger device if necessary to meet your
design requirements. Other designers may prototype their design in a larger device to
reduce optimization time and achieve timing closure more quickly, and then migrate to
a smaller device after prototyping. If you want the flexibility to migrate your design,
you must specify these migration options in the Intel Quartus Prime software at the
beginning of your design cycle.

Selecting a migration device impacts pin placement because some pins may serve
different functions in different device densities or package sizes. If you make pin
assignments in the Intel Quartus Prime software, the Pin Migration View in the Pin
Planner highlights pins that change function between your migration devices.

3.4. Plan for Intellectual Property Cores

Intel and third-party intellectual property (IP) partners offer a large selection of
standardized IP cores optimized for Intel FPGA devices. The IP you select often affects
system design and performance, especially if the FPGA interfaces with other devices in
the system. Plan which I/O interfaces or other blocks in the system that you want to
implement using IP cores. Whenever possible, plan to incorporate these functions into
your design using Intel FPGA IP cores, many of which are available for production use
in the Intel Quartus Prime software without additional license.

Figure 22. IP Catalog

Double-Click for Parameters
Right-Click for IP Details

Search for IP

3. Design Planning

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

37

https://ark.intel.com/content/www/us/en/ark.html#@Intel%C2%AEFPGAs
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For IP cores that require additional license for production use, the Intel FPGA IP
Evaluation Mode, allows you to program the FPGA to verify the IP in the hardware
before you purchase the IP license. Refer to Introduction to Intel FPGA IP Cores on
page 51 for general information on using Intel FPGA IP cores.

Related Information

• Introduction to Intel FPGA IP Cores on page 51

• Intel FPGA IP Portfolio Web Page
For descriptions and documentation for all available Intel FPGA and partner IP
cores.

3.5. Plan for Standard Interfaces

To reduce design iterations and costly design changes, plan for use of standard
interfaces in system design. Using standard interfaces ensures compatibility between
design blocks from different design teams or vendors. Standard interfaces simplify the
interface logic to each design block, and enable individual team members to test their
individual design blocks against the specification for the interface protocol to ease
system integration.

You can use the Intel Quartus Prime Platform Designer system integration tool to use
standard interfaces and speed-up system-level integration. Platform Designer
components use Avalon® standard interfaces for physical connections, allowing you to
connect any logical device (either on-chip or off-chip) that has an Avalon interface.
Platform Designer allows you to define system components in a GUI, and then
automatically generates the required interconnect logic, along with clock-crossing and
width adapters.

The Avalon standard includes two interface types:

• Avalon Memory-Mapped (Avalon-MM)—allow a component to use an address-
mapped read or write protocol that connects master components to slave
components.

• Avalon Streaming (Avalon-ST)—enables point-to-point connections between
streaming components that send and receive data using a high-speed,
unidirectional system interconnect between source and sink ports.

Related Information

Creating a System with Platform Designer

3.6. Plan for Device Programming

You must plan for the devices and hardware that you require for programming or
configuration of the device. Comprehensive system planning includes determining
what companion devices, if any, your system requires. Your programming or
configuration method also impacts the board layout planning. For example, some
programming options require a JTAG interface connection, requiring a JTAG chain on
the board.

You can define a configuration scheme on the Configuration tab of the Device and
Pin Options dialog box. The Intel Quartus Prime software uses the settings for the
configuration scheme, configuration device, and configuration device voltage to enable

3. Design Planning

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

38

https://www.intel.com/content/www/us/en/products/programmable/intellectual-property/find-fpga-ip.html?wapkw=Intel%20FPGA%20IP#sort=%40title%20ascending
https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958596582
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the appropriate dual purpose pins as regular I/O pins after you complete
configuration. The Intel Quartus Prime software performs voltage compatibility checks
of those pins during compilation of your design.

Figure 23. Intel Quartus Prime Programmer

Starts Download of
Configuration Data

Adds SOF File

Adds RBF to Program
PR region

Enables Program or Configuration

The technical documentation for each device family describes the available
configuration options.

3.7. Plan for Device Power Consumption

You can use the Intel Quartus Prime power estimation and analysis tools to estimate
power consumption and guide PCB board and system design. You must accurately
estimate device power consumption to develop an appropriate power budget and to
design the power supplies, voltage regulators, heat sink, and cooling system. You can
use the Early Power Estimator (EPE) spreadsheet to estimate power consumption
before running a compilation or creating any source code. Then, you can use the Intel
Quartus Prime Power Analyzer to perform a more accurate analysis after your design
is complete.

Note: Because power consumption is heavily dependent on actual design and environmental
conditions, make sure to verify the actual power consumption during device operation.

3. Design Planning

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Power estimation and analysis helps you ensure that your design satisfies thermal and
power supply requirements:

• Thermal—ensure that the cooling solution is sufficient to dissipate the heat
generated by the device. The computed junction temperature must fall within
normal device specifications.

• Power supply—ensure that the power supplies provide adequate current to support
device operation.

Early Power Estimator (EPE) Spreadsheet

The Early Power Estimator (EPE) spreadsheet allows you to estimate power utilization
for your design. Estimating power consumption early in the design cycle allows
planning of power budgets and avoids unexpected results when designing the PCB.

Figure 24. Early Power Estimator (EPE) Spreadsheet

You can manually enter data into the EPE spreadsheet, or use the Intel Quartus Prime
software to generate device resource information for your design.

To manually enter data into the EPE spreadsheet, enter the device resources,
operating frequency, toggle rates, and other parameters for your design. If you do not
have an existing design, estimate the number of device resources used in your design,
and then enter the data into the EPE spreadsheet manually.

If you have an existing design or a partially completed design, you can use the Intel
Quartus Prime software to generate the Early Power Estimator File (.txt, .csv) to
assist you in completing the EPE spreadsheet.

3. Design Planning

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The EPE spreadsheet includes the Import Data macro that parses the information in
the EPE File and transfers the information into the spreadsheet. If you do not want to
use the macro, you can manually transfer the data into the EPE spreadsheet. For
example, after importing the EPE File information into the EPE spreadsheet, you can
add device resource information. If the existing Intel Quartus Prime project represents
only a portion of your full design, manually enter the additional device resources you
use in the final design.

Intel Quartus Prime Power Analyzer

After you complete your design, you can use the Intel Quartus Prime Power Analyzer
to perform a complete post-fit power analysis to check the power consumption more
accurately. The Power Analyzer provides an accurate estimation of power, ensuring
that thermal and supply limitations are met.

Related Information

Early Power Estimator and Power Analyzer Web Page

3.8. Plan for Interface I/O Pins

In many design environments, FPGA designers want to plan the top-level FPGA I/O
pins early to help board designers begin the PCB design and layout. The I/O
capabilities and board layout guidelines of the FPGA device influence pin locations and
other types of assignments. If the board design team specifies an FPGA pin-out, the
pin locations must be verified in the FPGA placement and routing software to avoid
board design changes.

You can create a preliminary pin-out for an Intel FPGA with the Intel Quartus Prime Pin
Planner before you develop the source code, based on standard I/O interfaces (such
as memory and bus interfaces) and any other I/O requirements for your system.

The Intel Quartus Prime I/O Assignment Analysis checks that the pin locations and
assignments are supported in the target FPGA architecture. You can then use I/O
Assignment Analysis to validate I/O-related assignments that you create or modify
throughout the design process. When you compile your design in the Intel Quartus
Prime software, I/O Assignment Analysis runs automatically in the Fitter to validate
that the assignments meet all the device requirements and generates error messages.

Early in the design process, before creating the source code, the system architect has
information about the standard I/O interfaces (such as memory and bus interfaces),
the IP cores in your design, and any other I/O-related assignments defined by system
requirements. You can use this information with the Early Pin Planning feature in
the Pin Planner to specify details about the design I/O interfaces. You can then create
a top-level design file that includes all I/O information.

The Pin Planner interfaces with the IP core parameter editor, which allows you to
create or import custom IP cores that use I/O interfaces. You can configure how to
connect the functions and cores to each other by specifying matching node names for
selected ports. You can create other I/O-related assignments for these interfaces or
other design I/O pins in the Pin Planner, as described in this section. The Pin Planner
creates virtual pin assignments for internal nodes, so internal nodes are not assigned
to device pins during compilation.

After analysis and synthesis of the newly generated top-level wrapper file, use the
generated netlist to perform I/O Analysis with the Start I/O Assignment Analysis
command.

3. Design Planning

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

41

http://www.altera.com/support/devices/estimator/pow-powerplay.jsp
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the I/O analysis results to change pin assignments or IP parameters even
before you create your design, and repeat the checking process until the I/O interface
meets your design requirements and passes the pin checks in the Intel Quartus Prime
software. When you complete initial pin planning, you can create a revision based on
the Intel Quartus Prime-generated netlist. You can then use the generated netlist to
develop the top-level design file for your design, or disregard the generated netlist
and use the generated Intel Quartus Prime Settings File (.qsf) with your design.

During this early pin planning, after you have generated a top-level design file, or
when you have developed your design source code, you can assign pin locations and
assignments with the Pin Planner.

With the Pin Planner, you can identify I/O banks, voltage reference (VREF) groups, and
differential pin pairings to help you through the I/O planning process. If you selected a
migration device, the Pin Migration View highlights the pins that have changed
functions in the migration device when compared to the currently selected device.
Selecting the pins in the Device Migration view cross-probes to the rest of the Pin
Planner, so that you can use device migration information when planning your pin
assignments. You can also configure board trace models of selected pins for use in
“board-aware” signal integrity reports generated with the Enable Advanced I/O
Timing option . This option ensures that you get accurate I/O timing analysis. You can
use a Microsoft Excel spreadsheet to start the I/O planning process if you normally use
a spreadsheet in your design flow, and you can export a Comma-Separated Value File
(.csv) containing your I/O assignments for spreadsheet use when you assign all pins.

When you complete your pin planning, you can pass pin location information to PCB
designers. The Pin Planner is tightly integrated with certain PCB design EDA tools, and
can read pin location changes from these tools to check suggested changes. Your pin
assignments must match between the Intel Quartus Prime software and your
schematic and board layout tools to ensure the FPGA works correctly on the board,
especially if you must make changes to the pin-out. The system architect uses the
Intel Quartus Prime software to pass pin information to team members designing
individual logic blocks, allowing them to achieve better timing closure when they
compile their design.

Start FPGA planning before you complete the HDL for your design to improve the
confidence in early board layouts, reduce the chance of error, and improve the overall
time to market of the design. When you complete your design, use the Fitter reports
for the final sign-off of pin assignments. After compilation, the Intel Quartus Prime
software generates the Pin-Out File (.pin), and you can use this file to verify that
each pin is correctly connected in board schematics.

Related Information

Intel Quartus Prime Standard Edition User Guide: Design Optimization
For more information about I/O assignment and analysis.

3.8.1. Simultaneous Switching Noise Analysis

Simultaneous switching noise (SSN) is a noise voltage inducted onto a victim I/O pin
of a device due to the switching behavior of other aggressor I/O pins in the device.

Intel provides tools for SSN analysis and estimation, including SSN characterization
reports, an Early SSN Estimator (ESE) spreadsheet tool, and the SSN Analyzer in the
Intel Quartus Prime software. SSN often leads to the degradation of signal integrity by
causing signal distortion, thereby reducing the noise margin of a system. You must

3. Design Planning

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

42

https://www.intel.com/content/www/us/en/docs/programmable/683230.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

address SSN with estimation early in your system design, to minimize later board
design changes. When your design is complete, verify your board design by
performing a complete SSN analysis of your FPGA in the Intel Quartus Prime software.

3.9. Plan for other EDA Tools

Your complete FPGA design flow may include third-party EDA tools in addition to the
Intel Quartus Prime software. Determine which tools you want to use with the Intel
Quartus Prime software to ensure that they are supported and set up properly, and
that you are aware of their capabilities.

3.9.1. Third-Party Synthesis Tools

You can use supported standard third-party EDA synthesis tools to synthesize your
Verilog HDL or VHDL design, and then compile the resulting output netlist file in the
Intel Quartus Prime software. The Intel Quartus Prime Standard Edition software
includes integrated synthesis that supports Verilog HDL, VHDL, Altera Hardware
Description Language (AHDL), and schematic design entry.

Different synthesis tools may give different results for each design. To determine the
best tool for your application, you can experiment by synthesizing typical designs for
your application and coding style. Perform placement and routing in the Intel Quartus
Prime software to get accurate timing analysis and logic utilization results.

The synthesis tool you choose may allow you to create an Intel Quartus Prime project
and pass constraints, such as the EDA tool setting, device selection, and timing
requirements that you specified in your synthesis project. You can save time when
setting up your Intel Quartus Prime project for placement and routing.

Tool vendors frequently add new features, fix tool issues, and enhance performance
for Intel devices, you must use the most recent version of third-party synthesis tools.

3.9.2. Third-Party Simulation Tools

Intel provides the Mentor Graphics ModelSim* - Intel FPGA Edition simulator with the
Intel Quartus Prime software. You can also purchase the ModelSim - Intel FPGA Edition
or a full license of the ModelSim software to support large designs and achieve faster
simulation performance. The Intel Quartus Prime software generates both functional
and timing netlist files for ModelSim and other supported third-party simulators.

Use the simulator version that your Intel Quartus Prime software version supports for
best results. You must also use the model libraries provided with your Intel Quartus
Prime software version. Libraries can change between versions, which might cause a
mismatch with your simulation netlist.

3.10. Plan for On-Chip Debugging Tools

Consider whether to include on-chip debugging tools early in the design process.
Adding the debugging tools late in the design process can be more time consuming
and error prone.

3. Design Planning

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Intel Quartus Prime in-system debugging tools offer different advantages and
trade-offs, depending on the characteristics of your design. Consider the following
debugging requirements when planning your design to support debugging tools:

• JTAG connections—required to perform in-system debugging with JTAG tools. Plan
your system and board with JTAG ports that are available for debugging.

• Additional logic resources (ALR)—required to implement JTAG hub logic. If you set
up the appropriate tool early in your design cycle, you can include these device
resources in your early resource estimations to ensure that you do not overload
the device with logic.

• Reserve device memory—required if your tool uses device memory to capture data
during system operation. To ensure that you have enough memory resources to
take advantage of this debugging technique, consider reserving device memory to
use during debugging.

• Reserve I/O pins—required if you use the Logic Analyzer Interface (LAI) or Signal
Probe tools, which require I/O pins for debugging. If you reserve I/O pins for
debugging, you do not have to later change your design or board. The LAI can
multiplex signals with design I/O pins if required. Ensure that your board supports
a debugging mode, in which debugging signals do not affect system operation.

• Instantiate an IP core in your HDL code—required if your debugging tool uses an
Intel FPGA IP core.

• Instantiate the Signal Tap Logic Analyzer IP core—required if you want to manually
connect the Signal Tap Logic Analyzer to nodes in your design and ensure that the
tapped node names do not change during synthesis.

Note: You can add the Signal Tap Logic Analyzer as a separate design partition for
incremental compilation to minimize recompilation times.

Table 7. Factors to Consider When Using Debugging Tools During Design Planning
Stages

Design Planning Factor Signal
Tap

Logic
Analyzer

System
Console

In-
System
Memory
Content
Editor

Logic
Analyzer
Interface

(LAI)

Signal
Probe

In-
System
Sources

and
Probes

Virtual
JTAG IP

Core

JTAG connections Yes Yes Yes Yes — Yes Yes

Additional logic resources — Yes — — — — Yes

Reserve device memory Yes Yes — — — — —

Reserve I/O pins — — — Yes Yes — —

Instantiate IP core in your HDL code — — — — — Yes Yes

Related Information

Intel Quartus Prime Standard Edition User Guide: Debug Tools

3.11. Plan HDL Coding Styles

When you develop complex FPGA designs, design practices and coding styles have an
enormous impact on the timing performance, logic utilization, and system reliability of
your device.

3. Design Planning

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

44

https://www.intel.com/content/www/us/en/docs/programmable/683552/current/system-debugging-tools-overview.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.11.1. Design Recommendations

Use synchronous design practices to consistently meet your design goals. Problems
with asynchronous design techniques include reliance on propagation delays in a
device, incomplete timing analysis, and possible glitches.

In a synchronous design, a clock signal triggers all events. When you meet all register
timing requirements, a synchronous design behaves in a predictable and reliable
manner for all process, voltage, and temperature (PVT) conditions. You can easily
target synchronous designs to different device families or speed grades.

Clock signals have a large effect on the timing accuracy, performance, and reliability of
your design. Problems with clock signals can cause functional and timing problems in
your design. Use dedicated clock pins and clock routing for best results, and if you
have PLLs in your target device, use the PLLs for clock inversion, multiplication, and
division. For clock multiplexing and gating, use the dedicated clock control block or
PLL clock switchover feature instead of combinational logic, if these features are
available in your device. If you must use internally-generated clock signals, register
the output of any combinational logic used as a clock signal to reduce glitches.

The Design Assistant in the Intel Quartus Prime software is a design-rule checking tool
that enables you to verify design issues. The Design Assistant checks your design for
adherence to Intel-recommended design guidelines. You can also use third-party lint
tools to check your coding style. The Design Assistant does not support Max 10 and
Intel Arria 10 devices.

Consider the architecture of the device you choose so that you can use specific
features in your design. For example, the control signals should use the dedicated
control signals in the device architecture. Sometimes, you might need to limit the
number of different control signals used in your design to achieve the best results.

3.11.2. Recommended HDL Coding Styles

HDL coding styles can have a significant effect on the quality of results for
programmable logic designs.

If you design memory and DSP functions, you must understand the target architecture
of your device so you can use the dedicated logic block sizes and configurations.
Follow the coding guidelines for inferring Intel FPGA IP and targeting dedicated device
hardware, such as memory and DSP blocks.

Related Information

Intel Quartus Prime Standard Edition User Guide: Design Recommendations

3.11.3. Managing Metastability

Metastability problems can occur in digital design when a signal is transferred between
circuitry in unrelated or asynchronous clock domains, because the designer cannot
guarantee that the signal meets the setup and hold time requirements during the
signal transfer.

3. Design Planning

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

45

https://www.intel.com/content/www/us/en/docs/programmable/683082/current/recommended-hdl-coding-styles.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Designers commonly use a synchronization chain to minimize the occurrence of
metastable events. Ensure that your design accounts for synchronization between any
asynchronous clock domains. Consider using a synchronizer chain of more than two
registers for high-frequency clocks and frequently-toggling data signals to reduce the
chance of a metastability failure.

You can use the Intel Quartus Prime software to analyze the average mean time
between failures (MTBF) due to metastability when a design synchronizes
asynchronous signals, and optimize your design to improve the metastability MTBF.
The MTBF due to metastability is an estimate of the average time between instances
when metastability could cause a design failure. A high MTBF (such as hundreds or
thousands of years between metastability failures) indicates a more robust design.
Determine an acceptable target MTBF given the context of your entire system and the
fact that MTBF calculations are statistical estimates.

The Intel Quartus Prime software can help you determine whether you have enough
synchronization registers in your design to produce a high enough MTBF at your clock
and data frequencies.

Related Information

Managing Metastability, Intel Quartus Prime Standard Edition User Guide: Design
Recommendations

3.12. Plan for Hierarchical and Team-Based Designs

The Intel Quartus Prime Compiler supports hierarchical design methodologies to
reduce design compilation times and preserve performance. In a flat compilation flow,
the design hierarchy is flattened without design partitions. In block-based
(hierarchical) flows, you can subdivide your design by creating design partitions.

Hierarchical flows allow you to isolate, optimize, and preserve compilation results for
specific design blocks, but require more design planning to ensure effective results.

3.12.1. Flat Compilation without Design Partitions

In a flat compilation flow without any design partitions, the Intel Quartus Prime
software compiles the entire design in a “flat” netlist.

Although the source code may be hierarchical, the Compiler flattens and synthesizes
all the design logic. Whenever you re-compile the project, the Compiler re-performs all
available logic and placement optimizations on the entire design.

The flat compilation flow does not require any planning for design partitions. However,
because the Intel Quartus Prime software recompiles the entire design whenever you
change your design, flat design practices may require more overall compilation time
for large designs. Additionally, you may find that the results for one part of the design
change when you change a different part of your design. You can run Rapid
Recompile to preserve portions of previous placement and routing in subsequent
compilations. Rapid Recompile can reduce your compilation time in a flat or
partitioned design when you make small changes to your design.

3. Design Planning

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

46

https://www.intel.com/content/www/us/en/docs/programmable/683323/current/managing-metastability-with-the-software-44819.html
https://www.intel.com/content/www/us/en/docs/programmable/683323/current/managing-metastability-with-the-software-44819.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.12.2. Incremental Compilation with Design Partitions

In an incremental compilation flow, the system architect splits a large design into
partitions. When hierarchical design partitions are well chosen and placed in the device
floorplan, you can speed up your design compilation time while maintaining the quality
of results.

Incremental compilation preserves the compilation results and performance of
unchanged partitions in the design, greatly reducing design iteration time by focusing
new compilations on changed design partitions only. Incremental compilation then
merges new compilation results with the previous compilation results from unchanged
design partitions. Additionally, you can target optimization techniques to specific
design partitions, while leaving other partitions unchanged. You can also use empty
partitions to indicate that parts of your design are incomplete or missing, while you
compile the rest of your design.

Third-party IP designers can also export logic blocks to be integrated into the top-level
design. Team members can work on partitions independently, which can simplify the
design process and reduce compilation time. With exported partitions, the system
architect must provide guidance to designers or IP providers to ensure that each
partition uses the appropriate device resources. Because the designs may be
developed independently, each designer has no information about the overall design or
how their partition connects with other partitions. This lack of information can lead to
problems during system integration. The top-level project information, including pin
locations, physical constraints, and timing requirements, must be communicated to
the designers of lower-level partitions before they start their design.

The system architect plans design partitions at the top level and allows third-party
designs to access the top-level project framework. By designing in a copy of the top-
level project (or by checking out the project files in a source control environment), the
designers of the lower-level block have full information about the entire project, which
helps to ensure optimal results.

When you plan your design code and hierarchy, ensure that each design entity is
created in a separate file so that the entities remain independent when you make
source code changes in the file. If you use a third-party synthesis tool, create separate
Verilog Quartus Mapping or EDIF netlists for each design partition in your synthesis
tool. You may have to create separate projects in your synthesis tool, so that the tool
synthesizes each partition separately and generates separate output netlist files. The
netlists are then considered the source files for incremental compilation.

3.12.3. Planning Design Partitions and Floorplan Location Assignments

Partitioning a design for an FPGA requires planning to ensure optimal results when you
integrate the partitions. Following Intel’s recommendations for creating design
partitions should improve the overall quality of results.

For example, registering partition I/O boundaries keeps critical timing paths inside one
partition that can be optimized independently. When you specify the design partitions,
you can use the Incremental Compilation Advisor to ensure that partitions meet Intel’s
recommendations.

If you have timing-critical partitions that are changing through the design flow, or
partitions exported from another Intel Quartus Prime project, you can create design
floorplan assignments to constrain the placement of the affected partitions. Good

3. Design Planning

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

partition and floorplan design helps partitions meet top-level design requirements
when integrated with the rest of your design, reducing time you spend integrating and
verifying the timing of the top-level design.

Related Information

Analyzing and Optimizing the Design Floorplan

3.13. Design Planning Revision History

Document Version Intel Quartus Prime
Version

Changes

2018.09.24 18.1.0 • Moved information about specifying the target board to
"Specifying the Target Device or Board" in Managing Projects
chapter.

• Retitled "Creating Design Specifications" to "Create a Design
Specification and Test Plan."

• Retitled "Selecting Intellectual Property Cores" to "Plan for
Intellectual Property Cores."

• Retitled "Using Standard Interfaces" to "Plan for Standard
Interfaces." Corrected references to Platform Designer.

• Retitled "Device Selection" to "Plan for the Target Device."
Updated this content to correct Platform Designer names.

• Moved "Setting Pin Assignments" to Managing Projects chapter
as "Generating Pin Assignments for a Target Board."

• Retitled "Estimating Power" to "Plan for Device Power
Consumption." Reorganized this topic into sections for EPE and
Power Analyzer.

• Added link to "Simulator Support, Third-Party Simulation User
Guide

• Retitled "Planning for Device Programming or Configuration" to
"Plan for Device Programming"

• Retitled "Early Pin Planning and I/O Analysis" to "Plan for
Interface I/O Pins."

• Retitled "Selecting Third-Party EDA Tools" to "Plan for other
EDA Tools."

• Retitled "Planning for On-Chip Debugging Tools" to "Plan for
On-Chip Debugging Tools."

• Revised some wording in "Planning for Hierarchical and Team-
Based Design"

• Retitled Design Planning with the Intel Quartus Prime Software
to Design Planning

Date Version Changes

2017.11.06 17.1.0 • Changed instances of OpenCore Plus to Intel FPGA IP
Evaluation Mode.

• Changed instances of Qsys to Platform Designer (Standard)
(Standard)

2016.05.03 16.0.0 Added information about Development Kit selection.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2015.05.04 15.0.0 Remove support for Early Timing Estimate feature.

2014.06.30 14.0.0 Updated document format.

November 2013 13.1.0 Removed HardCopy device information.

November, 2012 12.1.0 Update for changes to early pin planning feature

continued...

3. Design Planning

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

48

https://www.intel.com/content/www/us/en/docs/programmable/683230.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

June 2012 12.0.0 Editorial update.

November 2011 11.0.1 Template update.

May 2011 11.0.0 • Added link to System Design with Qsys in “Creating Design
Specifications” on page 1–2

• Updated “Simultaneous Switching Noise Analysis” on page 1–
8

• Updated “Planning for On-Chip Debugging Tools” on page 1–
10

• Removed information from “Planning Design Partitions and
Floorplan Location Assignments” on page 1–15

December 2010 10.1.0 • Changed to new document template
• Updated “System Design and Standard Interfaces” on

page 1–3 to include information about the Qsys system
integration tool

• Added link to the Product Selector in “Device Selection” on
page 1–3

• Converted information into new table (Table 1–1) in “Planning
for On-Chip Debugging Options” on page 1–10

• Simplified description of incremental compilation usages in
“Incremental Compilation with Design Partitions” on page 1–
14

• Added information about the Rapid Recompile option in “Flat
Compilation Flow with No Design Partitions” on page 1–14

• Removed details and linked to Intel Quartus Prime Help in
“Fast Synthesis and Early Timing Estimation” on page 1–16

July 2010 10.0.0 • Added new section “System Design” on page 1–3
• Removed details about debugging tools from “Planning for

On-Chip Debugging Options” on page 1–10 and referred to
other handbook chapters for more information

• Updated information on recommended design flows in
“Incremental Compilation with Design Partitions” on page 1–
14 and removed “Single-Project Versus Multiple-Project
Incremental Flows” heading

• Merged the “Planning Design Partitions” section with the
“Creating a Design Floorplan” section. Changed heading title
to “Planning Design Partitions and Floorplan Location
Assignments” on page 1–15

• Removed “Creating a Design Floorplan” section
• Removed “Referenced Documents” section
• Minor updates throughout chapter

November 2009 9.1.0 • Added details to “Creating Design Specifications” on page 1–2
• Added details to “Intellectual Property Selection” on page 1–2
• Updated information on “Device Selection” on page 1–3
• Added reference to “Device Migration Planning” on page 1–4
• Removed information from “Planning for Device Programming

or Configuration” on page 1–4
• Added details to “Early Power Estimation” on page 1–5
• Updated information on “Early Pin Planning and I/O Analysis”

on page 1–6
• Updated information on “Creating a Top-Level Design File for

I/O Analysis” on page 1–8
• Added new “Simultaneous Switching Noise Analysis” section
• Updated information on “Synthesis Tools” on page 1–9
• Updated information on “Simulation Tools” on page 1–9
• Updated information on “Planning for On-Chip Debugging

Options” on page 1–10

continued...

3. Design Planning

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

• Added new “Managing Metastability” section
• Changed heading title “Top-Down Versus Bottom-Up

Incremental Flows” to “Single-Project Versus Multiple-Project
Incremental Flows”

• Updated information on “Creating a Design Floorplan” on
page 1–18

• Removed information from “Fast Synthesis and Early Timing
Estimation” on page 1–18

March 2009 9.0.0 • No change to content

November 2008 8.1.0 • Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 • Organization changes
• Added “Creating Design Specifications” section
• Added reference to new details in the In-System Design

Debugging section of volume 3
• Added more details to the “Design Practices and HDL Coding

Styles” section
• Added references to the new Best Practices for Incremental

Compilation and Floorplan Assignments chapter
• Added reference to the Intel Quartus Prime Language

Templates

3. Design Planning

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Introduction to Intel FPGA IP Cores
Intel and strategic IP partners offer a broad portfolio of configurable IP cores
optimized for Intel FPGA devices.

The Intel Quartus Prime software installation includes the Intel FPGA IP library.
Integrate optimized and verified Intel FPGA IP cores into your design to shorten design
cycles and maximize performance. The Intel Quartus Prime software also supports
integration of IP cores from other sources. Use the IP Catalog (Tools ➤ IP Catalog)
to efficiently parameterize and generate synthesis and simulation files for your custom
IP variation. The Intel FPGA IP library includes the following types of IP cores:

• Basic functions

• DSP functions

• Interface protocols

• Low power functions

• Memory interfaces and controllers

• Processors and peripherals

This document provides basic information about parameterizing, generating,
upgrading, and simulating stand-alone IP cores in the Intel Quartus Prime software.

Figure 25. IP Catalog

Double-Click for Parameters
Right-Click for IP Details

Search for IP

683475 | 2019.12.16

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

4.1. IP Catalog and Parameter Editor

The IP Catalog displays the IP cores available for your project, including Intel FPGA IP
and other IP that you add to the IP Catalog search path.. Use the following features of
the IP Catalog to locate and customize an IP core:

• Filter IP Catalog to Show IP for active device family or Show IP for all
device families. If you have no project open, select the Device Family in IP
Catalog.

• Type in the Search field to locate any full or partial IP core name in IP Catalog.

• Right-click an IP core name in IP Catalog to display details about supported
devices, to open the IP core's installation folder, and for links to IP documentation.

• Click Search for Partner IP to access partner IP information on the web.

The parameter editor generates a top-level Quartus IP file (.qip) for an IP variation
in Intel Quartus Prime Standard Edition projects. These files represent the IP variation
in the project, and store parameterization information.

Figure 26. IP Parameter Editor (Intel Quartus Prime Standard Edition)

4.1.1. The Parameter Editor

The parameter editor helps you to configure IP core ports, parameters, and output file
generation options. The basic parameter editor controls include the following:

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Use the Presets window to apply preset parameter values for specific applications
(for select cores).

• Use the Details window to view port and parameter descriptions, and click links to
documentation.

• Click Generate ➤ Generate Testbench System to generate a testbench system
(for select cores).

• Click Generate ➤ Generate Example Design to generate an example design
(for select cores).

The IP Catalog is also available in Platform Designer (View ➤ IP Catalog). The
Platform Designer IP Catalog includes exclusive system interconnect, video and image
processing, and other system-level IP that are not available in the Intel Quartus Prime
IP Catalog. Refer to Creating a System with Platform Designer or Creating a System
with Platform Designer (Standard) for information on use of IP in Platform Designer
(Standard) and Platform Designer, respectively.

Related Information

Creating a System with Platform Designer (Standard)

4.2. Installing and Licensing Intel FPGA IP Cores

The Intel Quartus Prime software installation includes the Intel FPGA IP library. This
library provides many useful IP cores for your production use without the need for an
additional license. Some Intel FPGA IP cores require purchase of a separate license for
production use. The Intel FPGA IP Evaluation Mode allows you to evaluate these
licensed Intel FPGA IP cores in simulation and hardware, before deciding to purchase a
full production IP core license. You only need to purchase a full production license for
licensed Intel IP cores after you complete hardware testing and are ready to use the
IP in production.

The Intel Quartus Prime software installs IP cores in the following locations by default:

Figure 27. IP Core Installation Path

intelFPGA(_pro)

quartus - Contains the Intel Quartus Prime software
ip - Contains the Intel FPGA IP library and third-party IP cores

altera - Contains the Intel FPGA IP library source code
<IP name> - Contains the Intel FPGA IP source files

Table 8. IP Core Installation Locations

Location Software Platform

<drive>:\intelFPGA_pro\quartus\ip\altera Intel Quartus Prime Pro Edition Windows

<drive>:\intelFPGA\quartus\ip\altera Intel Quartus Prime Standard
Edition

Windows

<home directory>:/intelFPGA_pro/quartus/ip/altera Intel Quartus Prime Pro Edition Linux

<home directory>:/intelFPGA/quartus/ip/altera Intel Quartus Prime Standard
Edition

Linux

Note: The Intel Quartus Prime software does not support spaces in the installation path.

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

53

https://www.intel.com/content/www/us/en/docs/programmable/683364.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2.1. Intel FPGA IP Evaluation Mode

The free Intel FPGA IP Evaluation Mode allows you to evaluate licensed Intel FPGA IP
cores in simulation and hardware before purchase. Intel FPGA IP Evaluation Mode
supports the following evaluations without additional license:

• Simulate the behavior of a licensed Intel FPGA IP core in your system.

• Verify the functionality, size, and speed of the IP core quickly and easily.

• Generate time-limited device programming files for designs that include IP cores.

• Program a device with your IP core and verify your design in hardware.

Intel FPGA IP Evaluation Mode supports the following operation modes:

• Tethered—Allows running the design containing the licensed Intel FPGA IP
indefinitely with a connection between your board and the host computer.
Tethered mode requires a serial joint test action group (JTAG) cable connected
between the JTAG port on your board and the host computer, which is running the
Intel Quartus Prime Programmer for the duration of the hardware evaluation
period. The Programmer only requires a minimum installation of the Intel Quartus
Prime software, and requires no Intel Quartus Prime license. The host computer
controls the evaluation time by sending a periodic signal to the device via the
JTAG port. If all licensed IP cores in the design support tethered mode, the
evaluation time runs until any IP core evaluation expires. If all of the IP cores
support unlimited evaluation time, the device does not time-out.

• Untethered—Allows running the design containing the licensed IP for a limited
time. The IP core reverts to untethered mode if the device disconnects from the
host computer running the Intel Quartus Prime software. The IP core also reverts
to untethered mode if any other licensed IP core in the design does not support
tethered mode.

When the evaluation time expires for any licensed Intel FPGA IP in the design, the
design stops functioning. All IP cores that use the Intel FPGA IP Evaluation Mode time
out simultaneously when any IP core in the design times out. When the evaluation
time expires, you must reprogram the FPGA device before continuing hardware
verification. To extend use of the IP core for production, purchase a full production
license for the IP core.

You must purchase the license and generate a full production license key before you
can generate an unrestricted device programming file. During Intel FPGA IP Evaluation
Mode, the Compiler only generates a time-limited device programming file (<project
name>_time_limited.sof) that expires at the time limit.

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 28. Intel FPGA IP Evaluation Mode Flow

Install the Intel Quartus Prime
Software with Intel FPGA IP Library

Parameterize and Instantiate a
Licensed Intel FPGA IP Core

Purchase a Full Production
 IP License

Verify the IP in a
Supported Simulator

Compile the Design in the
Intel Quartus Prime Software

Generate a Time-Limited Device
Programming File

Program the Intel FPGA Device
and Verify Operation on the Board

No

Yes

IP Ready for
Production Use?

Include Licensed IP
in Commercial Products

Note: Refer to each IP core's user guide for parameterization steps and implementation
details.

Intel licenses IP cores on a per-seat, perpetual basis. The license fee includes first-
year maintenance and support. You must renew the maintenance contract to receive
updates, bug fixes, and technical support beyond the first year. You must purchase a
full production license for Intel FPGA IP cores that require a production license, before
generating programming files that you may use for an unlimited time. During Intel
FPGA IP Evaluation Mode, the Compiler only generates a time-limited device
programming file (<project name>_time_limited.sof) that expires at the time
limit. To obtain your production license keys, visit the Self-Service Licensing Center.

The Intel FPGA Software License Agreements govern the installation and use of
licensed IP cores, the Intel Quartus Prime design software, and all unlicensed IP cores.

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

55

https://www.intel.com/content/www/us/en/my-intel/fpga-sign-in.html
http://dl.altera.com/eula/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Intel Quartus Prime Licensing Site

• Introduction to Intel FPGA Software Installation and Licensing

4.2.1.1. Intel FPGA IP Versioning

IP versions are the same as the Intel Quartus Prime Design Suite software versions up
to v19.1. From Intel Quartus Prime Design Suite software version 19.2 or later, IP
cores have a new IP versioning scheme.

The IP versioning scheme (X.Y.Z) number changes from one software version to
another. A change in:

• X indicates a major revision of the IP. If you update your Intel Quartus Prime
software, you must regenerate the IP.

• Y indicates the IP includes new features. Regenerate your IP to include these new
features.

• Z indicates the IP includes minor changes. Regenerate your IP to include these
changes.

4.2.1.2. Checking the IP License Status

You can check the license status of all IP in an Intel Quartus Prime project by viewing
the Assembler report.

To generate and view the Assembler report in the GUI:

1. Click Assembler on the Compilation Dashboard.

2. When the Assembler (and any prerequisite stages of compilation) complete, click
the Report icon for the Assembler in the Compilation Dashboard.

3. Click the Encrypted IP Cores Summary report.

Figure 29. Encrypted IP Cores Summary Report

To generate and view the Assembler report at the command line:

1. Type the following command:

quartus_asm <project name> -c <project revision>

2. View the output report in:

<project>/output_files/<project_name>.asm.rpt

Example of the assembler report:

+--+
; Assembler Encrypted IP Cores Summary ;
+--------+--+--------------+

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

56

https://www.intel.com/content/www/us/en/my-intel/fpga-sign-in.html
https://www.intel.com/content/www/us/en/docs/programmable/683472/current/introduction-to-fpga-software-installation.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

; Vendor ; IP Core Name ; License Type ;
+--------+--+--------------+
; Intel ; PCIe SRIOV with 4-PFs and 2K-VFs (6AF7 00FB) ; Unlicensed ;
; Intel ; Signal Tap (6AF7 BCE1) ; Licensed ;
; Intel ; Signal Tap (6AF7 BCEC) ; Licensed ;
+--------+--+--------------+

4.3. IP General Settings

The following settings control how the Intel Quartus Prime software manages IP cores
in a project:

Table 9. Location of IP Core General Settings in the Intel Quartus Prime Software

Setting Description Location

Maximum Platform
Designer memory
usage size

Increase if you experience slow
processing for large systems, or for out of
memory errors.

Tools ➤ Options ➤ IP
Settings
Or
Tasks pane ➤
Settings ➤ IP
Settings

IP generation HDL
preference

The parameter editor generates the HDL
you specify for IP variations.

IP Regeneration
Policy

Controls when synthesis files regenerate
for each IP variation. Typically, you
Always regenerate synthesis files for
IP cores after making changes to an IP
variation.

Additional project and global IP search locations. The Intel Quartus
Prime software searches for IP cores in the project directory, in the
Intel Quartus Prime installation directory, and in the IP search path.

Tools ➤ Options ➤ IP
Catalog Search
Locations
Or
Tasks pane ➤
Settings ➤ IP Catalog
Search Locations

4.4. Adding Your Own IP to IP Catalog

The IP Catalog automatically displays Intel FPGA IP and other IP components that
have a corresponding _hw.tcl or .ipx file located in the project directory, in the
default Intel Quartus Prime installation directory, or in the IP search path. You can
optionally add your own custom or third-party IP component to IP Catalog by adding
the component's _hw.tcl or .ipx file to the IP search path.

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these steps to add custom or third-party IP to the IP Catalog:

Figure 30. Specifying IP Search Locations

Add a Global
IP Search Path

Add a Project-
Specific IP Search Path

1. In the Intel Quartus Prime software, click Tools ➤ Options ➤ IP Search Path)
to open the IP Search Path Options dialog box.

2. Click Add or Remove to add/remove a location that contains IP.

3. To refresh the IP Catalog, click Refresh IP Catalog in the Intel Quartus Prime
Platform Designer (Standard), or click File ➤ Refresh Systemin Platform
Designer (Standard).

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 31. Refreshing IP Catalog

Click to Display Menu

4.5. Best Practices for Intel FPGA IP

Use the following best practices when working with Intel FPGA IP:

• Do not manually edit or write your own .qsys, .ip, or .qip file. Use the Intel
Quartus Prime software tools to create and edit these files.

Note: When generating IP cores, do not generate files into a directory that has a
space in the directory name or path. Spaces are not legal characters for IP
core paths or names.

• When you generate an IP core using the IP Catalog, the Intel Quartus Prime
software generates a .qsys (for Platform Designer (Standard)-generated IP
cores) or a .ip file (for Intel Quartus Prime Pro Edition) or a .qip file. The Intel
Quartus Prime Pro Edition software automatically adds the generated .ip to your
project. In the Intel Quartus Prime Standard Edition software, add the .qip to
your project. Do not add the parameter editor generated file (.v or .vhd) to your
design without the .qsys or .qip file. Otherwise, you cannot use the IP upgrade
or IP parameter editor feature.

• Plan your directory structure ahead of time. Do not change the relative path
between a .qsys file and it's generation output directory. If you must move
the .qsys file, ensure that the generation output directory remains with
the .qsys file.

• Do not add IP core files directly from the /quartus/libraries/
megafunctions directory in your project. Otherwise, you must update the files
for each subsequent software release. Instead, use the IP Catalog and then add
the .qip to your project.

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Do not use IP files that the Intel Quartus Prime software generates for RAM or
FIFO blocks targeting older device families (even though the Intel Quartus Prime
software does not issue an error). The RAM blocks that Intel Quartus Prime
generates for older device families are not optimized for the latest device families.

• When generating a ROM function, save the resulting .mif or .hex file in the same
folder as the corresponding IP core's .qsys or .qip file. For example, moving all
of your project's .mif or .hex files to the same directory causes relative path
problems after archiving the design.

• Always use the Intel Quartus Prime ip-setup-simulation and ip-make-
simscript utilities to generate simulation scripts for each IP core or Platform
Designer (Standard) system in your design. These utilities produce a single
simulation script that does not require manual update for upgrades to Intel
Quartus Prime software or IP versions, as Simulating Intel FPGA IP Cores on page
69 describes.

4.6. Generating IP Cores (Intel Quartus Prime Standard Edition)

This topic describes parameterizing and generating an IP variation using a legacy
parameter editor in the Intel Quartus Prime Standard Edition software.

Figure 32. Legacy Parameter Editors

Note: The legacy parameter editor generates a different output file structure than the Intel
Quartus Prime Pro Edition software.

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In the IP Catalog (Tools ➤ IP Catalog), locate and double-click the name of the
IP core to customize. The parameter editor appears.

2. Specify a top-level name and output HDL file type for your IP variation. This name
identifies the IP core variation files in your project. Click OK. Do not include
spaces in IP variation names or paths.

3. Specify the parameters and options for your IP variation in the parameter editor.
Refer to your IP core user guide for information about specific IP core parameters.

4. Click Finish or Generate (depending on the parameter editor version). The
parameter editor generates the files for your IP variation according to your
specifications. Click Exit if prompted when generation is complete. The parameter
editor adds the top-level .qip file to the current project automatically.

Note: For devices released prior to Intel Arria 10 devices, the generated .qip
and .sip files must be added to your project to represent IP and Platform
Designer systems. To manually add an IP variation generated with legacy
parameter editor to a project, click Project ➤ Add/Remove Files in
Project and add the IP variation .qip file.

4.6.1. IP Core Generation Output (Intel Quartus Prime Standard Edition)

The Intel Quartus Prime Standard Edition software generates one of the following
output file structures for individual IP cores that use one of the legacy parameter
editors.

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 33. IP Core Generated Files (Legacy Parameter Editors)

Generated IP File Output B
<Project Directory>

<your_ip>.html - IP core generation report

<your_ip>_testbench.v or .vhd - Testbench file1

<your_ip>.bsf - Block symbol schematic file

<your_ip>_syn.v or .vhd - Timing & resource estimation netlist1

<your_ip>_bb - Verilog HDL black box EDA synthesis file

<your_ip>.vo or .vho - IP functional simulation model 2

<your_ip>.qip - Intel Quartus Prime IP integration file

<your_ip>.v or .vhd - Top-level HDL IP variation definition

<your_ip>_block_period_stim.txt - Testbench simulation data 1

<your_ip>-library - Contains IP subcomponent synthesis libraries

Generated IP File Output A
<Project Directory>

<your_ip>.v or .vhd - Top-level IP synthesis file

<your_ip>_inst.v or .vhd - Sample instantiation template

<your_ip>.bsf - Block symbol schematic file

<your_ip>.vo or .vho - IP functional simulation model 2
<your_ip>_syn.v or .vhd - Timing & resource estimation netlist1

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<your_ip>.qip - Intel Quartus Prime IP integration file

greybox_tmp 3

<your_ip>.cmp - VHDL component declaration file

Generated IP File Output C
<Project Directory>

<your_ip>_sim 1

<IP> _instance.vo - IPFS model 2

<simulator_vendor>
<simulator setup scripts>

<your_ip>.qip - Intel Quartus Prime IP integration file

<your_ip>.sip - Lists files for simulation

<your_ip>_testbench or _example - Testbench or example1

<your_ip>.v, .sv. or .vhd - Top-level IP synthesis file

<IP_name>_instance

<your_ip>_syn.v or .vhd - Timing & resource estimation netlist1
<your_ip>.cmp - VHDL component declaration file

<your_ip>.bsf - Block symbol schematic file

<your_ip> - IP core synthesis files

<your_ip>.sv, .v, or .vhd - HDL synthesis files

<your_ip>.sdc - Timing constraints file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Combines individual simulation scripts 1

<your_ip>_sim.f - Refers to simulation models and scripts 1

Notes:
1. If supported and enabled for your IP variation
2. If functional simulation models are generated
3. Ignore this directory

Generated IP File Output D
<Project Directory>

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<your_ip>_inst.v or .vhd - Sample instantiation template

synthesis - IP synthesis files

<your_ip>.qip - Lists files for synthesis

testbench - Simulation testbench files 1

<testbench_hdl_files>

<simulator_vendor> - Testbench for supported simulators

<simulation_testbench_files>

<your_ip>.v or .vhd - Top-level IP variation synthesis file

simulation - IP simulation files
<your_ip>.sip - NativeLink simulation integration file

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

<your_ip> - IP core variation files

<your_ip>.qip or .qsys - System or IP integration file

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Combines individual simulation startup scripts 1

<your_ip>.html - Contains memory map

<your_ip>.sopcinfo - Software tool-chain integration file

<your_ip>_syn.v or .vhd - Timing & resource estimation netlist 1

<your_ip>.debuginfo - Lists files for synthesis

<your_ip>.v, .vhd, .vo, .vho - HDL or IPFS models2

<your_ip>_tb - Testbench for supported simulators
<your_ip>_tb.v or .vhd - Top-level HDL testbench file

4.7. Modifying an IP Variation

After generating an IP core variation, use any of the following methods to modify the
IP variation in the parameter editor.

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10. Modifying an IP Variation

Menu Command Action

File ➤ Open Select the top-level HDL (.v, or .vhd) IP variation file to launch the
parameter editor and modify the IP variation. Regenerate the IP
variation to implement your changes.

View ➤ Utility Windows ➤ Project Navigator ➤
IP Components

Double-click the IP variation to launch the parameter editor and
modify the IP variation. Regenerate the IP variation to implement
your changes.

Project ➤ Upgrade IP Components Select the IP variation and click Upgrade in Editor to launch the
parameter editor and modify the IP variation. Regenerate the IP
variation to implement your changes.

4.8. Upgrading IP Cores

Any Intel FPGA IP variations that you generate from a previous version or different
edition of the Intel Quartus Prime software, may require upgrade before compilation in
the current software edition or version. The Project Navigator displays a banner
indicating the IP upgrade status. Click Launch IP Upgrade Tool or Project ➤
Upgrade IP Components to upgrade outdated IP cores.

Figure 34. IP Upgrade Alert in Project Navigator

Icons in the Upgrade IP Components dialog box indicate when IP upgrade is
required, optional, or unsupported for an IP variation in the project. Upgrade IP
variations that require upgrade before compilation in the current version of the Intel
Quartus Prime software.

Note: Upgrading IP cores may append a unique identifier to the original IP core entity
names, without similarly modifying the IP instance name. There is no requirement to
update these entity references in any supporting Intel Quartus Prime file, such as the
Intel Quartus Prime Settings File (.qsf), Synopsys* Design Constraints File (.sdc),
or Signal Tap File (.stp), if these files contain instance names. The Intel Quartus
Prime software reads only the instance name and ignores the entity name in paths
that specify both names. Use only instance names in assignments.

Table 11. IP Core Upgrade Status

IP Core Status Description

IP Upgraded

Indicates that your IP variation uses the latest version of the Intel FPGA IP core.

continued...

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

IP Core Status Description

IP Component Outdated

Indicates that your IP variation uses an outdated version of the IP core.

IP Upgrade Optional

Indicates that upgrade is optional for this IP variation in the current version of the Intel
Quartus Prime software. You can upgrade this IP variation to take advantage of the latest
development of this IP core. Alternatively, you can retain previous IP core characteristics by
declining to upgrade. Refer to the Description for details about IP core version differences.
If you do not upgrade the IP, the IP variation synthesis and simulation files are unchanged
and you cannot modify parameters until upgrading.

IP Upgrade Required

Indicates that you must upgrade the IP variation before compiling in the current version of
the Intel Quartus Prime software. Refer to the Description for details about IP core version
differences.

IP Upgrade Unsupported

Indicates that upgrade of the IP variation is not supported in the current version of the
Intel Quartus Prime software due to incompatibility with the current version of the Intel
Quartus Prime software. The Intel Quartus Prime software prompts you to replace the
unsupported IP core with a supported equivalent IP core from the IP Catalog. Refer to the
Description for details about IP core version differences and links to Release Notes.

IP End of Life

Indicates that Intel designates the IP core as end-of-life status. You may or may not be
able to edit the IP core in the parameter editor. Support for this IP core discontinues in
future releases of the Intel Quartus Prime software.

IP Upgrade Mismatch
Warning

Provides warning of non-critical IP core differences in migrating IP to another device family.

IP has incompatible subcores

Indicates that the current version of the Intel Quartus Prime software does not support
compilation of your IP variation, because the IP has incompatible subcores

Compilation of IP Not
Supported

Indicates that the current version of the Intel Quartus Prime software does not support
compilation of your IP variation. This can occur if another edition of the Intel Quartus Prime
software generated this IP. Replace this IP component with a compatible component in the
current edition.

Follow these steps to upgrade IP cores:

1. In the latest version of the Intel Quartus Prime software, open the Intel Quartus
Prime project containing an outdated IP core variation. The Upgrade IP
Components dialog box automatically displays the status of IP cores in your
project, along with instructions for upgrading each core. To access this dialog box
manually, click Project ➤ Upgrade IP Components.

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. To upgrade one or more IP cores that support automatic upgrade, ensure that you
turn on the Auto Upgrade option for the IP cores, and click . The Status and
Version columns update when upgrade is complete. Example designs that any
Intel FPGA IP core provides regenerate automatically whenever you upgrade an IP
core.

3. To manually upgrade an individual IP core, select the IP core and click Upgrade in
Editor (or simply double-click the IP core name). The parameter editor opens,
allowing you to adjust parameters and regenerate the latest version of the IP core.

Figure 35. Upgrading IP Cores

Runs “Auto Upgrade” on all Outdated Cores

Opens Editor for Manual IP Upgrade Upgrade Details
Generates/Updates Combined Simulation Setup Script for all Project IP

Note: Intel FPGA IP cores older than Intel Quartus Prime software version 12.0 do
not support upgrade. Intel verifies that the current version of the Intel
Quartus Prime software compiles the previous two versions of each IP core.
The Intel FPGA IP Core Release Notes reports any verification exceptions for
Intel FPGA IP cores. Intel does not verify compilation for IP cores older than
the previous two releases.

Related Information

Intel FPGA IP Release Notes

4.8.1. Upgrading IP Cores at Command-Line

Optionally, upgrade an Intel FPGA IP core at the command-line, rather than using the
GUI. IP cores that do not support automatic upgrade do not support command-line
upgrade.

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

65

http://www.altera.com/literature/rn/rn_ip.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To upgrade a single IP core at the command-line, type the following command:

quartus_sh –ip_upgrade –variation_files <my_ip>.<qsys,.v, .vhd> \
 <quartus_project>

Example:
quartus_sh -ip_upgrade -variation_files mega/pll25.qsys hps_testx

• To simultaneously upgrade multiple IP cores at the command-line, type the
following command:

quartus_sh –ip_upgrade –variation_files “<my_ip1>.<qsys,.v, .vhd>> \
 ; <my_ip_filepath/my_ip2>.<hdl>” <quartus_project>

Example:
quartus_sh -ip_upgrade -variation_files "mega/pll_tx2.qsys;mega/
pll3.qsys" hps_testx

4.8.2. Migrating IP Cores to a Different Device

Migrate an Intel FPGA IP variation when you want to target a different (often newer)
device. Most Intel FPGA IP cores support automatic migration. Some IP cores require
manual IP regeneration for migration. A few IP cores do not support device migration,
requiring you to replace them in the project. The Upgrade IP Components dialog
box identifies the migration support level for each IP core in the design.

1. To display the IP cores that require migration, click Project ➤ Upgrade IP
Components. The Description field provides migration instructions and version
differences.

2. To migrate one or more IP cores that support automatic upgrade, ensure that the
Auto Upgrade option is turned on for the IP cores, and click Perform Automatic
Upgrade. The Status and Version columns update when upgrade is complete.

3. To migrate an IP core that does not support automatic upgrade, double-click the
IP core name, and click OK. The parameter editor appears. If the parameter editor
specifies a Currently selected device family, turn off Match project/default,
and then select the new target device family.

4. Click Generate HDL, and confirm the Synthesis and Simulation file options.
Verilog HDL is the default output file format. If you specify VHDL as the output
format, select VHDL to retain the original output format.

5. Click Finish to complete migration of the IP core. Click OK if the software prompts
you to overwrite IP core files. The Device Family column displays the new target
device name when migration is complete.

6. To ensure correctness, review the latest parameters in the parameter editor or
generated HDL.

Note: IP migration may change ports, parameters, or functionality of the IP
variation. These changes may require you to modify your design or to re-
parameterize your IP variant. During migration, the IP variation's HDL
generates into a library that is different from the original output location of
the IP core. Update any assignments that reference outdated locations. If a
symbol in a supporting Block Design File schematic represents your
upgraded IP core, replace the symbol with the newly generated
<my_ip>.bsf. Migration of some IP cores requires installed support for the
original and migration device families.

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Intel FPGA IP Release Notes

4.8.3. Troubleshooting IP or Platform Designer System Upgrade

The Upgrade IP Components dialog box reports the version and status of each
Avalon® core and Platform Designer system following upgrade or migration.

If any upgrade or migration fails, the Upgrade IP Components dialog box provides
information to help you resolve any errors.

Note: Do not use spaces in IP variation names or paths.

During automatic or manual upgrade, the Messages window dynamically displays
upgrade information for each IP core or Platform Designer system. Use the following
information to resolve upgrade errors:

Table 12. IP Upgrade Error Information

Upgrade IP Components
Field

Description

Status Displays the "Success" or "Failed" status of each upgrade or migration. Click the status of
any upgrade that fails to open the IP Upgrade Report.

Version Dynamically updates the version number when upgrade is successful. The text is red when
the IP requires upgrade.

Device Family Dynamically updates to the new device family when migration is successful. The text is red
when the IP core requires upgrade.

Auto Upgrade Runs automatic upgrade on all IP cores that support auto upgrade. Also, automatically
generates a <Project Directory>/ip_upgrade_port_diff_report report for IP
cores or Platform Designer systems that fail upgrade. Review these reports to determine
any port differences between the current and previous IP core version.

Use the following techniques to resolve errors if your IP core or Platform Designer
system "Failed" to upgrade versions or migrate to another device. Review and
implement the instructions in the Description field, including one or more of the
following:

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

67

http://www.altera.com/literature/rn/rn_ip.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• If the current version of the software does not support the IP variant, right-click
the component and click Remove IP Component from Project. Replace this IP
core or Platform Designer system with the one supported in the current version of
the software.

• If the current target device does not support the IP variant, select a supported
device family for the project, or replace the IP variant with a suitable replacement
that supports your target device.

• If an upgrade or migration fails, click Failed in the Status field to display and
review details of the IP Upgrade Report. Click the Release Notes link for the
latest known issues about the IP core. Use this information to determine the
nature of the upgrade or migration failure and make corrections before upgrade.

• Run Auto Upgrade to automatically generate an IP Ports Diff report for each IP
core or Platform Designer system that fails upgrade. Review the reports to
determine any port differences between the current and previous IP core version.
Click Upgrade in Editor to make specific port changes and regenerate your IP
core or Platform Designer system.

• If your IP core or Platform Designer system does not support Auto Upgrade, click
Upgrade in Editor to resolve errors and regenerate the component in the
parameter editor.

Figure 36. IP Upgrade Report

Reports on Failed
IP Upgrades

Report Summary

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.9. Simulating Intel FPGA IP Cores

The Intel Quartus Prime software supports IP core RTL simulation in specific EDA
simulators. IP generation creates simulation files, including the functional simulation
model, any testbench (or example design), and vendor-specific simulator setup scripts
for each IP core. Use the functional simulation model and any testbench or example
design for simulation. IP generation output may also include scripts to compile and run
any testbench. The scripts list all models or libraries you require to simulate your IP
core.

The Intel Quartus Prime software provides integration with many simulators and
supports multiple simulation flows, including your own scripted and custom simulation
flows. Whichever flow you choose, IP core simulation involves the following steps:

1. Generate simulation model, testbench (or example design), and simulator setup
script files.

2. Set up your simulator environment and any simulation scripts.

3. Compile simulation model libraries.

4. Run your simulator.

4.9.1. Generating IP Simulation Files

The Intel Quartus Prime software optionally generates the functional simulation model,
any testbench (or example design), and vendor-specific simulator setup scripts when
you generate an IP core. To control the generation of IP simulation files:

• To specify your supported simulator and options for IP simulation file generation,
click Assignment ➤ Settings ➤ EDA Tool Settings ➤ Simulation.

• To parameterize a new IP variation, enable generation of simulation files, and
generate the IP core synthesis and simulation files, click Tools ➤ IP Catalog.

• To edit parameters and regenerate synthesis or simulation files for an existing IP
core variation, click View ➤ Project Navigator ➤ IP Components.

• To edit parameters and regenerate synthesis or simulation files for an existing IP
core variation, click View ➤ Utility Windows ➤ Project Navigator ➤ IP
Components.

Table 13. Intel FPGA IP Simulation Files

File Type Description File Name

Simulator setup
scripts

Vendor-specific scripts to compile, elaborate,
and simulate Intel FPGA IP models and
simulation model library files.

<my_dir>/aldec/riviera_setup.tcl

<my_dir>/cadence/ncsim__setup.sh

<my_dir>/mentor/msim_setup.tcl

<my_dir>/synopsys/vcs/vcs_setup.sh

<my_dir>/synopsys/vcsmx/vcsmx_setup.sh

continued...

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Type Description File Name

Note: For Intel Arria 10 designs, you can use
the Intel Quartus Prime software to
automatically create a combined
simulator setup script. Refer to Scripting
IP Simulation in the Introduction to Intel
FPGA IP Cores for more information.

Simulation IP File
(Intel Quartus
Prime Standard
Edition)

Contains IP core simulation library mapping
information. To use NativeLink, add the .qip
and .sip files generated for IP to your project.

<design name>.sip

IP functional
simulation models
(Intel Quartus
Prime Standard
Edition)

IP functional simulation models are cycle-
accurate VHDL or Verilog HDL models a that the
Intel Quartus Prime software generates for
some Intel FPGA IP cores. IP functional
simulation models support fast functional
simulation of IP using industry-standard VHDL
and Verilog HDL simulators.

<my_ip>.vho

<my_ip>.vo

IEEE encrypted
models (Intel
Quartus Prime
Standard Edition)

Intel provides Arria V, Cyclone V, Stratix V, and
newer simulation model libraries and IP
simulation models in Verilog HDL and IEEE-
encrypted Verilog HDL. Your simulator's co-
simulation capabilities support VHDL simulation
of these models. IEEE encrypted Verilog HDL
models are significantly faster than IP
functional simulation models. The Intel Quartus
Prime Pro Edition software does not support
these models.

<my_ip>.v

Note: Intel FPGA IP cores support a variety of cycle-accurate simulation models, including
simulation-specific IP functional simulation models and encrypted RTL models, and
plain text RTL models. The models support fast functional simulation of your IP core
instance using industry-standard VHDL or Verilog HDL simulators. For some IP cores,
generation only produces the plain text RTL model, and you can simulate that model.
Use the simulation models only for simulation and not for synthesis or any other
purposes. Using these models for synthesis creates a nonfunctional design.

4.9.2. Using NativeLink Simulation (Intel Quartus Prime Standard Edition)

The NativeLink feature integrates your EDA simulator with the Intel Quartus Prime
Standard Edition software by automating the following:

• Generation of simulator-specific files and simulation scripts.

• Compilation of simulation libraries.

• Launches your simulator automatically following Intel Quartus Prime Analysis &
Elaboration, Analysis & Synthesis, or after a full compilation.

Note: The Intel Quartus Prime Pro Edition does not support NativeLink simulation. If you use
NativeLink for Intel Arria 10 devices in the Intel Quartus Prime Standard Edition, you
must add the .qsys file generated for the IP or Platform Designer (Standard) system
to your Intel Quartus Prime project. If you use NativeLink for any other supported
device family, you must add the .qip and .sip files to your project.

4.9.2.1. Setting Up NativeLink Simulation (Intel Quartus Prime Standard Edition)

Before running NativeLink simulation, specify settings for your simulator in the Intel
Quartus Prime software.

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To specify NativeLink settings in the Intel Quartus Prime Standard Edition software,
follow these steps:

1. Open an Intel Quartus Prime Standard Edition project.

2. Click Tools > Options and specify the location of your simulator executable file.

Table 14. Execution Paths for EDA Simulators

Simulator Path

Mentor Graphics
ModelSim-AE

<drive letter>:\<simulator install path>\win32aloem (Windows)
/<simulator install path>/bin (Linux)

Mentor Graphics ModelSim
Mentor Graphics QuestaSim

<drive letter>:\<simulator install path>\win32 (Windows)
<simulator install path>/bin (Linux)

Synopsys VCS/VCS MX <simulator install path>/bin (Linux)

Cadence Incisive Enterprise <simulator install path>/tools/bin (Linux)

Aldec Active-HDL
Aldec Riviera-PRO

<drive letter>:\<simulator install path>\bin (Windows)
<simulator install path>/bin (Linux)

3. Click Assignments ➤ Settings and specify options on the Simulation page and
the More NativeLink Settings dialog box. Specify default options for simulation
library compilation, netlist and tool command script generation, and for launching
RTL or gate-level simulation automatically following compilation.

4. If your design includes a testbench, turn on Compile test bench. Click Test
Benches to specify options for each testbench. Alternatively, turn on Use script
to compile testbench and specify the script file.

5. To use a script to setup a simulation, turn on Use script to setup simulation.

4.9.2.2. Generating IP Functional Simulation Models (Intel Quartus Prime
Standard Edition)

Intel provides IP functional simulation models for some Intel FPGA IP supporting 40nm
FPGA devices.

To generate IP functional simulation models:

1. Turn on the Generate Simulation Model option when parameterizing the IP
core.

2. When you simulate your design, compile only the .vo or .vho for these IP cores
in your simulator. Do not compile the corresponding HDL file. The encrypted HDL
file supports synthesis by only the Intel Quartus Prime software.

Note: • Intel FPGA IP cores that do not require IP functional simulation models
for simulation, do not provide the Generate Simulation Model option
in the IP core parameter editor.

• Many recently released Intel FPGA IP cores support RTL simulation using
IEEE Verilog HDL encryption. IEEE encrypted models are significantly
faster than IP functional simulation models. Simulate the models in both
Verilog HDL and VHDL designs.

Related Information

AN 343: Intel FPGA IP Evaluation Mode of AMPP IP

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

71

http://www.altera.com/literature/an/an343.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.10. Synthesizing IP Cores in Other EDA Tools

Optionally, use another supported EDA tool to synthesize a design that includes Intel
FPGA IP cores. When you generate the IP core synthesis files for use with third-party
EDA synthesis tools, you can create an area and timing estimation netlist. To enable
generation, turn on Create timing and resource estimates for third-party EDA
synthesis tools when customizing your IP variation.

The area and timing estimation netlist describes the IP core connectivity and
architecture, but does not include details about the true functionality. This information
enables certain third-party synthesis tools to better report area and timing estimates.
In addition, synthesis tools can use the timing information to achieve timing-driven
optimizations and improve the quality of results.

The Intel Quartus Prime software generates the <variant name>_syn.v netlist file
in Verilog HDL format, regardless of the output file format you specify. If you use this
netlist for synthesis, you must include the IP core wrapper file <variant name>.v or
<variant name> .vhd in your Intel Quartus Prime project.

4.11. Instantiating IP Cores in HDL

Instantiate an IP core directly in your HDL code by calling the IP core name and
declaring the IP core's parameters. This approach is similar to instantiating any other
module, component, or subdesign. When instantiating an IP core in VHDL, you must
include the associated libraries.

4.11.1. Example Top-Level Verilog HDL Module

Verilog HDL ALTFP_MULT in Top-Level Module with One Input Connected to Multiplexer.

module MF_top (a, b, sel, datab, clock, result);
 input [31:0] a, b, datab;
 input clock, sel;
 output [31:0] result;
 wire [31:0] wire_dataa;

 assign wire_dataa = (sel)? a : b;
 altfp_mult inst1
(.dataa(wire_dataa), .datab(datab), .clock(clock), .result(result));

 defparam
 inst1.pipeline = 11,
 inst1.width_exp = 8,
 inst1.width_man = 23,
 inst1.exception_handling = "no";
endmodule

4.11.2. Example Top-Level VHDL Module

VHDL ALTFP_MULT in Top-Level Module with One Input Connected to Multiplexer.

library ieee;
use ieee.std_logic_1164.all;
library altera_mf;
use altera_mf.altera_mf_components.all;

entity MF_top is
 port (clock, sel : in std_logic;
 a, b, datab : in std_logic_vector(31 downto 0);

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 result : out std_logic_vector(31 downto 0));
end entity;

architecture arch_MF_top of MF_top is
signal wire_dataa : std_logic_vector(31 downto 0);
begin

wire_dataa <= a when (sel = '1') else b;

inst1 : altfp_mult
 generic map (
 pipeline => 11,
 width_exp => 8,
 width_man => 23,
 exception_handling => "no")
 port map (
 dataa => wire_dataa,
 datab => datab,
 clock => clock,
 result => result);
end arch_MF_top;

4.12. Introduction to Intel FPGA IP Cores Revision History

This chapter has the following revision history.

Document Version Intel Quartus Prime
Version

Changes

2019.05.13 18.1.0 • Added archives topic.
• Updated the keyname and added --help information to

"Support for the IEEE 1735 Encryption Standard."

2018.10.24 18.1.0 • Updated information about obtaining IEEE 1735 Encryption
key.

2018.09.24 18.1.0 • Added statement that the Intel Quartus Prime software
installer does not support spaces in the installation path.

• Added "Intel FPGA IP Best Practices" topic.
• Divided "Introduction to Intel FPGA IP Cores" into separate

chapter of Getting Started User Guide.

2018.05.07 18.0.0 • Updated screenshots of IP Catalog and Parameter Editor for
latest IP names.

• Added note about Generate Combined Simulator Setup Scripts
command limitations.

• Added information about generation of simulation files for
Xcelium*

2017.11.06 17.1.0 • Revised product branding for Intel standards.
• Revised topics on Intel FPGA IP Evaluation Mode (formerly

OpenCore).

2017.05.08 17.0.0 • Added note that IP core encryption is supported only in Intel
Quartus Prime Pro Edition.

• Revised product branding for Intel standards.

2016.10.31 16.1.0 • Removed references to .qsys file creation during Intel
Quartus Prime Pro Edition stand-alone IP generation.

• Added references to .ip file creation during Intel Quartus
Prime Pro Edition stand-alone IP generation.

• Updated IP Core Generation Output files list and diagram.
• Indicated distinctions between Intel Quartus Prime Pro Edition

and Intel Quartus Prime Standard Edition features.
• Added Support for IP Core Encryption topic.

4. Introduction to Intel FPGA IP Cores

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Migrating to Intel Quartus Prime Pro Edition
The Intel Quartus Prime Pro Edition software supports migration of Intel Quartus
Prime Standard Edition, Quartus Prime Lite Edition, and Quartus II software projects.

Note: The migration steps for Quartus Prime Lite Edition, Intel Quartus Prime Standard
Edition, and the Quartus II software are identical. For brevity, this section refers to
these design tools collectively as "other Quartus software products."

Migrating to Intel Quartus Prime Pro Edition requires the following changes to other
Quartus software product projects:

1. Upgrade project assignments and constraints with equivalent Intel Quartus Prime
Pro Edition assignments.

2. Upgrade all Intel FPGA IP core variations and Platform Designer (Standard)
systems in your project.

3. Upgrade design RTL to standards-compliant VHDL, Verilog HDL, or SystemVerilog.

This document describes each migration step in detail.

5.1. Keep Pro Edition Project Files Separate

The Intel Quartus Prime Pro Edition software does not support project or constraint
files from other Quartus software products. Do not place project files from other
Quartus software products in the same directory as Intel Quartus Prime Pro Edition
project files. In general, use Intel Quartus Prime Pro Edition project files and
directories only for Intel Quartus Prime Pro Edition projects, and use other Quartus
software product files only with those software tools.

Intel Quartus Prime Pro Edition projects do not support compilation in other Quartus
software products, and vice versa. The Intel Quartus Prime Pro Edition software
generates an error if the Compiler detects other Quartus software product's features in
project files.

Before migrating other Quartus software product projects, click Project ➤ Archive
Project to save a copy of your original project before making modifications for
migration.

5.2. Upgrade Project Assignments and Constraints

Intel Quartus Prime Pro Edition software introduces changes to handling of project
assignments and constraints that the Quartus Settings File (.qsf) stores. Upgrade
other Quartus software product project assignments and constraints for migration to
the Intel Quartus Prime Pro Edition software. Upgrade other Quartus software product
assignments with Assignments ➤ Assignment Editor, by editing the .qsf file
directly, or by using a Tcl script.

683475 | 2019.12.16

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The following sections detail each type project assignment upgrade that migration
requires.

Related Information

• Modify Entity Name Assignments on page 75

• Resolve Timing Constraint Entity Names on page 75

• Verify Generated Node Name Assignments on page 76

• Replace Logic Lock (Standard) Regions on page 76

• Modify Signal Tap Logic Analyzer Files on page 78

• Remove Unsupported Feature Assignments on page 79

5.2.1. Modify Entity Name Assignments

Intel Quartus Prime Pro Edition software supports assignments that include instance
names without a corresponding entity name.

• "a_entity:a|b_entity:b|c_entity:c" (includes deprecated entity names)

• “a|b|c” (omits deprecated entity names)

While the current version of the Intel Quartus Prime Pro Edition software still accepts
entity names in the .qsf, the Compiler ignores the entity name. The Compiler
generates a warning message upon detection of an entity names in the .qsf.
Whenever possible, you should remove entity names from assignments, and
discontinue reliance on entity-based assignments. Future versions of the Intel Quartus
Prime Pro Edition software may eliminate all support for entity-based assignments.

5.2.2. Resolve Timing Constraint Entity Names

The Intel Quartus Prime Pro Edition Timing Analyzer honors entity names in Synopsys
Design Constraints (.sdc) files.

Use .sdc files from other Quartus software products without modification. However,
any scripts that include custom processing of names that the .sdc command returns,
such as get_registers may require modification. Your scripts must reflect that
returned strings do not include entity names.

The .sdc commands respect wildcard patterns containing entity names. Review the
Timing Analyzer reports to verify application of all constraints. The following example
illustrates differences between functioning and non-functioning .sdc scripts:

Apply a constraint to all registers named "acc" in the entity "counter".
This constraint functions in both SE and PE, because the SDC
command always understands wildcard patterns with entity names in them
set_false_path –to [get_registers “counter:*|*acc”]

This does the same thing, but first it converts all register names to
strings, which includes entity names by default in the SE
but excludes them by default in the PE. The regexp will therefore
fail in PE by default.
#
This script would also fail in the SE, and earlier
versions of Quartus II, if entity name display had been disabled
in the QSF.
set all_reg_strs [query_collection –list –all [get_registers *]]
foreach keeper $all_reg_strs {
 if {[regexp {counter:*|:*acc} $keeper]} {

5. Migrating to Intel Quartus Prime Pro Edition

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 set_false_path –to $keeper
 }
}

Removal of the entity name processing from .sdc files may not be possible due to
complex processing involving node names. Use standard .sdc whenever possible to
replace such processing. Alternatively, add the following code to the top and bottom of
your script to temporarily re-enable entity name display in the .sdc file:

This script requires that entity names be included
due to custom name processing
set old_mode [set_project_mode -get_mode_value always_show_entity_name]
set_project_mode -always_show_entity_name on

<... the rest of your script goes here ...>

Restore the project mode
set_project_mode -always_show_entity_name $old_mode

5.2.3. Verify Generated Node Name Assignments

Intel Quartus Prime synthesis generates and automatically names internal design
nodes during processing. The Intel Quartus Prime Pro Edition uses different
conventions than other Quartus software products to generate node names during
synthesis. When you synthesize your other Quartus software product project in Intel
Quartus Prime Pro Edition, the synthesis-generated node names may change. If any
scripts or constraints depend on the synthesis-generated node names, update the
scripts or constraints to match the Intel Quartus Prime Pro Edition synthesis node
names.

Avoid dependence on synthesis-generated names due to frequent changes in name
generation. In addition, verify the names of duplicated registers and PLL clock outputs
to ensure compatibility with any script or constraint.

5.2.4. Replace Logic Lock (Standard) Regions

Intel Quartus Prime Pro Edition software introduces more simplified and flexible Logic
Lock constraints, compared with previous Logic Lock regions. You must replace all
Logic Lock (Standard) assignments with compatible Logic Lock assignments for
migration.

To convert Logic Lock (Standard) regions to Logic Lock regions:

1. Edit the .qsf to delete or comment out all of the following Logic Lock
assignments:

set_global_assignment -name LL_ENABLED*
set_global_assignment -name LL_AUTO_SIZE*
set_global_assignment -name LL_STATE FLOATING*
set_global_assignment -name LL_RESERVED*
set_global_assignment -name LL_CORE_ONLY*
set_global_assignment -name LL_SECURITY_ROUTING_INTERFACE*
set_global_assignment -name LL_IGNORE_IO_BANK_SECURITY_CONSTRAINT*
set_global_assignment -name LL_PR_REGION*
set_global_assignment -name LL_ROUTING_REGION_EXPANSION_SIZE*
set_global_assignment -name LL_WIDTH*
set_global_assignment -name LL_HEIGHT
set_global_assignment -name LL_ORIGIN
set_instance_assignment -name LL_MEMBER_OF

5. Migrating to Intel Quartus Prime Pro Edition

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Edit the .qsf or click Tools ➤ Chip Planner to define new Logic Lock regions.
Logic Lock constraint syntax is simplified, for example:

set_instance_assignment -name PLACE_REGION "1 1 20 20" -to fifo1
set_instance_assignment -name RESERVE_PLACE_REGION OFF -to fifo1
set_instance_assignment -name CORE_ONLY_PLACE_REGION OFF -to fifo1

Compilation fails if synthesis finds other Quartus software product's Logic Lock
assignments in an Intel Quartus Prime Pro Edition project. The following table
compares other Quartus software product region constraint support with the Intel
Quartus Prime Pro Edition software.

Table 15. Region Constraints Per Edition

Constraint Type Logic Lock (Standard) Region Support
Other Quartus Software Products

Logic Lock Region Support
Intel Quartus Prime Pro Edition

Fixed rectangular,
nonrectangular or non-
contiguous regions

Full support. Full support.

Chip Planner entry Full support. Full support.

Periphery element
assignments

Supported in some instances. Full support. Use “core-only” regions to
exclude the periphery.

Nested (“hierarchical”)
regions

Supported but separate hierarchy from the user
instance tree.

Supported in same hierarchy as user
instance tree.

Reserved regions Limited support for nested or nonrectangular
reserved regions. Reserved regions typically
cannot cross I/O columns; use non-contiguous
regions instead.

Full support for nested and
nonrectangular regions. Reserved
regions can cross I/O columns without
affecting periphery logic if the regions
are "core-only".

Routing regions Limited support via “routing expansion.” No
support with hierarchical regions.

Full support (including future support
for hierarchical regions).

Floating or autosized
regions

Full support. No support.

Region names Regions have names. Regions are identified by the instance
name of the constrained logic.

Multiple instances in the
same region

Full support. Support for non-reserved regions.
Create one region per instance, and
then specify the same definition for
multiple instances to assign to the same
area. Not supported for reserved
regions.

Member exclusion Full support. No support for arbitrary logic. Use a
core-only region to exclude periphery
elements. Use non-rectangular regions
to include more RAM or DSP columns as
needed.

5.2.4.1. Logic Lock Region Assignment Examples

These examples show the syntax of Logic Lock region assignments in the .qsf file.
Optionally, enter these assignments in the Assignment Editor, the Logic Lock Regions
Window, or the Chip Planner.

5. Migrating to Intel Quartus Prime Pro Edition

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 1. Assign Rectangular Logic Lock Region

Assigns a rectangular Logic Lock region to a lower right corner location of (10,10), and
an upper right corner of (20,20) inclusive.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"

Example 2. Assign Non-Rectangular Logic Lock Region

Assigns instance with full hierarchical path "x|y|z" to non-rectangular L-shaped Logic
Lock region. The software treats each set of four numbers as a new box.

set_instance_assignment –name PLACE_REGION –to x|y|z "X10 Y10 X20 Y50; X20 Y10
X50 Y20"

Example 3. Assign Subordinate Logic Lock Instances

By default, the Intel Quartus Prime software constrains every child instance to the
Logic Lock region of its parent. Any constraint to a child instance intersects with the
constraint of its ancestors. For example, in the following example, all logic beneath
“a|b|c|d” constrains to box (10,10), (15,15), and not (0,0), (15,15). This
result occurs because the child constraint intersects with the parent constraint.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"
set_instance_assignment –name PLACE_REGION –to a|b|c|d "X0 Y0 X15 Y15"

Example 4. Assign Multiple Logic Lock Instances

By default, a Logic Lock region constraint allows logic from other instances to share
the same region. These assignments place instance c and instance g in the same
location. This strategy is useful if instance c and instance g are heavily interacting.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"
set_instance_assignment –name PLACE_REGION –to e|f|g "X10 Y10 X20 Y20"

Example 5. Assigned Reserved Logic Lock Regions

Optionally reserve an entire Logic Lock region for one instance and any of its
subordinate instances.

set_instance_assignment –name PLACE_REGION –to a|b|c "X10 Y10 X20 Y20"
set_instance_assignment –name RESERVE_PLACE_REGION –to a|b|c ON

The following assignment causes an error. The logic in e|f|g is not
legally placeable anywhere:
set_instance_assignment –name PLACE_REGION –to e|f|g "X10 Y10 X20 Y20"

The following assignment does *not* cause an error, but is effectively
constrained to the box (20,10), (30,20), since the (10,10),(20,20) box is
reserved
for a|b|c
set_instance_assignment –name PLACE_REGION –to e|f|g "X10 Y10 X30 Y20"

5.2.5. Modify Signal Tap Logic Analyzer Files

Intel Quartus Prime Pro Edition introduces new methodology for entity names,
settings, and assignments. These changes impact the processing of Signal Tap Logic
Analyzer Files (.stp).

5. Migrating to Intel Quartus Prime Pro Edition

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you migrate a project that includes .stp files generated by other Quartus software
products, you must make the following changes to migrate to the Intel Quartus Prime
Pro Edition:

1. Remove entity names from .stp files. The Signal Tap Logic Analyzer allows
without error, but ignores, entity names in .stp files. Remove entity names
from .stp files for migration to Intel Quartus Prime Pro Edition:

a. Click View ➤ Utility Windows ➤ Node Finder to locate and remove
appropriate nodes. Use Node Finder options to filter on nodes.

b. Click Processing ➤ Start ➤ Start Analysis & Elaboration to repopulate the
database and add valid node names.

2. Remove post-fit nodes. Intel Quartus Prime Pro Edition uses a different post-fit
node naming scheme than other Quartus software products.

a. Remove post-fit tap node names originating from other Quartus software
products.

b. Click View ➤ Utility Windows ➤ Node Finder to locate and remove post-fit
nodes. Use Node Finder options to filter on nodes.

c. Click Processing ➤ Start Compilation to repopulate the database and add
valid post-fit nodes.

3. Run an initial compilation in Intel Quartus Prime Pro Edition from the GUI. The
Compiler automatically removes Signal Tap assignments originating other Quartus
software products. Alternatively, from the command-line, run quartus_stp once
on the project to remove outmoded assignments.

Note: quartus_stp introduces no migration impact in the Intel Quartus Prime
Pro Edition. Your scripts require no changes to quartus_stp for migration.

4. Modify .sdc constraints for JTAG. Intel Quartus Prime Pro Edition does not
support embedded .sdc constraints for JTAG signals. Modify the timing template
to suit the design's JTAG driver and board.

5.2.6. Remove References to .qip Files

In Intel Quartus Prime Standard Edition projects, Platform Designer (Standard)
(Standard) generates .qip files. These files describe the parameterized IP cores to
the Compiler, and appear as assignments in the project's .qsf file. However, in Intel
Quartus Prime Pro Edition projects, the parameterized IP core description occurs
in .ip files. Moreover, references to .qip files in a project's .qsf file cause synthesis
errors during compilation.

• When migrating a project to Intel Quartus Prime Pro Edition, remove all references
to .qip files from the .qsf file.

5.2.7. Remove Unsupported Feature Assignments

The Intel Quartus Prime Pro Edition software does not support some feature
assignments that other Quartus software products support. Remove the following
unsupported feature assignments from other Quartus software product .qsf files for
migration to the Intel Quartus Prime Pro Edition software.

5. Migrating to Intel Quartus Prime Pro Edition

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Incremental Compilation (partitions)—The current version of the Intel Quartus
Prime Pro Edition software does not support Intel Quartus Prime Standard Edition
incremental compilation. Remove all incremental compilation feature assignments
from other Quartus software product .qsf files before migration.

• Intel Quartus Prime Standard Edition Physical synthesis assignments. Intel
Quartus Prime Pro Edition software does not support Intel Quartus Prime Standard
Edition Physical synthesis assignments. Remove any of the following assignments
from the .qsf file or design RTL (instance assignments) before migration.

PHYSICAL_SYNTHESIS_COMBO_LOGIC_FOR_AREA
 PHYSICAL_SYNTHESIS_COMBO_LOGIC
 PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION
 PHYSICAL_SYNTHESIS_REGISTER_RETIMING
 PHYSICAL_SYNTHESIS_ASYNCHRONOUS_SIGNAL_PIPELINING
 PHYSICAL_SYNTHESIS_MAP_LOGIC_TO_MEMORY_FOR_AREA

5.3. Upgrade IP Cores and Platform Designer (Standard) Systems

Upgrade all IP cores and Platform Designer (Standard) systems in your project for
migration to the Intel Quartus Prime Pro Edition software. The Intel Quartus Prime Pro
Edition software uses standards-compliant methodology for instantiation and
generation of IP cores and Platform Designer systems. Most Intel FPGA IP cores and
Platform Designer systems upgrade automatically in the Upgrade IP Components
dialog box.

Other Quartus software products use a proprietary Verilog configuration scheme within
the top level of IP cores and Platform Designer (Standard) systems for synthesis files.
The Intel Quartus Prime Pro Edition does not support this scheme. To upgrade all IP
cores and Platform Designer (Standard) systems in your project, click Project ➤
Upgrade IP Components.(1)

Table 16. IP Core and Platform Designer (Standard) System Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

IP and Platform Designer (Standard) system
generation use a proprietary Verilog HDL
configuration scheme within the top level of
IP cores and Platform Designer (Standard)
systems for synthesis files. This proprietary
Verilog HDL configuration scheme prevents
RTL entities from ambiguous instantiation
errors during synthesis. However, these
errors may manifest in simulation. Resolving
this issue requires writing a Verilog HDL
configuration to disambiguate the
instantiation, delete the duplicate entity from
the project, or rename one of the conflicting
entities. Intel Quartus Prime Pro Edition IP
strategy resolves these issues.

IP and Platform Designer system generation does not use proprietary
Verilog HDL configurations. The compilation library scheme changes in the
following ways:
• Compiles all variants of an IP core into the same compilation library

across the entire project. Intel Quartus Prime Pro Edition identically
names IP cores with identical functionality and parameterization to
avoid ambiguous entity instantiation errors. For example, the files for
every Intel Arria 10 PCI Express* IP core variant compile into the
altera_pcie_a10_hip_151 compilation library.

• Simulation and synthesis file sets for IP cores and systems instantiate
entities in the same manner.

• The generated RTL directory structure now matches the compilation
library structure.

Note: For complete information on upgrading IP cores, refer to Managing Intel Quartus
Prime Projects.

(1) For brevity, this section refers to Intel Quartus Prime Standard Edition, Intel Quartus Prime Lite
Edition, and the Quartus II software collectively as "other Quartus software products."

5. Migrating to Intel Quartus Prime Pro Edition

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4. Upgrade Non-Compliant Design RTL

The Intel Quartus Prime Pro Edition software introduces a new synthesis engine
(quartus_syn executable).

The quartus_syn synthesis enforces stricter industry-standard HDL structures and
supports the following enhancements in this release:

• Support for modules with SystemVerilog Interfaces

• Improved support for VHDL2008

• New RAM inference engine infers RAMs from GENERATE statements or array of
integers

• Stricter syntax/semantics check for improved compatibility with other EDA tools

Account for these synthesis differences in existing RTL code by ensuring that your
design uses standards-compliant VHDL, Verilog HDL, or SystemVerilog. The Compiler
generates errors when processing non-compliant RTL. Use the guidelines in this
section to modify existing RTL for compatibility with the Intel Quartus Prime Pro
Edition synthesis.

Related Information

• Verify Verilog Compilation Unit on page 81

• Update Entity Auto-Discovery on page 82

• Ensure Distinct VHDL Namespace for Each Library on page 83

• Remove Unsupported Parameter Passing on page 83

• Remove Unsized Constant from WYSIWYG Instantiation on page 83

• Remove Non-Standard Pragmas on page 84

• Declare Objects Before Initial Values on page 84

• Confine SystemVerilog Features to SystemVerilog Files on page 84

• Avoid Assignment Mixing in Always Blocks on page 85

• Avoid Unconnected, Non-Existent Ports on page 85

• Avoid Illegal Parameter Ranges on page 85

• Update Verilog HDL and VHDL Type Mapping on page 86

5.4.1. Verify Verilog Compilation Unit

Intel Quartus Prime Pro Edition synthesis uses a different method to define the
compilation unit. The Verilog LRM defines the concept of compilation unit as “a
collection of one or more Verilog source files compiled together” forming the
compilation-unit scope. Items visible only in the compilation-unit scope include
macros, global declarations, and default net types. The contents of included files
become part of the compilation unit of the parent file. Modules, primitives, programs,
interfaces, and packages are visible in all compilation units. Ensure that your RTL
accommodates these changes.

5. Migrating to Intel Quartus Prime Pro Edition

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 17. Verilog Compilation Unit Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

Synthesis in other Quartus software products follows the
Multi-file compilation unit (MFCU) method to select
compilation unit files. In MFCU, all files compile in the same
compilation unit. Global definitions and directives are visible
in all files. However, the default net type is reset at the start
of each file.

Intel Quartus Prime Pro Edition synthesis follows the
Single-file compilation unit (SFCU) method to select
compilation unit files. In SFCU, each file is a compilation
unit, file order is irrelevant, and the macro is only defined
until the end of the file.

Note: You can optionally change the MFCU mode using the following assignment:
set_global_assignment -name VERILOG_CU_MODE MFCU

5.4.1.1. Verilog HDL Configuration Instantiation

Intel Quartus Prime Pro Edition synthesis requires instantiation of the Verilog HDL
configuration, and not the module. In other Quartus software products, synthesis
automatically finds any Verilog HDL configuration relating to a module that you
instantiate. The Verilog HDL configuration then instantiates the design.

If your top-level entity is a Verilog HDL configuration, set the Verilog HDL
configuration, rather than the module, as the top-level entity.

Table 18. Verilog HDL Configuration Instantiation

Other Quartus Software Products Intel Quartus Prime Pro Edition

From the Example RTL, synthesis automatically finds the
mid_config Verilog HDL configuration relating to the
instantiated module.

From the Example RTL, synthesis does not find the
mid_config Verilog HDL configuration. You must instantiate
the Verilog HDL configuration directly.

Example RTL:

config mid_config;
design good_lib.mid;
instance mid.sub_inst use good_lib.sub;
endconfig

module test (input a1, output b);
mid_config mid_inst (.a1(a1), .b(b));
// in other Quartus products preceding line would have been:
//mid mid_inst (.a1(a1), .b(b));
endmodule

module mid (input a1, output b);
sub sub_inst (.a1(a1), .b(b));
endmodule

5.4.2. Update Entity Auto-Discovery

All editions of the Intel Quartus Prime and Quartus II software search your project
directory for undefined entities. For example, if you instantiate entity “sub” in your
design without specifying “sub” as a design file in the Quartus Settings File (.qsf),
synthesis searches for sub.v, sub.vhd, and so on. However, Intel Quartus Prime Pro
Edition performs auto-discovery at a different stage in the flow. Ensure that your RTL
code accommodates these auto-discovery changes.

5. Migrating to Intel Quartus Prime Pro Edition

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 19. Entity Auto-Discovery Differences

Other Quartus Software
Products

Intel Quartus Prime Pro Edition

Always automatically
searches your project
directory and search path for
undefined entities.

Always automatically searches your project directory and search path for undefined
entities. Intel Quartus Prime Pro Edition synthesis performs auto-discovery earlier in the
flow than other Quartus software products. This results in discovery of more syntax
errors. Optionally disable auto-discovery with the following .qsf assignment:
set_global_assignment -name AUTO_DISCOVER_AND_SORT OFF

5.4.3. Ensure Distinct VHDL Namespace for Each Library

Intel Quartus Prime Pro Edition synthesis requires that VHDL namespaces are distinct
for each library. The stricter library binding requirement complies with VHDL language
specifications and results in deterministic behavior. This benefits team-based projects
by avoiding unintentional name collisions. Confirm that your RTL respects this change.

Table 20. VHDL Namespace Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

For the Example RTL, the analyzer searches all libraries in an
unspecified order until the analyzer finds package utilities_pack
and uses items from that package. If another library, for example
projectLib also contains utilities_pack, the analyzer may use
this library instead of myLib.utilites_pack if found before the
analyzer searches myLib.

For the Example RTL, the analyzer uses the
specific utilities_pack in myLib. If
utilities_pack does not exist in library
myLib, the analyzer generates an error.

Example RTL:

library myLib; use
myLib.utilities_pack.all;

5.4.4. Remove Unsupported Parameter Passing

Intel Quartus Prime Pro Edition synthesis does not support parameter passing using
set_parameter in the .qsf. Synthesis in other Quartus software products supports
passing parameters with this method. Except for the top-level of the design where
permitted, ensure that your RTL does not depend on this type of parameter passing.

Table 21. SystemVerilog Feature Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

From the Example RTL, synthesis
overwrites the value of parameter SIZE in
the instance of my_ram instantiated from
entity mid-level.

From the Example RTL, synthesis generates a syntax error for detection of
parameter passing assignments in the .qsf. Specify parameters in the RTL.
The following example shows the supported top-level parameter passing
format. This example applies only to the top-level and sets a value of 4 to
parameter N:

set_parameter -name N 4

Example RTL:

set_parameter –entity mid_level –to my_ram –name SIZE 16

5.4.5. Remove Unsized Constant from WYSIWYG Instantiation

Intel Quartus Prime Pro Edition synthesis does not allow use of an unsized constant for
WYSIWYG instantiation. Synthesis in other Quartus software products allows use of
SystemVerilog (.sv) unsized constants when instantiating a WYSIWYG in a .v file.

5. Migrating to Intel Quartus Prime Pro Edition

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel Quartus Prime Pro Edition synthesis allows use of unsized constants in .sv files
for uses other than WYSIWYG instantiation. Ensure that your RTL code does not use
unsized constants for WYSIWYG instantiation. For example, specify a sized literal, such
as 2'b11, rather than '1.

5.4.6. Remove Non-Standard Pragmas

Intel Quartus Prime Pro Edition synthesis does not support the
vhdl(verilog)_input_version pragma or the library pragma. Synthesis in
other Quartus software products supports these pragmas. Remove any use of the
pragmas from RTL for Intel Quartus Prime Pro Edition migration. Use the following
guidelines to implement the pragma functionality in Intel Quartus Prime Pro Edition:

• vhdl(verilog)_input_version Pragma—allows change to the input version in
the middle of an input file. For example, to change VHDL 1993 to VHDL 2008. For
Intel Quartus Prime Pro Edition migration, specify the input version for each file in
the .qsf.

• library Pragma—allows changes to the VHDL library into which files compile. For
Intel Quartus Prime Pro Edition migration, specify the compilation library in
the .qsf.

5.4.7. Declare Objects Before Initial Values

Intel Quartus Prime Pro Edition synthesis requires declaration of objects before initial
value. Ensure that your RTL declares objects before initial value. Other Quartus
software products allow declaration of initial value prior to declaration of the object.

Table 22. Object Declaration Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

From the Example RTL, synthesis initializes the output
p_prog_io1 with the value of p_progio1_reg, even though the
register declaration occurs in Line 2.

From the Example RTL, synthesis generates a syntax
error when you specify initial values before declaring
the register.

Example RTL:

1 output p_prog_io1 = p_prog_io1_reg;
2 reg p_prog_io1_reg;

5.4.8. Confine SystemVerilog Features to SystemVerilog Files

Intel Quartus Prime Pro Edition synthesis does not allow SystemVerilog features in
Verilog HDL files. Other Quartus software products allow use of a subset of
SystemVerilog (.sv) features in Verilog HDL (.v) design files. To avoid syntax errors
in Intel Quartus Prime Pro Edition, allow only SystemVerilog features in Verilog HDL
files.

To use SystemVerilog features in your existing Verilog HDL files, rename your Verilog
HDL (.v) files as SystemVerilog (.sv) files. Alternatively, you can set the file type in
the .qsf, as shown in the following example:

set_global_assignment -name SYSTEMVERILOG_FILE <file>.v

5. Migrating to Intel Quartus Prime Pro Edition

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 23. SystemVerilog Feature Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

From the Example RTL, synthesis interprets $clog2 in
a .v file, even though the Verilog LRM does not define the
$clog2 feature. Other Quartus software products allow
other SystemVerilog features in .v files.

From the Example RTL, synthesis generates a syntax error for
detection of any non-Verilog HDL construct in .v files. Intel
Quartus Prime Pro Edition synthesis honors SystemVerilog
features only in .sv files.

Example RTL:

localparam num_mem_locations = 1050;
wire mem_addr [$clog2(num_mem_locations)-1 : 0];

5.4.9. Avoid Assignment Mixing in Always Blocks

Intel Quartus Prime Pro Edition synthesis does not allow mixed use of blocking and
non-blocking assignments within ALWAYS blocks. Other Quartus software products
allow mixed use of blocking and non-blocking assignments within ALWAYS blocks. To
avoid syntax errors, ensure that ALWAYS block assignments are of the same type for
Intel Quartus Prime Pro Edition migration.

Table 24. ALWAYS Block Assignment Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

Synthesis honors the mixed blocking and non-blocking
assignments, although the Verilog Language Specification
no longer supports this construct.

Synthesis generates a syntax error for detection of mixed
blocking and non-blocking assignments within an ALWAYS
block.

5.4.10. Avoid Unconnected, Non-Existent Ports

Intel Quartus Prime Pro Edition synthesis requires that a port exists in the module
prior to instantiation and naming. Other Quartus software products allow you to
instantiate and name an unconnected port that does not exist in the module. Modify
your RTL to match this requirement.

To avoid syntax errors, remove all unconnected and non-existent ports for Intel
Quartus Prime Pro Edition migration.

Table 25. Unconnected, Non-Existent Port Differences

Other Quartus Software Products Intel Quartus Prime Pro Edition

Synthesis allows you to instantiate and name
unconnected or non-existent ports that do not exist on
the module.

Synthesis generates a syntax error for detection of mixed
blocking and non-blocking assignments within an ALWAYS
block.

5.4.11. Avoid Illegal Parameter Ranges

Intel Quartus Prime Pro Edition synthesis generates an error for detection of constant
numeric (integer or floating point) parameter values that exceed the language
specification. Other Quartus software products allow constant numeric (integer or
floating point) values for parameters that exceed the language specifications. To avoid
syntax errors, ensure that constant numeric (integer or floating point) values for
parameters conform to the language specifications.

5. Migrating to Intel Quartus Prime Pro Edition

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.12. Update Verilog HDL and VHDL Type Mapping

Intel Quartus Prime Pro Edition synthesis requires that you use 0 for "false" and 1
for "true" in Verilog HDL files (.v). Other Quartus software products map "true" and
"false" strings in Verilog HDL to TRUE and FALSE Boolean values in VHDL. Intel
Quartus Prime Pro Edition synthesis generates an error for detection of non-Verilog
HDL constructs in .v files. To avoid syntax errors, ensure that your RTL
accommodates these standards.

5.5. Migrating to Intel Quartus Prime Pro Edition Revision History

This chapter has the following revision history.

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

5. Migrating to Intel Quartus Prime Pro Edition

683475 | 2019.12.16

Intel Quartus Prime Standard Edition User Guide: Getting Started Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Pro Edition User Guide: Getting
Started Documentation Archive

If the table does not list a software version, the user guide for the previous software version applies.

Intel Quartus Prime
Version

User Guide

18.1 Intel Quartus Prime Pro Edition User Guide: Getting Started

683475 | 2019.12.16

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-qps-getting-started-18-1.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

B. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683475 | 2019.12.16

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics*, and Synopsys. Includes design flow steps,
generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor
Graphics* and Cadence*. Also includes information about signal integrity
analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

B. Intel Quartus Prime Standard Edition User Guides

683475 | 2019.12.16

Send Feedback Intel Quartus Prime Standard Edition User Guide: Getting Started

89

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Getting%20Started%20(683475%202019.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Standard
Edition User Guide
Platform Designer

Updated for Intel® Quartus® Prime Design Suite: 18.1

This document is part of a collection - Intel® Quartus® Prime Standard Edition User Guides -
Combined PDF link

Online Version

Send Feedback UG-20174

683364

2018.12.15

https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683364.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Creating a System with Platform Designer..10
1.1. Platform Designer Interface Support...10
1.2. Platform Designer System Design Flow... 12
1.3. Starting or Opening a Project in Platform Designer... 12
1.4. Viewing a Platform Designer System...12

1.4.1. Viewing the System Hierarchy... 13
1.4.2. Filtering the System View..14
1.4.3. Viewing Clock and Reset Domains.. 15
1.4.4. Viewing Avalon Memory-Mapped Domains in a System..................................17
1.4.5. Viewing the System Schematic.. 19
1.4.6. Viewing System Assignments and Connections...19
1.4.7. Customizing the Platform Designer Layout...20

1.5. Adding IP Components to a System..21
1.5.1. Modifying IP Parameters... 23
1.5.2. Applying Preset Parameters for Specific Applications..................................... 25
1.5.3. Adding Third-Party IP Components... 26
1.5.4. Creating or Opening an IP Core Variant...28

1.6. Connecting System Components..29
1.6.1. Platform Designer 64-Bit Addressing Support...31
1.6.2. Connecting Masters and Slaves..32
1.6.3. Changing a Conduit to a Reset...33
1.6.4. Wire-Level Connectivity.. 33
1.6.5. Previewing the System Interconnect...38

1.7. Specifying Interconnect Requirements.. 39
1.7.1. Interconnect Requirements... 40

1.8. Defining Instance Parameters.. 41
1.8.1. Creating an Instance Parameter Script in Platform Designer...........................42
1.8.2. Platform Designer Instance Parameter Script Tcl Commands.......................... 43

1.9. Implementing Performance Monitoring..49
1.10. Configuring Platform Designer System Security.. 50

1.10.1. System Security Options... 52
1.10.2. Specifying a Default Slave... 52
1.10.3. Accessing Undefined Memory Regions... 53

1.11. Upgrading Outdated IP Components... 54
1.11.1. Troubleshooting IP or Platform Designer System Upgrade............................ 55

1.12. Synchronizing System Component Information.. 56
1.13. Generating a Platform Designer System.. 57

1.13.1. Generation Dialog Box Options...58
1.13.2. Specifying the Generation ID... 58
1.13.3. Files Generated for IP Cores and Platform Designer Systems........................59
1.13.4. Generating System Testbench Files...60
1.13.5. Generating Example Designs for IP Components...63
1.13.6. Generating the HPS IP Component System View Description File..................64
1.13.7. Generating Header Files for Master Components...64

1.14. Simulating a Platform Designer System...65
1.14.1. Adding Assertion Monitors for Simulation...66
1.14.2. Simulating Software Running on a Nios II Processor....................................66

Contents

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.15. Integrating a Platform Designer System with the Intel Quartus Prime Software.......... 67
1.15.1. Integrate a Platform Designer System and the Intel Quartus Prime

Software With the .qsys File.. 68
1.15.2. Integrate a Platform Designer System and the Intel Quartus Prime

Software With the .qip File.. 68
1.16. Managing Hierarchical Platform Designer Systems.. 69

1.16.1. Adding a Subsystem to a Platform Designer System....................................69
1.16.2. Viewing and Traversing Subsystem Contents..70
1.16.3. Editing a Subsystem...71
1.16.4. Changing a Component's Hierarchy Level.. 71
1.16.5. Saving a Subsystem... 72
1.16.6. Exporting a System as an IP Component... 72
1.16.7. Hierarchical System Using Instance Parameters Example............................. 73

1.17. Creating a System with Platform Designer Revision History......................................78

2. Optimizing Platform Designer System Performance..80
2.1. Designing with Avalon and AXI Interfaces... 80

2.1.1. Designing Streaming Components..81
2.1.2. Designing Memory-Mapped Components... 81

2.2. Using Hierarchy in Systems...82
2.3. Using Concurrency in Memory-Mapped Systems...85

2.3.1. Implementing Concurrency With Multiple Masters...86
2.3.2. Implementing Concurrency With Multiple Slaves...87
2.3.3. Implementing Concurrency with DMA Engines..89

2.4. Inserting Pipeline Stages to Increase System Frequency... 90
2.5. Using Bridges..90

2.5.1. Using Bridges to Increase System Frequency... 91
2.5.2. Using Bridges to Minimize Design Logic...94
2.5.3. Using Bridges to Minimize Adapter Logic... 96
2.5.4. Considering the Effects of Using Bridges..97

2.6. Increasing Transfer Throughput..103
2.6.1. Using Pipelined Transfers...104
2.6.2. Arbitration Shares and Bursts.. 105

2.7. Reducing Logic Utilization..109
2.7.1. Minimizing Interconnect Logic to Reduce Logic Unitization............................109
2.7.2. Minimizing Arbitration Logic by Consolidating Multiple Interfaces.................. 110
2.7.3. Reducing Logic Utilization With Multiple Clock Domains................................112
2.7.4. Duration of Transfers Crossing Clock Domains ... 114

2.8. Reducing Power Consumption.. 115
2.8.1. Reducing Power Consumption With Multiple Clock Domains..........................115
2.8.2. Reducing Power Consumption by Minimizing Toggle Rates............................118
2.8.3. Reducing Power Consumption by Disabling Logic.. 119

2.9. Reset Polarity and Synchronization in Platform Designer..120
2.10. Optimizing Platform Designer System Performance Design Examples.......................123

2.10.1. Avalon Pipelined Read Master Example.. 123
2.10.2. Multiplexer Examples.. 125

2.11. Optimizing Platform Designer System Performance Revision History........................ 127

3. Platform Designer Interconnect..128
3.1. Memory-Mapped Interfaces... 128

3.1.1. Platform Designer Packet Format..130
3.1.2. Interconnect Domains...133

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3. Master Network Interfaces...135
3.1.4. Slave Network Interfaces.. 138
3.1.5. Arbitration...140
3.1.6. Memory-Mapped Arbiter..144
3.1.7. Datapath Multiplexing Logic...146
3.1.8. Width Adaptation... 146
3.1.9. Burst Adapter.. 148
3.1.10. Waitrequest Allowance Adapter.. 150
3.1.11. Read and Write Responses...151
3.1.12. Platform Designer Address Decoding... 152

3.2. Avalon Streaming Interfaces..152
3.2.1. Avalon-ST Adapters.. 154

3.3. Interrupt Interfaces..162
3.3.1. Individual Requests IRQ Scheme.. 162
3.3.2. Assigning IRQs in Platform Designer... 163

3.4. Clock Interfaces...165
3.4.1. (High Speed Serial Interface) HSSI Clock Interfaces................................... 166

3.5. Reset Interfaces...171
3.5.1. Single Global Reset Signal Implemented by Platform Designer......................172
3.5.2. Reset Controller... 172
3.5.3. Reset Bridge..172
3.5.4. Reset Sequencer.. 173

3.6. Conduits... 184
3.7. Interconnect Pipelining... 184

3.7.1. Manually Control Pipelining in the Platform Designer Interconnect.................187
3.8. Error Correction Coding (ECC) in Platform Designer Interconnect..............................188
3.9. AMBA 3 AXI Protocol Specification Support (version 1.0)... 188

3.9.1. Channels...188
3.9.2. Cache Support...189
3.9.3. Security Support.. 190
3.9.4. Atomic Accesses.. 190
3.9.5. Response Signaling.. 190
3.9.6. Ordering Model.. 190
3.9.7. Data Buses..191
3.9.8. Unaligned Address Commands... 191
3.9.9. Avalon and AXI Transaction Support... 191

3.10. AMBA 3 APB Protocol Specification Support (version 1.0)....................................... 192
3.10.1. Bridges... 192
3.10.2. Burst Adaptation.. 192
3.10.3. Width Adaptation..192
3.10.4. Error Response.. 193

3.11. AMBA 4 AXI Memory-Mapped Interface Support (version 2.0).................................193
3.11.1. Burst Support.. 193
3.11.2. QoS..193
3.11.3. Regions...193
3.11.4. Write Response Dependency.. 193
3.11.5. AWCACHE and ARCACHE... 194
3.11.6. Width Adaptation and Data Packing in Platform Designer........................... 194
3.11.7. Ordering Model.. 194
3.11.8. Read and Write Allocate.. 194
3.11.9. Locked Transactions..194

Contents

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.11.10. Memory Types..195
3.11.11. Mismatched Attributes...195
3.11.12. Signals..195

3.12. AMBA 4 AXI Streaming Interface Support (version 1.0)... 195
3.12.1. Connection Points...195
3.12.2. Adaptation...196

3.13. AMBA 4 AXI-Lite Protocol Specification Support (version 2.0)................................. 196
3.13.1. AMBA 4 AXI-Lite Signals..196
3.13.2. AMBA 4 AXI-Lite Bus Width..197
3.13.3. AMBA 4 AXI-Lite Outstanding Transactions...197
3.13.4. AMBA 4 AXI-Lite IDs... 197
3.13.5. Connections Between AMBA 3 AXI,AMBA 4 AXI and AMBA 4 AXI-Lite...........197
3.13.6. AMBA 4 AXI-Lite Response Merging...198

3.14. Port Roles (Interface Signal Types)... 198
3.14.1. AXI Master Interface Signal Types...198
3.14.2. AXI Slave Interface Signal Types.. 199
3.14.3. AMBA 4 AXI Master Interface Signal Types... 200
3.14.4. AMBA 4 AXI Slave Interface Signal Types...202
3.14.5. AMBA 4 AXI-Stream Master and Slave Interface Signal Types..................... 203
3.14.6. ACE-Lite Interface Signal Roles.. 204
3.14.7. APB Interface Signal Types.. 204
3.14.8. Avalon Memory-Mapped Interface Signal Roles... 204
3.14.9. Avalon Streaming Interface Signal Roles..208
3.14.10. Avalon Clock Source Signal Roles..209
3.14.11. Avalon Clock Sink Signal Roles... 209
3.14.12. Avalon Conduit Signal Roles... 209
3.14.13. Avalon Tristate Conduit Signal Roles.. 209
3.14.14. Avalon Tri-State Slave Interface Signal Types... 211
3.14.15. Avalon Interrupt Sender Signal Roles...212
3.14.16. Avalon Interrupt Receiver Signal Roles...212

3.15. Platform Designer Interconnect Revision History...212

4. Platform Designer System Design Components...214
4.1. Bridges...214

4.1.1. Clock Bridge.. 215
4.1.2. Avalon-MM Clock Crossing Bridge... 216
4.1.3. Avalon-MM Pipeline Bridge...218
4.1.4. Avalon-MM Unaligned Burst Expansion Bridge.. 219
4.1.5. Bridges Between Avalon and AXI Interfaces... 222
4.1.6. AXI Bridge.. 223
4.1.7. AXI Timeout Bridge.. 228
4.1.8. Address Span Extender... 232

4.2. Error Response Slave..237
4.2.1. Error Response Slave Parameters... 238
4.2.2. Error Response Slave CSR Registers... 239
4.2.3. Designating a Default Slave...242

4.3. Tri-State Components... 243
4.3.1. Generic Tri-State Controller... 245
4.3.2. Tri-State Conduit Pin Sharer.. 245
4.3.3. Tri-State Conduit Bridge..246

4.4. Test Pattern Generator and Checker Cores...246

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.4.1. Test Pattern Generator..247
4.4.2. Test Pattern Checker...249
4.4.3. Software Programming Model for the Test Pattern Generator and Checker

Cores... 250
4.4.4. Test Pattern Generator API.. 254
4.4.5. Test Pattern Checker API... 259

4.5. Avalon-ST Splitter Core...266
4.5.1. Splitter Core Backpressure.. 266
4.5.2. Splitter Core Interfaces...267
4.5.3. Splitter Core Parameters... 267

4.6. Avalon-ST Delay Core... 268
4.6.1. Delay Core Reset Signal.. 268
4.6.2. Delay Core Interfaces... 268
4.6.3. Delay Core Parameters... 269

4.7. Avalon-ST Round Robin Scheduler.. 270
4.7.1. Almost-Full Status Interface (Round Robin Scheduler).................................270
4.7.2. Request Interface (Round Robin Scheduler)... 270
4.7.3. Round Robin Scheduler Operation...270
4.7.4. Round Robin Scheduler Parameters...271

4.8. Avalon Packets to Transactions Converter.. 272
4.8.1. Packets to Transactions Converter Interfaces..272
4.8.2. Packets to Transactions Converter Operation..272

4.9. Avalon-ST Streaming Pipeline Stage... 274
4.10. Streaming Channel Multiplexer and Demultiplexer Cores..275

4.10.1. Software Programming Model For the Multiplexer and Demultiplexer
Components.. 276

4.10.2. Avalon-ST Multiplexer... 276
4.10.3. Avalon-ST Demultiplexer... 278

4.11. Single-Clock and Dual-Clock FIFO Cores.. 279
4.11.1. Interfaces Implemented in FIFO Cores.. 280
4.11.2. FIFO Operating Modes...281
4.11.3. Fill Level of the FIFO Buffer..282
4.11.4. Almost-Full and Almost-Empty Thresholds to Prevent Overflow and

Underflow... 282
4.11.5. Single-Clock and Dual-Clock FIFO Core Parameters................................... 282
4.11.6. Avalon-ST Single-Clock FIFO Registers.. 283

4.12. Platform Designer System Design Components Revision History..............................284

5. Creating Platform Designer Components.. 286
5.1. Platform Designer Components.. 286

5.1.1. Platform Designer Interface Support... 286
5.1.2. Component Structure... 288
5.1.3. Component File Organization... 288
5.1.4. Component Versions...289

5.2. Design Phases of an IP Component...290
5.3. Create IP Components in the Platform Designer Component Editor........................... 291

5.3.1. Save an IP Component and Create the _hw.tcl File..................................... 292
5.3.2. Edit an IP Component with the Platform Designer Component Editor............. 293

5.4. Specify IP Component Type Information..293
5.5. Create an HDL File in the Platform Designer Component Editor.................................295
5.6. Create an HDL File Using a Template in the Platform Designer Component Editor........ 295

Contents

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.7. Specify Synthesis and Simulation Files in the Platform Designer Component Editor..... 297
5.7.1. Specify HDL Files for Synthesis in the Platform Designer Component Editor....298
5.7.2. Analyze Synthesis Files in the Platform Designer Component Editor...............299
5.7.3. Name HDL Signals for Automatic Interface and Type Recognition in the

Platform Designer Component Editor...300
5.7.4. Specify Files for Simulation in the Component Editor...................................301
5.7.5. Include an Internal Register Map Description in the .svd for Slave

Interfaces Connected to an HPS Component.. 302
5.8. Add Signals and Interfaces in the Platform Designer Component Editor..................... 303
5.9. Specify Parameters in the Platform Designer Component Editor................................ 304

5.9.1. Valid Ranges for Parameters in the _hw.tcl File...306
5.9.2. Types of Platform Designer Parameters... 307
5.9.3. Declare Parameters with Custom _hw.tcl Commands...................................308
5.9.4. Validate Parameter Values with a Validation Callback...................................310

5.10. Declaring SystemVerilog Interfaces in _hw.tcl...310
5.11. User Alterable HDL Parameters in _hw.tcl.. 312
5.12. Scripting Wire-Level Expressions.. 314
5.13. Control Interfaces Dynamically with an Elaboration Callback...................................314
5.14. Control File Generation Dynamically with Parameters and a Fileset Callback............. 315
5.15. Create a Composed Component or Subsystem... 316
5.16. Create an IP Component with Platform Designer a System View Different from

the Generated Synthesis Output Files...318
5.17. Add Component Instances to a Static or Generated Component..............................319

5.17.1. Static Components... 320
5.17.2. Generated Components...321
5.17.3. Design Guidelines for Adding Component Instances.................................. 324

5.18. Creating Platform Designer Components Revision History.......................................324

6. Platform Designer Command-Line Utilities..326
6.1. Run the Platform Designer Editor with qsys-edit... 326
6.2. Scripting IP Core Generation..328

6.2.1. qsys-generate Command-Line Options.. 329
6.3. Display Available IP Components with ip-catalog.. 330
6.4. Create an .ipx File with ip-make-ipx..331
6.5. Generate Simulation Scripts.. 332
6.6. Generate a Platform Designer System with qsys-script.. 333
6.7. Platform Designer Scripting Command Reference... 335

6.7.1. System...336
6.7.2. Subsystems...349
6.7.3. Instances..358
6.7.4. Connections.. 391
6.7.5. Top-level Exports... 403
6.7.6. Validation..416
6.7.7. Miscellaneous.. 422
6.7.8. Wire-Level Connection Commands..435

6.8. Platform Designer Scripting Property Reference..439
6.8.1. Connection Properties...440
6.8.2. Design Environment Type Properties... 441
6.8.3. Direction Properties.. 442
6.8.4. Element Properties... 443
6.8.5. Instance Properties.. 444

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.6. Interface Properties..445
6.8.7. Message Levels Properties...446
6.8.8. Module Properties.. 447
6.8.9. Parameter Properties.. 448
6.8.10. Parameter Status Properties...450
6.8.11. Parameter Type Properties... 451
6.8.12. Port Properties... 452
6.8.13. Project Properties... 453
6.8.14. System Info Type Properties.. 454
6.8.15. Units Properties..456
6.8.16. Validation Properties... 457
6.8.17. Interface Direction..458
6.8.18. File Set Kind.. 459
6.8.19. Access Type...460
6.8.20. Instantiation HDL File Properties...461
6.8.21. Instantiation Interface Duplicate Type... 462
6.8.22. Instantiation Interface Properties..463
6.8.23. Instantiation Properties... 464
6.8.25. VHDL Type...466

6.9. Platform Designer Command-Line Interface Revision History....................................466

7. Component Interface Tcl Reference.. 467
7.1. Platform Designer _hw.tcl Command Reference..467

7.1.1. Interfaces and Ports... 468
7.1.2. Parameters..486
7.1.3. Display Items.. 497
7.1.4. Module Definition... 504
7.1.5. Composition.. 516
7.1.6. Fileset Generation.. 536
7.1.7. Miscellaneous.. 547
7.1.8. SystemVerilog Interface Commands..553
7.1.9. Wire-Level Expression Commands.. 559

7.2. Platform Designer _hw.tcl Property Reference.. 563
7.2.1. Script Language Properties..564
7.2.2. Interface Properties..565
7.2.3. SystemVerilog Interface Properties... 565
7.2.4. Instance Properties.. 567
7.2.5. Parameter Properties.. 568
7.2.6. Parameter Type Properties...570
7.2.7. Parameter Status Properties.. 571
7.2.8. Port Properties...572
7.2.9. Direction Properties.. 574
7.2.10. Display Item Properties... 575
7.2.11. Display Item Kind Properties.. 576
7.2.12. Display Hint Properties..577
7.2.13. Module Properties...578
7.2.14. Fileset Properties..580
7.2.15. Fileset Kind Properties...581
7.2.16. Callback Properties... 582
7.2.17. File Attribute Properties...583
7.2.18. File Kind Properties...584

Contents

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.19. File Source Properties... 585
7.2.20. Simulator Properties... 586
7.2.21. Port VHDL Type Properties... 587
7.2.22. System Info Type Properties.. 588
7.2.23. Design Environment Type Properties... 590
7.2.24. Units Properties..591
7.2.25. Operating System Properties..592
7.2.26. Quartus.ini Type Properties.. 593

7.3. Component Interface Tcl Reference Revision History... 594

A. Intel Quartus Prime Standard Edition User Guides..595

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Creating a System with Platform Designer
The Intel® Quartus® Prime software includes the Platform Designer system integration
tool. Platform Designer simplifies the task of defining and integrating custom IP
components (IP cores) into your FPGA design.

Platform Designer automatically creates interconnect logic from high-level connectivity
that you specify. The interconnect automation eliminates the time-consuming task of
specifying system-level HDL connections.

Platform Designer allows you to specify interface requirements and integrate IP
components within a graphical representation of the system. The Intel Quartus Prime
software installation includes the Intel FPGA IP library available from the IP Catalog in
Platform Designer.

You can integrate optimized and verified Intel FPGA IP cores into a design to shorten
design cycles and maximize performance. Platform Designer also supports integration
of IP cores from third-parties, or custom components that you define.

Platform Designer provides support for the following:

• Create and reuse components—define and reuse custom parameterizable
components in a Hardware Component Definition File (_hw.tcl) that describes
and packages IP components.

• Command-line support—optionally use command-line utilities and scripts to
perform functions available in the Platform Designer GUI.

• Up to 64-bit addressing.

• Optimization of interconnect and pipelining within the system and auto-adaptation
of data widths and burst characteristics.

• Inter-operation between standard protocols.

Related Information

• Platform Designer Command-Line Utilities on page 326

• Introduction to Intel FPGA IP Cores

• Platform Designer System Design Flow on page 12

1.1. Platform Designer Interface Support

Platform Designer is most effective when you use standard interfaces available in the
IP Catalog to design custom IP. Standard interfaces operate efficiently with Intel FPGA
IP components, and you can take advantage of the bus functional models (BFMs),
monitors, and other verification IP that the IP Catalog provides.

683364 | 2018.12.15

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/czr1533092325157.html#mwh1409958250601
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Platform Designer supports the following interface specifications:

• Intel FPGA Avalon® Memory-Mapped and Streaming

• Arm* AMBA* 3 AXI (version 1.0)

• Arm AMBA 4 AXI (version 2.0)

• Arm AMBA 4 AXI-Lite (version 2.0)

• Arm AMBA 4 AXI-Stream (version 1.0)

• Arm AMBA 3 APB (version 1.0)

IP components (IP Cores) can have any number of interfaces in any combination. Each
interface represents a set of signals that you can connect within a Platform Designer
system, or export outside of a Platform Designer system.

Platform Designer IP components can include the following interface types:

Table 1. IP Component Interface Types

Interface Type Description

Memory-Mapped Connects memory-referencing master devices with slave memory devices. Master devices can
be processors and DMAs, while slave memory devices can be RAMs, ROMs, and control
registers. Data transfers between master and slave may be uni-directional (read only or write
only), or bi-directional (read and write).

Streaming Connects Avalon Streaming (Avalon-ST) sources and sinks that stream unidirectional data, as
well as high-bandwidth, low-latency IP components. Streaming creates datapaths for
unidirectional traffic, including multichannel streams, packets, and DSP data. The Avalon-ST
interconnect is flexible and can implement on-chip interfaces for industry standard
telecommunications and data communications cores, such as Ethernet, Interlaken, and video.
You can define bus widths, packets, and error conditions.

Interrupts Connects interrupt senders to interrupt receivers. Platform Designer supports individual,
single-bit interrupt requests (IRQs). In the event that multiple senders assert their IRQs
simultaneously, the receiver logic (typically under software control) determines which IRQ has
highest priority, then responds appropriately.

Clocks Connects clock output interfaces with clock input interfaces. Clock outputs can fan-out without
the use of a bridge. A bridge is required only when a clock from an external (exported) source
connects internally to more than one source.

Resets Connects reset sources with reset input interfaces. If your system requires a particular
positive-edge or negative-edge synchronized reset, Platform Designer inserts a reset controller
to create the appropriate reset signal. If you design a system with multiple reset inputs, the
reset controller ORs all reset inputs and generates a single reset output.

Conduits Connects point-to-point conduit interfaces, or represent signals that you export from the
Platform Designer system. Platform Designer uses conduits for component I/O signals that are
not part of any supported standard interface. You can connect two conduits directly within a
Platform Designer system as a point-to-point connection. Alternatively, you can export conduit
interfaces and bring the interfaces to the top-level of the system as top-level system I/O. You
can use conduits to connect to external devices, for example external DDR SDRAM memory,
and to FPGA logic defined outside of the Platform Designer system.

Related Information

• Avalon Interface Specifications

• AMBA Protocol Specifications

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

11

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2. Platform Designer System Design Flow

You can use the Platform Designer GUI to quickly create and customize a Platform
Designer system for integration with an Intel Quartus Prime project. Alternatively, you
can perform many of the functions available in the Platform Designer GUI at the
command-line, as Platform Designer Command-Line Utilities on page 326 describes.

When you create a system in the GUI, Platform Designer creates a .qsysor .qip file
that represents the system in your Intel Quartus Prime software project.

The circled numbers in the diagram correspond with the following topics in this
chapter:

1. Starting or Opening a Project in Platform Designer on page 12

2. Adding IP Components to a System on page 21

3. Connecting System Components on page 29

4. Specifying Interconnect Requirements on page 39

5. Synchronizing System Component Information on page 56

6. Generating a Platform Designer System on page 57

7. Simulating a Platform Designer System on page 65

8. Integrating a Platform Designer System with the Intel Quartus Prime Software on
page 67

1.3. Starting or Opening a Project in Platform Designer

1. To start a new Platform Designer project, save the default system that appears
when you open Platform Designer (File ➤ Save), or click File ➤ New System,
and then save your new project.
Platform Designer saves the new project in the Intel Quartus Prime project
directory. To alternatively save your Platform Designer project in a different
directory, click File ➤ Save As.

2. To open a recent Platform Designer project, click File ➤ Open to browse for the
project, or locate a recent project with the File ➤ Recent Projects command.

3. To revert the project currently open in Platform Designer to the saved version,
click the first item in the Recent Projects list.

Note: You can edit the directory path information in the recent_projects.ini file to
reflect a new location for items that appear in the Recent Projects list.

1.4. Viewing a Platform Designer System

Platform Designer allows you to visualize all aspects of your system. By default,
Platform Designer displays the contents of your system in the System View whenever
you open a system. You can also access other panels that allow you to view and
modify various elements of the system.

When you select or edit an item in one Platform Designer tab, all other tabs update to
reflect your selection or edit. For example, if you select the cpu_0 in the Hierarchy
tab, the Parameters tab immediately updates to display cpu_0 parameters.

Click the View menu to interact with the elements of your system in various tabs.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Platform Designer GUI is fully customizable. You can arrange and display Platform
Designer GUI elements that you most commonly use, and then save and reuse useful
GUI layouts.

The IP Catalog and Hierarchy tabs display to the left of the main frame by default.
The System View, Address Map, Interconnect Requirements, and Device
Family tabs display in the main frame.

The Messages tab displays in the lower portion of Platform Designer. Double-clicking
a message in the Messages tab changes focus to the associated element in the
relevant tab to facilitate debugging. When the Messages tab is closed or not open in
your workspace, error and warning message counts continue to display in the status
bar of the Platform Designer window.

Figure 1. View a Platform Designer System

1.4.1. Viewing the System Hierarchy

The Hierarchy tab hierarchically displays the modules, connections, and exported
signals in the current system. You can expand and traverse though the system
hierarchy, zoom in for detail, and locate to elements in other Platform Designer panes.

The Hierarchy tab provides the following information and functionality:

• Lists connections between components.

• Lists names of signals in exported interfaces.

• Right-click to connect, edit, add, remove, or duplicate elements in the hierarchy.

• Displays internal connections of Platform Designer subsystems that you include as
IP components. By contrast, the System View tab displays only the exported
interfaces of Platform Designer subsystems.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Expanding the System Hierarchy

Click the + icon to expand any interface in the Hierarchy tab to view sub-
components, associated elements, and signals for the interface. The Hierarchy tab
displays a unique icon for each element type in the system. In the example below, the
ram_master selection appears selected in both the System View and Hierarchy
tabs.

1.4.2. Filtering the System View

You can easily filter the display of your system in the System View by interface type,
instance name, or other custom properties that you define. Filtering the view allows
you to simplify the display and focus only on the items you want.

For example, you can click the Filter button to display only instances that include
memory-mapped interfaces, or display only instances that connect to a particular
Nios® II processor. Conversely, you can temporarily hide clock and reset interfaces to
further simplify the display.

Figure 2. Filter Icon and Filters Dialog Box

Filter Control

Related Information

Filters Dialog Box

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

14

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#system/qsys/qsys_db_filter.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.3. Viewing Clock and Reset Domains

The Platform Designer Clock Domains and Reset Domains tabs list the clock and
reset domains in the Platform Designer system, respectively.

Click View ➤ Clock Domains or click View ➤ Reset Domains to display these tabs.

Platform Designer determines clock and reset domains by the associated clocks and
resets. This information displays when you hover over interfaces in your system.

The Clock Domains and Reset Domains tabs also allow you to locate system
performance bottlenecks. The tabs indicate connection points where Platform Designer
automatically inserts clock-crossing adapters and reset synchronizers during system
generation. View the following information on these tabs to create optimal connections
between interfaces:

• The number of clock and reset domains in the system

• The interfaces and modules that each clock or reset domain contains

• The locations of clock or reset crossings

• The connection point of automatically inserted clock or reset adapters

• The proper location for manual insertion of a clock or reset adapter

Figure 3. Platform Designer Clock and Reset Domains

1.4.3.1. Viewing Clock Domains in a System

On the Clock Domains tab, you can filter the System View tab to display a single
clock domain, or multiple clock domains. You can further filter your view with the
Filter control. When you select an element in the Clock Domains tab, the
corresponding selection appears highlighted in the System View tab.

Follow these steps to filter and highlight clock domains in the System View:

1. Click View ➤ Clock Domains.

2. Select any clock or reset domain in the list to view associated interfaces. The
corresponding selection appears in the System View tab.

3. To highlight clock domains in the System View tab, click Show clock domains
in the system table or at the bottom of the System View tab.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4. Shows Clock Domains in the System Table

Show Clock Domains

Filter By Interface Type

4. To view a single clock domain, or multiple clock domains and their modules and
connections, select the clock name or names in the Clock Domains tab. The
modules for the selected clock domain or domains and connections highlight in the
System View tab. Detailed information for the current selection appears in the
clock domain details pane.

Figure 5. Clock Domains

Note: If a connection crosses a clock domain, the connection circle appears as a
red dot in the System View tab

5. To view interfaces that cross clock domains, expand the Clock Domain
Crossings icon in the Clock Domains tab, and select each element to view its
details in the System View tab.

Platform Designer lists the interfaces that cross clock domains under Clock
Domain Crossings. As you click through the elements, detailed information
appears in the clock domain details pane. Platform Designer also highlights the
selection in the System View tab.

1.4.3.2. Viewing Reset Domains in a System

On the Reset Domains tab, you can filter the System View tab to display a single
reset domain, or multiple reset domains. When you select an element in the Reset
Domains tab, the corresponding selection appears in the System View tab.

Follow these steps to filter and highlight reset domains in the System View:

1. To open the Reset Domains tab, click View ➤ Reset Domains.

2. To show reset domains in the System View tab, click the Show reset domains
in the system table icon in the System View tab.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Show Reset Domains in the System Table

3. To view a single reset domain, or multiple reset domains and their modules and
connections, click the reset names in the Reset Domain tab.

Platform Designer displays your selection according to the following rules:

• When you select multiple reset domains, the System View tab shows
interfaces and modules in both reset domains.

• When you select a single reset domain, the other reset domains are grayed
out, unless the two domains have interfaces in common.

• Reset interfaces appear black when connected to multiple reset domains.

• Reset interfaces appear gray when they are not connected to all of the
selected reset domains.

• If an interface is contained in multiple reset domains, the interface is grayed
out.

Detailed information for your selection appears in the reset domain details pane.

Note: Red dots in the Connections column between reset sinks and sources
indicate auto insertions by Platform Designer during system generation, for
example, a reset synchronizer. Platform Designer decides when to display a
red dot with the following protocol, and ends the decision process at first
match.

• Multiple resets fan into a common sink.

• Reset inputs are associated with different clock domains.

• Reset inputs have different synchronicity.

1.4.4. Viewing Avalon Memory-Mapped Domains in a System

The Avalon Memory Mapped Domains tab displays a list of all the Avalon domains
in the system. When you select a domain in the Avalon Memory Mapped Domains
tab, the corresponding selection highlights in the System View tab.

Click View ➤ Avalon Memory Mapped Domains to display this tab.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7. Avalon Memory Mapped Domains Tab

Shows only the Interfaces in the Selected Avalon Memory Mapped Domain in the System Contents Tab

Displays Information about the Current Domain Selection

Double-Click to Rename Domain Name

• Filter the System View tab to display a single Avalon domain, or multiple
domains. Further filter your view with selections in the Filters dialog box.

• To rename an Avalon memory-mapped domain, double-click the domain name.
Detailed information for the current selection appears in the Avalon domain details
pane.

• To enable and disable the highlighting of the Avalon domains in the System View
tab, click the domain control tool at the bottom of the System View tab.

Figure 8. Avalon Memory Mapped Domains Control Tool

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.5. Viewing the System Schematic

The Schematic tab displays a schematic representation of the current Platform
Designer system. You can zoom into a component or connection to view more details.
You can use the image handles in the right panel to resize the schematic image.

If your selection is a subsystem, You can use the Move to the top of the hierarchy
Move up one level of hierarchy, and Drill into a subsystem to explore its
contents buttons to traverse the schematic of a hierarchical system.

Figure 9. Platform Designer Schematic Tab

Related Information

Editing a Subsystem on page 71

1.4.6. Viewing System Assignments and Connections

On the Assignments tab (View ➤ Assignments), you can view assignments for a
module or element that you select in the System View tab. The Connections tab
displays a lists of connections in your Platform Designer system. On the Connections
tab (View ➤ Connections), you can choose to connect or un-connect a module in
your system, and then view the results in the System View tab.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10. Assignments and Connections tabs in Platform Designer

1.4.7. Customizing the Platform Designer Layout

You can arrange your workspace by dragging and dropping, and then grouping tabs in
an order appropriate to your design development, or close or dock tabs that you are
not using.

Dock tabs in the main frame as a group, or individually by clicking the tab control in
the upper-right corner of the main frame. Tool tips on the upper-right corner of the
tab describe possible workspace arrangements, for example, restoring or
disconnecting a tab to or from your workspace.

When you save your system, Platform Designer also saves the current workspace
configuration. When you re-open a saved system, Platform Designer restores the last
saved workspace.

The Reset to System Layout command on the View menu restores the workspace to
its default configuration for Platform Designer system design. The Reset to IP
Layout command restores the workspace to its default configuration for defining and
generating single IP cores.

Follow these steps to customize and save the Platform Designer layout:

1. Click items on the View menu to display and then optionally dock the tabs.
Rearrange the tabs to suit your preferences.

2. To save the current Platform Designer window configuration as a custom layout,
click View ➤ Custom Layouts ➤ Save. Platform Designer saves your custom
layout in your project directory, and adds the layout to the custom layouts list,
and the layouts.ini file. The layouts.ini file determines the order of layouts
in the list.

3. Use any of the following methods to revert to another layout:

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To revert the layout to the default system design layout, click View ➤ Reset
to System Layout. This layout displays the System View, Address Map,
Interconnect Requirements, and Messages tabs in the main pane, and the
IP Catalog and Hierarchy tabs along the left pane.

• To revert the layout to the default system design layout, click View ➤ Reset
to IP Layout. This layout displays the Parameters and Messages tabs in
the main pane, and the Details, Block Symbol, and Presets tabs along the
right pane.

• To reset your Platform Designer window configuration to a previously saved
layout, click View ➤ Custom Layouts, and then select the custom layout.

• Press Ctrl+3 to quickly change the Platform Designer layout.

4. To manage your saved custom layouts, click View ➤ Custom Layouts. The
Manage Custom Layouts dialog box opens and allows you to apply a variety of
functions that facilitate custom layout management. For example, you can import
or export a layout from or to a different directory.

Figure 11. Manage Custom Layouts

1.5. Adding IP Components to a System

You can quickly add Intel FPGA IP components to a system from the IP Catalog in
Platform Designer. The IP Catalog launches a parameter editor that allows you to
specify options and add the component to your system. Your Platform Designer
system can contain a single instance of an IP component, or multiple, individually
parameterized variations of multiple or the same IP components.

Follow these steps to locate, parameterize, and instantiate an IP component in a
Platform Designer system:

1. To locate a component by name, type some or all of the component’s name in the
IP Catalog search box. For example, type memory to locate memory-mapped IP
components. You can also find components by category.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. Platform Designer IP Catalog

2. Double-click any component to launch the component's parameter editor and
specify options for the component.

For some IP components, you can select and Apply a pre-defined set of
parameters values for specific applications from the Presets list.

Figure 13. Parameter Editor

IP Component’s
Block Diagram

IP Component’s
Parameters

Preset Parameters
for Specific Applications

3. To complete customization of the IP component, click Finish. The IP component
appears in the System View tab.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.1. Modifying IP Parameters

The Parameters tab allows you to view and edit the current parameter settings for IP
components in your system.

To display a components parameters on the Parameters tab:

1. click View ➤ Parameters.

2. Select the component in the System View or Hierarchy tabs..

The Parameters tab provides the following functionality:

• Parameters field—adjust the parameters to align with your design requirements,
including changing the name of the top-level instance.

• Component Banner—displays the hierarchical path for the component and allows
you to enable display of internal names. Below the hierarchical path, the
parameter editor shows the HDL entity name and the IP file path for the selected
IP component. Right-click in the banner to display internal parameter names for
use with scripted flows.

• Read/Write Waveforms—displays the interface timing and the corresponding
read and write waveforms.

• Details—displays links to detailed information about the component.

• Parameterization Messages—displays parameter warning and error messages
about the IP component.

Figure 14. Platform Designer Parameters Tab

Selected Component

Right-Click Banner to
Display Internal Names

Modify Parameters of Selected Component

Reports Parameter Errors

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Changes that you make in the Parameters tab affect your entire system, and
dynamically update other open tabs in Platform Designer. Any change that you make
on the Parameters tab, automatically updates the corresponding .ip file that stores
the component's parameterization.

If you create your own custom IP components, you can use the Hardware Component
Description File (_hw.tcl) to specify configurable parameters.

Note: If you use the ip-deploy or qsys-script commands rather than the Platform
Designer GUI, you must use internal parameter names with these parameters.

1.5.1.1. Viewing Component or Parameter Details

The Details tab provides information for a component or parameter that you select.
Platform Designer updates the information in the Details tab as you select different
components.

To view a component's details:

1. Click the parameters for a component in the parameter editor, Platform Designer
displays the description of the parameter in the Details tab.

2. To return to the complete description for the component, click the header in the
Parameters tab.

1.5.1.2. Viewing a Component's Block Symbol

The Block Symbol tab displays a symbolic representation of any component you
select in the Hierarchy or System View tabs. The block symbol shows the
component's port interfaces and signals. The Show signals option allows you to turn
on or off signal graphics.

Figure 15. Block Symbol Tab

The Block Symbol tab appears by default in the parameter editor when you add a
component to your system. When the Block Symbol tab is open in your workspace, it
reflects changes that you make in other tabs.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.2. Applying Preset Parameters for Specific Applications

The Preset tab displays the names of any available preset settings for an IP
component. The preset preserves a collection of parameter setting that may be
appropriate for a specific protocol or application. Not all IP components include preset
parameters. Double-click the preset parameter name to apply the preset parameter
values to a component you are defining.

Figure 16. Selecting Preset Parameters

Filter the List of
Presets by Name

1.5.2.1. Creating IP Custom Preset Parameters Settings

You can optionally define and save a custom set of parameter settings for an IP
component, and then apply the preset settings whenever you add an instance of the
IP component to any system.

Follow these steps to save custom preset parameter settings:

1. In IP Catalog, double-click any component to launch the parameter editor.

2. To search for a specific preset for the initial settings, type a partial preset name in
the search box.

3. In the Presets tab, click New to specify the Preset name and Preset
description.

4. Under Select parameters to include in the preset, enable or disable the
parameters you want to include in the preset.

5. Specify the path for the Preset file that preserves the collection of parameter
settings.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17. Create New Preset

If the file location that you specify is not already in the IP search path, Platform
Designer adds the location of the new preset file to the IP search path.

6. Click Save.

7. To apply the preset to an IP component, click Apply. Preset parameter values that
match the current parameter settings appear in bold.

1.5.3. Adding Third-Party IP Components

You can add third-party IP components created by Intel partners to your Platform
Designer system. Third-party partner IP components have interfaces that Platform
Designer supports, such as Avalon-MM or AMBA AXI. Third-party partner IP
components can also include timing and placement constraints, software drivers,
simulation models, and reference designs.

To locate supported third-party IP components on the Intel web page, follow these
steps:

1. From the Intel website, navigate to the Find IP page, and then click Find IP on the
tool.

2. Use the Search box and the End Market, Technology, Devices or Provider
filters to locate the IP that you want to use.

3. Click Enter.

4. Sort the table of results for the Platform Designer Compliant column. You
cannot use non-compliant components in Platform Designer.

5. Click the IP name to view information, request evaluation, or request download.

6. After you download the IP files, add the IP location to the IP search path to add
the IP to IP Catalog, as IP Search Path Recursive Search on page 27 describes.

Related Information

Find Intel FPGA and Partner IP

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

26

https://www.intel.com/content/www/us/en/programmable/products/intellectual-property/ip.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.3.1. IP Search Path Recursive Search

The Intel Quartus Prime software automatically searches and identifies IP components
in the IP search path. The search is recursive for some directories, and only to a
specific depth for others. You can use ** characters to halt a recursive search at any
directory that contains a _hw.tcl or .ipx file.

In the following list of search locations, ** indicates a recursive descent.

Table 2. IP Search Locations

Location Description

PROJECT_DIR/* Finds IP components and index files in the Intel Quartus Prime project directory.

PROJECT_DIR/ip/**/* Finds IP components and index files in any subdirectory of the /ip subdirectory of the Intel
Quartus Prime project directory.

1.5.3.1.1. IP Search Path Precedence

If the Intel Quartus Prime software recognizes two IP cores with the same name, the
following search path precedence rules determine the resolution of files:

1. Project directory.

2. Project database directory.

3. Project IP search path specified in IP Search Locations, or with the
SEARCH_PATH assignment for the current project revision.

4. Global IP search path specified in IP Search Locations, or with the
SEARCH_PATH assignment in the quartus2.ini file.

5. Quartus software libraries directory, such as <Quartus Installation>
\libraries.

1.5.3.1.2. IP Component Description Files

The Intel Quartus Prime software identifies parameterizable IP components in the IP
search path for the following files:

• Component Description File (_hw.tcl)—defines a single IP core.

• IP Index File (.ipx)—each .ipx file indexes a collection of available IP cores. This
file specifies the relative path of directories to search for IP cores. In
general, .ipx files facilitate faster searches.

1.5.3.2. Defining the IP Search Path with Index Files

You can create an IP Index File (.ipx) to specify a path that Platform Designer
searches for IP components.

You can specify a search path in the user_components.ipx file in either in Platform
Designer (Tools ➤ Options) or the Intel Quartus Prime software (Tools ➤ Options
➤ IP Catalog Search Locations). This method of discovering IP components allows
you to add a locations dependent of the default search path. The
user_components.ipx file directs Platform Designer to the location of an IP
component or directory to search.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A <path> element in a .ipx file specifies a directory where Platform Designer can
search for IP components. A <component> entry specifies the path to a single
component. <path> elements allow wildcards in definitions. An asterisk matches any
file name. If you use an asterisk as a directory name, it matches any number of
subdirectories.

Example 1. Path Element in an .ipx File

<library>
 <path path="…<user directory>" />
 <path path="…<user directory>" />
 …
 <component … file="…<user directory>" />
 …
</library>

A <component> element in an .ipx file contains several attributes to define a
component. If you provide the required details for each component in an .ipx file,
the startup time for Platform Designer is less than if Platform Designer must discover
the files in a directory.

Example 2. Component Element in an .ipx File

The example shows two <component> elements. Note that the paths for file names
are specified relative to the .ipx file.

<library>
 <component
 name="A Platform Designer Component"
 displayName="Platform Designer FIR Filter Component"
 version="2.1"
 file="./components/qsys_filters/fir_hw.tcl"
 />
 <component
 name="rgb2cmyk_component"
 displayName="RGB2CMYK Converter(Color Conversion Category!)"
 version="0.9"
 file="./components/qsys_converters/color/rgb2cmyk_hw.tcl"
 />
</library>

Note: You can verify that IP components are available with the ip-catalog command.

Related Information

Create an .ipx File with ip-make-ipx on page 331

1.5.4. Creating or Opening an IP Core Variant

In addition to creating a system, Platform Designer allows you to define a stand-alone
IP core variant that you can add to your Intel Quartus Prime project or to a Platform
Designer system.

Follow these steps to define an IP core variant in Platform Designer:

1. In Platform Designer, click File ➤ New IP Variant.

2. On the IP Variant tab, specify the Quartus project to contain the IP variant.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Platform Designer IP Variant Tab

3. Specify any of the following options:

• Revision—optionally select a specific revision of a project.

• Device family—when defining a new project or None, allows you to specify
the target Intel FPGA device family. Otherwise this field is non-editable and
displays the Quartus project target device family. Click Retrieve Values to
populate the fields.

• Device part—when defining a new project or None, allows you to specify the
target Intel FPGA device part number. Otherwise this field is non-editable and
displays the Quartus project target device part number.

4. Specify the IP variant name, or browse for an existing IP variant.

5. For Component type, click Select and select the IP component from the IP
Catalog.

6. Click Create. The IP parameter editor appears. Specify the parameter values that
you want for the IP variant.

7. To generate the IP variant synthesis and optional simulation files, click Generate
HDL, specify Generation Options, and click Generate. Refer to Generation
Dialog Box Options on page 58 for generation options.

1.6. Connecting System Components

You must appropriately connect the components in your Platform Designer system.
The System View and Connections tabs allow you to connect and configure IP
components quickly. Platform Designer supports connections between interfaces of
compatible types and opposite directions.

For example, you can connect a memory-mapped master interface to a slave
interface, and an interrupt sender interface to an interrupt receiver interface. You can
connect any interfaces exported from a Platform Designer system within a parent
system.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Platform Designer uses the high-level connectivity you specify to instantiate a suitable
HDL fabric to perform the needed adaptation and arbitration between components.
Platform Designer generates and includes this interconnect fabric in the RTL system
output.

Potential connections between interfaces appear as gray interconnect lines with an
open circle icon at the intersection of the potential connection.

Figure 19. Potential and Implemented Connections in System View

Potential
Connection
(empty circle)

Implemented
Connection
(filled circle)

To implement a connection, follow these steps:

1. Click inside an open connection circle to implement the connection between the
interfaces. When you make a connection, Platform Designer changes the
connection line to black, and fills the connection circle. Clicking a filled-in circle
removes the connection.

2. to display the list of current and possible connections for interfaces in the
Hierarchy or System View tabs, click View ➤ Connections.

Figure 20. Connection Display for Exported Interfaces

3. Perform any of the following to modify connections:

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• On the Connections tab, enable or disable the Connected column to enable
or disable any connection. The Clock Crossing, Data Width, and Burst
columns provide interconnect information about added adapters that can
result in slower fMAX or increased area utilization.

• On the System View tab, right-click in the Connection column and disable
or enable Allow Connection Editing.

• On the Connections tab view and make connections for exported interfaces.
Double-click an interface in the Export column to view all possible
connections in the Connections column as pins. To restore the representation
of the connections, and remove the interface from the Export column, click
the pin.

1.6.1. Platform Designer 64-Bit Addressing Support

Platform Designer interconnect supports up to 64-bit addressing for all Platform
Designer interfaces and IP components, with a range of: 0x0000 0000 0000 0000
to 0xFFFF FFFF FFFF FFFF, inclusive.

The address parameters appear in the Base and End columns in the System View
tab, on the Address Map tab, in the parameter editor, and in validation messages.
Platform Designer displays as many digits as needed in order to display the top-most
set bit, for example, 12 hex digits for a 48-bit address.

A Platform Designer system can have multiple 64-bit masters, with each master
having its own address space. You can share slaves between masters, and masters
can map slaves to different addresses. For example, one master can interact with
slave 0 at base address 0000_0000_0000, and another master can see the same
slave at base address c000_000_000.

Intel Quartus Prime debugging tools provide access to the state of an addressable
system via the Avalon-MM interconnect. These tools are also 64-bit compatible, and
process within a 64-bit address space, including a JTAG to Avalon master bridge.

Platform Designer supports auto base address assignment for Avalon-MM components.
In the Address Map tab, click Auto Assign Base Address.

Related Information

• Address Map Tab Help

• Address Span Extender on page 232

• auto_assign_base_addresses on page 423

1.6.1.1. Support for Avalon-MM Non-Power of Two Data Widths

Platform Designer requires that you connect all multi point Avalon-MM connections to
interfaces with data widths that are equal to powers of two.

Platform Designer issues a validation error if an Avalon-MM master or slave interface
on a multi point connection is parameterized with a non-power of two data width.

Note: Avalon-MM point-to-point connections between an Avalon-MM master and an Avalon-
MM slave are an exception, you can set their data widths to a non-power of two.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

31

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#system/qsys/qsys_tab_add_map.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.2. Connecting Masters and Slaves

Specify connections between master and slave components in the Address Map tab.
This tab allows you to specify the address range that each memory-mapped master
uses to connect to a slave in a Platform Designer system.

The Address Map tab shows the slaves on the left, the masters across the top, and
the address span of the connection in each cell. If there is no connection between a
master and a slave, the table cell is empty. In this case, use the Address Map tab to
view the individual memory addresses for each connected master.

Platform Designer enables you to design a system where two masters access the same
slave at different addresses. If you use this feature, Platform Designer labels the Base
and End address columns in the System View tab as "mixed" rather than providing
the address range.

To create or edit a connection between master and slave IP components:

1. In Platform Designer, click the Address Map tab.

2. Locate the table cell that represents the connection between the master and slave
component pair.

3. Either type in a base address, or update the current base address in the cell. The
base address of a slave component must be a multiple of the address span of the
component. This restriction is a requirement of the Platform Designer
interconnect, which provides an efficient address decoding logic, which in turn
allows Platform Designer to achieve the best possible fMAX.

Figure 21. Address Map Tab for Connection Masters and Slaves

Slave to Master Address Mapping

Assigns Base Address

Related Information

• Address Map Tab Help

• Platform Designer 64-Bit Addressing Support on page 31

• auto_assign_base_addresses on page 423

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

32

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#system/qsys/qsys_tab_add_map.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.3. Changing a Conduit to a Reset

1. In the IP Catalog search box, locate IOPLL Intel FPGA IP and double-click to
add the component to your system.

2. In the System View tab, select the PLL component.

3. Click View ➤ Component Instantiation and open the Component
Instantiation tab for the selected component.

4. In the Signals & Interfaces tab, select the locked conduit interface.

5. Change the Type from Conduit to Reset Input, and the Synchronous edges
from Deassert to None.

6. Select the locked [1] signal below the locked interface.

7. Change the Signal Type from export to reset_n. Change the Direction from
output to input.

8. Click Apply.

The conduit interface changes to reset for the instantiated PLL component.

Figure 22. Changing Conduit to a Reset

 Interface type for the input
 changed from Conduit to Reset
 after instantiation

1.6.4. Wire-Level Connectivity

Wire-level connectivity enables you to manipulate wire-level connections in the system
level view of Platform Designer. For example, you can enter a Verilog style syntax
expression to drive an input port of an IP component. You can implement wire-level
connectivity with the Platform Designer GUI or with the qsys-script utility.

After applying the expression, the port you specify moves from the current interface
into a Wire-Level Endpoint interface. The new interface name appends _wirelevel
to the existing interface name. If you remove the wire-level expression, the port
restores to the original interface. However, not all interfaces are restorable to legal
interfaces after certain ports change. Moving a port from its original interface might
result in validation errors on the original interface.

After you move a port to a Wire-Level Endpoint interface, wire-level expressions
must drive all bits in the vector. You cannot connect ports contained within this new
interface type to any other interfaces.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following general rules apply to wire-level expressions:

• Wire-level connectivity is only available on optional input ports.

• The wire-level expression can consist of input, output, and bi-directional ports,
constant values, and logic terms using standard Verilog syntax.

• Wire-level expressions can only consist of ports within the same level of hierarchy.
If you require elements from a higher or lower hierarchy, you must export the
appropriate elements to the same hierarchical context so that they are available
for use in wire-level expressions at the same hierarchy level.

• You can apply multiple expressions to a single input port unless they collide or
cause bus contention.

• You must resolve validation errors occurring on the original interface for the
interface to function correctly.

Platform Designer validates the wire-level expressions and provides messages for
syntax, port existence, and other systematic errors. This validation includes the
following:

• Validation of Verilog syntax.

• Warning if any sub-operator elements don’t match bit size.

• Warning if resulting combined bit size does not match the driven input port.

• Validation that all module and port names exist.

• Validation that all ports in a wire-level interface are input ports.

• Validation that all wire-level expressions drive each input port within a wire-level
interface.

• Validation of no bus-contention, meaning that no one wire is driven by more than
one expression.

• In a composed _hw.tcl module, validation that all ports driven by wire-level
expressions are not in any connection.

• In a composed _hw.tcl module, validation that all ports driven by wire-level
expressions are not exported.

After you define wire-level expressions for your system and resolve any errors, you
next generate the system to create the Verilog files. When you apply the wire-level
connections in the Platform Designer GUI, or with the qsys-script utility, the wire-
level expression is inserts in the Verilog wrapper file that generates for your system.
When you apply the wire-level connections with composed _hw.tcl commands, the
wire-level expression inserts in the Verilog wrapper file that generates for the specified
IP component.

1.6.4.1. Editing Wire-Level Expressions

After you add a wire-level expression to an optional input port, you can add, edit, or
remove wire-level expressions and connections in the Platform Designer GUI.

Follow these steps to edit wire-level expressions in the Platform Designer GUI:

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. To specify a new wire-level expression, right-click an input port in the Hierarchy
tab and click Add Wire-Level Expression. The Edit Wire-Level Expression
dialog box appears.

Figure 23. Edit Wire-Level Expression Dialog Box

2. To construct the expression, drag operators or ports from the list of operators or
ports, and drop them into the expression field. Refer to Wire-Level Expression
Syntax on page 36 for a list of legal operators.

3. Click in the text field at the top of the Edit Wire-Level Expression dialog box
and press the Down Arrow key to enable the expression assistant. The assistant
provides a context sensitive list of available operators at the cursor position.

4. Modify the elements of the expression in the workspace:

• To add a value to an expression, right-click a node and select Insert Value.

• Double-click on a value to enter a numeric value or port name.

• Click on an operator node to change the operator type.

• Reorder nodes or move nodes between operators by dragging them.

5. To manage all wire-level expressions, click View ➤ Wire-Level Expression
Editor. The Wire-Level Expression Editor allows you to add new wire-level
expressions, edit, or remove existing wire-level expressions.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 24. Wire-Level Expression Editor

1.6.4.2. Wire-Level Expression Syntax

The wire-level expression derives from Verilog syntax. The following is an example
and list of legal operators and elements that you can use for wire-level expressions.

Example Expressions:

foo1.port1[5:0] = foo2.port1[5:0]
foo3.port1[8:4] = foo5.port1[4:0] & 5’b10101
foo6.port1[0] = ‘b1
foo7.port1 = foo8.port1
foo9.port1[0] = ~foo10.port1[0]
foo10.port1[3:0] = foo11.port2[1:0] + 4’b1100
foo12:port1[3:0] = {4{0}}
foo13.port1[7:0] = {foo14.port1[3:0], 4’b0011}

Table 3. Ports

Port Description

<instance_name>.<port_name> Whole port

<instance_name>.<port_name>[x] Wire x of port

<instance_name>.<port_name>[y:x] Wires x to y of port. Port ranges must be in decreasing
order, for example a[1:0].

<constant base x values> For example: 1, ’b1, 4’hf, 4’o7, 32’d9

Table 4. Operators (Bitwise)

Operator Description

~ Negation

& AND

| OR

~& NAND

continued...

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Operator Description

~| NOR

^ XOR

~^ XNOR

Table 5. Operators (Logical)

Operator Description

? Conditional

! Negation

&& AND

|| OR

Table 6. Operators (Relational, Equality, and Shift)

Operator Description

> Greater Than

< Less Than

>= Greater Than or Equal To

<= Less Than or Equal To

== Equal To

!= Not Equal To

<< Shift Left

>> Shift Right

Table 7. Operators (Mathematical)

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

Table 8. Operators (Other)

Operator Description

{integer {x}} Replication of x

{x, y, ...} Concatenation

1.6.4.3. Adding or Removing Ports from Wire-Level Endpoint Interfaces

You can quickly add or remove ports from wire-level interfaces.

Follow these steps to add or remove ports from wire-level endpoint interfaces:

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. To move the port to a wire-level endpoint interface, in the Hierarchy tab, right-
click a port and then click Move Port to Wire-Level Interface. After you move a
port to a wire-level endpoint interface, you can view and edit it in the Component
Instantiation tab.

2. To remove the port from a wire-level endpoint interface, in the Hierarchy tab,
right-click a port and then click Remove Port from Wire-Level Interface.

1.6.4.4. Scripting Wire-Level Expressions

Platform Designer supports system scripting commands to apply wire-level
expressions to input ports in IP components.

The following commands function with the qsys-script utility or in a _hw.tcl file
to set, retrieve, or remove an expression on a port:

set_wirelevel_expression <instance_or_port_bit> <expression>
get_wirelevel_expressions <instance_or_port_bit>
remove_wirelevel_expressions <instance_or_port_bit

These commands require a string that you compose from the left-handed and right-
handed components of the expression. Platform Designer reports errors in syntax,
existence, or system hierarchy.

1.6.5. Previewing the System Interconnect

You can review a graphical representation of the Platform Designer interconnect before
you generate the system. The System with Platform Designer Interconnect window
shows how Platform Designer converts connections between interfaces to interconnect
logic during system generation.

To open the System with Platform Designer Interconnect window, click System ➤
Show System With Platform Designer Interconnect.

The System with Platform Designer Interconnect window has the following tabs:

• System Contents—displays the original instances in your system, as well as the
inserted interconnect instances. Connections between interfaces are replaced by
connections to interconnect where applicable.

• Hierarchy—displays a system hierarchical navigator, expanding the system
contents to show modules, interfaces, signals, contents of subsystems, and
connections.

• Parameters—displays the parameters for the selected element in the Hierarchy
tab.

• Memory-Mapped Interconnect—allows you to select a memory-mapped
interconnect module and view its internal command and response networks. You
can also insert pipeline stages to achieve timing closure.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 25. System with Platform Designer Interconnect window

The System Contents, Hierarchy, and Parameters tabs are read-only. Edits that
you apply on the Memory-Mapped Interconnect tab are automatically reflected on
the Interconnect Requirements tab.

The Memory-Mapped Interconnect tab in the System with Platform Designer
Interconnect window displays a graphical representation of command and response
datapaths in your system. Datapaths allow you precise control over pipelining in the
interconnect. Platform Designer displays separate figures for the command and
response datapaths. You can access the datapaths by clicking their respective tabs in
the Memory-Mapped Interconnect tab.

Each node element in a figure represents either a master or slave that communicates
over the interconnect, or an interconnect sub-module. Each edge is an abstraction of
connectivity between elements, and its direction represents the flow of the commands
or responses.

Click Highlight Mode (Path, Successors, Predecessors) to identify edges and
datapaths between modules. Turn on Show Pipelinable Locations to add greyed-out
registers on edges where pipelining is allowed in the interconnect.

Note: You must select more than one module to highlight a path.

1.7. Specifying Interconnect Requirements

The Interconnect Requirements tab allows you to apply system-wide ($system) or
interface-specific interconnect requirements for IP components in your system.

Available options in the Setting column vary, depending on the Identifier column
value. Click the drop-down menu to select the settings, and to assign the
corresponding values to the settings.

Follow these steps to specify system or interface interconnect requirements.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. To create a new Identifier to assign an interconnect requirement, click Add. A
new_target row appears for edit.

2. Click the new_target cell and select $system to define a system-wide
requirement, or select any interface name to specify interconnect requirements for
the interface.

3. In the same row, click the new_requirement cell, select any of the available
requirements, as Interconnect Requirements on page 40 describes.

4. In the same row, Click the new_requirement_value cell and specify the
requirement value.

For more information about HPS, refer to the Cyclone® V Device Handbook in volume
3 of the Hard Processor System Technical Reference Manual.

Related Information

• Platform Designer Interconnect on page 128

• Reset Interfaces on page 171

1.7.1. Interconnect Requirements

Table 9. System-Wide Interconnect Requirements

Option Description

Limit interconnect
pipeline stages to

Specifies the maximum number of pipeline stages that Platform Designer can insert in each
command and response path to increase the fMAX at the expense of additional latency.
You can specify between 0 and 4 pipeline stages, where 0 means that the interconnect has a
combinational datapath.
This setting is specific for each Platform Designer system or subsystem.

Clock crossing
adapter type

Specifies the default implementation for automatically inserted clock crossing adapters:

Handshake This adapter uses a simple handshaking protocol to propagate
transfer control signals and responses across the clock boundary.
This methodology uses fewer hardware resources because each
transfer is safely propagated to the target domain before the next
transfer can begin. The Handshake adapter is appropriate for
systems with low throughput requirements

FIFO This adapter uses dual-clock FIFOs for synchronization. The latency
of the FIFO-based adapter is a couple of clock cycles more than the
handshaking clock crossing component. However, the FIFO-based
adapter can sustain higher throughput because it supports multiple
transactions at any given time. FIFO-based clock crossing adapters
require more resources. The FIFO adapter is appropriate for
memory-mapped transfers requiring high throughput across clock
domains.

Auto If you select Auto, Platform Designer specifies the FIFO adapter for
bursting links, and the Handshake adapter for all other links.

Automate default
slave insertion

Directs Platform Designer to automatically insert a default slave for undefined memory region
accesses during system generation.

Enable
instrumentation

When you set this option to TRUE, Platform Designer enables debug instrumentation in the
Platform Designer interconnect, which then monitors interconnect performance in the system
console.

Burst Adapter
Implementation

Allows you to choose the converter type that Platform Designer applies to each burst.

continued...

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Generic converter
(slower, lower area)

Default. Controls all burst conversions with a single converter
that is able to adapt incoming burst types. This results in an
adapter that has lower fMAX, but smaller area.

Per-burst-type converter
(faster, higher area)

Controls incoming bursts with a particular converter,
depending on the burst type. This results in an adapter that
has higher fMAX, but higher area. This setting is useful when
you have AXI masters or slaves and you want a higher fMAX.

Enable ECC protection Specifies the default implementation for ECC protection for memory elements.

FALSE Default. Disables ECC protection for memory elements in the
Platform Designer interconnect.

TRUE Enables ECC protection for memory elements. Platform Designer
interconnect sends uncorrectable errors arising from memory as
DECODEERROR (DECERR) on the Avalon response bus.

For more information about Error Correction Coding (ECC), refer to Error Correction Coding
(ECC) in Platform Designer Interconnect on page 188.

Table 10. Specifying Interface Interconnect Requirements
You can apply the following interconnect requirements when you select a component interface as the
Identifier in the Interconnect Requirements tab, in the All Requirements table.

Option Value Description

Security • Non-secure
• Secure
• Secure ranges
• TrustZone*-aware

After you establish connections between the masters and slaves, allows
you to set the security options, as needed, for each master and slave in
your system.

Secure address
ranges

Accepts valid address
range.

Allows you to type in any valid address range.

Related Information

• Interconnect Pipelining on page 184

• Error Correction Coding (ECC) in Platform Designer Interconnect on page 188

1.8. Defining Instance Parameters

You can implement instance parameters to test the functionality of your Platform
Designer system when using another Platform Designer system as a sub-component
of a larger system. A higher-level Platform Designer system can assign values to
instance parameters, and then test those values in the lower-level system.

You can use the Instance Parameters tab to define how the specified values for the
instance parameters affect the sub-components in the Platform Designer system. You
define an Instance Script that creates queries for the instance parameters, and sets
the values of the parameters for the lower-level system components.

When you click Preview Instance, Platform Designer creates a preview of the
current Platform Designer system with the specified parameters and instance script
and opens the parameter editor. This command allows you to see how an instance of a
system appears when you use it in another system. The preview instance does not
affect your saved system.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To use instance parameters, the IP components or subsystems in your Platform
Designer system must have parameters that can be set when they are instantiated in
a higher-level system.

If you create hierarchical Platform Designer systems, each Platform Designer system
in the hierarchy can include instance parameters to pass parameter values through
multiple levels of hierarchy.

1.8.1. Creating an Instance Parameter Script in Platform Designer

The first command in an instance parameter script must specify the Tcl command
version. The version command ensures the Tcl commands behave identically in future
versions of the tool. Use the following command to specify the version of the Tcl
commands, where <version> is the Intel Quartus Prime software version number,
such as 14.1:

package require -exact qsys <version>

To use Tcl commands that work with instance parameters in the instance script, you
must specify the commands within a Tcl composition callback. In the instance script,
you specify the name for the composition callback with the following command:

set_module_property COMPOSITION_CALLBACK <name of callback
procedure>

Specify the appropriate Tcl commands inside the Tcl procedure with the following
syntax:

proc <name of procedure defined in previous command> {}
{#Tcl commands to query and set parameters go here}

Example 3. Instance Parameter Script Example

In this example, an instance script uses the pio_width parameter to set the width
parameter of a parallel I/O (PIO) component. The script combines the
get_parameter_value and set_instance_parameter_value commands using
brackets.

Request a specific version of the scripting API
package require -exact qsys 13.1

Set the name of the procedure to manipulate parameters:
set_module_property COMPOSITION_CALLBACK compose

proc compose {} {

Get the pio_width parameter value from this Platform Designer system and
pass the value to the width parameter of the pio_0 instance

set_instance_parameter_value pio_0 width \
[get_parameter_value pio_width]
}

Related Information

Component Interface Tcl Reference on page 467

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.2. Platform Designer Instance Parameter Script Tcl Commands

You can use standard Tcl commands to manipulate parameters in the script, such as
the set command to create variables, or the expr command for mathematical
manipulation of the parameter values. Instance scripts also use Tcl commands to
query the parameters of a Platform Designer system, or to set the values of the
parameters of the sub-IP-components instantiated in the system.

1.8.2.1. get_instance_parameter_value

Description
Returns the parameter value in a child instance.

Usage
get_instance_parameter_value <instance> <parameter>

Returns

various The parameter value.

Arguments

instance The instance name.

parameter The parameter name.

Example

get_instance_parameter_value pixel_converter input_DPI

Related Information

• get_instance_parameters on page 44

• set_instance_parameter_value on page 388

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.2.2. get_instance_parameters

Description
Returns the names of all parameters for a child instance that the parent can
manipulate. This command omits derived parameters and parameters that have the
SYSTEM_INFO parameter property set.

Usage
get_instance_parameters <instance>

Returns

instance The list of parameters in the instance.

Arguments

instance The instance name.

Example

get_instance_parameters uart_0

Related Information

• get_instance_parameter_property on page 378

• get_instance_parameter_value on page 43

• set_instance_parameter_value on page 388

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.2.3. get_parameter_value

Description
Returns the current value of a parameter defined previously with the add_parameter
command.

Usage
get_parameter_value <parameter>

Returns
The value of the parameter.

Arguments

parameter The name of the parameter whose value is being retrieved.

Example

get_parameter_value fifo_width

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.2.4. get_parameters

Description
Returns the names of all the parameters in the component.

Usage
get_parameters

Returns
A list of parameter names.

Arguments
No arguments.

Example

get_parameters

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.2.5. send_message

Description
Sends a message to the user of the component. The message text is normally HTML.
You can use the element to provide emphasis. If you do not want the message
text to be HTML, then pass a list like { Info Text } as the message level,

Usage
send_message <level> <message>

Returns
No return value.

Arguments

level Intel Quartus Prime supports the following message levels:

• ERROR—provides an error message.

• WARNING—provides a warning message.

• INFO—provides an informational message.

• PROGRESS—provides a progress message.

• DEBUG—provides a debug message when debug mode is enabled.

message The text of the message.

Example

send_message ERROR "The system is down!"
send_message { Info Text } "The system is up!"

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.2.6. set_instance_parameter_value

Description
Sets the value of a parameter for a child instance. Derived parameters and
SYSTEM_INFO parameters for the child instance may not be set using this command.

Usage
set_instance_parameter_value <instance> <parameter> <value>

Returns
No return value.

Arguments

instance The name of the child instance.

parameter The name of the parameter.

value The new parameter value.

Example

set_instance_parameter_value uart_0 baudRate 9600

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.2.7. set_module_property

Description
Specifies the Tcl procedure to evaluate changes in Platform Designer system instance
parameters.

Usage
set_module_property <property> <value>

Returns
No return value.

Arguments

property The property name. Refer to Module Properties.

value The new value of the property.

Example

set_module_property COMPOSITION_CALLBACK "my_composition_callback"

Related Information

• get_module_properties on page 341

• get_module_property on page 342

• Module Properties on page 447

1.9. Implementing Performance Monitoring

You can set up real-time performance monitoring for your Platform Designer system
using throughput metrics such as read and write transfers.

Platform Designer supports performance monitoring for only Avalon-MM interfaces. In
your Platform Designer system, you can monitor the performance of no less than
three, and no greater than 15 Avalon-MM interface components at one time.

Follow these steps to implement performance monitoring:

1. Open a system in Platform Designer.

2. Click View ➤ Instrumentation.

3. To enable performance monitoring, turn on Add debug instrumentation to the
Platform Designer Interconnect option. Enabling this option allows the system
to interact with the Bus Analyzer Toolkit, accessible from the Intel Quartus Prime
Tools menu.

4. For any interconnect, enable or disable the Add Performance Monitor option.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 26. Enabling Performance Monitoring

Note: For more information about the Bus Analyzer Toolkit and the Platform Designer
Instrumentation tab, refer to the Bus Analyzer Toolkit page.

1.10. Configuring Platform Designer System Security

You can specify Platform Designer system and interconnect security settings on the
Interconnect Requirements tab.

Platform Designer interconnect supports the Arm TrustZone security extension. The
Platform Designer Arm TrustZone security extension includes secure and non-secure
transaction designations, and a protocol for processing between the designations, as
Table 12 on page 53 describes.

The AXI AxPROT protection signal specifies a secure or non-secure transaction. When
an AXI master sends a command, the AxPROT signal specifies whether the command
is secure or non-secure. When an AXI slave receives a command, the AxPROT signal
determines whether the command is secure or non-secure. Determining the security
of a transaction while sending or receiving a transaction is a run-time protocol.

AXI masters and slaves can be TrustZone-aware. All other master and slave interfaces,
such as Avalon-MM interfaces, are non-TrustZone-aware.

The Avalon specification does not include a protection signal. Consequently, when an
Avalon master sends a command, there is no embedded security and Platform
Designer recognizes the command as non-secure. Similarly, when an Avalon slave
receives a command, the slave always accepts the command and responds.

Follow these steps to set compile-time security support for non-TrustZone-aware
components:

1. To begin creating a secure system, add masters and slaves to your system, as
Adding IP Components to a System on page 21 describes.

2. Make connections between the masters and slaves in your system, as Connecting
Masters and Slaves on page 32 describes.

3. Click View ➤ Interconnect Requirements. The Interconnect Requirements
tab allows you to specify system-wide and interconnect-specific requirements.

4. To specify security requirements for an interconnect, click the Add button.

5. In the Identifier column, select the interconnect in the new_target cell.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. In the Setting column, select Security.

7. In the Value column, select the appropriate Secure, Non-Secure, Secure
Ranges, or TrustZone-aware security for the interface. Refer to System
Security Options on page 52 for details of each option.

Figure 27. Security Settings in Interconnect Requirements Tab

8. After setting compile-time security options for non-TrustZone-aware master and
slave interfaces, you must identify those masters that require a default slave
before generation, as Specifying a Default Slave on page 52.

Related Information

• Platform Designer Interconnect on page 128

• Platform Designer System Design Components on page 214

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.10.1. System Security Options

Table 11. Security Options

Option Description

Secure Master sends only secure transactions, and the slave receives only secure transactions.
Platform Designer treats transactions from a secure master as secure. Platform
Designer blocks non-secure transactions to a secure slave and routes to the default
slave.

Non-Secure The master sends only non-secure transactions, and the slave receives any transaction,
secure or non-secure. Platform Designer treats transactions from a non-secure master
as non-secure. Platform Designer allows all transactions, regardless of security status,
to reach a non-secure slave.

Secure Ranges Applies to only the slave interface. Allows you to specify secure memory regions for a
slave. Platform Designer blocks non-secure transactions to secure regions and routes to
the default slave. The specified address ranges within the slave's address span are
secure, all other address ranges are not. The format is a comma-separated list of
inclusive-low and inclusive-high addresses, for example, 0x0:0xfff,0x2000:0x20ff

TrustZone-aware TrustZone-aware masters have signals that control the security status of their
transactions. TrustZone-aware slaves can accept these signals and handle security
independently.
The following applies to secure systems that mix secure and non-TrustZone-aware
components:
• All AXI, AMBA 3 AXI, and AMBA 3 AXI-Lite masters are TrustZone-aware.
• You can set AXI, AMBA 3 AXI, and AMBA 3 AXI-Lite slaves as TrustZone-aware,

secure, non-secure, or secure range ranges.
• You can set non-AXI master interfaces as secure or non-secure.
• You can set non-AXI slave interfaces as secure, non-secure, or secure address

ranges.

1.10.2. Specifying a Default Slave

If a master issues "per-access" or "not allowed" transactions, your design must
contain a default slave. Per-access refers to the ability of a TrustZone-aware master to
allow or disallow access or transactions.

You can achieve an optimized secure system by partitioning your design and carefully
designating secure or non-secure address maps to maintain reliable data. Avoid a
design that includes a non-secure master that initiates transactions to a secure slave
resulting in unsuccessful transfers, within the same hierarchy.

A transaction that violates security is rerouted to the default slave and subsequently
responds to the master with an error. The following rules apply to specifying a default
slave:

• You can designate any slave as the default slave.

• You can share a default slave between multiple masters.

• Have one default slave for each interconnect domain.

• An interconnect domain is a group of connected memory-mapped masters and
slaves that share the same interconnect. The altera_error_response_slave
component includes the required TrustZone features.

To designate a slave interface as the default slave for non TrustZone-aware interfaces,
follow these steps:

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Specify interconnect security settings, as Configuring Platform Designer System
Security on page 50 describes.

2. In the System View, right-click any column and turn on the Security and
Default Slave columns.

3. In the System View tab, turn on the Default Slave option for the slave
interface. A master can have only one default slave.

Table 12. Secure and Non-Secure Access Between Master, Slave, and Memory
Components

Transaction Type TrustZone-aware
Master

Non-TrustZone-aware
Master
Secure

Non-TrustZone-aware
Master

Non-Secure

TrustZone-aware slave/memory OK OK OK

Non-TrustZone-aware slave (secure) Per-access OK Not allowed

Non-TrustZone-aware slave (non-
secure)

OK OK OK

Non-TrustZone-aware memory
(secure region)

Per-access OK Not allowed

Non-TrustZone-aware memory (non-
secure region)

OK OK OK

Related Information

• Error Response Slave on page 237

• Designating a Default Slave on page 242

1.10.3. Accessing Undefined Memory Regions

Access to an undefined memory region occurs when a transaction from a master
targets a memory region unspecified in the slave memory map. To ensure predictable
response behavior when this condition occurs, you must specify a default slave, as
Specifying a Default Slave on page 52 describes.

You can designate any memory-mapped slave as a default slave. Have only one
default slave for each interconnect domain in your system. Platform Designer then
routes undefined memory region accesses to the default slave, which terminates the
transaction with an error response.

Note: If you do not specify the default slave, Platform Designer automatically assigns the
slave at the lowest address within the memory map for the master that issues the
request as the default slave.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Accessing undefined memory regions can occur in the following cases:

• When there are gaps within the accessible memory map region that are within the
addressable range of slaves, but are not mapped.

• Accesses by a master to a region that does not belong to any slaves that is
mapped to the master.

• When a non-secured transaction is accessing a secured slave. This applies to only
slaves that are secured at compilation time.

• When a read-only slave is accessed with a write command, or a write-only slave is
accessed with a read command.

1.11. Upgrading Outdated IP Components

When you open a Platform Designer system that contains outdated IP components,
Platform Designer automatically attempts to upgrade the IP components if it cannot
locate the requested version.

Most Platform Designer IP components support automatic upgrade.

Platform Designer allows you to include a path to older IP components in the IP
Search Path, and then use those components even if upgraded versions are available.
However, older versions of IP components may not work in newer version of Platform
Designer.

If a Platform Designer system includes IP components outside of the project directory
or the directory of the .qsys file, you must add the location of these components to
the Platform Designer IP Search Path (Tools ➤ Options).

To upgrade IP cores:

1. With the Platform Designer system open, click System ➤ Upgrade IP Cores.
Only IP Components that are associated with the open Platform Designer system,
and that do not support automatic upgrade appear in Upgrade IP Cores dialog
box.

2. In the Upgrade IP Cores dialog box, select one or multiple IP components, and
then click Upgrade.
A green check mark appears for the IP components that Platform Designer
successfully upgrades.

3. Generate the Platform Designer system.

Alternatively, you can upgrade IP components with the following command:

qsys-generate -–upgrade-ip-cores <qsys_file>

The <qsys_file> variable accepts a path to the .qsys file. You do not need to run
this command in the same directory as the .qsys file. Platform Designer reports the
start and finish of the command-line upgrade, but does not name the particular IP
components upgraded.

For device migration information, refer to Introduction to Intel FPGA IP.

Related Information

Introduction to Intel FPGA IP Cores

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

54

http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.11.1. Troubleshooting IP or Platform Designer System Upgrade

The Upgrade IP Components dialog box reports the version and status of each IP
core and Platform Designer system following upgrade or migration.

If any upgrade or migration fails, the Upgrade IP Components dialog box provides
information to help you resolve any errors.

Note: Do not use spaces in IP variation names or paths.

During automatic or manual upgrade, the Messages window dynamically displays
upgrade information for each IP core or Platform Designer system. Use the following
information to resolve upgrade errors:

Table 13. IP Upgrade Error Information

Upgrade IP Components
Field

Description

Status Displays the "Success" or "Failed" status of each upgrade or migration. Click the status of
any upgrade that fails to open the IP Upgrade Report.

Version Dynamically updates the version number when upgrade is successful. The text is red when
the IP requires upgrade.

Device Family Dynamically updates to the new device family when migration is successful. The text is red
when the IP core requires upgrade.

Auto Upgrade Runs automatic upgrade on all IP cores that support auto upgrade. Also, automatically
generates a <Project Directory>/ip_upgrade_port_diff_report report for IP
cores or Platform Designer systems that fail upgrade. Review these reports to determine
any port differences between the current and previous IP core version.

Use the following techniques to resolve errors if your IP core or Platform Designer
system "Failed" to upgrade versions or migrate to another device. Review and
implement the instructions in the Description field, including one or more of the
following:

• If the current version of the software does not support the IP variant, right-click
the component and click Remove IP Component from Project. Replace this IP
core or Platform Designer system with the one supported in the current version of
the software.

• If the current target device does not support the IP variant, select a supported
device family for the project, or replace the IP variant with a suitable replacement
that supports your target device.

• If an upgrade or migration fails, click Failed in the Status field to display and
review details of the IP Upgrade Report. Click the Release Notes link for the
latest known issues about the IP core. Use this information to determine the
nature of the upgrade or migration failure and make corrections before upgrade.

• Run Auto Upgrade to automatically generate an IP Ports Diff report for each IP
core or Platform Designer system that fails upgrade. Review the reports to
determine any port differences between the current and previous IP core version.
Click Upgrade in Editor to make specific port changes and regenerate your IP
core or Platform Designer system.

• If your IP core or Platform Designer system does not support Auto Upgrade, click
Upgrade in Editor to resolve errors and regenerate the component in the
parameter editor.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 28. IP Upgrade Report

Reports on Failed
IP Upgrades

Report Summary

1.12. Synchronizing System Component Information

When a component instantiation values do match the component's corresponding .ip
file, Platform Designer reports these mismatches as Component Instantiation
Warnings in the System Messages tab.

You must synchronize any mismatches between the component instantiation, and the
component's corresponding .ip prior to system generation.

Follow these steps to synchronize one or more components in your system:

1. Select the mismatched signal or interface in the System View tab, and then and
click View ➤ System Info. Alternatively, you can double-click the corresponding
Component Instantiation Warning in the System Messages tab.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29. System Info Tab

Compares Component
Instantiation Values
with IP File Values

Synchs All Values
for Selected Component

Displays Specific
Value Comparison

Synchs All Values
for Entire System

Automatically Synchs
 Current Component

2. View any component mismatches in the System Info tab. Select individual
interfaces, signals, or parameters to view the specific value differences in the
Component and IP file columns. Value mismatches between the Component
Instantiation and the IP file appear in blue. Missing elements appear in green.

3. To synchronize the Component Instantiation and IP file .ip values in the
system, perform one or more of the following:

• Select a specific mismatched parameter, interface, or signal and click >> to
synchronize the items.

• Click Sync All to synchronize all values for the current component.

• Click Sync All System Info to synchronize all IP components in the current
system at once.

1.13. Generating a Platform Designer System

Platform Designer system generation creates the interconnect between IP
components, and generates files for Intel Quartus Prime synthesis and simulation in
supported third-party tools.

Follow these steps to generate a Platform Designer system:

1. Open a system in Platform Designer.

2. Consider whether to specify a unique generation ID, as Specifying the Generation
ID on page 58 describes.

3. Click the Generate HDL button. The Generation dialog box appears.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Specify options for generation of Synthesis, Simulation, and testbench files, as
Generation Dialog Box Options on page 58 describes.

5. Consider whether to specify options for Parallel IP Generation, as Disabling or
Enabling Parallel IP Generation on page 0 describes.

6. To start system generation, click Generate.

Note: Platform Designer may add unique suffixes (hashes) to ip component files
during generation to ensure uniqueness of the file. The uniquness of the
files is necessary because the IP component is dynamic. The RTL generates
during runtime, according to the input parameters. This methodology
ensures no collisions between the multiple variants of the same IP. The hash
derives from the parameter values that you specify. A given set of
parameter values produces the same hash for each generation.

1.13.1. Generation Dialog Box Options

Platform Designer system generation creates files for Intel Quartus Prime synthesis
and supported third-party simulators. The Generation dialog box appears when you
click Generate HDL, or when you attempt to close a system prior to generation.

You can specify the following system generation options in the Generation dialog
box:

Table 14. Generation Dialog Box Options

Option Description

Create HDL design files for synthesis Allows you to specify Verilog or VHDL file type generation for the
system's top-level definition and child instances. Select None to skip
generation of synthesis files.

Create timing and resource estimates for
each IP in your system to be used with
third-party synthesis tools

Generates a non-functional Verilog Design File (.v) for use by supported
third-party EDA synthesis tools. Estimates timing and resource usage for
the IP component. The generated netlist file name is
<ip_component_name>_syn.v.

Create Block Symbol File (.bsf) Generates a Block Symbol File (.bsf) for use in a larger system
schematic Block Diagram File (.bdf).

Generate IP Core Documentation Generates the IP user guide documentation for the components in your
system (when available).

Create simulation model Allows you to generate Verilog HDL or VHDL simulation model and
simulation script files.
Note: ModelSim* - Intel FPGA Edition supports native, mixed-language

(VHDL/Verilog/SystemVerilog) simulation. Therefore, Intel
simulation libraries may not be compatible with single language
simulators. If you have a VHDL-only license, some versions of
ModelSim simulators may not support simulation for IPs written in
Verilog. As a workaround, you can use ModelSim - Intel FPGA
Edition, or purchase a mixed language simulation license from
Mentor.

Path Specifies the output directory path.

1.13.2. Specifying the Generation ID

You can specify the Generation ID to uniquely identify that specific system
generation. This parameter allows system tools, such as Nios II or HPS (Hard
Processor System), to verify software-build compatibility with a specific Platform
Designer system.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Generation ID parameter is a unique integer value that derives from the
timestamp during Platform Designer system generation. You can optionally modify this
value to a value of your choosing to identify the system.

To specify the Generation ID parameter:

1. In the Hierarchy tab, select the top-level system.

2. Click View ➤ Parameters.

3. Under System Identifier, view or edit the value of Generation ID.

Figure 30. Generation ID in Parameters Tab

1.13.3. Files Generated for IP Cores and Platform Designer Systems

The Intel Quartus Prime Standard Edition software generates one of the following
output file structures for individual IP cores that use one of the legacy parameter
editors.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 31. IP Core Generated Files (Legacy Parameter Editors)

Generated IP File Output B
<Project Directory>

<your_ip>.html - IP core generation report

<your_ip>_testbench.v or .vhd - Testbench file1

<your_ip>.bsf - Block symbol schematic file

<your_ip>_syn.v or .vhd - Timing & resource estimation netlist1

<your_ip>_bb - Verilog HDL black box EDA synthesis file

<your_ip>.vo or .vho - IP functional simulation model 2

<your_ip>.qip - Intel Quartus Prime IP integration file

<your_ip>.v or .vhd - Top-level HDL IP variation definition

<your_ip>_block_period_stim.txt - Testbench simulation data 1

<your_ip>-library - Contains IP subcomponent synthesis libraries

Generated IP File Output A
<Project Directory>

<your_ip>.v or .vhd - Top-level IP synthesis file

<your_ip>_inst.v or .vhd - Sample instantiation template

<your_ip>.bsf - Block symbol schematic file

<your_ip>.vo or .vho - IP functional simulation model 2
<your_ip>_syn.v or .vhd - Timing & resource estimation netlist1

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<your_ip>.qip - Intel Quartus Prime IP integration file

greybox_tmp 3

<your_ip>.cmp - VHDL component declaration file

Generated IP File Output C
<Project Directory>

<your_ip>_sim 1

<IP> _instance.vo - IPFS model 2

<simulator_vendor>
<simulator setup scripts>

<your_ip>.qip - Intel Quartus Prime IP integration file

<your_ip>.sip - Lists files for simulation

<your_ip>_testbench or _example - Testbench or example1

<your_ip>.v, .sv. or .vhd - Top-level IP synthesis file

<IP_name>_instance

<your_ip>_syn.v or .vhd - Timing & resource estimation netlist1
<your_ip>.cmp - VHDL component declaration file

<your_ip>.bsf - Block symbol schematic file

<your_ip> - IP core synthesis files

<your_ip>.sv, .v, or .vhd - HDL synthesis files

<your_ip>.sdc - Timing constraints file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Combines individual simulation scripts 1

<your_ip>_sim.f - Refers to simulation models and scripts 1

Notes:
1. If supported and enabled for your IP variation
2. If functional simulation models are generated
3. Ignore this directory

Generated IP File Output D
<Project Directory>

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<your_ip>_inst.v or .vhd - Sample instantiation template

synthesis - IP synthesis files

<your_ip>.qip - Lists files for synthesis

testbench - Simulation testbench files 1

<testbench_hdl_files>

<simulator_vendor> - Testbench for supported simulators

<simulation_testbench_files>

<your_ip>.v or .vhd - Top-level IP variation synthesis file

simulation - IP simulation files
<your_ip>.sip - NativeLink simulation integration file

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

<your_ip> - IP core variation files

<your_ip>.qip or .qsys - System or IP integration file

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Combines individual simulation startup scripts 1

<your_ip>.html - Contains memory map

<your_ip>.sopcinfo - Software tool-chain integration file

<your_ip>_syn.v or .vhd - Timing & resource estimation netlist 1

<your_ip>.debuginfo - Lists files for synthesis

<your_ip>.v, .vhd, .vo, .vho - HDL or IPFS models2

<your_ip>_tb - Testbench for supported simulators
<your_ip>_tb.v or .vhd - Top-level HDL testbench file

1.13.4. Generating System Testbench Files

Platform Designer can generate testbench files that instantiate the current Platform
Designer system and add Bus Functional Models (BFMs) to drive the top-level
interfaces. BFMs interact with the system in the simulator.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can generate a standard or simple testbench system with BFM or Mentor
Verification IP (for AMBA 3 AXI or AMBA 4 AXI) components that drive the external
interfaces of the system. Platform Designer generates a Verilog HDL or VHDL
simulation model for the testbench system to use in the simulation tool.

First generate a testbench system, and then modify the testbench system in Platform
Designer before generating the simulation model. Typically, you select only one of the
simulation model options.

Follow these steps to generate system testbench files:

1. Open and configure a system in Platform Designer.

2. Click Generate ➤ Generate Testbench System. The Generation dialog box
appears.

3. Specify options for the test bench system:

Table 15. Testbench Generation Options

Option Description

Create testbench Platform
Designer system

Specifies a simple or standard testbench system:
• Standard, BFMs for standard Platform Designer Interconnect—Creates a

testbench Platform Designer system with BFM IP components attached to
exported Avalon and AMBA 3 AXI or AMBA 3 AXI interfaces. Includes any
simulation partner modules specified by IP components in the system. The
testbench generator supports AXI interfaces and can connect AMBA 3 AXI or
AMBA 3 AXI interfaces to Mentor Graphics AMBA 3 AXI or AMBA 3 AXI master/
slave BFMs. However, BFMs support address widths only up to 32-bits.

• Simple, BFMs for clocks and resets—Creates a testbench Platform Designer
system with BFM IP components driving only clock and reset interfaces. Includes
any simulation partner modules specified by IP components in the system.

Create testbench simulation
model

Specifies Verilog HDL or VHDL simulation model files and simulation scripts for the
testbench. Use this option if you do not need to modify the Platform Designer-
generated testbench before running the simulation.

Output directory Specifies the path for output of generated testbench files. Turn on Clear output to
remove any previously generated content from the location.

Parallel IP Generation Turn on Use multiple processors for faster IP generation (when available) to
generate IP using multiple CPUs when available in your system.

4. Click Generate. The testbench files generate according to your specifications.

5. Open the testbench system in Platform Designer. Make changes to the BFMs, as
needed, such as changing the instance names and VHDL ID value. For example,
you can modify the VHDL ID value in the Avalon Interrupt Source Intel FPGA
IP component.

6. If you modify a BFM, regenerate the simulation model for the testbench system.

7. Compile the system and load the Platform Designer system and testbench into
your simulator, and then run the simulation.

1.13.4.1. Platform Designer Testbench Simulation Output Directories

Platform Designer generates the following testbench files.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 32. Platform Designer Simulation Testbench Directory Structure

<system>.qsys

<system>.sopcinfo

<system>_tb

 <system>.html

 <system>.ipx

 <system>.regmap

 <system>_generation.rpt

 <system>_tb.html

 <system>_tb.qsys

 <system>_tb

 <system>_tb.csv

 <system>_tb.spd

 sim

 <HDL files>

 aldec

 cadence

 synopsys

 xcelium

 <Child IP core>

 sim

 <HDL files>

Output Directory Structure

 mentor

 common

1.13.4.2. Platform Designer Testbench Files

Platform Designer generates the following testbench files.

Table 16. Platform Designer Testbench Files

File Name or Directory Name Description

<system>_tb.qsys The Platform Designer testbench system.

<system>_tb.v

or
<system>_tb.vhd

The top-level testbench file that connects BFMs to the top-level interfaces of
<system>_tb.qsys.

continued...

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Name or Directory Name Description

<system>_tb.spd Required input file for ip-make-simscript to generate simulation scripts for
supported simulators. The .spd file contains a list of files generated for
simulation and information about memory that you can initialize.

<system>.html

and
<system>_tb.html

A system report that contains connection information, a memory map showing
the address of each slave with respect to each master to which it is connected,
and parameter assignments.

<system>_generation.rpt Platform Designer generation log file. A summary of the messages that Platform
Designer issues during testbench system generation.

<system>.ipx The IP Index File (.ipx) lists the available IP components, or a reference to
other directories to search for IP components.

<system>.svd Allows HPS System Debug tools to view the register maps of peripherals
connected to HPS within a Platform Designer system.
Similarly, during synthesis the .svd files for slave interfaces visible to System
Console masters are stored in the .sof file in the debug section. System
Console reads this section, which Platform Designer can query for register map
information. For system slaves, Platform Designer can access the registers by
name.

mentor/ Contains a ModelSim script msim_setup.tcl to set up and run a simulation

aldec/ Contains a Riviera-PRO* script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS* simulation.
Contains a shell script vcsmx_setup.sh and synopsys_ sim.setup file to set
up and run a VCS MX simulation.

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up and run
an NCSIM simulation.

/submodules Contains HDL files for the submodule of the Platform Designer testbench system.

<child IP cores>/ For each generated child IP core directory, Platform Designer testbench
generates /synth and /sim subdirectories.

1.13.5. Generating Example Designs for IP Components

Some Platform Designer IP components include example designs that you can use or
modify to replicate similar functionality in your own system. You must generate the
examples to view or use them.

Use any of the following methods to generate example designs for IP components:

• Double-click the IP component in the Platform Designer IP Catalog or System
View tab. The parameter editor for the component appears. If available, click the
Example Design button in the parameter editor to generate the example design.
The Example Design button only appears in the parameter editor if an example
is available.

• For some IP components, click Generate ➤ Generate Example Design to
access an example design. This command only enables when a design example is
available.

The following Platform Designer system example designs demonstrate various design
features and flows that you can replicate in your Platform Designer system.

Related Information

Intel FPGA Design Example Web Page

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

63

https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.13.6. Generating the HPS IP Component System View Description File

Platform Designer systems that contain an HPS IP component generate a System View
Description (.svd) file that lists peripherals connected to the Arm processor.

The .svd (or CMSIS-SVD) file format is an XML schema specified as part of the Cortex
Microcontroller Software Interface Standard (CMSIS) that Arm provides. The .svd file
allows HPS system debug tools (such as the DS-5 Debugger) to view the register
maps of peripherals connected to HPS in a Platform Designer system.

Related Information

• Component Interface Tcl Reference on page 467

• CMSIS - Cortex Microcontroller Software

1.13.7. Generating Header Files for Master Components

You can use the sopc-create-header-files command from the Nios II command
shell to create header files for any master component in your Platform Designer
system. The Nios II tool chain uses this command to create the processor's system.h
file. You can also use this command to generate system level information for a hard
processing system (HPS) in Intel's SoC devices or other external processors. The
header file includes address map information for each slave, relative to each master
that accesses the slave. Different masters may have different address maps to access
a particular slave component. By default, the header files are in C format and have
a .h suffix. You can select other formats with appropriate command-line options.

Table 17. sopc-create-header-files Command-Line Options

Option Description

<sopc> Path to Platform Designer .sopcinfo file, or the file directory. If you omit
this option, the path defaults to the current directory. If you specify a
directory path, you must make sure that there is a .sopcinfo file in the
directory.

--separate-masters Does not combine a module's masters that are in the same address space.

--output-dir[=<dirname>] Allows you to specify multiple header files in dirname. The default output
directory is '.'

--single[=<filename>] Allows you to create a single header file, filename.

--single-prefix[=<prefix>] Prefixes macros from a selected single master.

--module[=<moduleName>] Specifies the module name when creating a single header file.

--master[=<masterName>] Specifies the master name when creating a single header file.

--format[=<type>] Specifies the header file format. Default file format is .h.

--silent Does not display normal messages.

--help Displays help for sopc-create-header-files.

By default, the sopc-create-header-files command creates multiple header
files. There is one header file for the entire system, and one header file for each
master group in each module. A master group is a set of masters in a module in the
same address space. In general, a module may have multiple master groups.
Addresses and available devices are a function of the master group.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

64

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Alternatively, you can use the --single option to create one header file for one
master group. If there is one CPU module in the Platform Designer system with one
master group, the command generates a header file for that CPU's master group. If
there are no CPU modules, but there is one module with one master group, the
command generates the header file for that module's master group.

You can use the --module and --master options to override these defaults. If your
module has multiple master groups, use the --master option to specify the name of
a master in the desired master group.

Table 18. Supported Header File Formats

Type Suffix Uses Example

h .h C/C++ header files #define FOO 12

m4 .m4 Macro files for m4 m4_define("FOO", 12)

sh .sh Shell scripts FOO=12

mk .mk Makefiles FOO := 12

pm .pm Perl scripts $macros{FOO} = 12;

Note: You can use the sopc-create-header-files command when you want to generate
C macro files for DMAs that have access to memory that the Nios II does not have
access to.

1.14. Simulating a Platform Designer System

You can simulate a Platform Designer system in a supported third-party simulator to
verify and debug operation. Platform Designer generates the simulation models for
your system, along with optional scripts to set up the simulation environment for
specific, supported third-party simulators.

You can use scripts to compile the required device libraries and system design files in
the correct order and elaborate or load the top-level system for simulation.

Table 19. Simulation Script Variables
The simulation scripts provide variables that allow flexibility in your simulation environment.

Variable Description

TOP_LEVEL_NAME If the testbench Platform Designer system is not the top-level instance in your simulation
environment because you instantiate the Platform Designer testbench within your own top-
level simulation file, set the TOP_LEVEL_NAME variable to the top-level hierarchy name.

QSYS_SIMDIR If the simulation files generated by Platform Designer are not in the simulation working
directory, use the QSYS_SIMDIR variable to specify the directory location of the Platform
Designer simulation files.

QUARTUS_INSTALL_DIR Points to the Quartus installation directory that contains the device family library.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 4. Top-Level Simulation HDL File for a Testbench System

The example below shows the pattern_generator_tb generated for a Platform
Designer system called pattern_generator. The top.sv file defines the top-level
module that instantiates the pattern_generator_tb simulation model, as well as a
custom SystemVerilog test program with BFM transactions, called test_program.

module top();
 pattern_generator_tb tb();
 test_program pgm();
endmodule

Note: The VHDL version of the Tristate Conduit BFM component is not supported in Synopsys
VCS, NCSim, and Riviera-PRO in the Intel Quartus Prime software version 14.0. These
simulators do not support the VHDL protected type, which is used to implement the
BFM. For a workaround, use a simulator that supports the VHDL protected type.

1.14.1. Adding Assertion Monitors for Simulation

You can add monitors to Avalon-MM, AXI, and Avalon-ST interfaces in your system to
verify protocol and test coverage with a simulator that supports SystemVerilog
assertions.

Note: ModelSim - Intel FPGA Edition does not support SystemVerilog assertions. If you want
to use assertion monitors, you must use a supported third-party simulator. For more
information, refer to Introduction to Intel FPGA IP Cores.

Figure 33. Inserting an Avalon-MM Monitor Between an Avalon-MM Master and Slave
Interface
This example demonstrates the use of a monitor with an Avalon-MM monitor between the pcie_compiler
bar1_0_Prefetchable Avalon-MM master interface, and the dma_0 control_port_slave Avalon-MM
slave interface.

Similarly, you can insert an Avalon-ST monitor between Avalon-ST source and sink
interfaces.

1.14.2. Simulating Software Running on a Nios II Processor

To simulate the software in a system driven by a Nios II processor, generate the
simulation model for the Platform Designer testbench system with the following steps:

1. Click Generate ➤ Generate Testbench System.

2. In the Generation dialog box, select Simple, BFMs for clocks and resets.

3. For Create testbench simulation model, select Verilog or VHDL.

4. Click Generate.

5. Open the Nios II Software Build Tools for Eclipse.

6. Set up an application project and board support package (BSP) for the
<system>.sopcinfo file.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. To simulate, right-click the application project in Eclipse, and then click Run as ➤
Nios II ModelSim. This command prepares the ModelSim simulation
environment, and compiles and loads the Nios II software simulation.

8. To run the simulation in ModelSim, type run -all in the ModelSim transcript
window.

9. Set the ModelSim settings and select the Platform Designer Testbench Simulation
Package Descriptor (.spd) file, < system >_tb.spd. The .spd file generates
with the testbench simulation model for Nios II designs, and specifies the files you
require for Nios II simulation.

Related Information

Nios II Gen2 Software Developer's Handbook

1.15. Integrating a Platform Designer System with the Intel
Quartus Prime Software

To integrate a Platform Designer system with your Intel Quartus Prime project, you
must add either the Platform Designer System File (.qsys) or the Intel Quartus Prime
IP File (.qip), but never both to your Intel Quartus Prime project. Platform Designer
creates the .qsys file when you save your Platform Designer system, and produces
the .qip file when you generate your Platform Designer system. Both the .qsys
and .qip files contain the information necessary for compiling your Platform Designer
system within a Intel Quartus Prime project.

You can choose to include the .qsys file automatically in your Intel Quartus Prime
project when you generate your Platform Designer system by turning on the
Automatically add Intel Quartus Prime IP files to all projects option in the Intel
Quartus Prime software (Tools ➤ Options ➤ IP Settings). If this option is turned off,
the Intel Quartus Prime software asks you if you want to include the .qsys file in your
Intel Quartus Prime project after you exit Platform Designer.

If you want file generation to occur as part of the Intel Quartus Prime software's
compilation, you should include the .qsys file in your Intel Quartus Prime project. If
you want to manually control file generation outside of the Intel Quartus Prime
software, you should include the .qip file in your Intel Quartus Prime project.

Note: The Intel Quartus Prime software generates an error message during compilation if
you add both the .qsys and .qip files to your Intel Quartus Prime project.

Does Intel Quartus Prime Overwrite Platform Designer-Generated Files
During Compilation?

Platform Designer supports standard and legacy device generation. Standard device
generation refers to generating files for the Intel Arria® 10 device, and later device
families. Legacy device generation refers to generating files for device families prior to
the release of the Intel Arria 10 device, including MAX 10 devices.

When you integrate your Platform Designer system with the Intel Quartus Prime
software, if a .qsys file is included as a source file, Platform Designer generates
standard device files under <system>/ next to the location of the .qsys file. For
legacy devices, if a .qsys file is included as a source file, Platform Designer generates
HDL files in the Intel Quartus Prime project directory under /db/ip.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

67

https://www.intel.com/content/www/us/en/docs/programmable/683525/current/getting-started-with-the-graphical-user-83818.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For standard devices, Platform Designer-generated files are only overwritten during
Intel Quartus Prime compilation if the .qip file is removed or missing. For legacy
devices, each time you compile your Intel Quartus Prime project with a .qsys file, the
Platform Designer-generated files are overwritten. Therefore, you should not edit
Platform Designer-generated HDL in the /db/ip directory; any edits made to these
files are lost and never used as input to the Quartus HDL synthesis engine.

Related Information

• Generating a Platform Designer System on page 57

• IP Core Generation Output

• Introduction to Intel FPGA IP Cores

• Implementing and Parameterizing Memory IP

1.15.1. Integrate a Platform Designer System and the Intel Quartus Prime
Software With the .qsys File

Use the following steps to integrate your Platform Designer system and your Intel
Quartus Prime project using the .qsys file:

1. In Platform Designer, create and save a Platform Designer system.

2. To automatically include the .qsys file in the your Intel Quartus Prime project
during compilation, in the Intel Quartus Prime software, select Tools ➤ Options
➤ IP Settings, and turn on Automatically add Intel Quartus Prime IP files
to all projects.

3. When the Automatically add Intel Quartus Prime IP files to all projects
option is not checked, when you exit Platform Designer, the Intel Quartus Prime
software displays a dialog box asking whether you want to add the .qsys file to
your Intel Quartus Prime project. Click Yes to add the .qsys file to your Intel
Quartus Prime project.

4. In the Intel Quartus Prime software, select Processing ➤ Start Compilation.

1.15.2. Integrate a Platform Designer System and the Intel Quartus Prime
Software With the .qip File

Use the following steps to integrate your Platform Designer system and your Intel
Quartus Prime project using the .qip file:

1. In Platform Designer, create and save a Platform Designer system.

2. In Platform Designer, click Generate HDL.

3. In the Intel Quartus Prime software, select Assignments ➤ Settings ➤ Files.

4. On the Files page, use the controls to locate your .qip file, and then add it to
your Intel Quartus Prime project.

5. In the Intel Quartus Prime software, select Processing ➤ Start Compilation.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

68

https://www.intel.com/content/www/us/en/programmable/documentation/bhc1395127603324.html#mwh1409958278894
http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf
http://www.altera.com/literature/hb/external-memory/emi_parameters.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.16. Managing Hierarchical Platform Designer Systems

Platform Designer supports hierarchical systems that include one or more Platform
Designer subsystems within another Platform Designer system. Platform Designer
allows you to create, explore, and edit systems and subsystems together in the same
Platform Designer window. Platform Designer generates the complete system
hierarchy during the top-level system’s generation.

All hierarchical Platform Designer systems appear in the IP Catalog under Project ➤
System. You select the system from the IP Catalog to reuse the system across
multiple designs. In a team-based hierarchical design flow, you can divide large
designs into subsystems and allow team members develop subsystems
simultaneously.

Related Information

Viewing the System Hierarchy on page 13

1.16.1. Adding a Subsystem to a Platform Designer System

You can add a Platform Designer system as a subsystem (child) of another Platform
Designer system (parent), at any level in the parent system hierarchy.

Follow these steps to add a subsystem to a Platform Designer system:

1. Create a Platform Designer system to use as the subsystem.

2. Open a Platform Designer system to contain the subsystem.

3. On the System View tab, use any of the following methods to add the
subsystem:

• Right-click anywhere in the System View and click Add a new subsystem
to the current system.

• Click the Add a new subsystem to the current system button on the
toolbar.

• Press Ctrl+Shift+N.

4. In the Confirm New System Name dialog box, confirm or specify the new
system file name and click OK. The system appears as a new subsystem in the
System View.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 34. Add a Subsystem to a Platform Designer Design

1.16.2. Viewing and Traversing Subsystem Contents

You can view and traverse the elements and connections within subsystems in a
hierarchical Platform Designer system.

Follow these steps to view and traverse subsystem contents:

1. Open a Platform Designer system that contains a subsystem.

2. Use any of the following methods to view the subsystem contents:

• Double-click a subsystem in the Hierarchy tab. The subsystem opens in the
System View.

• Right-click a system in the Hierarchy, System Contents, or Schematic
tabs, and then select Drill into subsystem.

• Press Ctrl+Shift+D in the System View tab.

3. Use any of the following System View or Schematic tab toolbar buttons to
traverse the system and subsystems:

Table 20. System View and Schematic Tab Navigation Buttons

Button Description

Move to the top of the hierarchy—navigates to the top-level (parent) .qsys file for
the system.

Move up one level of hierarchy—navigates up one hierarchy level from the current
selection.

Drill into a subsystem to explore its contents—opens the subsystem you select in
the System View.

Note: In the System View tab, you can press Ctrl+Shift+U to navigate up one
level, and Ctrl+Shift+D to drill into a system.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 35. Traversing Subsystem Contents

Figure 36. Traversing Subsystem Contents

1.16.3. Editing a Subsystem

You can double-click a Platform Designer subsystem in the Hierarchy tab to edit its
contents in any tab. When you make a change, open tabs refresh their content to
reflect your edit. You can change the level of a subsystem, or push the system into
another subsystem with commands in the System View tab.

Note: You can only edit subsystems that a writable .qsys file preserves. You cannot edit
systems that you create from composed _hw.tcl files, or systems that define
instance parameters.

Follow these steps to edit a Platform Designer subsystem:

1. Open a Platform Designer system that contains a subsystem.

2. In the System View or Schematic tabs, use the Move Up, Move Down, Move
to Top, and Move to Bottom toolbar buttons to navigate the system level you
want to edit. Platform Designer updates to reflect your selection.

3. To edit a system, double-click the system in the Hierarchy tab. The system opens
and is available for edit in all Platform Designer views.

4. In the System View tab, you can rename any element, add, remove, or duplicate
connections, and export interfaces, as appropriate.

Note: Changes to a subsystem affect all instances. Platform Designer identifies
unsaved changes to a subsystem with an asterisk next to the subsystem in
the Hierarchy tab.

1.16.4. Changing a Component's Hierarchy Level

You can change the hierarchical level of components in your system.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can lower the hierarchical level of a component, even into its own subsystem,
which can simplify the top-level system view. You can also raise the level of a
component or subsystem to share the component or subsystem between two unique
subsystems. Management of hierarchy levels facilitates system optimization and can
reduce complex connectivity in your subsystems.

Follow these steps to change a component's hierarchy level:

1. Open a Platform Designer system that contains a subsystem.

2. In the System View tab, to group and change the hierarchy level of multiple
components that share a system-level component, multi-select the components,
right-click, and then click Push down into new subsystem. Platform Designer
pushes the components into their own subsystem and re-establishes the exported
signals and connectivity in the new location.

3. In the System View tab, to pull a component up out of a subsystem, select the
component, and then click Pull up. Platform Designer pulls the component up out
of the subsystem and re-establishes the exported signals and connectivity in the
new location.

1.16.5. Saving a Subsystem

When you save a subsystem as part of a Platform Designer system, Platform Designer
confirms the new subsystem name in the Confirm New System Filenames dialog
box. By default, Platform Designer suggests the same name as the subsystem .qsys
file and saves in the project’s /ip directory.

Follow these steps to save a subsystem:

1. Open a Platform Designer system that contains a subsystem.

2. Click File ➤ Save to save your Platform Designer design.

3. In the Confirm New System Filenames dialog box, click OK to accept the
subsystem file names.

Note: If you have not yet saved your top-level system, or multiple subsystems,
you can type a new name, and then press Enter, to move to the next un-
named system.

4. In the Confirm New System Filenames dialog box, to edit the name of a
subsystem, click the subsystem, and then type the new name.

1.16.6. Exporting a System as an IP Component

You can export a Platform Designer system as a _hw.tcl component for use in other
Platform Designer systems.

1. Open a Platform Designer system.

2. Click File ➤ Export System as hw.tcl Component.

The exported system displays as a new component under the System category in the
IP Catalog.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.16.7. Hierarchical System Using Instance Parameters Example

This example illustrates how you can use instance parameters to control the
implementation of an on-chip memory component, onchip_memory_0 when
instantiated into a higher-level Platform Designer system.

Follow the steps below to create a system that contains an on-chip memory IP
component with instance parameters, and the instantiating higher-level Platform
Designer system. With your completed system, you can vary the values of the
instance parameters to review their effect within the On-Chip Memory component.

1.16.7.1. Create the Memory System

This procedure creates a Platform Designer system to use as subsystem as part of a
hierarchical instance parameter example.

1. In Platform Designer, click File ➤ New System.

2. Right-click clk_0, and then click Remove.

3. In the IP Catalog search box, type on-chip to locate the On-Chip Memory (RAM
or ROM) component.

4. Double-click to add the On-Chip Memory component to your system.
The parameter editor opens. When you click Finish, Platform Designer adds the
component to your system with default selections.

5. Rename the On-Chip Memory component to onchip_memory_0.

6. In the System View tab, for the clk1 element (onchip_memory_0), double-
click the Export column.

7. In the System View tab, for the s1 element (onchip_memory_0), double-click
the Export column.

8. In the System View tab, for the reset1 element (onchip_memory_0), double-
click the Export column.

9. Click File ➤ Save to save your Platform Designer system as
memory_system.qsys.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 37. On-Chip Memory Component System and Instance Parameters
(memory_system.qsys)

1.16.7.2. Add Platform Designer Instance Parameters

The Instance Parameters tab allows you to define parameters to control the
implementation of a subsystem component. Each column in the Instance
Parameters table defines a property of the parameter. This procedure creates
instance parameters in a Platform Designer system to be used as a subsystem in a
higher-level system.

1. In the memory_system.qsys system, click View ➤ Instance Parameters.

2. Click Add Parameter.

3. In the Name and Display Name columns, rename the new_parameter_0
parameter to component_data_width.

4. For component_data_width, select Integer for Type, and 8 as the Default
Value.

5. Click Add Parameter.

6. In the Name and Display Name columns, rename the new_parameter_0
parameter to component_memory_size.

7. For component_memory_size, select Integer for Type, and 1024 as the
Default Value.

Figure 38. Platform Designer Instance Parameters Tab

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. In the Instance Script section, type the commands that control how Platform
Designer passes parameters to an instance from the higher-level system. For
example, in the script below, the onchip_memory_0 instance receives its
dataWidth and memorySize parameter values from the instance parameters
that you define.

request a specific version of the scripting API
package require -exact qsys 15.0

Set the name of the procedure to manipulate parameters
set_module_property COMPOSITION_CALLBACK compose

proc compose {} {
 # manipulate parameters in here
 set_instance_parameter_value onchip_memory_0 dataWidth
[get_parameter_value component_data_width]
 set_instance_parameter_value onchip_memory_0 memorySize
[get_parameter_value component_memory_size]

 set value [get_instance_parameter_value onchip_memory_0 dataWidth]
 send_message info "Value of onchip memory ram data width is $value "
}

9. Click Preview Instance to open the parameter editor GUI.
Preview Instance allows you to see how an instance of a system appears when
you use it in another system.

Figure 39. Preview an Instance in the Parameter Editor

10. Click File ➤ Save.

1.16.7.3. Create a Platform Designer Instantiating Memory System

This procedure creates a Platform Designer system to use as a higher-level system as
part of a hierarchical instance parameter example.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In Platform Designer, click File ➤ New System.

2. Right-click clk_0, and then click Remove.

3. In the IP Catalog, under System, double-click memory_system.
The parameter editor opens. When you click Finish, Platform Designer adds the
component to your system.

4. In the Systems Contents tab, for each element under system_0, double-click
the Export column.

5. Click File ➤ Save to save your Platform Designer as
instantiating_memory_system.qsys.

Figure 40. Instantiating Memory System (instantiating_memory_system.qsys)

1.16.7.4. Apply Instance Parameters at a Higher-Level Platform Designer System
and Pass the Parameters to the Instantiated Lower-Level System

This procedure shows you how to use Platform Designer instance parameters to
control the implementation of an on-chip memory component as part of a hierarchical
instance parameter example.

1. In the instantiating_memory_system.qsys system, in the Hierarchy tab,
click and expand system_0 (memory_system.qsys).

2. Click View ➤ Parameters.
The instance parameters for the memory_system.qsys display in the parameter
editor.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 41. Displays memory_system.qsys Instance Parameters in the Parameter Editor

3. On the Parameters tab, change the value of memory_data_width to 16, and
memory_memory_size to 2048.

4. In the Hierarchy tab, under system_0 (memory_system.qsys), click
onchip_memory_0.
When you select onchip_memory_0, the new parameter values for Data width
and Total memory size size are displayed.

Figure 42. Changing the Values of an Instance Parameters

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.17. Creating a System with Platform Designer Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.12.15 18.1.0 • Moved command-line utility information into new "Platform Designer
Command-Line Interface" chapter.

• Revised headings and re-organized content into user task-based
sections.

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.
• Removed duplicated topic: Manually Control Pipelining in the Platform

Design Interconnect. The topic is now in the Platform Design
Interconnect chapter.

• Reorganized information about associating Intel Quartus Prime projects
to Platform Designer systems.

• Grouped information regarding definition and management of IP cores
in Platform Designer under topic: IP Cores in Platform Designer, and
updated contents.

• In topic 64-Bit Addressing Support, added link to information about the
auto base assignment feature.

2017.11.06 17.1.0 • Changed instances of Qsys to Platform Designer (Standard)

2016.05.03 16.0.0 • Qsys Command-Line Utilities updated with latest supported command-
line options.

• Added: Generate Header Files

2015.11.02 15.1.0 • Added: Troubleshooting IP or Qsys System Upgrade.
• Added: Generating Version-Agnostic IP and Qsys Simulation Scripts.
• Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 • New figure: Avalon-MM Write Master Timing Waveforms in the
Parameters Tab.

• Added Enable ECC protection option, Specify Qsys Interconnect
Requirements.

• Added External Memory Interface Debug Toolkit note, Generate a Qsys
System.

• Modelsim-Altera now supports native mixed-language (VHDL/Verilog/
SystemVerilog) simulation, Generating Files for Synthesis and
Simulation.

December 2014 14.1.0 • Create and Manage Hierarchical Qsys Systems.
• Schematic tab.
• View and Filter Clock and Reset Domains.
• File ➤ Recent Projects menu item.
• Updated example: Hierarchical System Using Instance Parameters

August 2014 14.0a10.0 • Added distinction between legacy and standard device generation.
• Updated: Upgrading Outdated IP Components.
• Updated: Generating a Qsys System.
• Updated: Integrating a Qsys System with the Quartus II Software.
• Added screen shot: Displaying Your Qsys System.

June 2014 14.0.0 • Added tab descriptions: Details, Connections.
• Added Managing IP Settings in the Quartus II Software.
• Added Upgrading Outdated IP Components.
• Added Support for Avalon-MM Non-Power of Two Data Widths.

continued...

1. Creating a System with Platform Designer

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

November 2013 13.1.0 • Added Integrating with the .qsys File.
• Added Using the Hierarchy Tab.
• Added Managing Interconnect Requirements.
• Added Viewing Qsys Interconnect.

May 2013 13.0.0 • Added AMBA APB support.
• Added qsys-generate utility.
• Added VHDL BFM ID support.
• Added Creating Secure Systems (TrustZones) .
• Added CMSIS Support for Qsys Systems With An HPS Component.
• Added VHDL language support options.

November 2012 12.1.0 • Added AMBA AXI4 support.

June 2012 12.0.0 • Added AMBA AX3I support.
• Added Preset Editor updates.
• Added command-line utilities, and scripts.

November 2011 11.1.0 • Added Synopsys VCS and VCS MX Simulation Shell Script.
• Added Cadence Incisive Enterprise (NCSIM) Simulation Shell Script.
• Added Using Instance Parameters and Example Hierarchical System

Using Parameters.

May 2011 11.0.0 • Added simulation support in Verilog HDL and VHDL.
• Added testbench generation support.
• Updated simulation and file generation sections.

December 2010 10.1.0 Initial release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

1. Creating a System with Platform Designer

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

79

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Optimizing Platform Designer System Performance
Platform Designer provides tools that allow you to optimize the performance of the
system interconnect for Intel FPGA designs. This chapter presents techniques that
leverage the available tools and the trade offs of each implementation.

Note: Intel now refers to Qsys as Platform Designer (Standard).

The foundation of any system is the interconnect logic that connects hardware blocks
or components. Creating interconnect logic is time consuming and prone to errors,
and existing interconnect logic is difficult to modify when design requirements change.
The Platform Designer system integration tool addresses these issues and provides an
automatically generated and optimized interconnect designed to satisfy the system
requirements.

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

Note: Recommended Intel practices may improve clock frequency, throughput, logic
utilization, or power consumption of a Platform Designer design. When you design a
Platform Designer system, use your knowledge of the design intent and goals to
further optimize system performance beyond the automated optimization available in
Platform Designer.

Related Information

• Creating a System with Platform Designer on page 10

• Creating Platform Designer Components on page 286

• Platform Designer Interconnect on page 128

• Avalon Interface Specifications

• AMBA Protocol Specifications

2.1. Designing with Avalon and AXI Interfaces

Platform Designer Avalon and AXI interconnect for memory-mapped interfaces is
flexible, partial crossbar logic that connects master and slave interfaces.

Avalon Streaming (Avalon-ST) links connect point-to-point, unidirectional interfaces
and are typically used in data stream applications. Each pair of components is
connected without any requirement to arbitrate between the data source and sink.

Because Platform Designer supports multiplexed memory-mapped and streaming
connections, you can implement systems that use multiplexed logic for control and
streaming for data in a single design.

683364 | 2018.12.15

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Related Information

Creating Platform Designer Components on page 286

2.1.1. Designing Streaming Components

When you design streaming component interfaces, you must consider integration and
communication for each component in the system. One common consideration is
buffering data internally to accommodate latency between components.

For example, if the component’s Avalon-ST output or source of streaming data is back-
pressured because the ready signal is deasserted, then the component must back-
pressure its input or sink interface to avoid overflow.

You can use a FIFO to back-pressure internally on the output side of the component so
that the input can accept more data even if the output is back-pressured. Then, you
can use the FIFO almost full flag to back-pressure the sink interface or input data
when the FIFO has only enough space to satisfy the internal latency. You can drive the
data valid signal of the output or source interface with the FIFO not empty flag when
that data is available.

2.1.2. Designing Memory-Mapped Components

When designing with memory-mapped components, you can implement any
component that contains multiple registers mapped to memory locations, for example,
a set of four output registers to support software read back from logic. Components
that implement read and write memory-mapped transactions require three main
building blocks: an address decoder, a register file, and a read multiplexer.

The decoder enables the appropriate 32-bit or 64-bit register for writes. For reads, the
address bits drive the multiplexer selection bits. The read signal registers the data
from the multiplexer, adding a pipeline stage so that the component can achieve a
higher clock frequency.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 43. Control and Status Registers (CSR) in a Slave Component

write

writedata[31:0]

address[1:0]

read

readdata[31:0]

Avalon-MM
Slave Port

EN

D Q

EN

D Q

EN

D Q

EN

D Q

EN

Q D

0

2

3

1

Read Multiplexer

s

Decoder
2-4

Register File

User
Logic

EN

address[1:0]

This slave component has four write wait states and one read wait state. Alternatively,
if you want high throughput, you may set both the read and write wait states to zero,
and then specify a read latency of one, because the component also supports
pipelined reads.

2.2. Using Hierarchy in Systems

You can use hierarchy to sub-divide a system into smaller subsystems that you can
then connect in a top-level Platform Designer system. Additionally, if a design contains
one or more identical functional units, the functional unit can be defined as a
subsystem and instantiated multiple times within a top-level system.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Hierarchy can simplify verification control of slaves connected to each master in a
memory-mapped system. Before you implement subsystems in your design, you
should plan the system hierarchical blocks at the top-level, using the following
guidelines:

• Plan shared resources—Determine the best location for shared resources in the
system hierarchy. For example, if two subsystems share resources, add the
components that use those resources to a higher-level system for easy access.

• Plan shared address space between subsystems—Planning the address space
ensures you can set appropriate sizes for bridges between subsystems.

• Plan how much latency you may need to add to your system—When you
add an Avalon-MM Pipeline Bridge between subsystems, you may add latency to
the overall system. You can reduce the added latency by parameterizing the
bridge with zero cycles of latency, and by turning off the pipeline command and
response signals.

Figure 44. Avalon-MM Pipeline Bridge

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 45. Passing Messages Between Subsystems

Nios II
Processor

M M

Nios II
Processor

M M

PIO

S

On-Chip
Memory

S

Mutex

S

UART

S

On-Chip
Memory

S

Shared
Memory

S

UART

S

PIO

S

Arbiter Arbiter ArbiterArbiter

Top-Level System

Subsystem Subsystem

Pipeline Bridges

Shared Resources for Message Passing

In this example, two Nios II processor subsystems share resources for message
passing. Bridges in each subsystem export the Nios II data master to the top-level
system that includes the mutex (mutual exclusion component) and shared memory
component (which could be another on-chip RAM, or a controller for an off-chip RAM
device).

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 46. Multi Channel System

Channel 1 SystemInput Data Stream Output Data Stream

Channel 2 SystemInput Data Stream Output Data Stream

Channel N SystemInput Data Stream Output Data Stream

Nios II
Processor

M M

Input Data
Stream

S

On-Chip
Memory

S

Input Data
Stream

S

Arbiter

You can also design systems that process multiple data channels by instantiating the
same subsystem for each channel. This approach is easier to maintain than a larger,
non-hierarchical system. Additionally, such systems are easier to scale because you
can calculate the required resources as a multiple of the subsystem requirements.

Related Information

Avalon-MM Pipeline Bridge

2.3. Using Concurrency in Memory-Mapped Systems

Platform Designer interconnect uses parallel hardware in FPGAs, which allows you to
design concurrency into your system and process transactions simultaneously.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

85

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409959480842.html#mwh1409959275749
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.1. Implementing Concurrency With Multiple Masters

Implementing concurrency requires multiple masters in a Platform Designer system.
Systems that include a processor contain at least two master interfaces because the
processors include separate instruction and data masters. You can categorize master
components as follows:

• General purpose processors, such as Nios II processors

• DMA (direct memory access) engines

• Communication interfaces, such as PCI Express

Because Platform Designer generates an interconnect with slave-side arbitration,
every master interface in a system can issue transfers concurrently, if they are not
posting transfers to the same slave. Concurrency is limited by the number of master
interfaces sharing any particular slave interface. If a design requires higher data
throughput, you can increase the number of master and slave interfaces to increase
the number of transfers that occur simultaneously. The example below shows a
system with three master interfaces.

Figure 47. Avalon Multiple Master Parallel Access
In this Avalon example, the DMA engine operates with Avalon-MM read and write masters. The yellow lines
represent active simultaneous connections.

Master Port

Slave Port

 M

Dual-Port On-Chip
Memory

S

External Memory
Controller

External Memory
Controller

Concurrent Access Possible

Nios II
Processor

 DMA
Engine

M MMM

PCI Express
Interface

MS

Arbiter Arbiter

S S S S

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 48. AXI Multiple Master Parallel Access
In this example, the DMA engine operates with a single master, because in AXI, the write and read channels on
the master are independent and can process transactions simultaneously. There is concurrency between the
read and write channels, with the yellow lines representing concurrent datapaths.

Master PortM

Dual-Port On-Chip
Memory

Slave PortS

External Memory
Controller

External Memory
Controller

Nios II
Processor

AXI DMA
Engine

M MM

PCI Express
Interface

MS

Arbiter Arbiter

S S S S

Concurrent Access Possible

Read Write

2.3.2. Implementing Concurrency With Multiple Slaves

You can create multiple slave interfaces for a particular function to increase
concurrency in your design.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 49. Single Interface Versus Multiple Interfaces

Host 2

Host 1

M

Host 3

Host 4

M

S

M

M

Arbiter

Compute
Engine 1

Channel Processor

Data Channel 4

Data Channel 3

Data Channel 2

Data Channel 1

Single Channel Access

Multiple Channel Access

Compute
Engine 2

Compute
Engine 3

Compute
Engine 4

S Compute
Engine 1

Channel Processor

Data Channel 4

Data Channel 3

Data Channel 2

Data Channel 1

Compute
Engine 2

Compute
Engine 3

Compute
Engine 4

S

S

S

Host 2

Host 1

M

Host 3

Host 4

M

M

M

In this example, there are two channel processing systems. In the first, four hosts
must arbitrate for the single slave interface of the channel processor. In the second,
each host drives a dedicated slave interface, allowing all master interfaces to
simultaneously access the slave interfaces of the component. Arbitration is not
necessary when there is a single host and slave interface.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.3. Implementing Concurrency with DMA Engines

In some systems, you can use DMA engines to increase throughput. You can use a
DMA engine to transfer blocks of data between interfaces, which then frees the CPU
from doing this task. A DMA engine transfers data between a programmed start and
end address without intervention, and the data throughput is dictated by the
components connected to the DMA. Factors that affect data throughput include data
width and clock frequency.

Figure 50. Single or Dual DMA Channels

Single DMA Channel

DMA
Engine

MM

Read
 Buffer 2

S

Read
 Buffer 1

S

Write
 Buffer 1

S

Write
 Buffer 2

S

Maximum of One Read & One Write Per Clock Cycle

DMA
Engine 1

MM

Write
 Buffer 1

S

Read
 Buffer 1

S

DMA
Engine 2

MM

Write
 Buffer 2

S

Read
 Buffer 2

S

Dual DMA Channels
Maximum of Two Reads & Two Writes Per Clock Cycle

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In this example, the system can sustain more concurrent read and write operations by
including more DMA engines. Accesses to the read and write buffers in the top system
are split between two DMA engines, as shown in the Dual DMA Channels at the bottom
of the figure.

The DMA engine operates with Avalon-MM write and read masters. An AXI DMA
typically has only one master, because in AXI, the write and read channels on the
master are independent and can process transactions simultaneously.

2.4. Inserting Pipeline Stages to Increase System Frequency

Adding pipeline stages may increase the fMAX of the design by reducing the
combinational logic depth, at the cost of additional latency and logic utilization.

Platform Designer provides the Limit interconnect pipeline stages to option on the
Interconnect Requirements tab to automatically add pipeline stages to the Platform
Designer interconnect when you generate a system.

The Limit interconnect pipeline stages to parameter in the Interconnect
Requirements tab allows you to define the maximum Avalon-ST pipeline stages that
Platform Designer can insert during generation. You can specify between 0 to 4
pipeline stages, where 0 means that the interconnect has a combinational datapath.
You can specify a unique interconnect pipeline stage value for each subsystem.

For more information, refer to Interconnect Pipelining.

Related Information

Pipelined Avalon-MM Interfaces on page 106

2.5. Using Bridges

You can use bridges to increase system frequency, minimize generated Platform
Designer logic, minimize adapter logic, and to structure system topology when you
want to control where Platform Designer adds pipelining. You can also use bridges with
arbiters when there is concurrency in the system.

An Avalon bridge has an Avalon-MM slave interface and an Avalon-MM master
interface. You can have many components connected to the bridge slave interface, or
many components connected to the bridge master interface. You can also have a
single component connected to a single bridge slave or master interface.

You can configure the data width of the bridge, which can affect how Platform
Designer generates bus sizing logic in the interconnect. Both interfaces support
Avalon-MM pipelined transfers with variable latency, and can also support configurable
burst lengths.

Transfers to the bridge slave interface are propagated to the master interface, which
connects to components downstream from the bridge. Bridges can provide more
control over interconnect pipelining than the Limit interconnect pipeline stages to
option.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You can use Avalon bridges between AXI interfaces, and between Avalon domains.
Platform Designer automatically creates interconnect logic between the AXI and
Avalon interfaces, so you do not have to explicitly instantiate bridges between these
domains. For more discussion about the benefits and disadvantages of shared and
separate domains, refer to the Platform Designer Interconnect.

Related Information

• Bridges on page 214

• AMBA 3 APB Protocol Specification Support (version 1.0) on page 192

2.5.1. Using Bridges to Increase System Frequency

In Platform Designer, you can introduce interconnect pipeline stages or pipeline
bridges to increase clock frequency in your system. Bridges control the system
interconnect topology and allow you to subdivide the interconnect, giving you more
control over pipelining and clock crossing functionality.

2.5.1.1. Inserting Pipeline Bridges

You can insert an Avalon-MM pipeline bridge to insert registers in the path between
the bridges and its master and slaves. If a critical register-to-register delay occurs in
the interconnect, a pipeline bridge can help reduce this delay and improve system
fMAX.

The Avalon-MM pipeline bridge component integrates into any Platform Designer
system. The pipeline bridge options can increase logic utilization and read latency. The
change in topology may also reduce concurrency if multiple masters arbitrate for the
bridge. You can use the Avalon-MM pipeline bridge to control topology without adding
a pipeline stage. A pipeline bridge that does not add a pipeline stage is optimal in
some latency-sensitive applications. For example, a CPU may benefit from minimal
latency when accessing memory.

Figure 51. Avalon-MM Pipeline Bridge

D Q

Master
I/F

Wait Request
 Logic

Avalon-MM Pipeline Bridge

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

Slave-to-Master
Pipeline

ENA

Master-to-Slave
Pipeline

waitrequest
Pipeline

Connects to an
Avalon-MM
Master Interface

Connects to an
Avalon-MM

Slave Interface Slave
I/F

D Q

D Q

clock

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.1.1.1. Implementing Command Pipelining (Master-to-Slave)

When multiple masters share a slave device, you can use command pipelining to
improve performance.

The arbitration logic for the slave interface must multiplex the address, writedata,
and burstcount signals. The multiplexer width increases proportionally with the
number of masters connecting to a single slave interface. The increased multiplexer
width may become a timing critical path in the system. If a single pipeline bridge does
not provide enough pipelining, you can instantiate multiple instances of the bridge in a
tree structure to increase the pipelining and further reduce the width of the
multiplexer at the slave interface.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 52. Tree of Bridges

Master 1

M

Master 2

M

M

S

Pipeline Bridge

Master 3

M

Master 4

M

M

S

Pipeline Bridge

arb

arb arb

Write Data &
Control Signals

Read Data

Shared
Slave

S

2.5.1.1.2. Implementing Response Pipelining (Slave-to-Master)

When masters connect to multiple slaves that support read transfers, you can use
slave-to-master pipelining to improve performance.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The interconnect inserts a multiplexer for every read datapath back to the master. As
the number of slaves supporting read transfers connecting to the master increases,
the width of the read data multiplexer also increases. If the performance increase is
insufficient with one bridge, you can use multiple bridges in a tree structure to
improve fMAX.

2.5.1.2. Using Clock Crossing Bridges

The clock crossing bridge contains a pair of clock crossing FIFOs, which isolate the
master and slave interfaces in separate, asynchronous clock domains. Transfers to the
slave interface are propagated to the master interface.

When you use a FIFO clock crossing bridge for the clock domain crossing, you add
data buffering. Buffering allows pipelined read masters to post multiple reads to the
bridge, even if the slaves downstream from the bridge do not support pipelined
transfers.

You can also use a clock crossing bridge to place high and low frequency components
in separate clock domains. If you limit the fast clock domain to the portion of your
design that requires high performance, you may achieve a higher fMAX for this portion
of the design. For example, the majority of processor peripherals in embedded designs
do not need to operate at high frequencies, therefore, you do not need to use a high-
frequency clock for these components. When you compile a design with the Intel
Quartus Prime software, compilation may take more time when the clock frequency
requirements are difficult to meet because the Fitter needs more time to place
registers to achieve the required fMAX. To reduce the amount of effort that the Fitter
uses on low priority and low performance components, you can place these behind a
clock crossing bridge operating at a lower frequency, allowing the Fitter to increase the
effort placed on the higher priority and higher frequency datapaths.

2.5.2. Using Bridges to Minimize Design Logic

Bridges can reduce interconnect logic by reducing the amount of arbitration and
multiplexer logic that Platform Designer generates. This reduction occurs because
bridges limit the number of concurrent transfers that can occur.

2.5.2.1. Avoiding Speed Optimizations That Increase Logic

You can add an additional pipeline stage with a pipeline bridge between masters and
slaves to reduce the amount of combinational logic between registers, which can
increase system performance. If you can increase the fMAX of your design logic, you
may be able to turn off the Intel Quartus Prime software optimization settings, such as
the Perform register duplication setting. Register duplication creates duplicate
registers in two or more physical locations in the FPGA to reduce register-to-register
delays. You may also want to choose Speed for the optimization method, which
typically results in higher logic utilization due to logic duplication. By making use of
the registers or FIFOs available in the bridges, you can increase the design speed and
avoid needless logic duplication or speed optimizations, thereby reducing the logic
utilization of the design.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.2.2. Limiting Concurrency

The amount of logic generated for the interconnect often increases as the system
becomes larger because Platform Designer creates arbitration logic for every slave
interface that is shared by multiple master interfaces. Platform Designer inserts
multiplexer logic between master interfaces that connect to multiple slave interfaces if
both support read datapaths.

Most embedded processor designs contain components that are either incapable of
supporting high data throughput, or do not need to be accessed frequently. These
components can contain master or slave interfaces. Because the interconnect supports
concurrent accesses, you may want to limit concurrency by inserting bridges into the
datapath to limit the amount of arbitration and multiplexer logic generated.

For example, if a system contains three master and three slave interfaces that are
interconnected, Platform Designer generates three arbiters and three multiplexers for
the read datapath. If these masters do not require a significant amount of
simultaneous throughput, you can reduce the resources that your design consumes by
connecting the three masters to a pipeline bridge. The bridge controls the three slave
interfaces and reduces the interconnect into a bus structure. Platform Designer
creates one arbitration block between the bridge and the three masters, and a single
read datapath multiplexer between the bridge and three slaves, and prevents
concurrency. This implementation is similar to a standard bus architecture.

You should not use this method for high throughput datapaths to ensure that you do
not limit overall system performance.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 53. Differences Between Systems With and Without a Pipeline Bridge

S S S

Arbiter Arbiter Arbiter

SSS

M

Bridge

S

Arbiter

M M M M MM M

Write Data & Control Signals
Read Data

Concurrency No Concurrency

2.5.3. Using Bridges to Minimize Adapter Logic

Platform Designer generates adapter logic for clock crossing, width adaptation, and
burst support when there is a mismatch between the clock domains, widths, or
bursting capabilities of the master and slave interface pairs.

Platform Designer creates burst adapters when the maximum burst length of the
master is greater than the master burst length of the slave. The adapter logic creates
extra logic resources, which can be substantial when your system contains master
interfaces connected to many components that do not share the same characteristics.
By placing bridges in your design, you can reduce the amount of adapter logic that
Platform Designer generates.

2.5.3.1. Determining Effective Placement of Bridges

To determine the effective placement of a bridge, you should initially analyze each
master in your system to determine if the connected slave devices support different
bursting capabilities or operate in a different clock domain. The maximum burstcount
of a component is visible as the burstcount signal in the HDL file of the component.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The maximum burst length is 2 (width(burstcount -1)), therefore, if the burstcount width
is four bits, the maximum burst length is eight. If no burstcount signal is present,
the component does not support bursting or has a burst length of 1.

To determine if the system requires a clock crossing adapter between the master and
slave interfaces, check the Clock column for the master and slave interfaces. If the
clock is different for the master and slave interfaces, Platform Designer inserts a clock
crossing adapter between them. To avoid creating multiple adapters, you can place
the components containing slave interfaces behind a bridge so that Platform Designer
creates a single adapter. By placing multiple components with the same burst or clock
characteristics behind a bridge, you limit concurrency and the number of adapters.

You can also use a bridge to separate AXI and Avalon domains to minimize burst
adaptation logic. For example, if there are multiple Avalon slaves that are connected
to an AXI master, you can consider inserting a bridge to access the adaptation logic
once before the bridge, instead of once per slave. This implementation results in
latency, and you would also lose concurrency between reads and writes.

2.5.3.2. Changing the Response Buffer Depth

When you use automatic clock-crossing adapters, Platform Designer determines the
required depth of FIFO buffering based on the slave properties. If a slave has a high
Maximum Pending Reads parameter, the resulting deep response buffer FIFO that
Platform Designer inserts between the master and slave can consume a lot of device
resources. To control the response FIFO depth, you can use a clock crossing bridge
and manually adjust its FIFO depth to trade off throughput with smaller memory
utilization.

For example, if you have masters that cannot saturate the slave, you do not need
response buffering. Using a bridge reduces the FIFO memory depth and reduces the
Maximum Pending Reads available from the slave.

2.5.4. Considering the Effects of Using Bridges

Before you use pipeline or clock crossing bridges in a design, you should carefully
consider their effects. Bridges can have any combination of consequences on your
design, which could be positive or negative. Benchmarking your system before and
after inserting bridges can help you determine the impact to the design.

2.5.4.1. Increased Latency

Adding a bridge to a design has an effect on the read latency between the master and
the slave. Depending on the system requirements and the type of master and slave,
this latency increase may not be acceptable in your design.

2.5.4.1.1. Acceptable Latency Increase

For a pipeline bridge, Platform Designer adds a cycle of latency for each pipeline
option that is enabled. The buffering in the clock crossing bridge also adds latency. If
you use a pipelined or burst master that posts many read transfers, the increase in
latency does not impact performance significantly because the latency increase is very
small compared to the length of the data transfer.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

97

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, if you use a pipelined read master such as a DMA controller to read data
from a component with a fixed read latency of four clock cycles, but only perform a
single word transfer, the overhead is three clock cycles out of the total of four. This is
true when there is no additional pipeline latency in the interconnect. The read
throughput is only 25%.

Figure 54. Low-Efficiency Read Transfer

clk

address

read

waitrequest

readdata

A0 A1

D0 D1

Overhead

Read Latency

Overhead

Read Latency

However, if 100 words of data are transferred without interruptions, the overhead is
three cycles out of the total of 103 clock cycles. This corresponds to a read efficiency
of approximately 97% when there is no additional pipeline latency in the interconnect.
Adding a pipeline bridge to this read path adds two extra clock cycles of latency. The
transfer requires 105 cycles to complete, corresponding to an efficiency of
approximately 94%. Although the efficiency decreased by 3%, adding the bridge may
increase the fMAX by 5%. For example, if the clock frequency can be increased, the
overall throughput would improve. As the number of words transferred increases, the
efficiency increases to nearly 100%, whether or not a pipeline bridge is present.

Figure 55. High Efficiency Read Transfer

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

D0 D1 D2 D3 D4 D5 D6 D7 D8

Overhead

Read Latency

2.5.4.1.2. Unacceptable Latency Increase

Processors are sensitive to high latency read times and typically retrieve data for use
in calculations that cannot proceed until the data arrives. Before adding a bridge to
the datapath of a processor instruction or data master, determine whether the clock
frequency increase justifies the added latency.

A Nios II processor instruction master has a cache memory with a read latency of four
cycles, which is eight sequential words of data return for each read. At 100 MHz, the
first read takes 40 ns to complete. Each successive word takes 10 ns so that eight
reads complete in 110 ns.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 56. Performance of a Nios II Processor and Memory Operating at 100 MHz

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7

D0 D1 D2 D3 D4 D5 D6 D7

40 ns

110 ns

Adding a clock crossing bridge allows the memory to operate at 125 MHz. However,
this increase in frequency is negated by the increase in latency because if the clock
crossing bridge adds six clock cycles of latency at 100 MHz, then the memory
continues to operate with a read latency of four clock cycles. Consequently, the first
read from memory takes 100 ns, and each successive word takes 10 ns because reads
arrive at the frequency of the processor, which is 100 MHz. In total, eight reads
complete after 170 ns. Although the memory operates at a higher clock frequency, the
frequency at which the master operates limits the throughput.

Figure 57. Performance of a Nios II Processor and Eight Reads with Ten Cycles Latency

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7

D0 D1 D2 D3 D4 D5 D6 D7

100 ns

170 ns

2.5.4.2. Limited Concurrency

Placing a bridge between multiple master and slave interfaces limits the number of
concurrent transfers your system can initiate. This limitation is the same when
connecting multiple master interfaces to a single slave interface. The slave interface of
the bridge is shared by all the masters and, as a result, Platform Designer creates
arbitration logic. If the components placed behind a bridge are infrequently accessed,
this concurrency limitation may be acceptable.

Bridges can have a negative impact on system performance if you use them
inappropriately. For example, if multiple memories are used by several masters, you
should not place the memory components behind a bridge. The bridge limits memory
performance by preventing concurrent memory accesses. Placing multiple memory
components behind a bridge can cause the separate slave interfaces to appear as one
large memory to the masters accessing the bridge; all masters must access the same
slave interface.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 58. Inappropriate Use of a Bridge in a Hierarchical System

Nios II
Processor

M M

M

DMA

M M

DDR
SDRAM

S

DDR
SDRAM

S

DDR
SDRAM

S

Bridge

S

Bottleneck
Arbiter

DDR
SDRAM

S

Platform Designer
Subsystem

A memory subsystem with one bridge that acts as a single slave interface for the
Avalon-MM Nios II and DMA masters, which results in a bottleneck architecture. The
bridge acts as a bottleneck between the two masters and the memories.

If the fMAX of your memory interfaces is low and you want to use a pipeline bridge
between subsystems, you can place each memory behind its own bridge, which
increases the fMAX of the system without sacrificing concurrency.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 59. Efficient Memory Pipelining Without a Bottleneck in a Hierarchical System

Nios II
Processor

M M

DMA

M M

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

Subsystem

Subsystem

2.5.4.3. Address Space Translation

The slave interface of a pipeline or clock crossing bridge has a base address and
address span. You can set the base address, or allow Platform Designer to set it
automatically. The address of the slave interface is the base offset address of all the
components connected to the bridge. The address of components connected to the
bridge is the sum of the base offset and the address of that component.

The master interface of the bridge drives only the address bits that represent the
offset from the base address of the bridge slave interface. Any time a master accesses
a slave through a bridge, both addresses must be added together, otherwise the
transfer fails. The Address Map tab displays the addresses of the slaves connected to
each master and includes address translations caused by system bridges.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 60. Bridge Address Translation

M

Nios II Processor

M

Bridge

S

Base = 0x1000

0x2C 0x2C0x102C

Address Translation

Address
DecoderS

Peripheral

Base = 0x20

0xC

Address Translation

In this example, the Nios II processor connects to a bridge located at base address
0x1000, a slave connects to the bridge master interface at an offset of 0x20, and the
processor performs a write transfer to the fourth 32-bit or 64-bit word within the
slave. Nios II drives the address 0x102C to interconnect, which is within the address
range of the bridge. The bridge master interface drives 0x2C, which is within the
address range of the slave, and the transfer completes.

2.5.4.4. Address Coherency

To simplify the system design, all masters should access slaves at the same location.
In many systems, a processor passes buffer locations to other mastering components,
such as a DMA controller. If the processor and DMA controller do not access the slave
at the same location, Platform Designer must compensate for the differences.

Figure 61. Slaves at Different Addresses and Complicating the System

M

DMA

M

Nios II Processor

0x1020
MS

Bridge

Base = 0x1000

0x20 0x20

0x20

Address Translation

Address
DecoderS

Peripheral

Base = 0x20

0x0Arbiter

Masters Drive
Different Addresses

A Nios II processor and DMA controller access a slave interface located at address
0x20. The processor connects directly to the slave interface. The DMA controller
connects to a pipeline bridge located at address 0x1000, which then connects to the
slave interface. Because the DMA controller accesses the pipeline bridge first, it must
drive 0x1020 to access the first location of the slave interface. Because the processor
accesses the slave from a different location, you must maintain two base addresses
for the slave device.

To avoid the requirement for two addresses, you can add an additional bridge to the
system, set its base address to 0x1000, and then disable all the pipelining options in
the second bridge so that the bridge has minimal impact on system timing and

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

resource utilization. Because this second bridge has the same base address as the
original bridge, the processor and DMA controller access the slave interface with the
same address range.

Figure 62. Address Translation Corrected With Bridge

M

DMA

M

Nios II Processor

0x1020
MS

Bridge

Base = 0x1000

0x20

M

Bridge

S

Base = 0x1000

0x20

0x20

0x200x1020

Address Translation

Address Translation

Address
DecoderS

Peripheral

Base = 0x20

0x0Arbiter

2.6. Increasing Transfer Throughput

Increasing the transfer efficiency of the master and slave interfaces in your system
increases the throughput of your design. Designs with strict cost or power
requirements benefit from increasing the transfer efficiency because you can then use
less expensive, lower frequency devices. Designs requiring high performance also
benefit from increased transfer efficiency because increased efficiency improves the
performance of frequency–limited hardware.

Throughput is the number of symbols (such as bytes) of data that Platform Designer
can transfer in a given clock cycle. Read latency is the number of clock cycles between
the address and data phase of a transaction. For example, a read latency of two
means that the data is valid two cycles after the address is posted. If the master must
wait for one request to finish before the next begins, such as with a processor, then
the read latency is very important to the overall throughput.

You can measure throughput and latency in simulation by observing the waveforms, or
using the verification IP monitors.

Related Information

• Avalon Verification IP Suite User Guide

• Mentor Graphics* Verification IP Altera Edition AMBA 3 AXI and AMBA 4 AXI User
Guide

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

103

https://www.intel.com/content/www/us/en/docs/programmable/683439/current/introduction-to-avalon-verification-ip-suite.html
http://www.altera.com/literature/ug/mentor_vip_axi34_ae_usr.pdf
http://www.altera.com/literature/ug/mentor_vip_axi34_ae_usr.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.1. Using Pipelined Transfers

Pipelined transfers increase the read efficiency by allowing a master to post multiple
reads before data from an earlier read returns. Masters that support pipelined
transfers post transfers continuously, relying on the readdatavalid signal to
indicate valid data. Slaves support pipelined transfers by including the
readdatavalid signal or operating with a fixed read latency.

AXI masters declare how many outstanding writes and reads it can issue with the
writeIssuingCapability and readIssuingCapability parameters. In the
same way, a slave can declare how many reads it can accept with the
readAcceptanceCapability parameter. AXI masters with a read issuing capability
greater than one are pipelined in the same way as Avalon masters and the
readdatavalid signal.

2.6.1.1. Using the Maximum Pending Reads Parameter

If you create a custom component with a slave interface supporting variable-latency
reads, you must specify the Maximum Pending Reads parameter in the Component
Editor. Platform Designer uses this parameter to generate the appropriate interconnect
and represent the maximum number of read transfers that your pipelined slave
component can process. If the number of reads presented to the slave interface
exceeds the Maximum Pending Reads parameter, then the slave interface must
assert waitrequest.

Optimizing the value of the Maximum Pending Reads parameter requires an
understanding of the latencies of your custom components. This parameter should be
based on the component’s highest read latency for the various logic paths inside the
component. For example, if your pipelined component has two modes, one requiring
two clock cycles and the other five, set the Maximum Pending Reads parameter to
5 to allow your component to pipeline five transfers, and eliminating dead cycles after
the initial five-cycle latency.

You can also determine the correct value for the Maximum Pending Reads
parameter by monitoring the number of reads that are pending during system
simulation or while running the hardware. To use this method, set the parameter to a
high value and use a master that issues read requests on every clock. You can use a
DMA for this task if the data is written to a location that does not frequently assert
waitrequest. If you implement this method, you can observe your component with
a logic analyzer or built-in monitoring hardware.

Choosing the correct value for the Maximum Pending Reads parameter of your
custom pipelined read component is important. If you underestimate the parameter
value, you may cause a master interface to stall with a waitrequest until the slave
responds to an earlier read request and frees a FIFO position.

The Maximum Pending Reads parameter controls the depth of the response FIFO
inserted into the interconnect for each master connected to the slave. This FIFO does
not use significant hardware resources. Overestimating the Maximum Pending
Reads parameter results in a slight increase in hardware utilization. For these
reasons, if you are not sure of the optimal value, you should overestimate this value.

If your system includes a bridge, you must set the Maximum Pending Reads
parameter on the bridge as well. To allow maximum throughput, this value should be
equal to or greater than the Maximum Pending Reads value for the connected slave
that has the highest value. You can limit the maximum pending reads of a slave and

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

104

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

reduce the buffer depth by reducing the parameter value on the bridge if the high
throughput is not required. If you do not know the Maximum Pending Reads value
for all the slave components, you can monitor the number of reads that are pending
during system simulation while running the hardware. To use this method, set the
Maximum Pending Reads parameter to a high value and use a master that issues
read requests on every clock, such as a DMA. Then, reduce the number of maximum
pending reads of the bridge until the bridge reduces the performance of any masters
accessing the bridge.

2.6.2. Arbitration Shares and Bursts

Arbitration shares provide control over the arbitration process. By default, the
arbitration algorithm allocates evenly, with all masters receiving one share.

You can adjust the arbitration process by assigning a larger number of shares to
masters that need greater throughput. The larger the arbitration share, the more
transfers are allocated to the master to access a slave. The masters gets
uninterrupted access to the slave for its number of shares, as long as the master is
reading or writing.

If a master cannot post a transfer, and other masters are waiting to gain access to a
particular slave, the arbiter grants access to another master. This mechanism prevents
a master from wasting arbitration cycles if it cannot post back-to-back transfers. A
bursting transaction contains multiple beats (or words) of data, starting from a single
address. Bursts allow a master to maintain access to a slave for more than a single
word transfer. If a bursting master posts a write transfer with a burst length of eight,
it is guaranteed arbitration for eight write cycles.

You can assign arbitration shares to an Avalon-MM bursting master and AXI masters
(which are always considered a bursting master). Each share consists of one burst
transaction (such as multi cycle write), and allows a master to complete a number of
bursts before arbitration switches to the next master.

Related Information

Arbitration on page 140

2.6.2.1. Differences Between Arbitration Shares and Bursts

The following three key characteristics distinguish arbitration shares and bursts:

• Arbitration Lock

• Sequential Addressing

• Burst Adapters

Arbitration Lock

When a master posts a burst transfer, the arbitration is locked for that master;
consequently, the bursting master should be capable of sustaining transfers for the
duration of the locked period. If, after the fourth write, the master deasserts the write
signal (Avalon-MM write or AXI wvalid) for fifty cycles, all other masters continue to
wait for access during this stalled period.

To avoid wasted bandwidth, your master designs should wait until a full burst transfer
is ready before requesting access to a slave device. Alternatively, you can avoid
wasted bandwidth by posting burstcounts equal to the amount of data that is ready.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, if you create a custom bursting write master with a maximum
burstcount of eight, but only three words of data are ready, you can present a
burstcount of three. This strategy does not result in optimal use of the system band
width if the slave is capable of handling a larger burst; however, this strategy prevents
stalling and allows access for other masters in the system.

Sequential Addressing

An Avalon-MM burst transfer includes a base address and a burstcount, which
represents the number of words of data that are transferred, starting from the base
address and incrementing sequentially. Burst transfers are common for processors,
DMAs, and buffer processing accelerators; however, sometimes a master must access
non-sequential addresses. Consequently, a bursting master must set the burstcount
to the number of sequential addresses, and then reset the burstcount for the next
location.

The arbitration share algorithm has no restrictions on addresses; therefore, your
custom master can update the address it presents to the interconnect for every read
or write transaction.

Burst Adapters

Platform Designer allows you to create systems that mix bursting and non-bursting
master and slave interfaces. This design strategy allows you to connect bursting
master and slave interfaces that support different maximum burst lengths, with
Platform Designer generating burst adapters when appropriate.

Platform Designer inserts a burst adapter whenever a master interface burst length
exceeds the burst length of the slave interface, or if the master issues a burst type
that the slave cannot support. For example, if you connect an AXI master to an Avalon
slave, a burst adapter is inserted. Platform Designer assigns non-bursting masters and
slave interfaces a burst length of one. The burst adapter divides long bursts into
shorter bursts. As a result, the burst adapter adds logic to the address and
burstcount paths between the master and slave interfaces.

2.6.2.2. Choosing Avalon-MM Interface Types

To avoid inefficient Avalon-MM transfers, custom master or slave interfaces must use
the appropriate simple, pipelined, or burst interfaces.

2.6.2.2.1. Simple Avalon-MM Interfaces

Simple interface transfers do not support pipelining or bursting for reads or writes;
consequently, their performance is limited. Simple interfaces are appropriate for
transfers between masters and infrequently used slave interfaces. In Platform
Designer, the PIO, UART, and Timer include slave interfaces that use simple transfers.

2.6.2.2.2. Pipelined Avalon-MM Interfaces

Pipelined read transfers allow a pipelined master interface to start multiple read
transfers in succession without waiting for prior transfers to complete. Pipelined
transfers allow master-slave pairs to achieve higher throughput, even though the
slave port may require one or more cycles of latency to return data for each transfer.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In many systems, read throughput becomes inadequate if simple reads are used and
pipelined transfers can increase throughput. If you define a component with a fixed
read latency, Platform Designer automatically provides the pipelining logic necessary
to support pipelined reads. You can use fixed latency pipelining as the default design
starting point for slave interfaces. If your slave interface has a variable latency
response time, use the readdatavalid signal to indicate when valid data is
available. The interconnect implements read response FIFO buffering to handle the
maximum number of pending read requests.

To use components that support pipelined read transfers, and to use a pipelined
system interconnect efficiently, your system must contain pipelined masters. You can
use pipelined masters as the default starting point for new master components. Use
the readdatavalid signal for these master interfaces.

Because master and slaves sometimes have mismatched pipeline latency, the
interconnect contains logic to reconcile the differences.

Table 21. Pipeline Latency in a Master-Slave Pair

Master Slave Pipeline Management Logic Structure

No pipeline No pipeline Platform Designer interconnect does not instantiate logic to handle pipeline
latency.

No pipeline Pipelined with
fixed or variable
latency

Platform Designer interconnect forces the master to wait through any slave-side
latency cycles. This master-slave pair gains no benefits from pipelining, because
the master waits for each transfer to complete before beginning a new transfer.
However, while the master is waiting, the slave can accept transfers from a
different master.

Pipelined No pipeline Platform Designer interconnect carries out the transfer as if neither master nor
slave were pipelined, causing the master to wait until the slave returns data. An
example of a non-pipeline slave is an asynchronous off-chip interface.

Pipelined Pipelined with
fixed latency

Platform Designer interconnect allows the master to capture data at the exact
clock cycle when data from the slave is valid, to enable maximum throughput. An
example of a fixed latency slave is an on-chip memory.

Pipelined Pipelined with
variable latency

The slave asserts a signal when its readdata is valid, and the master captures
the data. The master-slave pair can achieve maximum throughput if the slave
has variable latency. Examples of variable latency slaves include SDRAM and
FIFO memories.

2.6.2.2.3. Burst Avalon-MM Interfaces

Burst transfers are commonly used for latent memories such as SDRAM and off-chip
communication interfaces, such as PCI Express. To use a burst-capable slave interface
efficiently, you must connect to a bursting master. Components that require bursting
to operate efficiently typically have an overhead penalty associated with short bursts
or non-bursting transfers.

You can use a burst-capable slave interface if you know that your component requires
sequential transfers to operate efficiently. Because SDRAM memories incur a penalty
when switching banks or rows, performance improves when SDRAM memories are
accessed sequentially with bursts.

Architectures that use the same signals to transfer address and data also benefit from
bursting. Whenever an address is transferred over shared address and data signals,
the throughput of the data transfer is reduced. Because the address phase adds
overhead, using large bursts increases the throughput of the connection.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.2.3. Avalon-MM Burst Master Example

Figure 63. Avalon Bursting Write Master
This example shows the architecture of a bursting write master that receives data from a FIFO and writes the
contents to memory. You can use a bursting master as a starting point for your own bursting components, such
as custom DMAs, hardware accelerators, or off-chip communication interfaces.

d

count enable

load

d

count enable

load

q

read acknowledge

d

write

full

q

q

waitrequest

done

go

start_address[31:0]

increment_address

go

increment_address

transfer_length[31:0]

user_data[31:0]

user_data_full

user_data_write

length[31:0]

fifo_used[]

used[]

writedata[31:0]

increment_address

Look-Ahead FIFO

master_burstcount[2:0]

burst_begin

burst_count[2:0]

write

increment_address

master_address[31:0]

VCC

byteenable[3:0]

Down
Counter

Up
Counter

burst_begin
EN

D Q

s

1

0

Tracking Logic/
State Machine

The master performs word accesses and writes to sequential memory locations. When
go is asserted, the start_address and transfer_length are registered. On the
next clock cycle, the control logic asserts burst_begin, which synchronizes the
internal control signals in addition to the master_address and
master_burstcount presented to the interconnect. The timing of these two signals
is important because during bursting write transfers byteenable and burstcount
must be held constant for the entire burst.

To avoid inefficient writes, the master posts a burst when enough data is buffered in
the FIFO. To maximize the burst efficiency, the master should stall only when a slave
asserts waitrequest. In this example, the FIFO’s used signal tracks the number of
words of data that are stored in the FIFO and determines when enough data has been
buffered.

The address register increments after every word transfer, and the length register
decrements after every word transfer. The address remains constant throughout the
burst. Because a transfer is not guaranteed to complete on burst boundaries,
additional logic is necessary to recognize the completion of short bursts and complete
the transfer.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Avalon Memory-Mapped Master Templates

2.7. Reducing Logic Utilization

You can minimize logic size of Platform Designer systems. Typically, there is a trade-
off between logic utilization and performance. Reducing logic utilization applies to both
Avalon and AXI interfaces.

2.7.1. Minimizing Interconnect Logic to Reduce Logic Unitization

In Platform Designer, changes to the connections between master and slave reduce
the amount of interconnect logic required in the system.

Related Information

Limited Concurrency on page 99

2.7.1.1. Creating Dedicated Master and Slave Connections to Minimize
Interconnect Logic

You can create a system where a master interface connects to a single slave interface.
This configuration eliminates address decoding, arbitration, and return data
multiplexing, which simplifies the interconnect. Dedicated master-to-slave connections
attain the same clock frequencies as Avalon-ST connections.

Typically, these one-to-one connections include an Avalon memory-mapped bridge or
hardware accelerator. For example, if you insert a pipeline bridge between a slave and
all other master interfaces, the logic between the bridge master and slave interface is
reduced to wires. If a hardware accelerator connects only to a dedicated memory, no
system interconnect logic is generated between the master and slave pair.

2.7.1.2. Removing Unnecessary Connections to Minimize Interconnect Logic

The number of connections between master and slave interfaces affects the fMAX of
your system. Every master interface that you connect to a slave interface increases
the width of the multiplexer width. As a multiplexer width increases, so does the logic
depth and width that implements the multiplexer in the FPGA. To improve system
performance, connect masters and slaves only when necessary.

When you connect a master interface to many slave interfaces, the multiplexer for the
read data signal grows. Avalon typically uses a readdata signal. AXI read data
signals add a response status and last indicator to the read response channel using
rdata, rresp, and rlast. Additionally, bridges help control the depth of
multiplexers.

Related Information

Implementing Command Pipelining (Master-to-Slave) on page 92

2.7.1.3. Simplifying Address Decode Logic

If address code logic is in the critical path, you may be able to change the address
map to simplify the decode logic. Experiment with different address maps, including a
one-hot encoding, to see if results improve.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

109

http://www.altera.com/support/examples/nios2/exm-avalon-mm.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.7.2. Minimizing Arbitration Logic by Consolidating Multiple Interfaces

As the number of components in a design increases, the amount of logic required to
implement the interconnect also increases. The number of arbitration blocks increases
for every slave interface that is shared by multiple master interfaces. The width of the
read data multiplexer increases as the number of slave interfaces supporting read
transfers increases on a per master interface basis. For these reasons, consider
implementing multiple blocks of logic as a single interface to reduce interconnect logic
utilization.

2.7.2.1. Logic Consolidation Trade-Offs

You should consider the following trade-offs before making modifications to your
system or interfaces:

• Consider the impact on concurrency that results when you consolidate
components. When a system has four master components and four slave
interfaces, it can initiate four concurrent accesses. If you consolidate the four
slave interfaces into a single interface, then the four masters must compete for
access. Consequently, you should only combine low priority interfaces such as low
speed parallel I/O devices if the combination does not impact the performance.

• Determine whether consolidation introduces new decode and multiplexing logic for
the slave interface that the interconnect previously included. If an interface
contains multiple read and write address locations, the interface already contains
the necessary decode and multiplexing logic. When you consolidate interfaces, you
typically reuse the decoder and multiplexer blocks already present in one of the
original interfaces; however, combining interfaces may simply move the decode
and multiplexer logic, rather than eliminate duplication.

• Consider whether consolidating interfaces makes the design complicated. If so,
you should not consolidate interfaces.

Related Information

Using Concurrency in Memory-Mapped Systems on page 85

2.7.2.2. Consolidating Interfaces

In this example, we have a system with a mix of components, each having different
burst capabilities: a Nios II/e core, a Nios II/f core, and an external processor, which
off-loads some processing tasks to the Nios II/f core.

The Nios II/f core supports a maximum burst size of eight. The external processor
interface supports a maximum burst length of 64. The Nios II/e core does not support
bursting. The memory in the system is SDRAM with an Avalon maximum burst length
of two.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 64. Mixed Bursting System

Nios II/e Core

M M

Nios II/f Core

M

Host Processor
Interface

MM

PIO

S

System ID

S

Mutex

S

Timer

S

DDR
SDRAM

S

Arbiter Arbiter Arbiter ArbiterArbiter

B

1

8

B

B

1

8

8

B

1

8

B

1

8

B

1

64

B

2

8

B

2

8

B

2

2

64

8 8 64

Burst Adapter

Maximum Burst Count

Platform Designer automatically inserts burst adapters to compensate for burst length
mismatches. The adapters reduce bursts to a single transfer, or the length of two
transfers. For the external processor interface connecting to DDR SDRAM, a burst of
64 words is divided into 32 burst transfers, each with a burst length of two. When you
generate a system, Platform Designer inserts burst adapters based on maximum
burstcount values; consequently, the interconnect logic includes burst adapters
between masters and slave pairs that do not require bursting, if the master is capable
of bursts.

In this example, Platform Designer inserts a burst adapter between the Nios II
processors and the timer, system ID, and PIO peripherals. These components do not
support bursting and the Nios II processor performs a single word read and write
accesses to these components.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 65. Mixed Bursting System with Bridges

To reduce the number of adapters, you can add pipeline bridges. The pipeline bridge, between the Nios II/f
core and the peripherals that do not support bursts, eliminates three burst adapters from the previous
example. A second pipeline bridge between the Nios II/f core and the DDR SDRAM, with its maximum burst
size set to eight, eliminates another burst adapter, as shown below.

Nios II/e Core

M M M

Nios II/f Core

M

Host Processor
Interface

M

PIO

S

System ID

S

Mutex

S

Timer

S

DDR
SDRAM

S

Arbiter Arbiter Arbiter ArbiterArbiter

B

8

B

1

64

8 8
B

2

2

64

8 8 64

Burst Adapter

Maximum Burst Count

B

1

8

B

2

8

M

Bridge

S

M

Bridge

S

2.7.3. Reducing Logic Utilization With Multiple Clock Domains

You specify clock domains in Platform Designer on the System View tab. Clock
sources can be driven by external input signals to Platform Designer, or by PLLs inside
Platform Designer. Clock domains are differentiated based on the name of the clock.
You can create multiple asynchronous clocks with the same frequency.

Platform Designer generates Clock Domain Crossing (CDC) logic that hides the details
of interfacing components operating in different clock domains. The interconnect
supports the memory-mapped protocol with each port independently, and therefore

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

masters do not need to incorporate clock adapters in order to interface to slaves on a
different domain. Platform Designer interconnect logic propagates transfers across
clock domain boundaries automatically.

Clock-domain adapters provide the following benefits:

• Allows component interfaces to operate at different clock frequencies.

• Eliminates the need to design CDC hardware.

• Allows each memory-mapped port to operate in only one clock domain, which
reduces design complexity of components.

• Enables masters to access any slave without communication with the slave clock
domain.

• Allows you to focus performance optimization efforts on components that require
fast clock speed.

A clock domain adapter consists of two finite state machines (FSM), one in each clock
domain, that use a hand-shaking protocol to propagate transfer control signals
(read_request, write_request, and the master waitrequest signals) across the
clock boundary.

Figure 66. Clock Crossing Adapter

waitrequest

control

Receiver
Handshake

FSM

transfer
request

acknowledge

readdata

control

Sender
Handshake

FSM

waitrequest

Synchro-
nizer

Receiver
Port

Sender
Port

Receiver Clock Domain Sender Clock Domain

Synchro-
nizer

readdata

CDC Logic

writedata & byte enable

address

This example illustrates a clock domain adapter between one master and one slave.
The synchronizer blocks use multiple stages of flipflops to eliminate the propagation of
meta-stable events on the control signals that enter the handshake FSMs. The CDC
logic works with any clock ratio.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The typical sequence of events for a transfer across the CDC logic is as follows:

• The master asserts address, data, and control signals.

• The master handshake FSM captures the control signals and immediately forces
the master to wait. The FSM uses only the control signals, not address and data.
For example, the master simply holds the address signal constant until the slave
side has safely captured it.

• The master handshake FSM initiates a transfer request to the slave handshake
FSM.

• The transfer request is synchronized to the slave clock domain.

• The slave handshake FSM processes the request, performing the requested
transfer with the slave.

• When the slave transfer completes, the slave handshake FSM sends an
acknowledge back to the master handshake FSM. The acknowledge is
synchronized back to the master clock domain.

• The master handshake FSM completes the transaction by releasing the master
from the wait condition.

Transfers proceed as normal on the slave and the master side, without a special
protocol to handle crossing clock domains. From the perspective of a slave, there is
nothing different about a transfer initiated by a master in a different clock domain.
From the perspective of a master, a transfer across clock domains simply requires
extra clock cycles. Similar to other transfer delay cases (for example, arbitration delay
or wait states on the slave side), the Platform Designer forces the master to wait until
the transfer terminates. As a result, pipeline master ports do not benefit from
pipelining when performing transfers to a different clock domain.

Platform Designer automatically determines where to insert CDC logic based on the
system and the connections between components, and places CDC logic to maintain
the highest transfer rate for all components. Platform Designer evaluates the need for
CDC logic for each master and slave pair independently, and generates CDC logic
wherever necessary.

2.7.4. Duration of Transfers Crossing Clock Domains

CDC logic extends the duration of master transfers across clock domain boundaries. In
the worst case, which is for reads, each transfer is extended by five master clock
cycles and five slave clock cycles. Assuming the default value of 2 for the master
domain synchronizer length and the slave domain synchronizer length, the
components of this delay are the following:

• Four additional master clock cycles, due to the master-side clock synchronizer.

• Four additional slave clock cycles, due to the slave-side clock synchronizer.

• One additional clock in each direction, due to potential metastable events as the
control signals cross clock domains.

Note: Systems that require a higher performance clock should use the Avalon-MM clock
crossing bridge instead of the automatically inserted CDC logic. The clock crossing
bridge includes a buffering mechanism so that multiple reads and writes can be
pipelined. After paying the initial penalty for the first read or write, there is no
additional latency penalty for pending reads and writes, increasing throughput by up
to four times, at the expense of added logic resources.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

114

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.8. Reducing Power Consumption

Platform Designer provides various low power design changes that enable you to
reduce the power consumption of the interconnect and custom components.

2.8.1. Reducing Power Consumption With Multiple Clock Domains

When you use multiple clock domains, you should put non-critical logic in the slower
clock domain. Platform Designer automatically reconciles data crossing over
asynchronous clock domains by inserting clock crossing logic (handshake or FIFO).

You can use clock crossing in Platform Designer to reduce the clock frequency of the
logic that does not require a high frequency clock, which allows you to reduce power
consumption. You can use either handshaking clock crossing bridges or handshaking
clock crossing adapters to separate clock domains.

You can use the clock crossing bridge to connect master interfaces operating at a
higher frequency to slave interfaces running at a lower frequency. Only connect low
throughput or low priority components to a clock crossing bridge that operates at a
reduced clock frequency. The following are examples of low throughput or low priority
components:

• PIOs

• UARTs (JTAG or RS-232)

• System identification (SysID)

• Timers

• PLL (instantiated within Platform Designer)

• Serial peripheral interface (SPI)

• EPCS controller

• Tristate bridge and the components connected to the bridge

By reducing the clock frequency of the components connected to the bridge, you
reduce the dynamic power consumption of the design. Dynamic power is a function of
toggle rates and decreasing the clock frequency decreases the toggle rate.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 67. Reducing Power Utilization Using a Bridge to Separate Clock Domains

Nios II
Processor

M M

Arbiter

DDR
SDRAM

S

On-Chip
Memory

S

Arbiter

PIO

S

UART

S

Timer

S

System ID

S

PLL

S

SPI

S

EPCS
Controller

S

M

Tristate
Conduit

S

M

Clock
Crossing
Bridge

S

Arbiter

200 MHz

5 MHz

Flash

S
Low-Frequency Components

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Platform Designer automatically inserts clock crossing adapters between master and
slave interfaces that operate at different clock frequencies. You can choose the type of
clock crossing adapter in the Platform Designer Project Settings tab. Adapters do not
appear in the Connections column because you do not insert them. The following
clock crossing adapter types are available in Platform Designer:

• Handshake—Uses a simple handshaking protocol to propagate transfer control
signals and responses across the clock boundary. This adapter uses fewer
hardware resources because each transfer is safely propagated to the target
domain before the next transfer begins. The Handshake adapter is appropriate for
systems with low throughput requirements.

• FIFO—Uses dual-clock FIFOs for synchronization. The latency of the FIFO adapter
is approximately two clock cycles more than the handshake clock crossing
component, but the FIFO-based adapter can sustain higher throughput because it
supports multiple transactions simultaneously. The FIFO adapter requires more
resources, and is appropriate for memory-mapped transfers requiring high
throughput across clock domains.

• Auto—Platform Designer specifies the appropriate FIFO adapter for bursting links
and the Handshake adapter for all other links.

Because the clock crossing bridge uses FIFOs to implement the clock crossing logic, it
buffers transfers and data. Clock crossing adapters are not pipelined, so that each
transaction is blocking until the transaction completes. Blocking transactions may
lower the throughput substantially; consequently, if you want to reduce power
consumption without limiting the throughput significantly, you should use the clock
crossing bridge or the FIFO clock crossing adapter. However, if the design requires
single read transfers, a clock crossing adapter is preferable because the latency is
lower.

The clock crossing bridge requires few logic resources other than on-chip memory. The
number of on-chip memory blocks used is proportional to the address span, data
width, buffering depth, and bursting capabilities of the bridge. The clock crossing
adapter does not use on-chip memory and requires a moderate number of logic
resources. The address span, data width, and the bursting capabilities of the clock
crossing adapter determine the resource utilization of the device.

When you decide to use a clock crossing bridge or clock crossing adapter, you must
consider the effects of throughput and memory utilization in the design. If on-chip
memory resources are limited, you may be forced to choose the clock crossing
adapter. Using the clock crossing bridge to reduce the power of a single component
may not justify using more resources. However, if you can place all of the low priority
components behind a single clock crossing bridge, you may reduce power
consumption in the design.

Related Information

Power Optimization

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

117

https://www.intel.com/content/www/us/en/docs/programmable/683774.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.8.2. Reducing Power Consumption by Minimizing Toggle Rates

A Platform Designer system consumes power whenever logic transitions between on
and off states. When the state is held constant between clock edges, no charging or
discharging occurs. You can use the following design methodologies to reduce the
toggle rates of your design:

• Registering component boundaries

• Using clock enable signals

• Inserting bridges

Platform Designer interconnect is uniquely combinational when no adapters or bridges
are present and there is no interconnect pipelining. When a slave interface is not
selected by a master, various signals may toggle and propagate into the component.
By registering the boundary of your component at the master or slave interface, you
can minimize the toggling of the interconnect and your component. In addition,
registering boundaries can improve operating frequency. When you register the signals
at the interface level, you must ensure that the component continues to operate
within the interface standard specification.

Avalon-MM waitrequest is a difficult signal to synchronize when you add registers to
your component. The waitrequest signal must be asserted during the same clock
cycle that a master asserts read or write to in order to prolong the transfer. A master
interface can read the waitrequest signal too early and post more reads and writes
prematurely.

Note: There is no direct AXI equivalent for waitrequest and burstcount, though the
AMBA Protocol Specification implies that the AXI ready signal cannot depend
combinatorially on the AXI valid signal. Therefore, Platform Designer typically
buffers AXI component boundaries for the ready signal.

For slave interfaces, the interconnect manages the begintransfer signal, which is
asserted during the first clock cycle of any read or write transfer. If the waitrequest
is one clock cycle late, you can logically OR the waitrequest and the
begintransfer signals to form a new waitrequest signal that is properly
synchronized. Alternatively, the component can assert waitrequest before it is
selected, guaranteeing that the waitrequest is already asserted during the first
clock cycle of a transfer.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

118

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 68. Variable Latency

waitrequest

begintransfer

readdata

read

write

writedata

Avalon-MM
Slave Port

Remaining
Component

Logic

ready
(synchronous)

Using Clock Enables

You can use clock enables to hold the logic in a steady state, and the write and read
signals as clock enables for slave components. Even if you add registers to your
component boundaries, the interface can potentially toggle without the use of clock
enables. You can also use the clock enable to disable combinational portions of the
component.

For example, you can use an active high clock enable to mask the inputs into the
combinational logic to prevent it from toggling when the component is inactive. Before
preventing inactive logic from toggling, you must determine if the masking causes the
circuit to function differently. If masking causes a functional failure, it may be possible
to use a register stage to hold the combinational logic constant between clock cycles.

Inserting Bridges

You can use bridges to reduce toggle rates, if you do not want to modify the
component by using boundary registers or clock enables. A bridge acts as a repeater
where transfers to the slave interface are repeated on the master interface. If the
bridge is not accessed, the components connected to its master interface are also not
accessed. The master interface of the bridge remains idle until a master accesses the
bridge slave interface.

Bridges can also reduce the toggle rates of signals that are inputs to other master
interfaces. These signals are typically readdata, readdatavalid, and
waitrequest. Slave interfaces that support read accesses drive the readdata,
readdatavalid, and waitrequest signals. A bridge inserts either a register or
clock crossing FIFO between the slave interface and the master to reduce the toggle
rate of the master input signals.

2.8.3. Reducing Power Consumption by Disabling Logic

There are typically two types of low power modes: volatile and non-volatile. A volatile
low power mode holds the component in a reset state. When the logic is reactivated,
the previous operational state is lost. A non-volatile low power mode restores the
previous operational state. You can use either software-controlled or hardware-
controlled sleep modes to disable a component in order to reduce power consumption.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Software-Controlled Sleep Mode

To design a component that supports software-controlled sleep mode, create a single
memory-mapped location that enables and disables logic by writing a zero or one. You
can use the register’s output as a clock enable or reset, depending on whether the
component has non-volatile requirements. The slave interface must remain active
during sleep mode so that the enable bit is set when the component needs to be
activated.

If multiple masters can access a component that supports sleep mode, you can use
the mutex core to provide mutually exclusive accesses to your component. You can
also build in the logic to re-enable the component on the very first access by any
master in your system. If the component requires multiple clock cycles to re-activate,
then it must assert a wait request to prolong the transfer as it exits sleep mode.

Hardware-Controlled Sleep Mode

Alternatively, you can implement a timer in your component that automatically causes
the component to enter a sleep mode based on a timeout value specified in clock
cycles between read or write accesses. Each access resets the timer to the timeout
value. Each cycle with no accesses decrements the timeout value by one. If the
counter reaches zero, the hardware enters sleep mode until the next access.

Figure 69. Hardware-Controlled Sleep Components

q

wakeread
write

d count

count enableload

Down
Counter

waitrequest sleep_n

= 0?Timeout Value reset

busy

This example provides a schematic for the hardware-controlled sleep mode. If
restoring the component to an active state takes a long time, use a long timeout value
so that the component is not continuously entering and exiting sleep mode. The slave
interface must remain functional while the rest of the component is in sleep mode.
When the component exits sleep mode, the component must assert the waitrequest
signal until it is ready for read or write accesses.

Related Information

Mutex Core

2.9. Reset Polarity and Synchronization in Platform Designer

When you add a component interface with a reset signal, Platform Designer defines its
polarity as reset(active-high) or reset_n (active-low).

You can view the polarity status of a reset signal by selecting the signal in the
Hierarchy tab, and then view its expanded definition in the open Parameters and
Block Symbol tabs. When you generate your component, Platform Designer
interconnect automatically inverts polarities as needed.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

120

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 70. Reset Signal (Active-High)

Figure 71. Reset Signal Active-Low

Each Platform Designer component has its own requirements for reset
synchronization. Some blocks have internal synchronization and have no
requirements, whereas other blocks require an externally synchronized reset. You can
define how resets are synchronized in your Platform Designer system with the
Synchronous edges parameter. In the clock source or reset bridge component, set
the value of the Synchronous edges parameter to one of the following, depending
on how the reset is externally synchronized:

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• None—There is no synchronization on this reset.

• Both—The reset is synchronously asserted and deasserted with respect to the
input clock.

• Deassert—The reset is synchronously asserted with respect to the input clock,
and asynchronously deasserted.

Figure 72. Synchronous Edges Parameter

You can combine multiple reset sources to reset a particular component.

Figure 73. Combine Multiple Reset Sources

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you generate your component, Platform Designer inserts adapters to
synchronize or invert resets if there are mismatches in polarity or synchronization
between the source and destination. You can view inserted adapters on the Memory-
Mapped Interconnect tab with the System ➤ Show System with Platform
Designer Interconnect command.

Figure 74. Platform Designer Interconnect

2.10. Optimizing Platform Designer System Performance Design
Examples

Avalon Pipelined Read Master Example on page 123

Multiplexer Examples on page 125

2.10.1. Avalon Pipelined Read Master Example

For a high throughput system using the Avalon-MM standard, you can design a
pipelined read master that allows a system to issue multiple read requests before data
returns. Pipelined read masters hide the latency of read operations by posting reads
as frequently as every clock cycle. You can use this type of master when the address
logic is not dependent on the data returning.

2.10.1.1. Avalon Pipelined Read Master Example Design Requirements

You must carefully design the logic for the control and datapaths of pipelined read
masters. The control logic must extend a read cycle whenever the waitrequest
signal is asserted. This logic must also control the master address, byteenable,

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

and read signals. To achieve maximum throughput, pipelined read masters should
post reads continuously while waitrequest is deasserted. While read is asserted,
the address presented to the interconnect is stored.

The datapath logic includes the readdata and readdatavalid signals. If your
master can accept data on every clock cycle, you can register the data with the
readdatavalid as an enable bit. If your master cannot process a continuous stream
of read data, it must buffer the data in a FIFO. The control logic must stop issuing
reads when the FIFO reaches a predetermined fill level to prevent FIFO overflow.

2.10.1.2. Expected Throughput Improvement

The throughput improvement that you can achieve with a pipelined read master is
typically directly proportional to the pipeline depth of the interconnect and the slave
interface. For example, if the total latency is two cycles, you can double the
throughput by inserting a pipelined read master, assuming the slave interface also
supports pipeline transfers. If either the master or slave does not support pipelined
read transfers, then the interconnect asserts waitrequest until the transfer
completes. You can also gain throughput when there are some cycles of overhead
before a read response.

Where reads are not pipelined, the throughput is reduced. When both the master and
slave interfaces support pipelined read transfers, data flows in a continuous stream
after the initial latency. You can use a pipelined read master that stores data in a FIFO
to implement a custom DMA, hardware accelerator, or off-chip communication
interface.

Figure 75. Pipelined Read Master

d

count enable

load

d

count enable

load

d

write

q

read acknowledge

empty

q

q

waitrequest

done

go

start_address[31:0]

increment_address

go

increment_address

transfer_length[31:0]

user_data[31:0]

user_data_empty

user_data_read

length[31:0]

fifo_used[]

used[]

writedata[31:0]

readdatavalid

Look-Ahead FIFO

read

increment_address

master_address[31:0]

VCC

byteenable[3:0]

Down
Counter

Up
Counter

Tracking Logic/
State Machine

readdatavalid

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This example shows a pipelined read master that stores data in a FIFO. The master
performs word accesses that are word-aligned and reads from sequential memory
addresses. The transfer length is a multiple of the word size.

When the go bit is asserted, the master registers the start_address and
transfer_length signals. The master begins issuing reads continuously on the next
clock cycle until the length register reaches zero. In this example, the word size is four
bytes so that the address always increments by four, and the length decrements by
four. The read signal remains asserted unless the FIFO fills to a predetermined level.
The address register increments and the length register decrements if the length has
not reached 0 and a read is posted.

The master posts a read transfer every time the read signal is asserted and the
waitrequest is deasserted. The master issues reads until the entire buffer has been
read or waitrequest is asserted. An optional tracking block monitors the done bit.
When the length register reaches zero, some reads are outstanding. The tracking logic
prevents assertion of done until the last read completes, and monitors the number of
reads posted to the interconnect so that it does not exceed the space remaining in the
readdata FIFO. This example includes a counter that verifies that the following
conditions are met:

• If a read is posted and readdatavalid is deasserted, the counter increments.

• If a read is not posted and readdatavalid is asserted, the counter decrements.

When the length register and the tracking logic counter reach zero, all the reads
have completed and the done bit is asserted. The done bit is important if a second
master overwrites the memory locations that the pipelined read master accesses. This
bit guarantees that the reads have completed before the original data is overwritten.

2.10.2. Multiplexer Examples

You can combine adapters with streaming components to create datapaths whose
input and output streams have different properties. The following examples
demonstrate datapaths in which the output stream exhibits higher performance than
the input stream.

The diagram below illustrates a datapath that uses the dual clock version of the on-
chip FIFO memory to boost the frequency of input data from 100 MHz to 110 MHz by
sampling two input streams at differential rates. The on-chip FIFO memory has an
input clock frequency of 100 MHz, and an output clock frequency of 110 MHz. The
channel multiplexer runs at 110 MHz and samples one input stream 27.3 percent of
the time, and the second 72.7 percent of the time. You must know what the typical
and maximum input channel utilizations are before for this type of design. For
example, if the first channel hits 50% utilization, the output stream exceeds 100%
utilization.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 76. Datapath that Doubles the Clock Frequency

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src

30% Channel Utilization
8 Bits at 100 MHz

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src

80% Channel Utilization
8 Bits at 100 MHz

Input

Input

sink

sink

src

27.3% Sample Rate
110 MHz

72.7% Sample Rate
110 MHz

100% Channel Utilization
Output 110 MHz

The diagram below illustrates a datapath that uses a data format adapter and Avalon-
ST channel multiplexer to merge the 8-bit 100 MHz input from two streaming data
sources into a single 16-bit 100 MHz streaming output. This example shows an output
with double the throughput of each interface with a corresponding doubling of the
data width.

Figure 77. Datapath to Double Data Width and Maintain Original Frequency

sink src

Data Format
Adapter

Data Source

src
8 Bits at 100 MHz

sink src

Data Format
Adapter

Data Source

src
8 Bits at 100 MHz

Input

Input

sink

sink

src

16 Bits at 100 MHz

16 Bits at 100 MHz

16 Bits
at 100 MHz

The diagram below illustrates a datapath that uses the dual clock version of the on-
chip FIFO memory and Avalon-ST channel multiplexer to merge the 100 MHz input
from two streaming data sources into a single 200 MHz streaming output. This
example shows an output with double the throughput of each interface with a
corresponding doubling of the clock frequency.

Figure 78. Datapath to Boost the Clock Frequency

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src
100 MHz

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src
100 MHz

Input

Input

sink

sink

src

200 MHz

200 MHz

Output
200 MHz

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.11. Optimizing Platform Designer System Performance Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2017.11.06 17.1.0 • Changed instances of Qsys to Platform Designer (Standard)

2015.11.02 15.1.0 • Added:Reset Polarity and Synchronization in Qsys.
• Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Multiplexer Examples, rearranged description text for the figures.

May 2013 13.0.0 AMBA APB support.

November 2012 12.1.0 AMBA AXI4 support.

June 2012 12.0.0 AMBA AXI3 support.

November 2011 11.1.0 New document release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

2. Optimizing Platform Designer System Performance

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

127

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Platform Designer Interconnect
Platform Designer interconnect is a high-bandwidth structure that allows you to
connect IP components to other IP components with various interfaces.

Note: Intel now refers to Qsys as Platform Designer (Standard).

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

The video AMBA AXI and Intel Avalon Interoperation Using Platform Designer
describes seamless integration of IP components using the AMBA AXI and the Intel
Avalon interfaces.

Note: In Platform Designer systems with no clock domain crossing, the initial reset requires
asserting for at least 16 cycles. This action prevents the propagation of incorrect
values that the reset tree skew may generate during the initial reset release, ensuring
the resetting of all the Platform Designer components and interconnect.

Related Information

• Avalon Interface Specifications

• Creating a System with Platform Designer on page 10

• Creating Platform Designer Components on page 286

• Platform Designer System Design Components on page 214

• AMBA AXI and Intel Avalon Interoperation Using Platform Designer

• Specifying Interconnect Requirements on page 39

3.1. Memory-Mapped Interfaces

Platform Designer supports the implementation of memory-mapped interfaces for
Avalon, AXI, and APB protocols.

Platform Designer interconnect transmits memory-mapped transactions between
masters and slaves in packets. The command network transports read and write
packets from master interfaces to slave interfaces. The response network transports
response packets from slave interfaces to master interfaces.

For each component interface, Platform Designer interconnect manages memory-
mapped transfers and interacts with signals on the connected interface. Master and
slave interfaces can implement different signals based on interface parameterizations,
and Platform Designer interconnect provides any necessary adaptation between them.
In the path between master and slaves, Platform Designer interconnect may introduce
registers for timing synchronization, finite state machines for event sequencing, or
nothing at all, depending on the services required by the interfaces.

683364 | 2018.12.15

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
http://www.youtube.com/watch?v=LdD2B1x-5vo
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Platform Designer interconnect supports the following implementation scenarios:

• Any number of components with master and slave interfaces. The master-to-slave
relationship can be one-to-one, one-to-many, many-to-one, or many-to-many.

• Masters and slaves of different data widths.

• Masters and slaves operating in different clock domains.

• IP Components with different interface properties and signals. Platform Designer
adapts the component interfaces so that interfaces with the following differences
can be connected:

— Avalon and AXI interfaces that use active-high and active-low signaling. AXI
signals are active high, except for the reset signal.

— Interfaces with different burst characteristics.

— Interfaces with different latencies.

— Interfaces with different data widths.

— Interfaces with different optional interface signals.

Note: Since interface connections between AMBA 3 AXI and AMBA 4 AXI
declare a fixed set of signals with variable latency, there is no need for
adapting between active-low and active-high signaling, burst
characteristics, different latencies, or port signatures. Adaptation might
be necessary between Avalon interfaces.

In this example, there are two components mastering the system, a processor and a
DMA controller, each with two master interfaces. The masters connect through the
Platform Designer interconnect to slaves in the Platform Designer system.

The dark blue blocks represent interconnect components. The dark gray boxes indicate
items outside of the Platform Designer system and the Intel Quartus Prime software
design, and show how to export component interfaces and how to connect these
interfaces to external devices.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 79. Platform Designer interconnect for an Avalon-MM System with Multiple
Masters

Processor

M

DMA Controller

DDR3
Controller

DDR3 Chip

Data
Memory

S

Instruction

M

Data

MM

Control

Read Write

Instruction
Memory

SSS

Interconnect

Qsys Design
in Altera FPGA

PCB

Command Switch
(Avalon-ST)

Response Switch
(Avalon-ST)

Master
Network
Interface

Master
Network
Interface

Master
Network
Interface

Master
Network
Interface

Slave
Network
Interface

Slave
Network
Interface

Slave
Network
Interface

Flash
Memory

Chip

S

Ethernet
MAC/PHY

Chip

S

Tri-State Conduit
 Pin Sharer & Bridge

TCS TCS

Tri-State
Controller

S

TCM

Tri-State
Conduit

S

TCM

Slave
Network
Interface

Master Command Connectivity

Slave Response Connectivity

Interface to Off-Chip Device

M Avalon-MM Master Interface

S Avalon-MM Slave Interface

TCM Avalon Tri-State Conduit Master

TCS Avalon Tri-State Conduit Slave

3.1.1. Platform Designer Packet Format

The Platform Designer packet format supports Avalon, AXI, and APB transactions.
Memory-mapped transactions between masters and slaves are encapsulated in
Platform Designer packets. For Avalon systems without AXI or APB interfaces, some
fields are ignored or removed.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.1.1. Fields in the Platform Designer Packet Format

The fields of the Platform Designer packet format are of variable length to minimize
resource usage. However, if most components in a design have a single data width, for
example 32-bits, and a single component has a data width of 64-bits, Platform
Designer inserts a width adapter to accommodate 64-bit transfers.

Table 22. Platform Designer Packet Format for Memory-Mapped Master and Slave
Interfaces

Command Description

Address Specifies the byte address for the lowest byte in the current cycle. There are no restrictions
on address alignment.

Size Encodes the run-time size of the transaction.
In conjunction with address, this field describes the segment of the payload that contains
valid data for a beat within the packet.

Address Sideband Carries “address” sideband signals. The interconnect passes this field from master to slave.
This field is valid for each beat in a packet, even though it is only produced and consumed
by an address cycle.
Up to 8-bit sideband signals are supported for both read and write address channels.

Cache Carries the AXI cache signals.

Transaction
(Exclusive)

Indicates whether the transaction has exclusive access.

Transaction (Posted) Used to indicate non-posted writes (writes that require responses).

Data For command packets, carries the data to be written. For read response packets, carries
the data that has been read.

Byteenable Specifies which symbols are valid. AXI can issue or accept any byteenable pattern. For
compatibility with Avalon, Intel recommends that you use the following legal values for 32-
bit data transactions between Avalon masters and slaves:
• 1111—Writes full 32 bits
• 0011—Writes lower 2 bytes
• 1100—Writes upper 2 bytes
• 0001—Writes byte 0 only
• 0010—Writes byte 1 only
• 0100—Writes byte 2 only
• 1000—Writes byte 3 only

Source_ID The ID of the master or slave that initiated the command or response.

Destination_ID The ID of the master or slave to which the command or response is directed.

Response Carries the AXI response signals.

Thread ID Carries the AXI transaction ID values.

Byte count The number of bytes remaining in the transaction, including this beat. Number of bytes
requested by the packet.

continued...

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Description

Burstwrap The burstwrap value specifies the wrapping behavior of the current burst. The burstwrap
value is of the form 2<n> -1. The following types are defined:
• Variable wrap–Variable wrap bursts can wrap at any integer power of 2 value. When the

burst reaches the wrap boundary, it wraps back to the previous burst boundary so that
only the low order bits are used for addressing. For example, a burst starting at address
0x1C, with a burst wrap boundary of 32 bytes and a burst size of 20 bytes, would write
to addresses 0x1C, 0x0, 0x4, 0x8, and 0xC.

• For a burst wrap boundary of size <m>, Burstwrap = <m> - 1, or for this case
Burstwrap = (32 - 1) = 31 which is 25 -1.

• For AXI masters, the burstwrap boundary value (m) is based on the different AXBURST:
— Burstwrap set to all 1’s. For example, for a 6-bit burstwrap, burstwrap is

6'b111111.
— For WRAP bursts, burstwrap = AXLEN * size – 1.
— For FIXED bursts, burstwrap = size – 1.
— Sequential bursts increment the address for each transfer in the burst. For

sequential bursts, the Burstwrap field is set to all 1s. For example, with a 6-bit
Burstwrap field, the value for a sequential burst is 6'b111111 or 63, which is 26 -
1.

For Avalon masters, Platform Designer adaptation logic sets a hardwired value for the
burstwrap field, according the declared master burst properties. For example, for a master
that declares sequential bursting, the burstwrap field is set to ones. Similarly, masters that
declare burst have their burstwrap field set to the appropriate constant value.
AXI masters choose their burst type at run-time, depending on the value of the AW or
ARBURST signal. The interconnect calculates the burstwrap value at run-time for AXI
masters.

Protection Access level protection. When the lowest bit is 0, the packet has normal access. When the
lowest bit is 1, the packet has privileged access. For Avalon-MM interfaces, this field maps
directly to the privileged access signal, which allows a memory-mapped master to write to
an on-chip memory ROM instance. The other bits in this field support AXI secure accesses
and uses the same encoding, as described in the AXI specification.

QoS QoS (Quality of Service Signaling) is a 4-bit field that is part of the AMBA 4 AXI interface
that carries QoS information for the packet from the AXI master to the AXI slave.
Transactions from AMBA 3 AXI and Avalon masters have the default value 4'b0000, that
indicates that they are not participating in the QoS scheme. QoS values are dropped for
slaves that do not support QoS.

Data sideband Carries data sideband signals for the packet. On a write command, the data sideband
directly maps to WUSER. On a read response, the data sideband directly maps to RUSER. On
a write response, the data sideband directly maps to BUSER.

3.1.1.2. Transaction Types for Memory-Mapped Interfaces

Table 23. Transaction Types for Memory-Mapped Interfaces
The table below describes the information that each bit transports in the packet format's transaction field.

Bit Name Definition

0 PKT_TRANS_READ When asserted, indicates a read transaction.

1 PKT_TRANS_COMPRESSED_READ For read transactions, specifies whether the read command can be
expressed in a single cycle (all byteenables asserted on every
cycle).

2 PKT_TRANS_WRITE When asserted, indicates a write transaction.

3 PKT_TRANS_POSTED When asserted, no response is required.

4 PKT_TRANS_LOCK When asserted, indicates arbitration is locked. Applies to write
packets.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.1.3. Platform Designer Transformations

The memory-mapped master and slave components connect to network interface
modules that encapsulate the transaction in Avalon-ST packets. The memory-mapped
interfaces have no information about the encapsulation or the function of the layer
transporting the packets. The interfaces operate in accordance with memory-mapped
protocol and use the read and write signals and transfers.

Figure 80. Transformation when Generating a System with Memory-Mapped and Slave
Components
Platform Designer components that implement the blocks appear shaded.

Slave Response Connectivity

Master Command Connectivity

Avalon-STAvalon-MM or AXI Avalon-MM or AXI

Avalon-ST
Network

(Command)

Master
Network
Interface

Master
Interface

Slave
Network
Interface

Slave
Interface

Master
Network
Interface

Master
Interface

Slave
Network
Interface

Slave
Interface

Avalon-ST
Network

(Response)

Related Information

• Master Network Interfaces on page 135

• Slave Network Interfaces on page 138

3.1.2. Interconnect Domains

An interconnect domain is a group of connected memory-mapped masters and slaves
that share the same interconnect. The components in a single interconnect domain
share the same packet format.

3.1.2.1. Using One Domain with Width Adaptation

When one of the masters in a system connects to all the slaves, Platform Designer
creates a single domain with two packet formats: one with 64-bit data, and one with
16-bit data. A width adapter manages accesses between the 16-bit master and 64-bit
slaves.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 81. One Domain with 1:4 and 4:1 Width Adapters
In this system example, there are two 64-bit masters that access two 64-bit slaves. It also includes one 16-bit
master, that accesses two 16-bit slaves and two 64-bit slaves. The 16-bit Avalon master connects through a
1:4 adapter, then a 4:1 adapter to reach its 16-bit slaves.

16-Bit
Avalon-MM

Slave

S

16-Bit
Avalon-MM

Slave

S

16-Bit
Avalon-MM

Master
M

Single Domain with 1:4 & 4:1 Width Adapters

64-Bit
Avalon-MM

Slave

S

64-Bit
Avalon-MM

Master
M

64-Bit
Avalon-MM

Master
M

4:1 1:4

64-Bit
Avalon-MM

Slave

S

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.2.2. Using Two Separate Domains

Figure 82. Two Separate Domains
In this system example, Platform Designer uses two separate domains. The first domain includes two 64-bit
masters connected to two 64-bit slaves. A second domain includes one 16-bit master connected to two 16-bit
slaves. Because the interfaces in Domain 1 and Domain 2 do not share any connections, Platform Designer can
optimize the packet format for the two separate domains. In this example, the first domain uses a 64-bit data
width and the second domain uses 16-bit data.

16-bit
Avalon-MM

Slave

S

16-bit
Avalon-MM

Slave

S

Domain 1

Command Network Response Network

Domain 2

64-bit
Avalon-MM

Master

M

64-bit
Avalon-MM

Master

M

64-bit
Avalon-MM

Slave

S

64-bit
Avalon-MM

Slave

S

16-bit
Avalon-MM

Master

M

Component 1 Component 2

3.1.3. Master Network Interfaces

Figure 83. Avalon-MM Master Network Interface
Avalon network interfaces drive default values for the QoS and BUSER, WUSER, and RUSER packet fields in the
master agent, and drop the packet fields in the slave agent.

Note: The response signal from the Limiter to the Agent is optional.

Master
Interface

Master Network Interface

Translator Agent Limiter

Router

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

response [1:0]

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

135

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 84. AXI Master Network Interface
An AMBA 4 AXI master supports INCR bursts up to 256 beats, QoS signals, and data sideband signals.

Master Network Interface

AXI
Translator

Router

Limiter

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

AXI
Master
Agent

Router

Read Command

Write Command

Limiter

Write Response

Read Response

Master
Interface

Note: For a complete definition of the optional read response signal, refer to Avalon
Memory-Mapped Interface Signal Types in the Avalon Interface Specifications.

Related Information

• Avalon Interface Specifications

• Creating a System with Platform Designer on page 10

3.1.3.1. Avalon-MM Master Agent

The Avalon-MM Master Agent translates Avalon-MM master transactions into Platform
Designer command packets and translates the Platform Designer Avalon-MM slave
response packets into Avalon-MM responses.

3.1.3.2. Avalon-MM Master Translator

The Avalon-MM Master Translator interfaces with an Avalon-MM master component
and converts the Avalon-MM master interface to a simpler representation for use in
Platform Designer.

The Avalon-MM Master translator performs the following functions:

• Translates active-low signaling to active-high signaling

• Inserts wait states to prevent an Avalon-MM master from reading invalid data

• Translates word and symbol addresses

• Translates word and symbol burst counts

• Manages re-timing and re-sequencing bursts

• Removes unnecessary address bits

3.1.3.3. AXI Master Agent

An AXI Master Agent accepts AXI commands and produces Platform Designer
command packets. It also accepts Platform Designer response packets and converts
those into AXI responses. This component has separate packet channels for read
commands, write commands, read responses, and write responses. Avalon master
agent drives the QoS and BUSER, WUSER, and RUSER packet fields with default values
AXQO and b0000, respectively.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

136

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For signal descriptions, refer to Platform Designer Packet Format.

Related Information

Fields in the Platform Designer Packet Format on page 131

3.1.3.4. AXI Translator

AMBA 4 AXI allows omitting signals from interfaces. The translator bridges between
these “incomplete” AMBA 4 AXI interfaces and the “complete” AMBA 4 AXI interface on
the network interfaces.

Attention: If an Avalon or AMBA 4 AXI slave is connected to a master without response ports, the
interconnect could ignore transaction responses such as SLAVEERROR or
DECODEERROR. This situation could lead to returning invalid data to the master.

The AXI translator is inserted for both AMBA 4 AXI masters and slaves and performs
the following functions:

• Matches ID widths between the master and slave in 1x1 systems.

• Drives default values as defined in the AMBA Protocol Specifications for missing
signals.

• Performs lock transaction bit conversion when an AMBA 3 AXI master connects to
an AMBA 4 AXI slave in 1x1 systems.

Related Information

Arm AMBA Protocol Specifications

3.1.3.5. APB Master Agent

An APB master agent accepts APB commands and produces or generates Platform
Designer command packets. It also converts Platform Designer response packets to
APB responses.

3.1.3.6. APB Slave Agent

An APB slave agent issues resulting transaction to the APB interface. It also accepts
creates Platform Designer response packets.

3.1.3.7. APB Translator

An APB peripheral does not require pslverr signals to support additional signals for
the APB debug interface.

The APB translator is inserted for both the master and slave and performs the
following functions:

• Sets the response value default to OKAY if the APB slave does not have a pslverr
signal.

• Turns on or off additional signals between the APB debug interface, which is used
with HPS (Intel SoC’s Hard Processor System).

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

137

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3.8. AHB Slave Agent

The Platform Designer interconnect supports non-bursting Advanced High-
performance Bus (AHB) slave interfaces.

3.1.3.9. Memory-Mapped Router

The Memory-Mapped Router routes command packets from the master to the slave,
and response packets from the slave to the master. For master command packets, the
router uses the address to set the Destination_ID and Avalon-ST channel. For the
slave response packet, the router uses the Destination_ID to set the Avalon-ST
channel. The demultiplexers use the Avalon-ST channel to route the packet to the
correct destination.

3.1.3.10. Memory-Mapped Traffic Limiter

The Memory-Mapped Traffic Limiter ensures the responses arrive in order. It prevents
any command from being sent if the response could conflict with the response for a
command that has already been issued. By guaranteeing in-order responses, the
Traffic Limiter simplifies the response network.

3.1.4. Slave Network Interfaces

3.1.4.1. Avalon-MM Slave Translator

The Avalon-MM Slave Translator converts the Avalon-MM slave interface to a simplified
representation that the Platform Designer network can use.

Figure 85. Avalon-MM Slave Network Interface

Slave
Interface

Slave Network Interface

Agent Translator

Waitrequest

Overflow Error

Command

Response

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

An Avalon-MM Slave Translator performs the following functions:

• Drives the beginbursttransfer and byteenable signals.

• Supports Avalon-MM slaves that operate using fixed timing and or slaves that use
the readdatavalid signal to identify valid data.

• Translates the read, write, and chipselect signals into the representation that
the Avalon-ST slave response network uses.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

138

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Converts active low signals to active high signals.

• Translates word and symbol addresses and burstcounts.

• Handles burstcount timing and sequencing.

• Removes unnecessary address bits.

Related Information

Slave Network Interfaces on page 138

3.1.4.2. AXI Translator

AMBA 4 AXI allows omitting signals from interfaces. The translator bridges between
these “incomplete” AMBA 4 AXI interfaces and the “complete” AMBA 4 AXI interface on
the network interfaces.

Figure 86. AXI Slave Network Interface
An AMBA 4 AXI slave supports up to 256 beat INCR bursts, QoS signals, and data sideband signals.

AXI
Translator

AXI
Agent

Write Response

Read Command

Read Response

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

Write Command

Network Interface

Slave
Interface

The AXI translator is inserted for both AMBA 4 AXI master and slave, and performs
the following functions:

• Matches ID widths between master and slave in 1x1 systems.

• Drives default values as defined in the AMBA Protocol Specifications for missing
signals.

• Performs lock transaction bit conversion when an AMBA 3 AXI master connects to
an AMBA 4 AXI slave in 1x1 systems.

3.1.4.3. Wait State Insertion

Wait states extend the duration of a transfer by one or more cycles. Wait state
insertion logic accommodates the timing needs of each slave, and causes the master
to wait until the slave can proceed. Platform Designer interconnect inserts wait states
into a transfer when the target slave cannot respond in a single clock cycle, as well as
in cases when slave read and write signals have setup or hold time requirements.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

139

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 87. Wait State Insertion Logic for One Master and One Slave
Wait state insertion logic is a small finite-state machine that translates control signal sequencing between the
slave side and the master side. Platform Designer interconnect can force a master to wait for the wait state
needs of a slave; for example, arbitration logic in a multi-master system. Platform Designer generates wait
state insertion logic based on the properties of all slaves in the system.

Master
Port

Slave
Port

Wait-State
Insertion

Logic read/writeread/write

wait request

address

data

3.1.4.4. Avalon-MM Slave Agent

The Avalon-MM Slave Agent accepts command packets and issues the resulting
transactions to the Avalon interface. For pipelined slaves, an Avalon-ST FIFO stores
information about pending transactions. The size of this FIFO is the maximum number
of pending responses that you specify when creating the slave component. The
Avalon-MM Slave Agent also backpressures the Avalon-MM master command
interface when the FIFO is full if the slave component includes the waitrequest
signal.

3.1.4.5. AXI Slave Agent

An AXI Slave Agent works like a reverse master agent. The AXI Slave Agent accepts
Platform Designer command packets to create AXI commands, and accepts AXI
responses to create Platform Designer response packets. This component has separate
packet channels for read commands, write commands, read responses, and write
responses.

3.1.5. Arbitration

When multiple masters contend for access to a slave, Platform Designer automatically
inserts arbitration logic, which grants access in fairness-based, round-robin order. You
can alternatively choose to designate a slave as a fixed priority arbitration slave, and
then manually assign priorities in the Platform Designer GUI.

3.1.5.1. Round-Robin Arbitration

When multiple masters contend for access to a slave, Platform Designer automatically
inserts arbitration logic which grants access in fairness-based, round-robin order.

In a fairness-based arbitration protocol, each master has an integer value of transfer
shares with respect to a slave. One share represents permission to perform one
transfer. The default arbitration scheme is equal share round-robin that grants equal,
sequential access to all requesting masters. You can change the arbitration scheme to
weighted round-robin by specifying a relative number of arbitration shares to the
masters that access a given slave. AXI slaves have separate arbitration for their
independent read and write channels, and the Arbitration Shares setting affects
both the read and write arbitration. To display arbitration settings, right-click an
instance on the System View tab, and then click Show Arbitration Shares.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

140

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 88. Arbitration Shares in the Connections Column

3.1.5.1.1. Fairness-Based Shares

In a fairness-based arbitration scheme, each master-to-slave connection provides a
transfer share count. This count is a request for the arbiter to grant a specific number
of transfers to this master before giving control to a different master. One share
represents permission to perform one transfer.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

141

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 89. Arbitration of Continuous Transfer Requests from Two Masters
Consider a system with two masters connected to a single slave. Master 1 has its arbitration shares set to
three, and Master 2 has its arbitration shares set to four. Master 1 and Master 2 continuously attempt to
perform back-to-back transfers to the slave. The arbiter grants Master 1 access to the slave for three transfers,
and then grants Master 2 access to the slave for four transfers. This cycle repeats indefinitely. The figure below
describes the waveform for this scenario.

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master Master 1 Master 2 Master 1 Master 2 Master 1

Figure 90. Arbitration of Two Masters with a Gap in Transfer Requests
If a master stops requesting transfers before it exhausts its shares, it forfeits all its remaining shares, and the
arbiter grants access to another requesting master. After completing one transfer, Master 2 stops requesting for
one clock cycle. As a result, the arbiter grants access back to Master 1, which gets a replenished supply of
shares.

Master 1 Master 1 Master 2 Master 1 Master 2Master 2

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master

3.1.5.1.2. Round-Robin Scheduling

When multiple masters contend for access to a slave, the arbiter grants shares in
round-robin order. Platform Designer includes only requesting masters in the
arbitration for each slave transaction.

3.1.5.2. Fixed Priority Arbitration

Fixed priority arbitration is an alternative arbitration scheme to the default round-robin
scheme.

You can selectively apply fixed priority arbitration to any slave in a Platform Designer
system. You can design Platform Designer systems where a subset of slaves use the
default round-robin arbitration, and other slaves use fixed priority arbitration. Fixed
priority arbitration uses a fixed priority algorithm to grant access to a slave amongst
its connected masters.

To set up fixed priority arbitration, you must first designate a fixed priority slave in
your Platform Designer system in the Interconnect Requirements tab. You can then
assign an arbitration priority number for each master connected to a fixed priority
slave in the System View tab, where the highest numeric value receives the highest
priority. When multiple masters request access to a fixed priority arbitrated slave, the
arbiter gives the master with the highest priority first access to the slave.

For example, when a fixed priority slave receives requests from three masters on the
same cycle, the arbiter grants the master with highest assigned priority first access to
the slave, and backpressures the other two masters.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

142

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: When you connect an AXI master to an Avalon-MM slave designated to use a fixed
priority arbitrator, the interconnect instantiates a command-path intermediary round-
robin multiplexer in front of the designated slave.

3.1.5.2.1. Designate a Platform Designer Slave to Use Fixed Priority Arbitration

You can designate any slave in your Platform Designer system to use fixed priority
arbitration. You must assign each master connected to a fixed priority slave a numeric
priority. The master with the highest higher priority receives first access to the slave.
No two masters can have the same priority.

1. In Platform Designer, navigate to the Interconnect Requirements tab.

2. Click Add to add a new requirement.

3. In the Identifier column, select the slave for fixed priority arbitration.

4. In the Setting column, select qsys mm.arbitrationScheme.

5. In the Value column, select fixed-priority.

6. Navigate to the System View tab.

7. In the System View tab, right-click the designated fixed priority slave, and then
select Show Arbitration Shares.

8. For each master connected to the fixed priory arbitration slave, type a numerical
arbitration priority in the box that appears in place of the connection circle.

9. Right click the designated fixed priority slave and uncheck Show Arbitration
Shares to return to the connection circles.

3.1.5.2.2. Fixed Priority Arbitration with AXI Masters and Avalon-MM Slaves

When an AXI master is connected to a designated fixed priority arbitration Avalon-MM
slave, Platform Designer interconnect automatically instantiates an intermediary
multiplexer in front of the Avalon-MM slave.

Since AXI masters have separate read and write channels, each channel appears as
two separate masters to the Avalon-MM slave. To support fairness between the AXI
master’s read and write channels, the instantiated round-robin intermediary
multiplexer arbitrates between simultaneous read and write commands from the AXI
master to the fixed-priority Avalon-MM slave.

When an AXI master is connected to a fixed priority AXI slave, the master’s read and
write channels are directly connected to the AXI slave’s fixed-priority multiplexers. In
this case, there is one multiplexer for the read command, and one multiplexer for the
write command and therefore an intermediary multiplexer is not required.

The red circles indicate placement of the intermediary multiplexer between the AXI
master and Avalon-MM slave due to the separate read and write channels of the AXI
master.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

143

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 91. Intermediary Multiplexer Between AXI Master and Avalon-MM Slave

3.1.6. Memory-Mapped Arbiter

The input to the Memory-Mapped Arbiter is the command packet for all masters
requesting access to a specific slave. The arbiter outputs the channel number for the
selected master. This channel number controls the output of a multiplexer that selects
the slave device.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

144

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 92. Arbitration Logic
In this example, four Avalon-MM masters connect to four Avalon-MM slaves. In each cycle, an arbiter
positioned in front of each Avalon-MM slave selects among the requesting Avalon-MM masters.

Logic included in the Avalon-ST Command Network

Arbiter
for

slave 0

Master 0

= Pipeline stage, masters 0-3

= Pipeline stage, selected request

Arbiter
for

slave 1

Arbiter
for

slave 2

Arbiter
for

slave 3

Master 1

Master 2

Master 3

Arbiter
for

slave 1

Command
packet for
master 0

Command
packet for
master 1

Command
packet for
master 2

Command
packet for
master 3

Selected request

Selected request

Selected request

Selected request

Note: If you specify a Limit interconnect pipeline stages toparameter greater than zero,
the output of the Arbiter is registered. Registering this output reduces the amount of
combinational logic between the master and the interconnect, increasing the fMAX of
the system.

Note: You can use the Memory-Mapped Arbiter for both round-robin and fixed priority
arbitration.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

145

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.7. Datapath Multiplexing Logic

Datapath multiplexing logic drives the writedata signal from the granted master to
the selected slave, and the readdata signal from the selected slave back to the
requesting master. Platform Designer generates separate datapath multiplexing logic
for every master in the system (readdata), and for every slave in the system
(writedata). Platform Designer does not generate multiplexing logic if it is not
needed.

Figure 93. Datapath Multiplexing Logic for One Master and Two Slaves

Master
Port

readdata

address

writedata

control

readdata2

readdata1

Datapath
Multiplexer

Slave
Port 2

Slave
Port 1

3.1.8. Width Adaptation

Platform Designer width adaptation converts between Avalon memory-mapped master
and slaves with different data and byte enable widths, and manages the run-time size
requirements of AXI. Width adaptation for AXI to Avalon interfaces is also supported.

3.1.8.1. Memory-Mapped Width Adapter

The Memory-Mapped Width Adapter is used in the Avalon-ST domain and operates
with information contained in the packet format.

The memory-mapped width adapter accepts packets on its sink interface with one
data width and produces output packets on its source interface with a different data
width. The ratio of the narrow data width must be a power of two, such as 1:4, 1:8,
and 1:16. The ratio of the wider data width to the narrower width must also be a
power of two, such as 4:1, 8:1, and 16:1 These output packets may have a different
size if the input size exceeds the output data bus width, or if data packing is enabled.

When the width adapter converts from narrow data to wide data, each input beat's
data and byte enables are copied to the appropriate segment of the wider output data
and byte enables signals.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

146

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 94. Width Adapter Timing for a 4:1 Adapter
This adapter assumes that the field ordering of the input and output packets is the same, with the only
difference being the width of the data and accompanying byte enable fields. When the width adapter converts
from wide data to narrow data, the narrower data is transmitted over several beats. The first output beat
contains the lowest addressed segment of the input data and byte enables.

Adapter
Input

Adapter
Output

addr_out[7:0]

clock

addr_in[7:0]

wide_data[31:0]

byteenable_in[3:0]

byteenable_out[3:0]

write

narrow_data[7:0]

08

AABBCCDD

C

08 09 0A 0B

0 0 1 1

DD CC BB AA

3.1.8.1.1. AXI Wide-to-Narrow Adaptation

For all cases of AXI wide-to-narrow adaptation, read data is re-packed to match the
original size. Responses are merged, with the following error precedence: DECERR,
SLVERR, OKAY, and EXOKAY.

Table 24. AXI Wide-to-Narrow Adaptation (Downsizing)

Burst Type Behavior

Incrementing If the transaction size is less than or equal to the output width, the burst is unmodified.
Otherwise, it is converted to an incrementing burst with a larger length and size equal to the
output width.
If the resulting burst is unsuitable for the slave, the burst is converted to multiple sequential
bursts of the largest allowable lengths. For example, for a 2:1 downsizing ratio, an INCR9 burst is
converted into INCR16 + INCR2 bursts. This is true if the maximum burstcount a slave can
accept is 16, which is the case for AMBA 3 AXI slaves. Avalon slaves have a maximum burstcount
of 64.

Wrapping If the transaction size is less than or equal to the output width, the burst is unmodified.
Otherwise, it is converted to a wrapping burst with a larger length, with a size equal to the output
width.
If the resulting burst is unsuitable for the slave, the burst is converted to multiple sequential
bursts of the largest allowable lengths; respecting wrap boundaries. For example, for a 2:1
downsizing ratio, a WRAP16 burst is converted into two or three INCR bursts, depending on the
address.

Fixed If the transaction size is less than or equal to the output width, the burst is unmodified.
Otherwise, it is converted into repeated sequential bursts over the same addresses. For example,
for a 2:1 downsizing ratio, a FIXED single burst is converted into an INCR2 burst.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

147

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.8.1.2. AXI Narrow-to-Wide Adaptation

Table 25. AXI Narrow-to-Wide Adaptation (Upsizing)

Burst Type Behavior

Incrementing The burst (and its response) passes through unmodified. Data and write strobes are placed in the
correct output segment.

Wrapping The burst (and its response) passes through unmodified.

Fixed The burst (and its response) passes through unmodified.

3.1.9. Burst Adapter

Platform Designer interconnect uses the memory-mapped burst adapter to
accommodate the burst capabilities of each interface in the system, including
interfaces that do not support burst transfers.

The maximum burst length for each interface is a property of the interface and is
independent of other interfaces in the system. Therefore, a specific master may be
capable of initiating a burst longer than a slave’s maximum supported burst length. In
this case, the burst adapter translates the large master burst into smaller bursts, or
into individual slave transfers if the slave does not support bursting. Until the master
completes the burst, arbiter logic prevents other masters from accessing the target
slave. For example, if a master initiates a burst of 16 transfers to a slave with
maximum burst length of 8, the burst adapter initiates 2 bursts of length 8 to the
slave.

Avalon-MM and AXI burst transactions allow a master uninterrupted access to a slave
for a specified number of transfers. The master specifies the number of transfers when
it initiates the burst. Once a burst begins between a master and slave, arbiter logic is
locked until the burst completes. For burst masters, the length of the burst is the
number of cycles that the master has access to the slave, and the selected arbitration
shares have no effect.

Note: AXI masters can issue burst types that Avalon cannot accept, for example, fixed
bursts. In this case, the burst adapter converts the fixed burst into a sequence of
transactions to the same address.

Note: For AMBA 4 AXI slaves, Platform Designer allows 256-beat INCR bursts. You must
ensure that 256-beat narrow-sized INCR bursts are shortened to 16-beat narrow-sized
INCR bursts for AMBA 3 AXI slaves.

Avalon-MM masters always issue addresses that are aligned to the size of the transfer.
However, when Platform Designer uses a narrow-to-wide width adaptation, the
resulting address may be unaligned. For unaligned addresses, the burst adapter issues
the maximum sized bursts with appropriate byte enables. This brings the burst-in-
progress up to an aligned slave address. Then, it completes the burst on aligned
addresses.

The burst adapter supports variable wrap or sequential burst types to accommodate
different properties of memory-mapped masters. Some bursting masters can issue
more than one burst type.

Burst adaptation is available for Avalon to Avalon, Avalon to AXI, and AXI to Avalon,
and AXI to AXI connections. For information about AXI-to-AXI adaptation, refer to AXI
Wide-to-Narrow Adaptation

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For AMBA 4 AXI to AMBA 3 AXI connections, Platform Designer follows an AMBA 4 AXI
256 burst length to AMBA 3 AXI 16 burst length.

3.1.9.1. Burst Adapter Implementation Options

Platform Designer automatically inserts burst adapters into your system depending on
your master and slave connections, and properties. You can select burst adapter
implementation options on the Interconnect Requirements tab.

To access the implementation options, you must select the Burst adapter
implementation setting for the $system identifier.

• Generic converter (slower, lower area)—Default. Controls all burst
conversions with a single converter that can adapt incoming burst types. This
results in an adapter that has lower fMAX, but smaller area.

• Per-burst-type converter (faster, higher area)—Controls incoming bursts
with a specific converter, depending on the burst type. This results in an adapter
that has higher fMAX, but higher area. This setting is useful when you have AXI
masters or slaves and you want a higher fMAX.

Note: For more information about the Interconnect Requirements tab, refer to Creating a
System with Platform Designer.

Related Information

Creating a System with Platform Designer on page 10

3.1.9.2. Burst Adaptation: AXI to Avalon

Table 26. Burst Adaptation: AXI to Avalon
Entries specify the behavior when converting between AXI and Avalon burst types.

Burst Type Behavior

Incrementing Sequential Slave
Bursts that exceed slave_max_burst_length are converted to multiple sequential bursts
of a length less than or equal to the slave_max_burst_length. Otherwise, the burst is
unconverted. For example, for an Avalon slave with a maximum burst length of 4, an
INCR7 burst is converted to INCR4 + INCR3.
Wrapping Slave
Bursts that exceed the slave_max_burst_length are converted to multiple sequential
bursts of length less than or equal to the slave_max_burst_length. Bursts that exceed
the wrapping boundary are converted to multiple sequential bursts that respect the slave's
wrapping boundary.

Wrapping Sequential Slave
A WRAP burst is converted to multiple sequential bursts. The sequential bursts are less
than or equal to the max_burst_length and respect the transaction's wrapping boundary
Wrapping Slave
If the WRAP transaction's boundary matches the slave's boundary, then the burst passes
through. Otherwise, the burst is converted to sequential bursts that respect both the
transaction and slave wrap boundaries.

Fixed Fixed bursts are converted to sequential bursts of length 1 that repeatedly access the same
address.

Narrow All narrow-sized bursts are broken into multiple bursts of length 1.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

149

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.9.3. Burst Adaptation: Avalon to AXI

Table 27. Burst Adaptation: Avalon to AXI
Entries specify the behavior when converting between Avalon and AXI burst types.

Burst Type Definition

Sequential Bursts of length greater than16 are converted to multiple INCR bursts of a length less than
or equal to16. Bursts of length less than or equal to16 are not converted.

Wrapping Only Avalon masters with alwaysBurstMaxBurst = true are supported. The WRAP
burst is passed through if the length is less than or equal to16. Otherwise, it is converted to
two or more INCR bursts that respect the transaction's wrap boundary.

GENERIC_CONVERTER Controls all burst conversions with a single converter that adapts all incoming burst types,
resulting in an adapter that has smaller area, but lower fMAX.

3.1.10. Waitrequest Allowance Adapter

The Waitrequest Allowance Adapter allows a connection between a master and a slave
interface with different waitrequestAllowance properties.

The Waitrequest Allowance adapter provides the following features:

• The adapter is used in the memory-mapped domain and operates with signals on
the memory-mapped interface.

• Signal widths and all properties other than waitrequestAllowance are identical
on master and slave interfaces.

• The adapter does not modify any command properties such as data width, burst
type, or burst count.

• The adapter is inserted by the Platform Designer interconnect software when a
master and slave with different waitrequestAllowance property are connected.

When the slave has a waitrequestAllowance = n the master must deassert read
or write signals after <n> transfers when waitrequest is asserted.

Table 28. Interconnect Scenarios Requiring waitrequestAllowance

Master (m) / Slave (n)
waitrequestAllowance

Adaptation
Required

Description Adapter Function

m = n No The master waitrequestAllowance
is equal to the slave's
waitrequestAllowance.

All signals are passed through.

m = 0; n > 0 Yes The master cannot send when
waitrequest=1, but holds the value
on the bus. This would result in the
slave receiving multiple copies.
Requires adaptation to prevent.

The adapter deasserts valid when
input waitrequest is asserted.

m < n; m != 0 No The master can send <m> transfers
after waitrequest is asserted. The
slave receives fewer than <n>
transfers, which is acceptable.

All signals are passed through.

m > n; n = 0 Yes The slave cannot accept transfers when
waitrequest is asserted. Transfers
sent when waitrequest=1 can be
lost.

If the input waitrequest is asserted,
the adapter buffers the input data.

continued...

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

150

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Master (m) / Slave (n)
waitrequestAllowance

Adaptation
Required

Description Adapter Function

Prevention requires adaptation in the
form of transfer buffering.

m > n; n > 0 Yes The slave cannot accept more than
<n> transfers after waitrequest is
asserted, however the master can send
up to <m> transfers.
Transfers (<m> – <n>) can be lost.
Prevention requires adaptation in the
form of transfer buffering.

The adapter buffers the input data.

3.1.11. Read and Write Responses

Platform Designer merges write responses if a write is converted (burst adapted) into
multiple bursts. Platform Designer requires read response merging for a downsized
(wide-to-narrow width adapted) read.

Platform Designer merges responses based on the following precedence rule:

DECERR > SLVERR > OKAY > EXOKAY

Adaptation between a master with write responses and a slave without write
responses can be costly, especially if there are multiple slaves, or if the slave supports
bursts. To minimize the cost of logic between slaves, consider placing the slaves that
do not have write responses behind a bridge so that the write response adaptation
logic cost is only incurred once, at the bridge’s slave interface.

The following table describes what happens when there is a mismatch in response
support between the master and slave.

Table 29. Response Support for Mismatched Master and Slave

Slave with Response Slave Without Response

Master with Response Interconnect delivers response from
the slave to the master.
Response merging or duplication may
be necessary for bus sizing.

Interconnect delivers an OKAY
response to the master

Master without Response Master ignores responses from the
slave

No need for responses. Master, slave
and interconnect operate without
response support.

Note: If there is a bridge between the master and the endpoint slave, and the responses
must come from the endpoint slave, ensure that the bridge passes the appropriate
response signals through from the endpoint slave to the master.

If the bridge does not support responses, then the responses are generated by the
interconnect at the slave interface of the bridge, and responses from the endpoint
slave are ignored.

For the response case where the transaction violates security settings or uses an
illegal address, the interconnect routes the transactions to the default slave. For
information about Platform Designer system security, refer to Manage System
Security. For information about specifying a default slave, refer to Error Response
Slave in Platform Designer System Design Components.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Avalon-MM slaves without a response signal are not able to notify a connected
master that a transaction has not completed successfully. As a result, Platform
Designer interconnect generates an OKAY response on behalf of the Avalon-MM slave.

Related Information

• Master Network Interfaces on page 135

• Error Response Slave on page 237

• Error Correction Coding (ECC) in Platform Designer Interconnect on page 188

3.1.12. Platform Designer Address Decoding

Address decoding logic forwards appropriate addresses to each slave.

Address decoding logic simplifies component design in the following ways:

• The interconnect selects a slave whenever it is being addressed by a master. Slave
components do not need to decode the address to determine when they are
selected.

• Slave addresses are properly aligned to the slave interface.

• Changing the system memory map does not involve manually editing HDL.

Figure 95. Address Decoding for One Master and Two Slaves
In this example, Platform Designer generates separate address decoding logic for each master in a system. The
address decoding logic processes the difference between the master address width (<M>) and the individual
slave address widths (<S>) and (<T>). The address decoding logic also maps only the necessary master
address bits to access words in each slave’s address space.

Slave
Port 1
(8-bit)

Slave
Port 2

(32-bit)

address [S..0]

read/write

read/write

address [T..2]

address [M..0]
Address

Decoding
Logic

Master
Port

Platform Designer controls the base addresses with the Base setting of active
components on the System View tab. The base address of a slave component must
be a multiple of the address span of the component. This restriction is part of the
Platform Designer interconnect to allow the address decoding logic to be efficient, and
to achieve the best possible fMAX.

3.2. Avalon Streaming Interfaces

High bandwidth components with streaming data typically use Avalon-ST interfaces for
the high throughput datapath. Streaming interfaces can also use memory-mapped
connection interfaces to provide an access point for control. In contrast to the
memory-mapped interconnect, the Avalon-ST interconnect always creates a point-to-
point connection between a single data source and data sink.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

152

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 96. Memory-Mapped and Avalon-ST Interfaces

In this example, there are the following connection pairs:

• Data source in the Rx Interface transfers data to the data sink in the FIFO.

• Data source in the FIFO transfers data to the Tx Interface data sink.

The memory-mapped interface allows a processor to access the data source, FIFO, or data sink to provide
system control. If your source and sink interfaces have different formats, for example, a 32-bit source and an
8-bit sink, Platform Designer automatically inserts the necessary adapters. You can view the adapters on the
System View tab by clicking System ➤ Show System with Platform Designer Interconnect.

 FIFO

Data
Sink

Data
Source

Data
Source channel

Data Source
(Rx Interface)

Data Sink
(Tx Interface)

Data
Sink

Data
Source

ready
valid

data

ready
valid

data
channel

Control
Slave

Control
Slave

Control
Slave

Processor UART Timer

Control Plane Memory -Mapped Intefaces

Data Plane Avalon-Streaming Interface

RAM

Figure 97. Avalon-ST Connection Between the Source and Sink
This source-sink pair includes only the data signal. The sink must be able to receive data as soon as the
source interface comes out of reset.

Data Source Data Sinkdata

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

153

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 98. Signals Indicating the Start and End of Packets, Channel Numbers, Error
Conditions, and Backpressure
All data transfers using Avalon-ST interconnect occur synchronously on the rising edge of the associated clock
interface. Throughput and frequency of a system depends on the components and how they are connected.

ready

Data Source Data Sink

valid
channel

startof packet
endofpacket

empty
error
data

The IP Catalog includes Avalon-ST components that you can use to create datapaths,
including datapaths whose input and output streams have different properties.
Generated systems that include memory-mapped master and slave components may
also use these Avalon-ST components because Platform Designer generation creates
interconnect with a structure similar to a network topology, as described in Platform
Designer Transformations. The following sections introduce the Avalon-ST
components.

Related Information

Platform Designer Transformations on page 133

3.2.1. Avalon-ST Adapters

Platform Designer automatically adds Avalon-ST adapters between two components
during system generation when it detects mismatched interfaces. If you connect
mismatched Avalon-ST sources and sinks, for example, a 32-bit source and an 8-bit
sink, Platform Designer inserts the appropriate adapter type to connect the
mismatched interfaces.

After generation, you can view the inserted adapters selecting System ➤ Show
System With Platform Designer Interconnect. For each mismatched source-sink
pair, Platform Designer inserts an Avalon-ST Adapter. The adapter instantiates the
necessary adaptation logic as sub-components. You can review the logic for each
adapter instantiation in the Hierarchy view by expanding each adapter's source and
sink interface and comparing the relevant ports. For example, to determine why a
channel adapter is inserted, expand the channel adapter's sink and source interfaces
and review the channel port properties for each interface.

You can turn off the auto-inserted adapters feature by adding the
qsys_enable_avalon_streaming_transform=off command to the
quartus.ini file. When you turn off the auto-inserted adapters feature, if
mismatched interfaces are detected during system generation, Platform Designer does
not insert adapters and reports the mismatched interface with validation error
message.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

154

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The auto-inserted adapters feature does not work for video IP core connections.

3.2.1.1. Avalon-ST Adapter

The Avalon-ST adapter combines the logic of the channel, error, data format, and
timing adapters. The Avalon-ST adapter provides adaptations between interfaces that
have mismatched Avalon-ST endpoints. Based on the source and sink interface
parameterizations for the Avalon-ST adapter, Platform Designer instantiates the
necessary adapter logic (channel, error, data format, or timing) as hierarchal sub-
components.

3.2.1.1.1. Avalon-ST Adapter Parameters Common to Source and Sink Interfaces

Table 30. Avalon-ST Adapter Parameters Common to Source and Sink Interfaces

Parameter Name Description

Symbol Width Width of a single symbol in bits.

Use Packet Indicates whether the source and sink interfaces connected to the adapter's
source and sink interfaces include the startofpacket and endofpacket
signals, and the optional empty signal.

3.2.1.1.2. Avalon-ST Adapter Upstream Source Interface Parameters

Table 31. Avalon-ST Adapter Upstream Source Interface Parameters

Parameter Name Description

Source Data Width Controls the data width of the source interface data port.

Source Top Channel Maximum number of output channels allowed.

Source Channel Port Width Sets the bit width of the source interface channel port. If set to 0, there is no
channel port on the sink interface.

Source Error Port Width Sets the bit width of the source interface error port. If set to 0, there is no
error port on the sink interface.

Source Error Descriptors A list of strings that describe the error conditions for each bit of the source
interface error signal.

Source Uses Empty Port Indicates whether the source interface includes the empty port, and whether the
sink interface should also include the empty port.

Source Empty Port Width Indicates the bit width of the source interface empty port, and sets the bit width
of the sink interface empty port.

Source Uses Valid Port Indicates whether the source interface connected to the sink interface uses the
valid port, and if set, configures the sink interface to use the valid port.

Source Uses Ready Port Indicates whether the sink interface uses the ready port, and if set, configures
the source interface to use the ready port.

Source Ready Latency Specifies what ready latency to expect from the source interface connected to
the adapter's sink interface.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

155

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.1.1.3. Avalon-ST Adapter Downstream Sink Interface Parameters

Table 32. Avalon-ST Adapter Downstream Sink Interface Parameters

Parameter Name Description

Sink Data Width Indicates the bit width of the data port on the sink interface connected to the
source interface.

Sink Top Channel Maximum number of output channels allowed.

Sink Channel Port Width Indicates the bit width of the channel port on the sink interface connected the
source interface.

Sink Error Port Width Indicates the bit width of the error port on the sink interface connected to the
adapter's source interface. If set to zero, there is no error port on the source
interface.

Sink Error Descriptors A list of strings that describe the error conditions for each bit of the error port
on the sink interface connected to the source interface.

Sink Uses Empty Port Indicates whether the sink interface connected to the source interface uses the
empty port, and whether the source interface should also use the empty port.

Sink Empty Port Width Indicates the bit width of the empty port on the sink interface connected to the
source interface, and configures a corresponding empty port on the source
interface.

Sink Uses Valid Port Indicates whether the sink interface connected to the source interface uses the
valid port, and if set, configures the source interface to use the valid port.

Sink Uses Ready Port Indicates whether the ready port on the sink interface is connected to the
source interface , and if set, configures the sink interface to use the ready port.

Sink Ready Latency Specifies what ready latency to expect from the source interface connected to
the sink interface.

3.2.1.2. Channel Adapter

The channel adapter provides adaptations between interfaces that have different
channel signal widths.

Table 33. Channel Adapter Adaptations

Condition Description of Adapter Logic

The source uses channels, but the
sink does not.

Platform Designer gives a warning at generation time. The adapter provides a
simulation error and signals an error for data for any channel from the source other
than 0.

The sink has channel, but the
source does not.

Platform Designer gives a warning at generation time, and the channel inputs to the
sink are all tied to a logical 0.

The source and sink both support
channels, and the source's
maximum channel number is less
than the sink's maximum channel
number.

The source's channel is connected to the sink's channel unchanged. If the sink's
channel signal has more bits, the higher bits are tied to a logical 0.

The source and sink both support
channels, but the source's
maximum channel number is
greater than the sink's maximum
channel number.

The source’s channel is connected to the sink’s channel unchanged. If the source’s
channel signal has more bits, the higher bits are left unconnected. Platform Designer
gives a warning that channel information may be lost.
An adapter provides a simulation error message and an error indication if the value
of channel from the source is greater than the sink's maximum number of channels.
In addition, the valid signal to the sink is deasserted so that the sink never sees
data for channels that are out of range.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

156

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.1.2.1. Avalon-ST Channel Adapter Input Interface Parameters

Table 34. Avalon-ST Channel Adapter Input Interface Parameters

Parameter Name Description

Channel Signal Width (bits) Width of the input channel signal in bits

Max Channel Maximum number of input channels allowed.

3.2.1.2.2. Avalon-ST Channel Adapter Output Interface Parameters

Table 35. Avalon-ST Channel Adapter Output Interface Parameters

Parameter Name Description

Channel Signal Width (bits) Width of the output channel signal in bits.

Max Channel Maximum number of output channels allowed.

3.2.1.2.3. Avalon-ST Channel Adapter Common to Input and Output Interface Parameters

Table 36. Avalon-ST Channel Adapter Common to Input and Output Interface
Parameters

Parameter Name Description

Data Bits Per Symbol Number of bits for each symbol in a transfer.

Include Packet Support When the Avalon-ST Channel adapter supports packets, the
startofpacket, endofpacket, and optional empty signals
are included on its sink and source interfaces.

Include Empty Signal Indicates whether an empty signal is required.

Data Symbols Per Beat Number of symbols per transfer.

Support Backpressure with the ready signal Indicates whether a ready signal is required.

Ready Latency Specifies the ready latency to expect from the sink connected
to the module's source interface.

Error Signal Width (bits) Bit width of the error signal.

Error Signal Description A list of strings that describes what each bit of the error
signal represents.

3.2.1.3. Data Format Adapter

The data format adapter allows you to connect interfaces that have different values for
the parameters defining the data signal, or interfaces where the source does not use
the empty signal, but the sink does use the empty signal. One of the most common
uses of this adapter is to convert data streams of different widths.

Table 37. Data Format Adapter Adaptations

Condition Description of Adapter Logic

The source and sink’s bits per symbol
parameters are different.

The connection cannot be made.

The source and sink have a different
number of symbols per beat.

The adapter converts the source's width to the sink’s width.

continued...

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

157

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Condition Description of Adapter Logic

If the adaptation is from a wider to a narrower interface, a beat of data at the
input corresponds to multiple beats of data at the output. If the input error
signal is asserted for a single beat, it is asserted on output for multiple beats.
If the adaptation is from a narrow to a wider interface, multiple input beats are
required to fill a single output beat, and the output error is the logical OR of the
input error signal.

The source uses the empty signal, but
the sink does not use the empty
signal.

Platform Designer cannot make the connection.

Figure 99. Avalon Streaming Interconnect with Data Format Adapter
In this example, the data format adapter allows a connection between a 128-bit output data stream and three
32-bit input data streams.

128-Bit RX
Interface

32-Bit TX
Interface

32-Bit TX
Interface

32-Bit TX
Interface

128 Bits

128 Bits

128 Bits

Data
Format
Adapter

Data
Format
Adapter

Data
Format
Adapter

32 Bits

32 Bits

32 Bits

128 Bits

3.2.1.3.1. Avalon-ST Data Format Adapter Input Interface Parameters

Table 38. Avalon-ST Data Format Adapter Input Interface Parameters

Parameter Name Description

Data Symbols Per Beat Number of symbols per transfer.

Include Empty Signal Indicates whether an empty signal is required.

3.2.1.3.2. Avalon-ST Data Format Adapter Output Interface Parameters

Table 39. Avalon-ST Data Format Adapter Output Interface Parameters

Parameter Name Description

Data Symbols Per Beat Number of symbols per transfer.

Include Empty Signals Indicates whether an empty signal is required.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

158

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.1.3.3. Avalon-ST Data Format Adapter Common to Input and Output Interface
Parameters

Table 40. Avalon-ST Data Format Adapter Common to Input and Output Interface
Parameters

Parameter Name Description

Data Bits Per Symbol Number of bits for each symbol in a transfer.

Include Packet Support When the Avalon-ST Data Format adapter supports packets, Platform Designer
uses startofpacket, endofpacket, and empty signals.

Channel Signal Width (bits) Width of the output channel signal in bits.

Max Channel Maximum number of channels allowed.

Read Latency Specifies the ready latency to expect from the sink connected to the module's
source interface.

Error Signal Width (bits) Width of the error signal output in bits.

Error Signal Description A list of strings that describes what each bit of the error signal represents.

3.2.1.4. Error Adapter

The error adapter ensures that per-bit-error information provided by the source
interface is correctly connected to the sink interface’s input error signal. Error
conditions that both source and sink can process are connected. If the source has an
error signal representing an error condition that is not supported by the sink, the
signal is left unconnected; the adapter provides a simulation error message and an
error indication if the error is asserted. If the sink has an error condition that is not
supported by the source, the sink's input error bit corresponding to that condition is
set to 0.

Note: The output interface error signal descriptor accepts an error set with an other
descriptor. Platform Designer assigns the bit-wise ORing of all input error bits that are
unmatched, to the output interface error bits set with the other descriptor.

3.2.1.4.1. Avalon-ST Error Adapter Input Interface Parameters

Table 41. Avalon-ST Error Adapter Input Interface Parameters

Parameter Name Description

Error Signal Width (bits) The width of the error signal. Valid values are 0–256 bits. Type 0 if the error
signal is not used.

Error Signal Description The description for each of the error bits. If scripting, separate the description
fields by commas. For a successful connection, the description strings of the
error bits in the source and sink must match and are case sensitive.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

159

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.1.4.2. Avalon-ST Error Adapter Output Interface Parameters

Table 42. Avalon-ST Error Adapter Output Interface Parameters

Parameter Name Description

Error Signal Width (bits) The width of the error signal. Valid values are 0–256 bits. Type 0 if you do not
need to send error values.

Error Signal Description The description for each of the error bits. Separate the description fields by
commas. For successful connection, the description of the error bits in the source
and sink must match, and are case sensitive.

3.2.1.4.3. Avalon-ST Error Adapter Common to Input and Output Interface Parameters

Table 43. Avalon-ST Error Adapter Common to Input and Output Interface Parameters

Parameter Name Description

Support Backpressure with the ready signal Turn on this option to add the backpressure functionality to
the interface.

Ready Latency When the ready signal is used, the value for
ready_latency indicates the number of cycles between
when the ready signal is asserted and when valid data is
driven.

Channel Signal Width (bits) The width of the channel signal. A channel width of 4 allows
up to 16 channels. The maximum width of the channel
signal is eight bits. Set to 0 if channels are not used.

Max Channel The maximum number of channels that the interface
supports. Valid values are 0–255.

Data Bits Per Symbol Number of bits per symbol.

Data Symbols Per Beat Number of symbols per active transfer.

Include Packet Support Turn on this option if the connected interfaces support a
packet protocol, including the startofpacket,
endofpacket and empty signals.

Include Empty Signal Turn this option on if the cycle that includes the
endofpacket signal can include empty symbols. This signal
is not necessary if the number of symbols per beat is 1.

3.2.1.5. Timing Adapter

The timing adapter allows you to connect component interfaces that require a different
number of cycles before driving or receiving data. This adapter inserts a FIFO buffer
between the source and sink to buffer data or pipeline stages to delay the back-
pressure signals. You can also use the timing adapter to connect interfaces that
support the ready signal, and those that do not. The timing adapter treats all signals
other than the ready and valid signals as payload, and simply drives them from the
source to the sink.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

160

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 44. Timing Adapter Adaptations

Condition Adaptation

The source has ready, but the
sink does not.

In this case, the source can respond to backpressure, but the sink never needs to
apply it. The ready input to the source interface is connected directly to logical 1.

The source does not have ready,
but the sink does.

The sink may apply backpressure, but the source is unable to respond to it. There
is no logic that the adapter can insert that prevents data loss when the source asserts
valid but the sink is not ready. The adapter provides simulation time error messages
if data is lost. The user is presented with a warning, and the connection is allowed.

The source and sink both support
backpressure, but the sink’s ready
latency is greater than the
source's.

The source responds to ready assertion or deassertion faster than the sink requires
it. The number of pipeline stages equal to the difference in ready latency are inserted
in the ready path from the sink back to the source, causing the source and the sink
to see the same cycles as ready cycles.

The source and sink both support
backpressure, but the sink’s ready
latency is less than the source's.

The source cannot respond to ready assertion or deassertion in time to satisfy the
sink. A FIFO whose depth is equal to the difference in ready latency is inserted to
compensate for the source’s inability to respond in time.

3.2.1.5.1. Avalon-ST Timing Adapter Input Interface Parameters

Table 45. Avalon-ST Timing Adapter Input Interface Parameters

Parameter Name Description

Support Backpressure with the ready signal Indicates whether a ready signal is required.

Read Latency Specifies the ready latency to expect from the sink connected
to the module's source interface.

Include Valid Signal Indicates whether the sink interface requires a valid signal.

3.2.1.5.2. Avalon-ST Timing Adapter Output Interface Parameters

Table 46. Avalon-ST Timing Adapter Output Interface Parameters

Parameter Name Description

Support Backpressure with the ready signal Indicates whether a ready signal is required.

Read Latency Specifies the ready latency to expect from the sink connected
to the module's source interface.

Include Valid Signal Indicates whether the sink interface requires a valid signal.

3.2.1.5.3. Avalon-ST Timing Adapter Common to Input and Output Interface Parameters

Table 47. Avalon-ST Timing Adapter Common to Input and Output Interface
Parameters

Parameter Name Description

Data Bits Per Symbol Number of bits for each symbol in a transfer.

Include Packet Support Turn this option on if the connected interfaces support a
packet protocol, including the startofpacket,
endofpacket and empty signals.

Include Empty Signal Turn this option on if the cycle that includes the
endofpacket signal can include empty symbols. This signal
is not necessary if the number of symbols per beat is 1.

Data Symbols Per Beat Number of symbols per active transfer.

continued...

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

161

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Name Description

Channel Signal Width (bits) Width of the output channel signal in bits.

Max Channel Maximum number of output channels allowed.

Error Signal Width (bits) Width of the output error signal in bits.

Error Signal Description A list of strings that describes errors.

3.3. Interrupt Interfaces

Using individual requests, the interrupt logic can process up to 32 IRQ inputs
connected to each interrupt receiver. With this logic, the interrupt sender connected to
interrupt receiver_0 is the highest priority with sequential receivers being
successively lower priority. You can redefine the priority of interrupt senders by
instantiating the IRQ mapper component. For more information refer to IRQ Mapper.

You can define the interrupt sender interface as asynchronous with no associated clock
or reset interfaces. You can also define the interrupt receiver interface as
asynchronous with no associated clock or reset interfaces. As a result, the receiver
does its own synchronization internally. Platform Designer does not insert interrupt
synchronizers for such receivers.

For clock crossing adaption on interrupts, Platform Designer inserts a synchronizer,
which is clocked with the interrupt end point interface clock when the corresponding
starting point interrupt interface has no clock or a different clock (than the end point).
Platform Designer inserts the adapter if there is any kind of mismatch between the
start and end points. Platform Designer does not insert the adapter if the interrupt
receiver does not have an associated clock.

Related Information

IRQ Mapper on page 164

3.3.1. Individual Requests IRQ Scheme

In the individual requests IRQ scheme, Platform Designer interconnect passes IRQs
directly from the sender to the receiver, without making assumptions about IRQ
priority. If multiple senders assert their IRQs simultaneously, the receiver logic
determines which IRQ has highest priority, and then responds appropriately.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

162

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 100. Interrupt Controller Mapping IRQs
Using individual requests, the interrupt controller can process up to 32 IRQ inputs. The interrupt controller
generates a 32-bit signal irq[31:0] to the receiver, and maps slave IRQ signals to the bits of irq[31:0].
Any unassigned bits of irq[31:0] are disabled.

irq0
irq1
irq2

irq4
irq5
irq6

irq3

irq31

Sender
1

Sender
2

Sender
3

Sender
4

Interrupt
Controller

irq

irq

irq

irq

Receiver

3.3.2. Assigning IRQs in Platform Designer

You assign IRQ connections on the System View tab of Platform Designer. After
adding all components to the system, you connect interrupt senders and receivers.
You can use the IRQ column to specify an IRQ number with respect to each receiver,
or to specify a receiver's IRQ as unconnected. Platform Designer uses the following
three components to implement interrupt handling: IRQ Bridge, IRQ Mapper, and IRQ
Clock Crosser.

3.3.2.1. IRQ Bridge

The IRQ Bridge allows you to route interrupt wires between Platform Designer
subsystems.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

163

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 101. Platform Designer IRQ Bridge Application
The peripheral subsystem example below has three interrupt senders that are exported to the to- level of the
subsystem. The interrupts are then routed to the CPU subsystem using the IRQ bridge.

3-bit bus

4-bit bus

 IRQ Bridge
IR

IS

 Interrupt
 Sender 1

IS

 Interrupt
 Sender 2

IS

 Interrupt
 Sender 3

IS
 Interrupt
 Sender 4 IS

export export export

export

IR

 Nios II
ProcessorCPU Subsystem

Peripheral Subsystem

Top-Level Platform Designer System

IS Interrupt Sender IR Interrupt Receiver

Note: Nios II BSP tools support the IRQ Bridge. Interrupts connected via an IRQ Bridge
appear in the generated system.h file. You can use the following properties with the
IRQ Bridge, which do not effect Platform Designer interconnect generation. Platform
Designer uses these properties to generate the correct IRQ information for
downstream tools:

• set_interface_property <sender port> bridgesToReceiver
<receiver port>— The <sender port> of the IP generates a signal that is
received on the IP's <receiver port>. Sender ports are single bits. Receivers ports
can be multiple bits. Platform Designer requires the bridgedReceiverOffset
property to identify the <receiver port> bit that the <sender port> sends.

• set_interface_property <sender port> bridgedReceiverOffset
<port number>— Indicates the <port number> of the receiver port that the
<sender port> sends.

3.3.2.2. IRQ Mapper

Platform Designer inserts the IRQ Mapper automatically during generation. The IRQ
Mapper converts individual interrupt wires to a bus, and then maps the appropriate
IRQ priority number onto the bus.

By default, the interrupt sender connected to the receiver0 interface of the IRQ
mapper is the highest priority, and sequential receivers are successively lower priority.
You can modify the interrupt priority of each IRQ wire by modifying the IRQ priority
number in Platform Designer under the IRQ column. The modified priority is reflected
in the IRQ_MAP parameter for the auto-inserted IRQ Mapper.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

164

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 102. IRQ Column in Platform Designer
Circled in the IRQ column are the default interrupt priorities allocated for the CPU subsystem.

Related Information

IRQ Bridge on page 163

3.3.2.3. IRQ Clock Crosser

The IRQ Clock Crosser synchronizes interrupt senders and receivers that are in
different clock domains. To use this component, connect the clocks for both the
interrupt sender and receiver, and for both the interrupt sender and receiver
interfaces. Platform Designer automatically inserts this component when it is required.

3.4. Clock Interfaces

Clock interfaces define the clocks used by a component. Components can have clock
inputs, clock outputs, or both. To update the clock frequency of the component, use
the Parameters tab for the clock source.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

165

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Clock Source parameters allows you to set the following options:

• Clock frequency—The frequency of the output clock from this clock source.

• Clock frequency is known— When turned on, the clock frequency is known.
When turned off, the frequency is set from outside the system.

Note: If turned off, system generation may fail because the components do not
receive the necessary clock information. For best results, turn this option on
before system generation.

• Reset synchronous edges

— None—The reset is asserted and deasserted asynchronously. You can use this
setting if you have internal synchronization circuitry that matches the reset
required for the IP in the system.

— Both—The reset is asserted and deasserted synchronously.

— Deassert—The reset is deasserted synchronously and asserted
asynchronously.

For more information about synchronous design practices, refer to Recommended
Design Practices

Related Information

Recommended Design Practices

3.4.1. (High Speed Serial Interface) HSSI Clock Interfaces

You can use HSSI Serial Clock and HSSI Bonded Clock interfaces in Platform Designer
to enable high speed serial connectivity between clocks that are used by certain IP
protocols.

3.4.1.1. HSSI Serial Clock Interface

You can connect the HSSI Serial Clock interface with only similar type of interfaces, for
example, you can connect a HSSI Serial Clock Source interface to a HSSI Serial Clock
Sink interface.

3.4.1.1.1. HSSI Serial Clock Source

The HSSI Serial Clock interface includes a source in the Start direction.

You can instantiate the HSSI Serial Clock Source interface in the _hw.tcl file as:

add_interface <name> hssi_serial_clock start

You can connect the HSSI Serial Clock Source to multiple HSSI Serial Clock Sinks
because the HSSI Serial Clock Source supports multiple fan-outs. This Interface has a
single clk port role limited to a 1 bit width, and a clockRate parameter, which is the
frequency of the clock driven by the HSSI Serial Clock Source interface.

An unconnected and unexported HSSI Serial Source is valid and does not generate
error messages.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

166

https://www.intel.com/content/www/us/en/docs/programmable/683082/current/recommended-design-practices.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 48. HSSI Serial Clock Source Port Roles

Name Direction Width Description

clk Output 1 bit A single bit wide port role, which provides synchronization for internal logic.

Table 49. HSSI Serial Clock Source Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven byte HSSI Serial Clock Source
interface.

3.4.1.1.2. HSSI Serial Clock Sink

The HSSI Serial Clock interface includes a sink in the End direction.

You can instantiate the HSSI Serial Clock Sink interface in the _hw.tcl file as:

add_interface <name> hssi_serial_clock end

You can connect the HSSI Serial Clock Sink interface to a single HSSI Serial Clock
Source interface; you cannot connect it to multiple sources. This Interface has a single
clk port role limited to a 1 bit width, and a clockRate parameter, which is the
frequency of the clock driven by the HSSI Serial Clock Source interface.

An unconnected and unexported HSSI Serial Sink is invalid and generates error
messages.

Table 50. HSSI Serial Clock Sink Port Roles

Name Direction Width Description

clk Output 1 A single bit wide port role, which provides synchronization for internal logic

Table 51. HSSI Serial Clock Sink Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven by the HSSI Serial Clock Source
interface. When you specify a clockRate greater than 0, then this
interface can be driven only at that rate.

3.4.1.1.3. HSSI Serial Clock Connection

The HSSI Serial Clock Connection defines a connection between a HSSI Serial Clock
Source connection point, and a HSSI Serial Clock Sink connection point.

A valid HSSI Serial Clock Connection exists when all the following criteria are satisfied.
If the following criteria are not satisfied, Platform Designer generates error messages
and the connection is prohibited.

• The starting connection point is an HSSI Serial Clock Source with a single port role
clk and maximum 1 bit in width. The direction of the starting port is Output.

• The ending connection point is an HSSI Serial Clock Sink with a single port role
clk, and maximum 1 bit in width. The direction of the ending port is Input.

• If the parameter, clockRate of the HSSI Serial Clock Sink is greater than 0, the
connection is only valid if the clockRate of the HSSI Serial Clock Source is the
same as the clockRate of the HSSI Serial Clock Sink.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4.1.1.4. HSSI Serial Clock Example

Example 5. HSSI Serial Clock Interface Example

You can make connections to declare the HSSI Serial Clock interfaces in the _hw.tcl.

package require -exact qsys 14.0

set_module_property name hssi_serial_component
set_module_property ELABORATION_CALLBACK elaborate

add_fileset QUARTUS_SYNTH QUARTUS_SYNTH generate
add_fileset SIM_VERILOG SIM_VERILOG generate
add_fileset SIM_VHDL SIM_VHDL generate

set_fileset_property QUARTUS_SYNTH TOP_LEVEL \
"hssi_serial_component"

set_fileset_property SIM_VERILOG TOP_LEVEL "hssi_serial_component"
set_fileset_property SIM_VHDL TOP_LEVEL "hssi_serial_component"

proc elaborate {} {
 # declaring HSSI Serial Clock Source
 add_interface my_clock_start hssi_serial_clock start
 set_interface_property my_clock_start ENABLED true

 add_interface_port my_clock_start hssi_serial_clock_port_out \
 clk Output 1

 # declaring HSSI Serial Clock Sink
 add_interface my_clock_end hssi_serial_clock end
 set_interface_property my_clock_end ENABLED true

 add_interface_port my_clock_end hssi_serial_clock_port_in clk \
 Input 1
}

proc generate { output_name } {

 add_fileset_file hssi_serial_component.v VERILOG PATH \
 "hssi_serial_component.v"
}

Example 6. HSSI Serial Clock Instantiated in a Composed Component

If you use the components in a hierarchy, for example, instantiated in a composed
component, you can declare the connections as illustrated in this example.

add_instance myinst1 hssi_serial_component
add_instance myinst2 hssi_serial_component
add connection from source of myinst1 to sink of myinst2

add_connection myinst1.my_clock_start myinst2.my_clock_end \
hssi_serial_clock

adding connection from source of myinst2 to sink of myinst1

add_connection myinst2.my_clock_start myinst2.my_clock_end \
hssi_serial_clock

3.4.1.2. HSSI Bonded Clock Interface

You can connect the HSSI Bonded Clock interface only with similar type of interfaces,
for example, you can connect a HSSI Bonded Clock Source interface to a HSSI Bonded
Clock Sink interface.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

168

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4.1.2.1. HSSI Bonded Clock Source

The HSSI Bonded Clock interface includes a source in the Start direction.

You can instantiate the HSSI Bonded Clock Source interface in the _hw.tcl file as:

add_interface <name> hssi_bonded_clock start

You can connect the HSSI Bonded Clock Source to multiple HSSI Bonded Clock Sinks
because the HSSI Serial Clock Source supports multiple fanouts. This Interface has a
single clk port role limited to a width range of 1 to 1024 bits. The HSSI Bonded Clock
Source interface has two parameters: clockRate and serializationFactor.
clockRate is the frequency of the clock driven by the HSSI Bonded Clock Source
interface, and the serializationFactor is the parallel data width that operates the
HSSI TX serializer. The serialization factor determines the required frequency and
phases of the individual clocks within the HSSI Bonded Clock interface

An unconnected and unexported HSSI Bonded Source is valid, and does not generate
error messages.

Table 52. HSSI Bonded Clock Source Port Roles

Name Direction Width Description

clk Output 1 to 24 bits A multiple bit wide port role which provides synchronization for internal
logic.

Table 53. HSSI Bonded Clock Source Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven byte HSSI Serial Clock Source
interface.

serializatio
n

long 0 No The serialization factor is the parallel data width that operates the
HSSI TX serializer. The serialization factor determines the
necessary frequency and phases of the individual clocks within the
HSSI Bonded Clock interface.

3.4.1.2.2. HSSI Bonded Clock Sink

The HSSI Bonded Clock interface includes a sink in the End direction.

You can instantiate the HSSI Bonded Clock Sink interface in the _hw.tcl file as:

add_interface <name> hssi_bonded_clock end

You can connect the HSSI Bonded Clock Sink interface to a single HSSI Bonded Clock
Source interface; you cannot connect it to multiple sources. This Interface has a single
clk port role limited to a width range of 1 to 1024 bits. The HSSI Bonded Clock Source
interface has two parameters: clockRate and serialzationFactor. clockRate is the
frequency of the clock driven by the HSSI Bonded Clock Source interface, and the
serialization factor is the parallel data width that operates the HSSI TX serializer. The
serialization factor determines the required frequency and phases of the individual
clocks within the HSSI Bonded Clock interface

An unconnected and unexported HSSI Bonded Sink is invalid and generates error
messages.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 54. HSSI Bonded Clock Source Port Roles

Name Direction Width Description

clk Output 1 to 24 bits A multiple bit wide port role which provides synchronization for internal
logic.

Table 55. HSSI Bonded Clock Source Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven byte HSSI Serial Clock Source
interface.

serializatio
n

long 0 No The serialization factor is the parallel data width that operates the
HSSI TX serializer. The serialization factor determines the
necessary frequency and phases of the individual clocks within the
HSSI Bonded Clock interface.

3.4.1.2.3. HSSI Bonded Clock Connection

The HSSI Bonded Clock Connection defines a connection between a HSSI Bonded
Clock Source connection point, and a HSSI Bonded Clock Sink connection point.

A valid HSSI Bonded Clock Connection exists when all the following criteria are
satisfied. If the following criteria are not satisfied, Platform Designer generates error
messages and the connection is prohibited.

• The starting connection point is an HSSI Bonded Clock Source with a single port
role clk with a width range of 1 to 24 bits. The direction of the starting port is
Output.

• The ending connection point is an HSSI Bonded Clock Sink with a single port role
clk with a width range of 1 to 24 bits. The direction of the ending port is Input.

• The width of the starting connection point clk must be the same as the width of
the ending connection point.

• If the parameter, clockRate of the HSSI Bonded Clock Sink greater than 0, then
the connection is only valid if the clockRate of the HSSI Bonded Clock Source is
same as the clockRate of the HSSI Bonded Clock Sink.

• If the parameter, serializationFactor of the HSSI Bonded Clock Sink is greater
than 0, Platform Designer generates a warning if the serializationFactor of HSSI
Bonded Clock Source is not same as the serializationFactor of the HSSI Bonded
Clock Sink.

3.4.1.2.4. HSSI Bonded Clock Example

Example 7. HSSI Bonded Clock Interface Example

You can make connections to declare the HSSI Bonded Clock interfaces in the _hw.tcl
file.

package require -exact qsys 14.0

set_module_property name hssi_bonded_component
set_module_property ELABORATION_CALLBACK elaborate

add_fileset synthesis QUARTUS_SYNTH generate
add_fileset verilog_simulation SIM_VERILOG generate

set_fileset_property synthesis TOP_LEVEL "hssi_bonded_component"

set_fileset_property verilog_simulation TOP_LEVEL \

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

"hssi_bonded_component"

proc elaborate {} {
 add_interface my_clock_start hssi_bonded_clock start
 set_interface_property my_clock_start ENABLED true

 add_interface_port my_clock_start hssi_bonded_clock_port_out \
 clk Output 1024

 add_interface my_clock_end hssi_bonded_clock end
 set_interface_property my_clock_end ENABLED true

 add_interface_port my_clock_end hssi_bonded_clock_port_in \
 clk Input 1024
}

proc generate { output_name } {
 add_fileset_file hssi_bonded_component.v VERILOG PATH \
 "hssi_bonded_component.v"}

If you use the components in a hierarchy, for example, instantiated in a composed
component, you can declare the connections as illustrated in this example.

Example 8. HSII Bonded Clock Instantiated in a Composed Component

add_instance myinst1 hssi_bonded_component
add_instance myinst2 hssi_bonded_component
add connection from source of myinst1 to sink of myinst2

add_connection myinst1.my_clock_start myinst2.my_clock_end \
hssi_bonded_clock

adding connection from source of myinst2 to sink of myinst1

add_connection myinst2.my_clock_start myinst2.my_clock_end \
hssi_bonded_clock

3.5. Reset Interfaces

Reset interfaces provide both soft and hard reset functionality. Soft reset logic
typically re-initializes registers and memories without powering down the device. Hard
reset logic initializes the device after power-on. You can define separate reset sources
for each clock domain, a single reset source for all clocks, or any combination in
between.

You can choose to create a single global reset domain by selecting Create Global
Reset Network on the System menu. If your design requires more than one reset
domain, you can implement your own reset logic and connectivity. The IP Catalog
includes a reset controller, reset sequencer, and a reset bridge to implement the reset
functionality. You can also design your own reset logic.

Note: If you design your own reset circuitry, you must carefully consider situations which
may result in system lockup. For example, if an Avalon-MM slave is reset in the middle
of a transaction, the Avalon-MM master may lockup.

Related Information

Specifying Interconnect Requirements on page 39

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

171

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.1. Single Global Reset Signal Implemented by Platform Designer

When you select System ➤ Create Global Reset Network, the Platform Designer
interconnect creates a global reset bus. All the reset requests are ORed together,
synchronized to each clock domain, and fed to the reset inputs. The duration of the
reset signal is at least one clock period.

The Platform Designer interconnect inserts the system-wide reset under the following
conditions:

• The global reset input to the Platform Designer system is asserted.

• Any component asserts its resetrequest signal.

3.5.2. Reset Controller

Platform Designer automatically inserts a reset controller block if the input reset
source does not have a reset request, but the connected reset sink requires a reset
request.

The Reset Controller has the following parameters that you can specify to customize
its behavior:

• Number of inputs— Indicates the number of individual reset interfaces the
controller ORs to create a signal reset output.

• Output reset synchronous edges—Specifies the level of synchronization. You
can select one the following options:

— None—The reset is asserted and deasserted asynchronously. You can use this
setting if you have designed internal synchronization circuitry that matches
the reset style required for the IP in the system.

— Both—The reset is asserted and deasserted synchronously.

— Deassert—The reset is deasserted synchronously and asserted
asynchronously.

• Synchronization depth—Specifies the number of register stages the
synchronizer uses to eliminate the propagation of metastable events.

• Reset request—Enables reset request generation, which is an early signal that is
asserted before reset assertion. The reset request is used by blocks that require
protection from asynchronous inputs, for example, M20K blocks.

Platform Designer automatically inserts reset synchronizers under the following
conditions:

• More than one reset source is connected to a reset sink

• There is a mismatch between the reset source’s synchronous edges and the reset
sinks’ synchronous edges

3.5.3. Reset Bridge

The Reset Bridge allows you to use a reset signal in two or more subsystems of your
Platform Designer system. You can connect one reset source to local components, and
export one or more to other subsystems, as required.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

172

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Reset Bridge parameters are used to describe the incoming reset and include the
following options:

• Active low reset—When turned on, reset is asserted low.

• Synchronous edges—Specifies the level of synchronization and includes the
following options:

— None—The reset is asserted and deasserted asynchronously. Use this setting
if you have internal synchronization circuitry.

— Both—The reset is asserted and deasserted synchronously.

— Deassert—The reset is deasserted synchronously, and asserted
asynchronously.

• Number of reset outputs—The number of reset interfaces that are exported.

Note: Platform Designer supports multiple reset sink connections to a single reset source
interface. However, there are situations in composed systems where an internally
generated reset must be exported from the composed system in addition to being
used to connect internal components. In this situation, you must declare one reset
output interface as an export, and use another reset output to connect internal
components.

3.5.4. Reset Sequencer

The Reset Sequencer allows you to control the assertion and deassertion sequence for
Platform Designer system resets.

The Parameter Editor displays the expected assertion and deassertion sequences
based on the current settings. You can connect multiple reset sources to the reset
sequencer, and then connect the outputs of the Reset Sequencer to components in the
system.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 103. Elements and Flow of a Reset Sequencer

CSR

Sync
Sync
Sync
Sync

Reset
Controller

Main
FSM

ASRT SEQ

DSRT SEQ
RESET_OUT

Deglitch
Deglitch
Deglitch
Deglitch

Avalon
Interface

reset_in0
reset_in1
reset_in2
reset_in M

reset_dsrt_qual0
reset_dsrt_qual1
reset_dsrt_qual2
reset_dsrt_qual N

reset_in_sync

assrt_en

reset_logging
CSR_CONTROL(csr_*)
CSR_MASK/PVR

enable
done
enable
done

set_reset[N :0]

dr_reset[N :0]

reset_out0
reset_out1
reset_out2
reset_out N

Reset Sequencer

Parameter:
DSRT_QUALCNT_(0:N)

Parameter:
MIN_ASRT_TIME

Parameter:
ASRT_DELAY(0:N)

Parameter:
DSRT_DELAY(0:N)
ENABLE_DEASSERTION_INPUT_QUAL(0:N)

Reset Controller—Reused reset controller block. It synchronizes the reset inputs into one and feeds into the main FSM of the sequencer block.
Sync—Synchronization block (double flipflop).
Deglitch—Deglitch block. This block waits for a signal to be at a level for X clocks before propagating the input to the output.
CSR—This block contains the CSR Avalon interface and related CSR register and control block in the sequencer.
Main FSM—Main sequencer. This block determines when assertion/deassertion and assertion hold timing occurs.
[A/D]SRT SEQ—Generic sequencer block that sequences out assertion/deassertion of reset from 0:N. The block has multiple counters that saturate
upon reaching count.
RESET_OUT—Controls the end output via:
– Set/clear from the ASRT_SEQ/DSRT_SEQ.
– Masking/forcing from CSR controls.
– Remap of numbering (parameterization).

3.5.4.1. Reset Sequencer Parameters

Table 56. Reset Sequencer Parameters

Parameter Description

Number of reset outputs Sets the number of output resets to be sequenced, which is the number of output reset
signals defined in the component with a range of 2 to 10.

Number of reset inputs Sets the number of input reset signals to be sequenced, which is the number of input
reset signals defined in the component with a range of 1 to 10.

Minimum reset assertion time Specifies the minimum assertion cycles between the assertion of the last sequenced
reset, and the deassertion of the first sequenced reset. The range is 0 to 1023.

Enable Reset Sequencer CSR Enables CSR functionality of the Reset Sequencer through an Avalon interface.

reset_out# Lists the reset output signals. Set the parameters in the other columns for each reset
signal in the table.

ASRT Seq# Determines the order of reset assertion. Enter the values 1, 2, 3, etc. to specify the
required non-overlapping assertion order. This value determines the ASRT_REMAP
value in the component HDL.

ASRT Cycle# Number of cycles to wait before assertion of the reset. The value set here corresponds
to the ASRT_DELAY value in the component HDL. The range is 0 to 1023.

continued...

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

174

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

DSRT Seq# Determines the reset order of reset deassertion. Enter the values 1, 2, 3, etc. to
specify the required non-overlapping deassertion order. This value determines the
DSRT_REMAP value in the component HDL.

DSRT Cycle#/Deglitch# Number of cycles to wait before deasserting or deglitching the reset. If the
USE_DRST_QUAL parameter is set to 0, specifies the number of cycles to wait before
deasserting the reset. If USE_DSRT_QUAL is set to1, specifies the number of cycles
to deglitch the input reset_dsrt_qual signal. This value determines either the
DSRT_DELAY, or the DSRT_QUALCNT value in the component HDL, depending on the
USE_DSRT_QUAL parameter setting. The range is 0 to 1023.

USE_DSRT_QUAL If you set USE_DSRT_QUAL to 1, the deassertion sequence waits for an external
input signal for sequence qualification instead of waiting for a fixed delay count. To use
a fixed delay count for deassertion, set this parameter to 0.

3.5.4.2. Reset Sequencer Timing Diagrams

Figure 104. Basic Sequencing

Figure 105. Sequencing with USE_DSRT_QUAL Set

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

175

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.4.3. Reset Sequencer CSR Registers

The Reset Sequencer's CSR registers provide the following functionality:

• Support reset logging

— Ability to identify which reset is asserted.

— Ability to determine whether any reset is currently active.

• Support software triggered resets

— Ability to generate reset by writing to the register.

— Ability to disable assertion or deassertion sequence.

• Support software sequenced reset

— Ability for the software to fully control the assertion/deassertion sequence by
writing to registers and stepping through the sequence.

• Support reset override

— Ability to assert a specific component reset through software.

Table 57. Reset Sequencer CSR Register Map

Register Offset Width Reset Value Description

Status Register 0x00 32 0x0 The Status register indicates which
sources are allowed to cause a reset.

Interrupt Enable Register 0x04 32 0x0 The Interrupt Enable register bits
enable events triggering the IRQ of the
reset sequencer.

Control Register 0x08 32 0x0 The Control register allows you to
control the Reset Sequencer.

Software Sequenced Reset
Assert Control Register

0x0C 32 0x3FF You can program the Software
Sequenced Reset Assert control
register to control the reset assertion
sequence.

Software Sequenced Reset
Deassert Control Register

0x10 32 0x3FF You can program the Software
Sequenced Reset Deassert register to
control the reset deassertion sequence.

Software Direct
Controlled Resets

0x14 32 0X0 You can write a bit to 1 to assert the
reset_outN signal, and to 0 to deassert
the reset_outN signal.

Software Reset Masking 0x18 32 0x0 Masking off (writing 1) to a reset_outN
"Reset Mask Enable" signal prevents
the corresponding reset from being
asserted. Writing a bit to 0 to a reset mask
enable signal allows assertion of
reset_outN.

3.5.4.3.1. Reset Sequencer Status Register

The Status register indicates which sources are allowed to cause a reset.

You can clear bits by writing 1 to the bit location. The Reset Sequencer ignores
attempts to write bits with a value of 0. If the sequencer is reset (power-on-reset), all
bits are cleared, except the power-on-reset bit.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

176

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 58. Values for the Status Register at Offset 0x00

Bit Attribute Default Description

31 RO 0 Reset Active—Indicates that the sequencer is currently active in reset
sequence (assertion or deassertion).

30 RW1C 0 Reset Asserted and waiting for SW to proceed—Set when
there is an active reset assertion, and the next sequence is waiting for the
software to proceed.
Only valid when the Enable SW sequenced reset assert option is
turned on.

29 RW1C 0 Reset Deasserted and waiting for SW to proceed—Set when
there is an active reset deassertion, and the next sequence is waiting for
the software to proceed.
Only valid when the Enable SW sequenced reset deassert option is
turned on.

28:26 Reserved.

25:16 RW1C 0 Reset deassertion input qualification signal
reset_dsrt_qual [9:0] status—Indicates that the reset
deassertion's input signal qualification signal is set. This bit is set on the
detection of assertion of the signal.

15:12 Reserved.

11 RW1C 0 reset_in9 was triggered—Indicates that reset_in9 triggered the
reset. Software clears this bits by writing 1 to this location.

10 RW1C 0 reset_in8 was triggered—Indicates that reset_in8 triggered the
reset. Software clears this bit by writing 1 to this location.

9 RW1C 0 reset_in7 was triggered—Indicates that reset_in7 triggered the
reset. Software clears this bit by writing 1 to this location.

8 RW1C 0 reset_in6 was triggered—Indicates that reset_in6 triggered the
reset. Software clears this bit by writing 1 to this location.

7 RW1C 0 reset_in5 was triggered—Indicates that reset_in5 triggered the
reset. Software clears this bit by writing 1 to this location.

6 RW1C 0 reset_in4 was triggered—Indicates that reset_in4 triggered the
reset. Software clears this bit by writing 1 to this location.

5 RW1C 0 reset_in3 was triggered—Indicates that reset_in3 triggered the
reset. Software clears this bit by writing 1 to this location.

4 RW1C 0 reset_in2 was triggered—Indicates that reset_in2 triggered the
reset. Software clears this bit by writing 1 to this location.

3 RW1C 0 reset_in1 was triggered—Indicates that reset_in1 triggered the
reset. Software clears this bit by writing 1 to this location.

2 RW1C 0 reset_in0 was triggered—Indicates that reset_in0 triggered.
Software clears this bit by writing 1 to this location.

1 RW1C 0 Software-triggered reset—Indicates that the software-triggered
reset is set by the software, and triggering a reset.

0 RW1C 0 Power-on-reset was triggered—Asserted whenever the reset to the
sequencer is triggered. This bit is NOT reset when sequencer is reset.
Software clears this bit by writing 1 to this location.

Related Information

Reset Sequencer CSR Registers on page 176

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

177

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.4.3.2. Reset Sequencer Interrupt Enable Register

The Interrupt Enable register bits enable events triggering the IRQ of the reset
sequencer.

Table 59. Values for the Interrupt Enable Register at Offset 0x04

Bit Attribute Default Description

31 Reserved.

30 RW 0 Interrupt on Reset Asserted and waiting for SW to
proceed enable. When set, the IRQ is set when the sequencer is waiting
for the software to proceed in an assertion sequence.

29 RW 0 Interrupt on Reset Deasserted and waiting for SW to
proceed enable. When set, the IRQ is set when the sequencer is waiting
for the software to proceed in a deassertion sequence.

28:26 Reserved.

25:16 RW 0 Interrupt on Reset deassertion input qualification
signal reset_dsrt_qual_[9:0] status— When set, the IRQ is set
when the reset_dsrt_qual[9:0] status bit (per bit enable) is set.

15:12 Reserved.

11 RW 0 Interrupt on reset_in9 Enable—When set, the IRQ is set when the
reset_in9 trigger status bit is set.

10 RW 0 Interrupt on reset_in8 Enable—When set, the IRQ is set when the
reset_in8 trigger status bit is set.

9 RW 0 Interrupt on reset_in7 Enable—When set, the IRQ is set when the
reset_in7 trigger status bit is set.

8 RW 0 Interrupt on reset_in6 Enable—When set, the IRQ is set when the
reset_in6 trigger status bit is set.

7 RW 0 Interrupt on reset_in5 Enable—When set, the IRQ is set when the
reset_in5 trigger status bit is set.

6 RW 0 Interrupt on reset_in4 Enable—When set, the IRQ is set when the
reset_in4 trigger status bit is set.

5 RW 0 Interrupt on reset_in3 Enable—When set, the IRQ is set when the
reset_in3 trigger status bit is set.

4 RW 0 Interrupt on reset_in2 Enable—When set, the IRQ is set when the
reset_in2 trigger status bit is set.

3 RW 0 Interrupt on reset_in1 Enable—When set, the IRQ is set when the
reset_in1 trigger status bit is set.

2 RW 0 Interrupt on reset_in0 Enable—When set, the IRQ is set when the
reset_in0 trigger status bit is set.

1 RW 0 Interrupt on Software triggered reset Enable—When set, the
IRQ is set when the software triggered reset status bit is set.

0 RW 0 Interrupt on Power-On-Reset Enable—When set, the IRQ is set
when the power-on-reset status bit is set.

Related Information

Reset Sequencer CSR Registers on page 176

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

178

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.4.3.3. Reset Sequencer Control Register

The Control register allows you to control the Reset Sequencer.

Table 60. Values for the Control Register at Offset 0x08

Bit Attribute Default Description

31:3 Reserved.

2 RW 0 Enable SW sequenced reset assert—Enable a software sequenced
reset assert sequence. Timer delays and input qualification are ignored,
and only the software can sequence the assert.

1 RW 0 Enable SW sequenced reset deassert—Enable a software
sequenced reset deassert sequence. Timer delays and input qualification
are ignored, and only the software can sequence the deassert.

0 WO 0 Initiate Reset Sequence—To trigger the hardware sequenced warm
reset, the Reset Sequencer writes this bit to 1 a single time. The Reset
Sequencer verifies that Reset Active is 0 before setting this bit, and
always reads the value 0. To monitor this sequence, verify that Reset
Active is asserted, and then subsequently deasserted.

Related Information

Reset Sequencer CSR Registers on page 176

3.5.4.3.4. Reset Sequencer Software Sequenced Reset Assert Control Register

You can program the Software Sequenced Reset Assert control register to
control the reset assertion sequence.

When the corresponding enable bit is set, the sequencer stops when the desired reset
asserts, and then sets the Reset Asserted and waiting for SW to proceed
bit. The Reset Sequencer proceeds only after the Reset Asserted and waiting
for SW to proceed bit is cleared.

Table 61. Values for the Reset Sequencer Software Sequenced Reset Assert Control
Register at Offset 0x0C

Bit Attribute Default Description

31:10 Reserved.

9:0 RW 0x3FF Per-reset SW sequenced reset assert enable—This is a per-bit
enable for SW sequenced reset assert.
If the register's bitN is set, the sequencer sets the bit30 of the status
register when a resetN is asserted. It then waits for the bit30 of the
status register to clear before proceeding with the sequence. By default,
all bits are enabled (fully SW sequenced).

Related Information

Reset Sequencer CSR Registers on page 176

3.5.4.3.5. Reset Sequencer Software Sequenced Reset Deassert Control Register

You can program the Software Sequenced Reset Deassert register to control
the reset deassertion sequence.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

179

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When the corresponding enable bit is set, the sequencer stops when the desired reset
asserts, and then sets the Reset Deasserted and waiting for SW to
proceed bit. The Reset Sequencer proceeds only after the Reset Deasserted and
waiting for SW to proceed bit is cleared.

Table 62. Values for the Reset Sequencer Software Sequenced Reset Deassert Control
Register at Offset 0x10

Bit Attribute Default Description

31:10 Reserved.

9:0 RW 0x3FF Per-reset SW sequenced reset deassert enable—This is a per-
bit enable for SW-sequenced reset deassert. If bitN of this register is set,
the sequencer sets bit29 of the Status Register when a resetN is
asserted. It then waits for the bit29 of the status register to clear before
proceeding with the sequence. By default, all bits are enabled (fully SW
sequenced).

Related Information

Reset Sequencer CSR Registers on page 176

3.5.4.3.6. Reset Sequencer Software Direct Controlled Resets

You can write a bit to 1 to assert the reset_outN signal, and to 0 to deassert the
reset_outN signal.

Table 63. Values for the Software Direct Controlled Resets at Offset 0x14

Bit Attribute Default Description

31:26 Reserved.

25:16 WO 0 Reset Overwrite Trigger Enable—This is a per-bit control trigger
bit for the overwrite value to take effect.

15:10 Reserved.

9:0 WO 0 reset_outN Reset Overwrite Value—This is a per-bit control of the
reset_out bit. The Reset Sequencer can use this to forcefully drive the
reset to a specific value. A value of 1 sets the reset_out. A value of 0
clears the reset_out. A write to this register only takes effect if the
corresponding trigger bit in this register is set.

Related Information

Reset Sequencer CSR Registers on page 176

3.5.4.3.7. Reset Sequencer Software Reset Masking

Masking off (writing 1) to a reset_outN "Reset Mask Enable" signal prevents
the corresponding reset from being asserted. Writing a bit to 0 to a reset mask enable
signal allows assertion of reset_outN.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

180

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 64. Values for the Reset Sequencer Software Reset Masking at Offset 0x18

Bit Attribute Default Description

31:10 Reserved.

9:0 RW 0 reset_outN "Reset Mask Enable"—This is a per-bit control to mask
off the reset_outN bit. Software Reset Masking prevents the reset bit
from being asserted during a reset assertion sequence. If reset_out is
already asserted, it does not deassert the reset.

Related Information

Reset Sequencer CSR Registers on page 176

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

181

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.4.4. Reset Sequencer Software Flows

3.5.4.4.1. Reset Sequencer (Software-Triggered) Flow

Figure 106. Reset Sequencer (Software-Triggered) Flow Diagram

No

1

Software clears all pending statuses by
writing all 1s to the Status Register.

Software initiates reset by writing a 1
 to the Control Register’s initiate reset sequence bit.

IRQ Asserted?

Reset Sequencer completed
initiating a reset through the sequencer.

SW reads
Status Register’s

reset active

Start

SW reads
Status Register’s

SW-triggered reset

End

SW reads
Status Register’s

reset active
keep polling

keep polling

keep polling

keep polling

Software writes 1 to Status Register’s
SW-Triggered reset to clear it

Yes

1

0

1

0

0

Related Information

• Reset Sequencer Status Register on page 176

• Reset Sequencer Control Register on page 179

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

182

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.4.4.2. Reset Assert Flow

The following flow sequence occurs for a Reset Assert Flow:

• A reset is triggered either by the software, or when input resets to the Reset
Sequencer are asserted.

• The IRQ is asserted, if the IRQ is enabled.

• Software reads the Status register to determine which reset was triggered.

3.5.4.4.3. Reset Deassert Flow

The following flow sequence occurs for a Reset Deassert Flow:

• When a reset source is deasserted, or when the reset assert sequence has
completed without pending resets asserted, the deassertion flow is initiated.

• The IRQ is asserted, if the IRQ is enabled.

• Software reads the Status Register to determine which reset was triggered.

3.5.4.4.4. Reset Assert (Software Sequenced) Flow

Figure 107. Reset Assert (Software Sequenced) Flow
SETUP RUNTIME

Reset Sequencer asserts an IRQ

Hardware sequences a reset until the point where
 Reset Sequencer must wait for software

Software waits until reset is asserted by checking if Status Register’s
 Reset asserted and waiting for SW to proceed bit is set

Software clears Status Register’s
Reset asserted and waiting for SW to proceed bit

Reset Sequencer sets IRQ
on the next Reset Sequencer trigger point (if any)

SW writes to SW sequenced Reset Assert control register’s
Per-reset SW sequenced reset assert enable

Software sets Control Register’s
Enable SW sequenced reset assert bit

Software defines which reset sequence it wants to control
by setting bits in Software sequenced Reset assert Control register’s

Per-reset SW sequenced reset assert enable

Software sets Interrupt Enable register’s
Interrupt on Reset Asserted and waiting for SW to proceed

bit

Related Information

• Reset Sequencer Control Register on page 179

• Reset Sequencer Software Sequenced Reset Assert Control Register on page 179

• Reset Sequencer Interrupt Enable Register on page 178

• Reset Sequencer Status Register on page 176

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

183

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.4.4.5. Reset Deassert (Software Sequenced) Flow

The sequence and flow is similar to the Reset Assert (SW Sequenced) flow,
though, this flow uses the reset deassert registers/bits instead of the reset
assert registers/bits.

Related Information

Reset Assert (Software Sequenced) Flow on page 183

3.6. Conduits

You can use the conduit interface type for interfaces that do not fit any of the other
interface types, and to group any arbitrary collection of signals. Like other interface
types, you can export or connect conduit interfaces.

The PCI Express-to-Ethernet example in Creating a System with Platform Designer is
an example of using a conduit interface for export. You can declare an associated
clock interface for conduit interfaces in the same way as memory-mapped interfaces
with the associatedClock.

To connect two conduit interfaces inside Platform Designer, the following conditions
must be met:

• The interfaces must match exactly with the same signal roles and widths.

• The interfaces must be the opposite directions.

• Clocked conduit connections must have matching associatedClocks on each of
their endpoint interfaces.

Note: To connect a conduit output to more than one input conduit interface, you can create a
custom component. The custom component could have one input that connects to two
outputs, and you can use this component between other conduits that you want to
connect. For information about the Avalon Conduit interface, refer to the Avalon
Interface Specifications

Related Information

• Avalon Interface Specifications

• Creating a System with Platform Designer on page 10

3.7. Interconnect Pipelining

Pipeline stages increase a design's fMAX by reducing the combinational logic depth, at
the cost of additional latency and logic.

The Limit interconnect pipeline stages to option in the Interconnect
Requirements tab allows you to define the maximum Avalon-ST pipeline stages that
Platform Designer can insert during generation. You can specify between 0 to 4
pipeline stages, where 0 means that the interconnect has a combinational datapath.
Choosing 3 or 4 pipeline stages may significantly increase the logic utilization of the
system.

Platform Designer adds additional latency once on the command path, and once on
the response path.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

184

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This setting is specific for each Platform Designer system or subsystem, so you can
specify a unique interconnect pipeline stage value for each subsystem.

The insertion of pipeline stages depends upon the existence of certain interconnect
components. For example, single-slave systems do not have multiplexers; therefore,
multiplexer pipelining does not occur. In an extreme case, of a single-master to single-
slave system, no pipelining occurs, regardless of the value of the Limit interconnect
pipeline stages to option.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

185

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 108. Pipeline Placement in Arbitration Logic
The example shows the possible placement of up to four potential pipeline stages. Platform Designer places
these stages before the input to the demultiplexer, at the output of the multiplexer, between the arbiter and
the multiplexer, and at the output of the demultiplexer.

Logic included in the Avalon-ST Command Network

Arbiter
for

slave 0

Master 0

= Pipeline stage, masters 0-3

= Pipeline stage, selected request

Arbiter
for

slave 1

Arbiter
for

slave 2

Arbiter
for

slave 3

Master 1

Master 2

Master 3

Arbiter
for

slave 1

Command
packet for
master 0

Command
packet for
master 1

Command
packet for
master 2

Command
packet for
master 3

Selected request

Selected request

Selected request

Selected request

You can manually adjust number of pipeline stages in the Platform Designer Memory-
Mapped Interconnect tab.

Related Information

• Previewing the System Interconnect on page 38

• Inserting Pipeline Stages to Increase System Frequency on page 90

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

186

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.7.1. Manually Control Pipelining in the Platform Designer Interconnect

The Memory-Mapped Interconnect tab allows you to manipulate pipeline
connections in the Platform Designer interconnect.

Consider manually pipelining the interconnect only when changes to the Limit
interconnect pipeline stages to option do not improve frequency, and exhausted all
other options to achieve timing closure, including the use of a bridge. Perform manual
pipelining only in complete systems.

Access the Memory-Mapped Interconnect tab by clicking System ➤ Show
System With Platform Designer Interconnect

1. In the Intel Quartus Prime software, compile the design and run timing analysis.

2. From the timing analysis output, identify the critical path through the interconnect
and determine the approximate mid-point.

3. In Platform Designer, click System ➤ Show System With Platform Designer
Interconnect.

4. In the Memory-Mapped Interconnect tab, select the interconnect module that
contains the critical path.

You can determine the name of the module from the hierarchical node names in
the timing report.

5. Click Show Pipelinable Locations. Platform Designer display all possible pipeline
locations in the interconnect. Right-click the possible pipeline location to insert or
remove a pipeline stage.

6. Locate the possible pipeline location that is closest to the mid-point of the critical
path. The names of the blocks in the memory-mapped interconnect tab
correspond to the module instance names in the timing report.

7. Right-click the location where you want to insert a pipeline, and then click Insert
Pipeline.

8. Regenerate the Platform Designer system, recompile the design, and then rerun
timing analysis.

9. If necessary, repeat the manual pipelining process again until the design meets
the timing requirements.

Manual pipelining has the following limitations:

• If you make changes to the original system's connectivity after manually pipelining
an interconnect, the inserted pipelines may become invalid. Platform Designer
displays warning messages when you generate the system if invalid pipeline
stages are detected. You can remove invalid pipeline stages with the Remove
Stale Pipelines option in the Memory-Mapped Interconnect tab. Do not make
changes to the system's connectivity after manual pipeline insertion.

• Review manually-inserted pipelines when upgrading to newer versions of Platform
Designer. Manually-inserted pipelines in one version of Platform Designer may not
be valid in a future version.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

187

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.8. Error Correction Coding (ECC) in Platform Designer
Interconnect

Error Correction Coding (ECC) logic allows the Platform Designer interconnect to
detect and correct errors. Enabling ECC improves data integrity in memory blocks.
Platform Designer supports ECC protection for Read Data FIFO (rdata_FIFO)
instances only.

As transistors become smaller, computer hardware is more susceptible to data
corruption. Data corruption causes Single Event Upsets (SEUs), and increases the
probability of Failures in Time (FIT) rates in computer systems. SEU events without
error notification can cause the system to be stuck in an unknown response status,
and increase the FIT rate.

Before writing data to the memory device, the ECC logic encodes the data bus with a
Hamming code. Then, the ECC logic decodes and performs error checking on the data
output.

When you enable ECC, Platform Designer interconnect sends uncorrectable errors
arising from memory as DECODEERROR (DECERR) on the Avalon response bus.

Figure 109. High-Level Implementation of rdata_FIFO with ECC Enabled

ECC Encode ECC Decode
Memory
ElementData Input Data and ECC

Encoded Bits
Data and ECC
Encoded Bits

Data Output

Note: Enabling ECC logic may increase logic utilization and cause lower fMAX.

Related Information

• Read and Write Responses on page 151

• Interconnect Requirements on page 40

3.9. AMBA 3 AXI Protocol Specification Support (version 1.0)

Platform Designer allows memory-mapped connections between AMBA 3 AXI
components, AMBA 3 AXI and AMBA 4 AXI components, and AMBA 3 AXI and Avalon
interfaces with unique or exceptional support. Refer to the AMBA 3 Protocol
Specifications on the ARM website for more information.

Related Information

• Arm AMBA Protocol Specifications

• Slave Network Interfaces on page 138

3.9.1. Channels

Platform Designer has the following support and restrictions for AMBA 3 AXI channels.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

188

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.9.1.1. Read and Write Address Channels

Most signals are allowed. However, the following limitations are present in Platform
Designer 14.0:

• Supports 64-bit addressing.

• ID width limited to 18-bits.

• HPS-FPGA master interface has a 12-bit ID.

3.9.1.2. Write Data, Write Response, and Read Data Channels

Most signals are allowed. However, the following limitations are present in Platform
Designer 14.0:

• Data widths limited to a maximum of 1024-bits

• Limited to a fixed byte width of 8-bits

3.9.1.3. Low Power Channel

Low power extensions are not supported in Platform Designer, version 14.0.

3.9.2. Cache Support

AWCACHE and ARCACHE are passed to an AXI slave unmodified.

3.9.2.1. Bufferable

Platform Designer interconnect treats AXI transactions as non-bufferable. All
responses must come from the terminal slave.

When connecting to Avalon-MM slaves, since they do not have write responses, the
following exceptions apply:

• For Avalon-MM slaves, the write response are generated by the slave agent once
the write transaction is accepted by the slave. The following limitation exists for an
Avalon bridge:

• For an Avalon bridge, the response is generated before the write reaches the
endpoint; users must be aware of this limitation and avoid multiple paths past the
bridge to any endpoint slave, or only perform bufferable transactions to an Avalon
bridge.

3.9.2.2. Cacheable (Modifiable)

Platform Designer interconnect acknowledges the cacheable (modifiable) attribute of
AXI transactions.

It does not change the address, burst length, or burst size of non-modifiable
transactions, with the following exceptions:

• Platform Designer considers a wide transaction to a narrow slave as modifiable
because the size requires reduction.

• Platform Designer may consider AXI read and write transactions as modifiable
when the destination is an Avalon slave. The AXI transaction may be split into
multiple Avalon transactions if the slave is unable to accept the transaction. This
may occur because of burst lengths, narrow sizes, or burst types.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

189

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Platform Designer ignores all other bits, for example, read allocate or write allocate
because the interconnect does not perform caching. By default, Platform Designer
considers Avalon master transactions as non-bufferable and non-cacheable, with the
allocate bits tied low.

3.9.3. Security Support

TrustZone refers to the security extension of the ARM architecture, which includes the
concept of "secure" and "non-secure" transactions, and a protocol for processing
between the designations.

The interconnect passes the AWPROT and ARPROT signals to the endpoint slave
without modification. It does not use or modify the PROT bits.

Refer to Manage System Security in Creating a System with Platform Designer for
more information about secure systems and the TrustZone feature.

Related Information

Configuring Platform Designer System Security on page 50

3.9.4. Atomic Accesses

Exclusive accesses are supported for AXI slaves by passing the lock, transaction ID,
and response signals from master to slave, with the limitation that slaves that do not
reorder responses. Avalon slaves do not support exclusive accesses, and always return
OKAY as a response. Locked accesses are also not supported.

3.9.5. Response Signaling

Full response signaling is supported. Avalon slaves always return OKAY as a response.

3.9.6. Ordering Model

Platform Designer interconnect provides responses in the same order as the
commands are issued.

To prevent reordering, for slaves that accept reordering depths greater than 0,
Platform Designer does not transfer the transaction ID from the master, but provides a
constant transaction ID of 0. For slaves that do not reorder, Platform Designer allows
the transaction ID to be transferred to the slave. To avoid cyclic dependencies,
Platform Designer supports a single outstanding slave scheme for both reads and
writes. Changing the targeted slave before all responses have returned stalls the
master, regardless of transaction ID.

3.9.6.1. AXI and Avalon Ordering

There is a potential read-after-write risk when Avalon masters transact to AXI slaves.

According to the AMBA Protocol Specifications, there is no ordering requirement
between reads and writes. However, Avalon has an implicit ordering model that
requires transactions from a master to the same slave to be in order.

In response to this potential risk, Avalon interfaces provide a compile-time option to
enforce strict order. When turned on, the Avalon interface waits for outstanding write
responses before issuing reads.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

190

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.9.7. Data Buses

Narrow bus transfers are supported. AXI write strobes can have any pattern that is
compatible with the address and size information. Intel recommends that transactions
to Avalon slaves follow Avalon byteenable limitations for maximum compatibility.

Note: Byte 0 is always bits [7:0] in the interconnect, following AXI's and Avalon's byte
(address) invariance scheme.

3.9.8. Unaligned Address Commands

Unaligned address commands are commands with addresses that do not conform to
the data width of a slave. Since Avalon-MM slaves accept only aligned addresses,
Platform Designer modifies unaligned commands from AXI masters to the correct data
width. Platform Designer must preserve commands issued by AXI masters when
passing the commands to AXI slaves.

Note: Unaligned transfers are aligned if downsizing occurs. For example, when downsizing to
a bus width narrower than that required by the transaction size, AWSIZE or ARSIZE,
the transaction must be modified.

3.9.9. Avalon and AXI Transaction Support

Platform Designer 14.0 supports transactions between Avalon and interfaces, with
some limitations.

3.9.9.1. Transaction Cannot Cross 4KB Boundaries

When an Avalon master issues a transaction to an AXI slave, the transaction cannot
cross 4KB boundaries. Non-bursting Avalon masters already follow this boundary
restriction.

3.9.9.2. Handling Read Side Effects

Read side effects can occur when more bytes than necessary are read from the slave,
and the unwanted data that are read are later inaccessible on subsequent reads. For
write commands, the correct byteenable paths are asserted based on the size of the
transactions. For read commands, narrow-sized bursts are broken up into multiple
non-bursting commands, and each command with the correct byteenable paths
asserted.

Platform Designer always assumes that the byteenable is asserted based on the size
of the command, not the address of the command. The following scenarios are
examples:

• For a 32-bit AXI master that issues a read command with an unaligned address
starting at address 0x01, and a burstcount of 2 to a 32-bit Avalon slave, the
starting address is: 0x00.

• For a 32-bit AXI master that issues a read command with an unaligned address
starting at address 0x01, with 4-bytes to an 8-bit AXI slave, the starting address
is: 0x00.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

191

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.10. AMBA 3 APB Protocol Specification Support (version 1.0)

APB (Advanced Peripheral Bus) interface is optimized for minimal power consumption
and reduced interface complexity. You can use APB to interface to peripherals which
are low-bandwidth and do not require the high performance of a pipelined bus
interface. Signal transitions are sampled at the rising edge of the clock to enable the
integration of APB peripherals easily into any design flow.

Platform Designer allows connections between APB components, and AMBA 3 AXI,
AMBA 4 AXI, and Avalon memory-mapped interfaces. The following sections describe
unique or exceptional APB support in the Platform Designer software.

Related Information

Arm AMBA Protocol Specifications

3.10.1. Bridges

With APB, you cannot use bridge components that use multiple PSELx in Platform
Designer. As a workaround, you can group PSELx, and then send the packet to the
slave directly.

Intel recommends as an alternative that you instantiate the APB bridge and all the
APB slaves in Platform Designer. You should then connect the slave side of the bridge
to any high speed interface and connect the master side of the bridge to the APB
slaves. Platform Designer creates the interconnect on either side of the APB bridge
and creates only one PSEL signal.

Alternatively, you can connect a bridge to the APB bus outside of Platform Designer.
Use an Avalon/AXI bridge to export the Avalon/AXI master to the top-level, and then
connect this Avalon/AXI interface to the slave side of the APB bridge. Alternatively,
instantiate the APB bridge in Platform Designer and export APB master to the top-
level, and from there connect to APB bus outside of Platform Designer.

3.10.2. Burst Adaptation

APB is a non-bursting interface. Therefore, for any AXI or Avalon master with bursting
support, a burst adapter is inserted before the slave interface and the burst
transaction is translated into a series of non-bursting transactions before reaching the
APB slave.

3.10.3. Width Adaptation

Platform Designer allows different data width connections with APB. When connecting
a wider master to a narrower APB slave, the width adapter converts the wider
transactions to a narrower transaction to fit the APB slave data width. APB does not
support Write Strobe. Therefore, when you connect a narrower transaction to a wider
APB slave, the slave cannot determine which byte lane to write. In this case, the slave
data may be overwritten or corrupted.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

192

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.10.4. Error Response

Error responses are returned to the master. Platform Designer performs error mapping
if the master is an AMBA 3 AXI or AMBA 4 AXI master, for example, RRESP/BRESP=
SLVERR. For the case when the slave does not use SLVERR signal, an OKAY response
is sent back to master by default.

3.11. AMBA 4 AXI Memory-Mapped Interface Support (version 2.0)

Platform Designer allows memory-mapped connections between AMBA 4 AXI
components, AMBA 4 AXI and AMBA 3 AXI components, and AMBA 4 AXI and Avalon
interfaces with unique or exceptional support.

3.11.1. Burst Support

Platform Designer supports INCR bursts up to 256 beats. Platform Designer converts
long bursts to multiple bursts in a packet with each burst having a length less than or
equal to MAX_BURST when going to AMBA 3 AXI or Avalon slaves.

For narrow-sized transfers, bursts with Avalon slaves as destinations are shortened to
multiple non-bursting transactions in order to transmit the correct address to the
slaves, since Avalon slaves always perform full-sized datawidth transactions.

Bursts with AMBA 3 AXI slaves as destinations are shortened to multiple bursts, with
each burst length less than or equal to 16. Bursts with AMBA 4 AXI slaves as
destinations are not shortened.

3.11.2. QoS

Platform Designer routes 4-bit QoS signals (Quality of Service Signaling) on the read
and write address channels directly from the master to the slave.

Transactions from AMBA 3 AXI and Avalon masters have a default value of 4'b0000,
which indicates that the transactions are not part of the QoS flow. QoS values are not
used for slaves that do not support QoS.

For Platform Designer 14.0, there are no programmable QoS registers or compile-time
QoS options for a master that overrides its real or default value.

3.11.3. Regions

For Platform Designer 14.0, there is no support for the optional regions feature. AMBA
4 AXI slaves with AXREGION signals are allowed. AXREGION signals are driven with
the default value of 0x0, and are limited to one entry in a master's address map.

3.11.4. Write Response Dependency

Write response dependency as specified in the Arm AMBA Protocol Specifications for
AMBA 4 AXI is not supported.

Related Information

Arm AMBA Protocol Specifications

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

193

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.11.5. AWCACHE and ARCACHE

For AMBA 4 AXI, Platform Designer meets the requirement for modifiable and non-
modifiable transactions. The modifiable bit refers to ARCACHE[1]and AWCACHE[1].

3.11.6. Width Adaptation and Data Packing in Platform Designer

Data packing applies only to systems where the data width of masters is less than the
data width of slaves.

The following rules apply:

• Data packing is supported when masters and slaves are Avalon-MM.

• Data packing is not supported when any master or slave is an AMBA 3 AXI, AMBA
4 AXI, or APB component.

For example, for a read/write command with a 32-bit master connected to a 64-bit
slave, and a transaction of 2 burstcounts, Platform Designer sends 2 separate read/
write commands to access the 64-bit data width of the slave. Data packing is only
supported if the system does not contain AMBA 3 AXI, AMBA 4 AXI, or APB masters or
slaves.

3.11.7. Ordering Model

Out of order support is not implemented in Platform Designer, version 14.0. Platform
Designer processes AXI slaves as device non-bufferable memory types.

The following describes the required behavior for the device non-bufferable memory
type:

• Write response must be obtained from the final destination.

• Read data must be obtained from the final destination.

• Transaction characteristics must not be modified.

• Reads must not be pre-fetched. Writes must not be merged.

• Non-modifiable read and write transactions.

(AWCACHE[1] = 0 or ARCACHE[1] = 0) from the same ID to the same slave must
remain ordered. The interconnect always provides responses in the same order as the
commands issued. Slaves that support reordering provide a constant transaction ID to
prevent reordering. AXI slaves that do not reorder are provided with transaction IDs,
which allows exclusive accesses to be used for such slaves.

3.11.8. Read and Write Allocate

Read and write allocate does not apply to Platform Designer interconnect, which does
not have caching features, and always receives responses from an endpoint.

3.11.9. Locked Transactions

Locked transactions are not supported for Platform Designer, version 14.0.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

194

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.11.10. Memory Types

For AMBA 4 AXI, Platform Designer processes transactions as though the endpoint is a
device memory type. For device memory types, using non-bufferable transactions to
force previous bufferable transactions to finish is irrelevant, because Platform Designer
interconnect always identifies transactions as being non-bufferable.

3.11.11. Mismatched Attributes

There are rules for how multiple masters issue cache values to a shared memory
region. The interconnect meets requirements if signals are not modified.

3.11.12. Signals

Platform Designer supports up to 64-bits for the BUSER, WUSER and RUSER sideband
signals. AMBA 4 AXI allows some signals to be omitted from interfaces by aligning
them with the default values as defined in the AMBA Protocol Specifications on the
ARM website.

Related Information

Arm AMBA Protocol Specifications

3.12. AMBA 4 AXI Streaming Interface Support (version 1.0)

3.12.1. Connection Points

Platform Designer allows you to connect an AMBA 4 AXI-Stream interface to another
AMBA 4 AXI-Stream interface.

The connection is point-to-point without adaptation and must be between an
axi4stream_master and axi4stream_slave. Connected interfaces must have the
same port roles and widths.

Non matching master to slave connections, and multiple masters to multiple slaves
connections are not supported.

3.12.1.1. AMBA 4 AXI Streaming Connection Point Parameters

Table 65. AMBA 4 AXI Streaming Connection Point Parameters

Name Type Description

associatedClock string Name of associated clock interface.

associatedReset string Name of associated reset interface

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

195

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.12.1.2. AMBA 4 AXI Streaming Connection Point Signals

Table 66. AMBA 4 AXI-Stream Connection Point Signals

Port Role Width Master Direction Slave Direction Required

tvalid 1 Output Input Yes

tready 1 Input Output No

tdata(1) 8:4096 Output Input No

tstrb 1:512 Output Input No

tkeep 1:512 Output Input No

tid(2) 1:8 Output Input No

tdest(3) 1:4 Output Input No

tuser(4) 1:4096 Output Input No

tlast 1 Output Input No

3.12.2. Adaptation

AMBA 4 AXI-Stream adaptation support is not available. AMBA 4 AXI-Stream master
and slave interface signals and widths must match.

3.13. AMBA 4 AXI-Lite Protocol Specification Support (version 2.0)

AMBA 4 AXI-Lite is a sub-set of AMBA 4 AXI. It is suitable for simpler control register-
style interfaces that do not require the full functionality of AMBA 4 AXI.

Platform Designer 14.0 supports the following AMBA 4 AXI-Lite features:

• Transactions with a burst length of 1.

• Data accesses use the full width of a data bus (32- bit or 64-bit) for data
accesses, and no narrow-size transactions.

• Non-modifiable and non-bufferable accesses.

• No exclusive accesses.

3.13.1. AMBA 4 AXI-Lite Signals

Platform Designer supports all AMBA 4 AXI-Lite interface signals. All signals are
required.

(1) integer in multiple of bytes

(2) maximum 8-bits

(3) maximum 4-bits

(4) number of bits in multiple of the number of bytes of tdata

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

196

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 67. AMBA 4 AXI-Lite Signals

Global Write Address
Channel

Write Data
Channel

Write Response
Channel

Read Address
Channel

Read Data
Channel

ACLK AWVALID WVALID BVALID ARVALID RVALID

ARESETn AWREADY WREADY BREADY ARREADY RREADY

- AWADDR WDATA BRESP ARADDR RDATA

- AWPROT WSTRB - ARPROT RRESP

3.13.2. AMBA 4 AXI-Lite Bus Width

AMBA 4 AXI-Lite masters or slaves must have either 32-bit or 64-bit bus widths.
Platform Designer interconnect inserts a width adapter if a master and slave pair have
different widths.

3.13.3. AMBA 4 AXI-Lite Outstanding Transactions

AXI-Lite supports outstanding transactions. The options to control outstanding
transactions is set in the parameter editor for the selected component.

3.13.4. AMBA 4 AXI-Lite IDs

AMBA 4 AXI-Lite does not support IDs. Platform Designer performs ID reflection inside
the slave agent.

3.13.5. Connections Between AMBA 3 AXI,AMBA 4 AXI and AMBA 4 AXI-
Lite

3.13.5.1. AMBA 4 AXI-Lite Slave Requirements

For an AMBA 4 AXI-Lite slave side, the master can be any master interface type, such
as an Avalon (with bursting), AMBA 3 AXI, or AMBA 4 AXI. Platform Designer allows
the following connections and inserts adapters, if needed.

• Burst adapter—Avalon and AMBA 3 AXI and AMBA 4 AXI bursting masters
require a burst adapter to shorten the burst length to 1 before sending a
transaction to an AMBA 4 AXI-Lite slave.

• Platform Designer interconnect uses a width adapter for mismatched data widths.

• Platform Designer interconnect performs ID reflection inside the slave agent.

• An AMBA 4 AXI-Lite slave must have an address width of at least 12-bits.

• AMBA 4 AXI-Lite does not have the AXSIZE parameter. Narrow master to a wide
AMBA 4 AXI-Lite slave is not supported. For masters that support narrow-sized
bursts, for example, AMBA 3 AXI and AMBA 4 AXI, a burst to an AMBA 4 AXI-Lite
slave must have a burst size equal to or greater than the slave's burst size.

3.13.5.2. AMBA 4 AXI-Lite Data Packing

Platform Designer interconnect does not support AMBA 4 AXI-Lite data packing.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

197

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.13.6. AMBA 4 AXI-Lite Response Merging

When Platform Designer interconnect merges SLVERR and DECERR, the error
responses are not sticky. The response is based on priority and the master always
sees a DECERR. When SLVERR and DECERR are merged, it is based on their priorities,
not stickiness. DECERR receives priority in this case, even if SLVERR returns first.

3.14. Port Roles (Interface Signal Types)

Each interface defines signal roles and their behavior. Many signal roles are optional,
allowing IP component designers the flexibility to select only the signal roles necessary
to implement the required functionality.

3.14.1. AXI Master Interface Signal Types

Table 68. AXI Master Interface Signal Types

Name Direction Width

araddr output 1 - 64

arburst output 2

arcache output 4

arid output 1 - 18

arlen output 4

arlock output 2

arprot output 3

arready input 1

arsize output 3

aruser output 1 - 64

arvalid output 1

awaddr output 1 - 64

awburst output 2

awcache output 4

awid output 1 - 18

awlen output 4

awlock output 2

awprot output 3

awready input 1

awsize output 3

awuser output 1 - 64

awvalid output 1

bid input 1 - 18

continued...

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

198

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

bready output 1

bresp input 2

bvalid input 1

rdata input 8, 16, 32, 64, 128, 256, 512, 1024

rid input 1 - 18

rlast input 1

rready output 1

rresp input 2

rvalid input 1

wdata output 8, 16, 32, 64, 128, 256, 512, 1024

wid output 1 - 18

wlast output 1

wready input 1

wstrb output 1, 2, 4, 8, 16, 32, 64, 128

wvalid output 1

3.14.2. AXI Slave Interface Signal Types

Table 69. AXI Slave Interface Signal Types

Name Direction Width

araddr input 1 - 64

arburst input 2

arcache input 4

arid input 1 - 18

arlen input 4

arlock input 2

arprot input 3

arready output 1

arsize input 3

aruser input 1 - 64

arvalid input 1

awaddr input 1 - 64

awburst input 2

awcache input 4

awid input 1 - 18

continued...

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

199

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

awlen input 4

awlock input 2

awprot input 3

awready output 1

awsize input 3

awuser input 1 - 64

awvalid input 1

bid output 1 - 18

bready input 1

bresp output 2

bvalid output 1

rdata output 8, 16, 32, 64, 128, 256, 512, 1024

rid output 1 - 18

rlast output 1

rready input 1

rresp output 2

rvalid output 1

wdata input 8, 16, 32, 64, 128, 256, 512, 1024

wid input 1 - 18

wlast input 1

wready output 1

wstrb input 1, 2, 4, 8, 16, 32, 64, 128

wvalid input 1

3.14.3. AMBA 4 AXI Master Interface Signal Types

Table 70. AMBA 4 AXI Master Interface Signal Types

Name Direction Width

araddr output 1 - 64

arburst output 2

arcache output 4

arid output 1 - 18

arlen output 8

arlock output 1

arprot output 3

continued...

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

200

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

arready input 1

arregion output 1 - 4

arsize output 3

aruser output 1 - 64

arvalid output 1

awaddr output 1 - 64

awburst output 2

awcache output 4

awid output 1 - 18

awlen output 8

awlock output 1

awprot output 3

awqos output 1 - 4

awready input 1

awregion output 1 - 4

awsize output 3

awuser output 1 - 64

awvalid output 1

bid input 1 - 18

bready output 1

bresp input 2

buser input 1 - 64

bvalid input 1

rdata input 8, 16, 32, 64, 128, 256, 512, 1024

rid input 1 - 18

rlast input 1

rready output 1

rresp input 2

ruser input 1 - 64

rvalid input 1

wdata output 8, 16, 32, 64, 128, 256, 512, 1024

wid output 1 - 18

wlast output 1

wready input 1

continued...

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

201

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

wstrb output 1, 2, 4, 8, 16, 32, 64, 128

wuser output 1 - 64

wvalid output 1

3.14.4. AMBA 4 AXI Slave Interface Signal Types

Table 71. AMBA 4 AXI Slave Interface Signal Types

Name Direction Width

araddr input 1 - 64

arburst input 2

arcache input 4

arid input 1 - 18

arlen input 8

arlock input 1

arprot input 3

arqos input 1 - 4

arready output 1

arregion input 1 - 4

arsize input 3

aruser input 1 - 64

arvalid input 1

awaddr input 1 - 64

awburst input 2

awcache input 4

awid input 1 - 18

awlen input 8

awlock input 1

awprot input 3

awqos input 1 - 4

awready output 1

awregion input 1 - 4

awsize input 3

awuser input 1 - 64

awvalid input 1

bid output 1 - 18

continued...

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

202

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

bready input 1

bresp output 2

bvalid output 1

rdata output 8, 16, 32, 64, 128, 256, 512, 1024

rid output 1 - 18

rlast output 1

rready input 1

rresp output 2

ruser output 1 - 64

rvalid output 1

wdata input 8, 16, 32, 64, 128, 256, 512, 1024

wlast input 1

wready output 1

wstrb input 1, 2, 4, 8, 16, 32, 64, 128

wuser input 1 - 64

wvalid input 1

3.14.5. AMBA 4 AXI-Stream Master and Slave Interface Signal Types

Table 72. AMBA 4 AXI-Stream Master and Slave Interface Signal Types

Name Width Master Direction Slave Direction Required

tvalid 1 Output Input Yes

tready 1 Input Output No

tdata 8:4096 Output Input No

tstrb 1:512 Output Input No

tkeep 1:512 Output Input No

tid 1:8 Output Input No

tdest 1:4 Output Input No

tuser 1 Output Input No

tlast 1:4096 Output Input No

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

203

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.14.6. ACE-Lite Interface Signal Roles

Table 73. ACE-Lite Interface Signal Roles

Name Width Master Direction Slave Direction Required

arsnoop 4 bits Output Input Yes

ardomain 2 bits Output Input Yes

arbar 2 bits Output Input Yes

awsnoop 3 bits Output Input Yes

awdomain 2 bits Output Input Yes

awbar 2 bits Output Input Yes

awunique 1 bit Output Input Yes

3.14.7. APB Interface Signal Types

Table 74. APB Interface Signal Types

Name Width Direction
APB Master

Direction
APB Slave

Required

paddr [1:32] output input yes

psel [1:16] output input yes

penable 1 output input yes

pwrite 1 output input yes

pwdata [1:32] output input yes

prdata [1:32] input output yes

pslverr 1 input output no

pready 1 input output yes

paddr31 1 output input no

3.14.8. Avalon Memory-Mapped Interface Signal Roles

Signal roles define the signal types that Avalon-MM master and slave ports allow.

This specification does not require all signals to exist in an Avalon-MM interface. There
is no one signal that is always required. The minimum requirements for an Avalon-MM
interface are readdata for a read-only interface, or writedata and write for a
write-only interface.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

204

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following table lists signal roles for the Avalon-MM interface:

Table 75. Avalon-MM Signal Roles
Some Avalon-MM signals can be active high or active low. When active low, the signal name ends with _n.

Signal Role Width Direction Required Description

Fundamental Signals

address 1 - 64 Master →
Slave

No Masters: By default, the address signal represents a byte
address. The value of the address must align to the data width.
To write to specific bytes within a data word, the master must
use the byteenable signal. Refer to the addressUnits
interface property for word addressing.
Slaves: By default, the interconnect translates the byte address
into a word address in the slave’s address space. From the
perspective of the slave, each slave access is for a word of data.
For example, address = 0 selects the first word of the slave.
address = 1 selects the second word of the slave. Refer to the
addressUnits interface property for byte addressing.

byteenable

byteenable_n

2, 4,
8, 16,
32,
64,
128

Master →
Slave

No Enables one or more specific byte lanes during transfers on
interfaces of width greater than 8 bits. Each bit in byteenable
corresponds to a byte in writedata and readdata. The master
bit <n> of byteenable indicates whether byte <n> is being
written to. During writes, byteenables specify which bytes are
being written to. Other bytes should be ignored by the slave.
During reads, byteenables indicate which bytes the master is
reading. Slaves that simply return readdata with no side effects
are free to ignore byteenables during reads. If an interface
does not have a byteenable signal, the transfer proceeds as if
all byteenables are asserted.
When more than one bit of the byteenable signal is asserted,
all asserted lanes are adjacent.

debugaccess 1 Master →
Slave

No When asserted, allows the Nios II processor to write on-chip
memories configured as ROMs.

read

read_n

1 Master →
Slave

No Asserted to indicate a read transfer. If present, readdata is
required.

readdata 8, 16,
32,
64,
128,
256,
512,
1024

Slave →
Master

No The readdata driven from the slave to the master in response
to a read transfer. Required for interfaces that support reads.

response
[1:0]

2 Slave →
Master

No The response signal is an optional signal that carries the
response status.
Note: Because the signal is shared, an interface cannot issue or

accept a write response and a read response in the same
clock cycle.

• 00: OKAY—Successful response for a transaction.
• 01: RESERVED—Encoding is reserved.
• 10: SLAVEERROR—Error from an endpoint slave. Indicates

an unsuccessful transaction.
• 11: DECODEERROR—Indicates attempted access to an

undefined location.

continued...

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

205

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

For read responses:
• One response is sent with each readdata. A read burst

length of N results in N responses. Fewer responses are not
valid, even in the event of an error. The response signal value
may be different for each readdata in the burst.

• The interface must have read control signals. Pipeline support
is possible with the readdatavalid signal.

• On read errors, the corresponding readdata is "don't care".
For write responses:
• One write response must be sent for each write command. A

write burst results in only one response, which must be sent
after the final write transfer in the burst is accepted.

• If writeresponsevalid is present, all write commands
must be completed with write responses.

write

write_n

1 Master →
Slave

No Asserted to indicate a write transfer. If present, writedata is
required.

writedata 8, 16,
32,
64,
128,
256,
512,
1024

Master →
Slave

No Data for write transfers. The width must be the same as the
width of readdata if both are present. Required for interfaces
that support writes.

Wait-State Signals

lock 1 Master →
Slave

No lock ensures that once a master wins arbitration, the winning
master maintains access to the slave for multiple transactions.
Lock asserts coincident with the first read or write of a locked
sequence of transactions. Lock deasserts on the final
transaction of a locked sequence of transactions. lock assertion
does not guarantee that arbitration is won. After the lock-
asserting master has been granted, that master retains grant
until lock is deasserted.
A master equipped with lock cannot be a burst master.
Arbitration priority values for lock-equipped masters are ignored.
lock is particularly useful for read-modify-write (RMW)
operations. The typical read-modify-write operation includes the
following steps:
1. Master A asserts lock and reads 32-bit data that has multiple

bit fields.
2. Master A deasserts lock, changes one bit field, and writes the

32-bit data back.
lock prevents master B from performing a write between
Master A’s read and write.

waitrequest

waitrequest_
n

1 Slave →
Master

No A slave asserts waitrequest when unable to respond to a
read or write request. Forces the master to wait until the
interconnect is ready to proceed with the transfer. At the start of
all transfers, a master initiates the transfer and waits until
waitrequest is deasserted. A master must make no
assumption about the assertion state of waitrequest when the
master is idle: waitrequest may be high or low, depending on
system properties.
When waitrequest is asserted, master control signals to the
slave must remain constant except for beginbursttransfer.
For a timing diagram illustrating the beginbursttransfer
signal, refer to the figure in Read Bursts.

continued...

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

206

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

An Avalon-MM slave may assert waitrequest during idle
cycles. An Avalon-MM master may initiate a transaction when
waitrequest is asserted and wait for that signal to be
deasserted. To avoid system lockup, a slave device should assert
waitrequest when in reset.

Pipeline Signals

readdatavali
d

readdatavali
d_n

1 Slave →
Master

No Used for variable-latency, pipelined read transfers. When
asserted, indicates that the readdata signal contains valid data.
For a read burst with burstcount value <n>, the
readdatavalid signal must be asserted <n> times, once for
each readdata item. There must be at least one cycle of latency
between acceptance of the read and assertion of
readdatavalid. For a timing diagram illustrating the
readdatavalid signal, refer to Pipelined Read Transfer with
Variable Latency.
A slave may assert readdatavalid to transfer data to the
master independently of whether the slave is stalling a new
command with waitrequest.
Required if the master supports pipelined reads. Bursting
masters with read functionality must include the
readdatavalid signal.

writerespons
evalid

1 Slave →
Master

No An optional signal. If present, the interface issues write
responses for write commands.
When asserted, the value on the response signal is a valid write
response.
Writeresponsevalid is only asserted one clock cycle or more
after the write command is accepted. There is at least a one
clock cycle latency from command acceptance to assertion of
writeresponsevalid.

Burst Signals

burstcount 1 – 11 Master →
Slave

No Used by bursting masters to indicate the number of transfers in
each burst. The value of the maximum burstcount parameter
must be a power of 2. A burstcount interface of width <n> can
encode a max burst of size 2(<n>-1). For example, a 4-bit
burstcount signal can support a maximum burst count of 8.
The minimum burstcount is 1. The
constantBurstBehavior property controls the timing of the
burstcount signal. Bursting masters with read functionality
must include the readdatavalid signal.
For bursting masters and slaves using byte addresses, the
following restriction applies to the width of the address:

<address_w> >=
 <burstcount_w> +
log2(<symbols_per_word_of_interface>)

For bursting masters and slaves using word addresses, the log2
term above is omitted.

beginbursttr
ansfer

1 Interconnect
→ Slave

No Asserted for the first cycle of a burst to indicate when a burst
transfer is starting. This signal is deasserted after one cycle
regardless of the value of waitrequest. For a timing diagram
illustrating beginbursttransfer, refer to the figure in Read
Bursts.
beginbursttransfer is optional. A slave can always internally
calculate the start of the next write burst transaction by counting
data transfers.
Warning: do not use this signal. This signal exists to support

legacy memory controllers.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

207

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.14.9. Avalon Streaming Interface Signal Roles

Each signal in an Avalon-ST source or sink interface corresponds to one Avalon-ST
signal role. An Avalon-ST interface may contain only one instance of each signal role.
All Avalon-ST signal roles apply to both sources and sinks and have the same meaning
for both.

Table 76. Avalon-ST Interface Signals
In the following table, all signal roles are active high.

Signal Role Width Direction Required Description

Fundamental Signals

channel 1 – 128 Source → Sink No The channel number for data being transferred
on the current cycle.
If an interface supports the channel signal, the
interface must also define the maxChannel
parameter.

data 1 – 4,096 Source → Sink No The data signal from the source to the sink,
typically carries the bulk of the information being
transferred.
Parameters further define the contents and
format of the data signal.

error 1 – 256 Source → Sink No A bit mask to mark errors affecting the data
being transferred in the current cycle. A single bit
of the error signal masks each of the errors the
component recognizes. The errorDescriptor
defines the error signal properties.

ready 1 Sink → Source No Asserts high to indicate that the sink can accept
data. ready is asserted by the sink on cycle <n>
to mark cycle <n + readyLatency> as a ready
cycle. The source may only assert valid and
transfer data during ready cycles.
Sources without a ready input do not support
backpressure. Sinks without a ready output
never need to backpressure.

valid 1 Source → Sink No The source asserts this signal to qualify all other
source to sink signals. The sink samples data and
other source-to-sink signals on ready cycles
where valid is asserted. All other cycles are
ignored.
Sources without a valid output implicitly
provide valid data on every cycle that a sink is
not asserting backpressure. Sinks without a
valid input expect valid data on every cycle
that they are not backpressuring.

Packet Transfer Signals

empty 1 – 5 Source → Sink No Indicates the number of symbols that are empty,
that is, do not represent valid data. The empty
signal is not necessary on interfaces where there
is one symbol per beat.

endofpacket 1 Source → Sink No Asserted by the source to mark the end of a
packet.

startofpacket 1 Source → Sink No Asserted by the source to mark the beginning of
a packet.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

208

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.14.10. Avalon Clock Source Signal Roles

An Avalon Clock source interface drives a clock signal out of a component.

Table 77. Clock Source Signal Roles

Signal Role Width Direction Required Description

clk 1 Output Yes An output clock signal.

3.14.11. Avalon Clock Sink Signal Roles

A clock sink provides a timing reference for other interfaces and internal logic.

Table 78. Clock Sink Signal Roles

Signal Role Width Direction Required Description

clk 1 Input Yes A clock signal. Provides synchronization for internal
logic and for other interfaces.

3.14.12. Avalon Conduit Signal Roles

Table 79. Conduit Signal Roles

Signal Role Width Direction Description

<any> <n> In, out, or
bidirectional

A conduit interface consists of one or more input, output,
or bidirectional signals of arbitrary width. Conduits can
have any user-specified role. You can connect compatible
Conduit interfaces inside a Platform Designer system
provided the roles and widths match and the directions
are opposite.

3.14.13. Avalon Tristate Conduit Signal Roles

The following table lists the signal defined for the Avalon Tristate Conduit interface. All
Avalon-TC signals apply to both masters and slaves and have the same meaning for
both

Table 80. Tristate Conduit Interface Signal Roles

Signal Role Width Direction Required Description

request 1 Master → Slave Yes The meaning of request depends on the state of the
grant signal, as the following rules dictate.
When request is asserted and grant is deasserted,
request is requesting access for the current cycle.
When request is asserted and grant is asserted,
request is requesting access for the next cycle.
Consequently, request should be deasserted on the
final cycle of an access.
The request signal deasserts in the last cycle of a
bus access. The request signal can reassert
immediately following the final cycle of a transfer.
This protocol makes both rearbitration and
continuous bus access possible if no other masters
are requesting access.

continued...

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

209

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

Once asserted, request must remain asserted until
granted. Consequently, the shortest bus access is 2
cycles. Refer to Tristate Conduit Arbitration Timing
for an example of arbitration timing.

grant 1 Slave → Master Yes When asserted, indicates that a tristate conduit
master has access to perform transactions. The
grant signal asserts in response to the request
signal. The grant signal remains asserted until 1
cycle following the deassertion of request.

<name>_in 1 – 1024 Slave → Master No The input signal of a logical tristate signal.

<name>_out 1 – 1024 Master → Slave No The output signal of a logical tristate signal.

<name>_outen 1 Master → Slave No The output enable for a logical tristate signal.

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

210

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.14.14. Avalon Tri-State Slave Interface Signal Types

Table 81. Tri-state Slave Interface Signal Types

Name Width Direction Required Description

address 1 - 32 input No Address lines to the slave port.
Specifies a byte offset into the slave’s
address space.

read

read_n

1 input No Read-request signal. Not required if
the slave port never outputs data.
If present, data must also be used.

write

write_n

1 input No Write-request signal. Not required if
the slave port never receives data from
a master.
If present, data must also be present,
and writebyteenable cannot be
present.

chipselect

chipselect_n

1 input No When present, the slave port ignores
all Avalon-MM signals unless
chipselect is asserted. chipselect
is always present in combination with
read or write

outputenable

outputenable_n

1 input Yes Output-enable signal. When
deasserted, a tri-state slave port must
not drive its data lines otherwise data
contention may occur.

data 8,16, 32, 64, 128,
256, 512, 1024

bidir No Bidirectional data. During write
transfers, the FPGA drives the data
lines. During read transfers the slave
device drives the data lines, and the
FPGA captures the data signals and
provides them to the master.

byteenable

byteenable_n

2, 4, 8,16, 32, 64,
128

input No Enables specific byte lanes during
transfers.
Each bit in byteenable corresponds to a
byte lane in data. During writes,
byteenables specify which bytes the
master is writing to the slave. During
reads, byteenables indicates which
bytes the master is reading. Slaves
that simply return data with no side
effects are free to ignore
byteenables during reads.
When more than one byte lane is
asserted, all asserted lanes are
guaranteed to be adjacent. The
number of adjacent lines must be a
power of 2, and the specified bytes
must be aligned on an address
boundary for the size of the data. The
following are legal values for a 32-bit
slave:

1111 writes full 32 bits
0011 writes lower 2 bytes
1100 writes upper 2 bytes
0001 writes byte 0 only
0010 writes byte 1 only
0100 writes byte 2 only
1000 writes byte 3 only

continued...

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

211

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Width Direction Required Description

writebyteenabl
e

writebyteenabl
e_n

2,4,8,16, 32,
64,128

input No Equivalent to the logical AND of the
byteenable and write signals. When
used, the write signal is not used.

begintransfer1 1 input No Asserted for the first cycle of each
transfer.

Note: All Avalon signals are active high. Avalon signals that can also be asserted low list both versions in the Signal Role
column.

3.14.15. Avalon Interrupt Sender Signal Roles

Table 82. Interrupt Sender Signal Roles

Signal Role Width Direction Required Description

irq

irq_n

1-32 Output Yes Interrupt Request. An interrupt sender drives an
interrupt signal to an interrupt receiver.

3.14.16. Avalon Interrupt Receiver Signal Roles

Table 83. Interrupt Receiver Signal Roles

Signal Role Width Direction Required Description

irq 1–32 Input Yes irq is an <n>-bit vector, where each bit corresponds
directly to one IRQ sender with no inherent assumption
of priority.

3.15. Platform Designer Interconnect Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.
• Updated location of Limit interconnect pipeline stages to option in

Platform Designer GUI
• In Avalon Memory-Mapped Interface Signal Roles, added consecutive

byte-enable support.
• Specified minimum duration of reset that the Platform Design

Interconnect requires to work correctly.

2018.06.15 18.0.0 Clarified behavior of Error Correction Coding (ECC) in Interconnect.

2017.11.06 17.1.0 • Changed instances of Qsys to Platform Designer (Standard)
• Updated information about the Reset Sequencer.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 • Fixed Priority Arbitration.
• Added topic: Read and Write Responses.
• Added topic: Error Correction Coding (ECC) in Qsys Interconnect.
• Added: response [1:0], Avalon Memory-Mapped Interface Signal

Roles.
• Added writeresponsevalid, Avalon Memory-Mapped Interface

Signal Roles.

continued...

3. Platform Designer Interconnect

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

212

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

December 2014 14.1.0 • Read error responses, Avalon Memory-Mapped Interface Signal,
response.

• Burst Adapter Implementation Options: Generic converter (slower,
lower area), Per-burst-type converter (faster, higher area).

August 2014 14.0a10.0 • Updated Qsys Packet Format for Memory-Mapped Master and Slave
Interfaces table, Protection.

• Streaming Interface renamed to Avalon Streaming Interfaces.
• Added Response Merging under Memory-Mapped Interfaces.

June 2014 14.0.0 • AXI4-Lite support.
• AXI4-Stream support.
• Avalon-ST adapter parameters.
• IRQ Bridge.
• Handling Read Side Effects note added.

November 2013 13.1.0 • HSSI clock support.
• Reset Sequencer.
• Interconnect pipelining.

May 2013 13.0.0 • AMBA APB support.
• Auto-inserted Avalon-ST adapters feature.
• Moved Address Span Extender to the Qsys System Design Components

chapter.

November 2012 12.1.0 • AMBA AXI4 support.

June 2012 12.0.0 • AMBA AXI3 support.
• Avalon-ST adapters.
• Address Span Extender.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Removed beta status.

December 2010 10.1.0 Initial release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

3. Platform Designer Interconnect

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

213

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Platform Designer System Design Components
You can use Platform Designer IP components to create Platform Designer systems.
Platform Designer interfaces include components appropriate for streaming high-speed
data, reading and writing registers and memory, controlling off-chip devices, and
transporting data between components.

Note: Intel now refers to Qsys as Platform Designer (Standard).

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

Related Information

• Creating a System with Platform Designer on page 10

• Platform Designer Interconnect on page 128

• AMBA Protocol Specifications

• Embedded Peripherals IP User Guide

• Avalon Interface Specifications

4.1. Bridges

Bridges affect the way Platform Designer transports data between components. You
can insert bridges between master and slave interfaces to control the topology of a
Platform Designer system, which affects the interconnect that Platform Designer
generates. You can also use bridges to separate components into different clock
domains to isolate clock domain crossing logic.

A bridge has one slave interface and one master interface. In Platform Designer, one
or more master interfaces from other components connect to the bridge slave. The
bridge master connects to one or more slave interfaces on other components.

683364 | 2018.12.15

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
https://www.intel.com/content/www/us/en/docs/programmable/683130/current/introduction.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 110. Using a Bridge in a Platform Designer System
In this example, three masters have logical connections to three slaves, although physically each master
connects only to the bridge. Transfers initiated to the slave propagate to the master in the same order in which
the transfers are initiated on the slave.

 Bridge

M

S

M1

M

M2

M M

M3

S2

S

S1

S

S

M Master

 Slave

S3

S

Arbiter & Write Data Control
Signal Multiplexing

ChipSelect & Read Data
Multiplexing

4.1.1. Clock Bridge

The Clock Bridge connects a clock source to multiple clock input interfaces. You can
use the clock bridge to connect a clock source that is outside the Platform Designer
system. Create the connection through an exported interface, and then connect to
multiple clock input interfaces.

Clock outputs match fan-out performance without the use of a bridge. You require a
bridge only when you want a clock from an exported source to connect internally to
more than one source.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

215

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 111. Clock Bridge

 PIO

S

 DMA

M MS

Platform Designer System

Clock Bridge

External Clock from PCB

CIn

Export

COut

CIn CIn

4.1.2. Avalon-MM Clock Crossing Bridge

The Avalon-MM Clock Crossing Bridge transfers Avalon-MM commands and responses
between different clock domains. You can also use the Avalon-MM Clock Crossing
Bridge between AXI masters and slaves of different clock domains.

The Avalon-MM Clock Crossing Bridge uses asynchronous FIFOs to implement clock
crossing logic. The bridge parameters control the depth of the command and response
FIFOs in both the master and slave clock domains. If the number of active reads
exceeds the depth of the response FIFO, the Clock Crossing Bridge stops sending
reads.

To maintain throughput for high-performance applications, increase the response FIFO
depth from the default minimum depth, which is twice the maximum burst size.

Note: When you use the FIFO-based clock crossing a Platform Designer system, the DC FIFO
is automatically inserted in the Platform Designer system. The reset inputs for the DC
FIFO connect to the reset sources for the connected master and slave components on
either side of the DC FIFO. For this configuration, you must assert both the resets on
the master and the slave sides at the same time to ensure the DC FIFO resets
properly. Alternatively, you can drive both resets from the same reset source to
guarantee that the DC FIFO resets properly.

Note: The clock crossing bridge includes appropriate SDC constraints for its internal
asynchronous FIFOs. For these SDC constraints to work correctly, do not set false
paths on the pointer crossings in the FIFOs. Do not split the bridge’s clocks into
separate clock groups when you declare SDC constraints; the split has the same effect
as setting false paths.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

216

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.1.2.1. Avalon-MM Clock Crossing Bridge Example

In the example shown below, the Avalon-MM Clock Crossing bridges separate slave
components into two groups. The Avalon-MM Clock Crossing Bridge places the low
performance slave components behind a single bridge and clocks the components at a
lower speed. The bridge places the high-performance components behind a second
bridge and clocks it at a higher speed.

By inserting clock-crossing bridges, you simplify the Platform Designer interconnect
and allow the Intel Quartus Prime Fitter to optimize paths that require minimal
propagation delay.

Figure 112. Avalon-MM Clock Crossing Bridge

S

M Avalon-MM Master Port

Avalon-MM Slave Port

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon-MM
Clock-Crossing

Bridge

S

M

S

DDR
SDRAM

S

Flash
Memory

S

External
SRAM

JTAG Debug
Module

S

UART

S S

System ID

S

Seven Segment
PIO

S

LCD
Display

CPU

M

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon
Tristate
Bridge

S

M

Avalon
Tristate
Bridge

S

M

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

217

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.1.2.2. Avalon-MM Clock Crossing Bridge Parameters

Table 84. Avalon-MM Clock Crossing Bridge Parameters

Parameters Values Description

Data width 8, 16, 32, 64, 128,
256, 512, 1024 bits

Determines the data width of the interfaces on the
bridge, and affects the size of both FIFOs. For the
highest bandwidth, set Data width to be as wide as
the widest master that connects to the bridge.

Symbol width 1, 2, 4, 8, 16, 32,
64 (bits)

Number of bits per symbol. For example, byte-
oriented interfaces have 8-bit symbols.

Address width 1-32 bits The address bits needed to address the downstream
slaves.

Use automatically-determined address
width

- The minimum bridge address width that is required
to address the downstream slaves.

Maximum burst size 1, 2, 4, 8, 16, 32,
64, 128, 256, 512,
1024 bits

Determines the maximum length of bursts that the
bridge supports.

Command FIFO depth 2, 4, 8, 16, 32, 64,
128, 256, 512,
1024, 2048, 4096,
8192, 16384 bits

Command (master-to-slave) FIFO depth.

Respond FIFO depth 2, 4, 8,16, 32, 64,
128, 256, 512,
1024, 2048, 4096,
8192, 16384 bits

Slave-to-master FIFO depth.

Master clock domain synchronizer depth 2, 3, 4, 5 bits The number of pipeline stages in the clock crossing
logic in the issuing master to target slave direction.
Increasing this value leads to a larger mean time
between failures (MTBF). You can determine the
MTBF for a design by running a timing analysis.

Slave clock domain synchronizer depth 2, 3, 4, 5 bits The number of pipeline stages in the clock crossing
logic in the target slave to master direction.
Increasing this value leads to a larger meantime
between failures (MTBF). You can determine the
MTBF for a design by running a timing analysis.

4.1.3. Avalon-MM Pipeline Bridge

The Avalon-MM Pipeline Bridge inserts a register stage in the Avalon-MM command
and response paths. The bridge accepts commands on its slave port and propagates
the commands to its master port. The pipeline bridge provides separate parameters to
turn on pipelining for command and response signals.

The Maximum pending read transactions parameter is the maximum number of
pending reads that the Avalon-MM bridge can queue up. To determine the best value
for this parameter, review this same option for the bridge's connected slaves and
identify the highest value of the parameter, and then add the internal buffering
requirements of the Avalon-MM bridge. In general, the value is between 4 and 32. The
limit for maximum queued transactions is 64.

You can use the Avalon-MM bridge to export a single Avalon-MM slave interface to
control multiple Avalon-MM slave devices. The pipelining feature is optional.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

218

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 113. Avalon-MM Pipeline Bridge in a XAUI PHY Transceiver IP Core
In this example, the bridge transfers commands received on its slave interface to its master port.

Interconnect

Exported to Embedded
Processor on PCB

 Interleave

 PCSS

Alt_PMA

SS

Low Latency
Controller

S

Transceiver
Reconfiguration

Controller

Xcvr
XAUI PHY

M

Avalon-MM
Pipeline Bridge

(Platform Designer)

S

PMA
Ch

Cntl

Because the slave interface is exported to the pins of the device, having a single slave
port, rather than separate ports for each slave device, reduces the pin count of the
FPGA.

4.1.4. Avalon-MM Unaligned Burst Expansion Bridge

The Avalon-MM Unaligned Burst Expansion Bridge aligns read burst transactions from
masters connected to its slave interface, to the address space of slaves connected to
its master interface. This alignment ensures that all read burst transactions are
delivered to the slave as a single transaction.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

219

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 114. Avalon-MM Unaligned Burst Expansion Bridge

Slave Master

32-bit Avalon-MM
Master

Slave

Master

SlaveUnaligned Burst
 Expansion Bridge

64-bit Avalon-MM
Slave

64-bit Avalon-MM
Slave

You can use the Avalon Unaligned Burst Expansion Bridge to align read burst
transactions from masters that have narrower data widths than the target slaves.
Using the bridge for this purpose improves bandwidth utilization for the master-slave
pair, and ensures that unaligned bursts are processed as single transactions rather
than multiple transactions.

Note: Do not use the Avalon-MM Unaligned Burst Expansion Bridge if any connected slave
has read side effects from reading addresses that are exposed to any connected
master's address map. This bridge can cause read side effects due to alignment
modification to read burst transaction addresses.

Note: The Avalon-MM Unaligned Burst Expansion Bridge does not support VHDL simulation.

4.1.4.1. Using the Avalon-MM Unaligned Burst Expansion Bridge

When a master sends a read burst transaction to a slave, the Avalon-MM Unaligned
Burst Expansion Bridge initially determines whether the start address of the read burst
transaction is aligned to the slave's memory address space. If the base address is
aligned, the bridge does not change the base address. If the base address is not
aligned, the bridge aligns the base address to the nearest aligned address that is less
than the requested base address.

The Avalon-MM Unaligned Burst Expansion Bridge then determines whether the final
word requested by the master is the last word at the slave read burst address. If a
single slave address contains multiple words, all those words must be requested for a
single read burst transaction to occur.

• If the final word requested by the master is the last word at the slave read burst
address, the bridge does not modify the burst length of the read burst command
to the slave.

• If the final word requested by the master is not the last word at the slave read
burst address, the bridge increases the burst length of the read burst command to
the slave. The final word requested by the modified read burst command is then
the last word at the slave read burst address.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

220

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The bridge stores information about each aligned read burst command that it sends to
slaves connected to a master interface. When a read response is received on the
master interface, the bridge determines if the base address or burst length of the
issued read burst command was altered.

If the bridge alters either the base address or the burst length of the issued read burst
command, it receives response words that the master did not request. The bridge
suppresses words that it receives from the aligned burst response that are not part of
the original read burst command from the master.

4.1.4.2. Avalon-MM Unaligned Burst Expansion Bridge Parameters

Figure 115. Avalon-MM Unaligned Burst Expansion Bridge Parameter Editor

Table 85. Avalon-MM Unaligned Burst Expansion Bridge Parameters

Parameter Description

Data width Data width of the master connected to the bridge.

Address width (in WORDS) The address width of the master connected to the bridge.

Burstcount width The burstcount signal width of the master connected to the bridge.

Maximum pending read
transactions

The Maximum pending read transactions parameter is the maximum number
of pending reads that the Avalon-MM bridge can queue up. To determine the best
value for this parameter, review this same option for the bridge's connected
slaves and identify the highest value of the parameter, and then add the internal
buffering requirements of the Avalon-MM bridge. In general, the value is between
4 and 32. The limit for maximum queued transactions is 64.

Width of slave to optimize for The data width of the connected slave. Supported values are: 16, 32, 64, 128,
256, 512, 1024, 2048, and 4096 bits.

continued...

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

221

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

Note: If you connect multiple slaves, all slaves must have the same data width.

Pipeline command signals When turned on, the command path is pipelined, minimizing the bridge's critical
path at the expense of increased logic usage and latency.

4.1.4.3. Avalon-MM Unaligned Burst Expansion Bridge Example

Figure 116. Unaligned Burst Expansion Bridge
The example below shows an unaligned read burst command from a master that the Avalon-MM Unaligned
Burst Expansion Bridge converts to an aligned request for a connected slave, and the suppression of words due
to the aligned read burst command. In this example, a 32-bit master requests an 8-beat burst of 32-bit words
from a 64-bit slave with a start address that is not 64-bit aligned.

X

X

X

X

X

X

X

X

1

2

3

4

5

6

7

8

9

A

B

C

0

X

X

X

X

2, 3

4, 5

6, 7

8, 9

A, B

C, D

E, F

0, 1 X

X

X

X

Transaction 1

Transaction 2

Transaction 3

Transaction 4

Transaction 5
Transaction 1

X

X

X

X

X

X

X

X

1

2

3

4

5

6

7

8

9

A

B

C

0

X

X

X

X

2, 3

4, 5

6, 7

8, 9

A, B

C, D

E, F

0, 1 X

X

X

X

Transaction 1

With Avalon-MM Unaligned Burst Expansion Bridge

Bridge
Alignment

X*

X*

Note: the bridge suppresses
X* response words

Transaction 1

Without Avalon-MM Unaligned Burst Expansion Bridge

Because the target slave has a 64-bit data width, address 1 is unaligned in the slave's
address space. As a result, several smaller burst transactions are needed to request
the data associated with the master's read burst command.

With an Avalon-MM Unaligned Burst Expansion Bridge in place, the bridge issues a
new read burst command to the target slave beginning at address 0 with burst length
10, which requests data up to the word stored at address 9.

When the bridge receives the word corresponding to address 0, it suppresses it from
the master, and then delivers the words corresponding to addresses 1 through 8 to the
master. When the bridge receives the word corresponding to address 9, it suppresses
that word from the master.

4.1.5. Bridges Between Avalon and AXI Interfaces

When designing a Platform Designer system, you can make connections between AXI
and Avalon interfaces without the use of explicitly-instantiated bridges; the
interconnect provides all necessary bridging logic. However, this does not prevent the
use of explicit bridges to separate the AXI and Avalon domains.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

222

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 117. Avalon-MM Pipeline Bridge Between Avalon-MM and AXI Domains
Using an explicit Avalon-MM bridge to separate the AXI and Avalon domains reduces the amount of bridging
logic in the interconnect at the expense of concurrency.

Network

Avalon-MM

Avalon-MM

AXI

AXI

AXI

Avalon-MM

Shared Avalon & AXI Domain

Network

Avalon-MM
Pipeline Bridge

Avalon-MM

AXI

AXI

AXI

Network

Avalon-MM

Avalon-MM

Avalon-MMAXI

Separated Avalon & AXI Domains

4.1.6. AXI Bridge

With an AXI bridge, you can influence the placement of resource-intensive
components, such as the width and burst adapters. Depending on its use, an AXI
bridge may reduce throughput and concurrency, in return for higher fMAX and less
logic.

You can use an AXI bridge to group different parts of your Platform Designer system.
Other parts of the system can then connect to the bridge interface instead of to
multiple separate master or slave interfaces. You can also use an AXI bridge to export
AXI interfaces from Platform Designer systems.

Example 9. Reducing the Number of Adapters by Adding a Bridge

The figure shows a system with a single AXI master and three AXI slaves. It also has
various interconnect components, such as routers, demultiplexers, and multiplexers.
Two of the slaves have a narrower data width than the master; 16-bit slaves versus a
32-bit master.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

223

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 118. AXI System Without a Bridge

AXI Master AXI Master
Agent

Router_0 Command
Demux_0

Router_1 Command
Demux_1

Command
Mux_2

Command
Mux_0

Command
Mux_4

Command
Mux_5

Command
Mux_1

Command
Mux_3

Width
Adapter_1

Width
Adapter_0

Width
Adapter_2

Burst
Adapter_1

Burst
Adapter_0

Burst
Adapter_2

AXI Slave
Agent_0

AXI
Slave_0

Width
Adapter_3

Burst
Adapter_3

AXI Slave
Agent_2

AXI
Slave_2

AXI Slave
Agent_1

AXI
Slave_1

Four width adapters (0 - 3) and four burst adapters (0 - 3) are
inserted between the master and slaves for transaction
adaptation for the example system.

In this system, Platform Designer interconnect creates four width adapters and four
burst adapters to access the two slaves.

You can improve resource usage by adding an AXI bridge. Then, Platform Designer
needs to add only two width adapters and two burst adapters; one pair for the read
channels, and another pair for the write channel.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

224

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 119. Width and Burst Adapters Added to System With a Bridge

AXI Master AXI Master
Agent

Router_0 Command
Demux_0

Router_1 Command
Demux_1

Command
Mux_0

Command
Mux_2

Command
Mux_1

Command
Mux_3

Width
Adapter_0

AXI Slave
Agent_1

Burst
Adapter_0

AXI
Slave_2

Width
Adapter_3

Burst
Adapter_3

AXI Slave
Agent_0

AXI
Bridge

By inserting an AXI bridge, the
interconnect Is divided into two
domains (interconnect_0 and
interconnect_1). Notice the
reduction in the number of width
adapters from 4 to 2 after the
bridge insertion. The same
process applies for burst adapters.

Interconnect_0

AXI
Bridge

AXI Master
Agent

Router_0 Limiter_0

Router_1 Limiter_1

Command
Mux_0

Command
Mux_2

Command
Mux_1

Command
Mux_3

AXI Slave
Agent_0

AXI
Slave_0

Width and burst adapters are not
required in Interconnect_1
because the adaptations are
performed in Interconnect_0.

Interconnect_1

Command
Demux_0

Command
Demux_1

AXI Slave
Agent_1

AXI
Slave_1

The figure shows the same system with an AXI bridge component, and the decrease in
the number of width and burst adapters. Platform Designer creates only two width
adapters and two burst adapters, as compared to the four width adapters and four
burst adapters in the previous figure.

Even though this system includes more components, the overall system performance
improves because there are fewer resource-intensive width and burst adapters.

4.1.6.1. AXI Bridge Signal Types

Based on parameter selections that you make for the AXI Bridge component, Platform
Designer instantiates either the AMBA 3 AXI or AMBA 3 AXI master and slave
interfaces into the component.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

225

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: In AMBA 3 AXI, aw/aruser accommodates sideband signal usage by hard processor
systems (HPS).

Table 86. Sets of Signals for the AXI Bridge Based on the Protocol

Signal Name AMBA 3 AXI AMBA 3 AXI

awid / arid yes yes

awaddr / araddr yes yes

awlen / arlen yes (4-bit) yes (8-bit)

awsize / arsize yes yes

awburst / arburst yes yes

awlock / arlock yes yes (1-bit optional)

awcache / arcache yes (2-bit) yes (optional)

awprot / arprot yes yes

awuser / aruser yes yes

awvalid / arvalid yes yes

awready / arready yes yes

awqos / arqos no yes

awregion / arregion no yes

wid yes no (optional)

wdata / rdata yes yes

wstrb yes yes

wlast / rvalid yes yes

wvalid / rlast yes yes

wready / rready yes yes

wuser / ruser no yes

bid / rid yes yes

bresp / rresp yes yes (optional)

bvalid yes yes

bready yes yes

4.1.6.2. AXI Bridge Parameters

In the parameter editor, you can customize the parameters for the AXI bridge
according to the requirements of your design.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

226

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 120. AXI Bridge Parameter Editor

Table 87. AXI Bridge Parameters

Parameter Type Range Description

AXI Version string AMBA 3
AXI or

AMBA 3
AXI

Specifies the AXI version and signals that
Platform Designer generates for the slave and
master interfaces of the bridge.

Data Width integer 8:1024 Controls the width of the data for the master
and slave interfaces.

Address Width integer 1-64 bits Controls the width of the address for the
master and slave interfaces.

AWUSER Width integer 1-64 bits Controls the width of the write address channel
sideband signals of the master and slave
interfaces.

ARUSER Width integer 1-64 bits Controls the width of the read address channel
sideband signals of the master and slave
interfaces.

WUSER Width integer 1-64 bits Controls the width of the write data channel
sideband signals of the master and slave
interfaces.

RUSER Width integer 1-16 bits Controls the width of the read data channel
sideband signals of the master and slave
interfaces.

BUSER Width integer 1-16 bits Controls the width of the write response
channel sideband signals of the master and
slave interfaces.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

227

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.1.6.3. AXI Bridge Slave and Master Interface Parameters

Table 88. AXI Bridge Slave and Master Interface Parameters

Parameter Description

ID Width Controls the width of the thread ID of the master and slave
interfaces.

Write/Read/Combined Acceptance Capability Controls the depth of the FIFO that Platform Designer needs
in the interconnect agents based on the maximum pending
commands that the slave interface accepts.

Write/Read/Combined Issuing Capability Controls the depth of the FIFO that Platform Designer needs
in the interconnect agents based on the maximum pending
commands that the master interface issues. Issuing
capability must follow acceptance capability to avoid
unnecessary creation of FIFOs in the bridge.

Note: Maximum acceptance/issuing capability is a model-only parameter and does not
influence the bridge HDL. The bridge does not backpressure when this limit is reached.
Downstream components or the interconnect must apply backpressure.

4.1.7. AXI Timeout Bridge

The AXI Timeout Bridge allows your system to recover when it freezes, and facilitates
debugging. You can place an AXI Timeout Bridge between a single master and a single
slave if you know that the slave may time out and cause your system to freeze. If a
slave does not accept a command or respond to a command it accepted, its master
can wait indefinitely.

Figure 121. AXI Timeout Bridge

For a domain with multiple masters and slaves, placement of an AXI Timeout Bridge in
your design may be beneficial in the following scenarios:

• To recover from a freeze, place the bridge near the slave. If the master attempts
to communicate with a slave that freezes, the AXI Timeout Bridge frees the
master by generating error responses. The master is then able to communicate
with another slave.

• When debugging your system, place the AXI Timeout Bridge near the master. This
placement enables you to identify the origin of the burst, and to obtain the full
address from the master. Additionally, placing an AXI Timeout Bridge near the
master enables you to identify the target slave for the burst.

Note: If you place the bridge at the slave's side and you have multiple slaves
connected to the same master, you do not get the full address.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

228

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 122. AXI Timeout Bridge Placement

Interconnect

M 0

M 1

S 0

S 1

Possible bridge placement when used with Interconnect

Near Master
or at Master’s Side

Near Slave
or at Slave’s Side

Master Slave

Simplest Form

Bridge

4.1.7.1. AXI Timeout Bridge Stages

A timeout occurs when the internal timer in the bridge exceeds the specified number
of cycles within which a burst must complete from start to end.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

229

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 123. AXI Timeout Bridge Stages

A

BC

A read/write
times out

No more
outstanding
commands

The AXI Timeout Bridge is notified
that the slave is reset.

 A Slave is functional - The bridge passes through all bursts.

 B Slave is unresponsive - The bridge accepts commands and
 responds (with errors) to commands for the unresponsive slave.
 Commands are not passed through to the slave at this stage.

 C Slave is reset - The bridge does not accept new commands,
 and responds only to commands that are outstanding.

• When a timeout occurs, the AXI Timeout Bridge asserts an interrupt and reports
the burst that caused the timeout to the Configuration and Status Register (CSR).

• The bridge then generates error responses back to the master on behalf of the
unresponsive slave. This stage frees the master and certifies the unresponsive
slave as dysfunctional.

• The AXI Timeout Bridge accepts subsequent write addresses, write data, and read
addresses to the dysfunctional slave. The bridge does not accept outstanding write
responses, and read data from the dysfunctional slave is not passed through to
the master.

• The awvalid, wvalid, bready, arvalid, and rready ports are held low at the
master interface of the bridge.

Note: After a timeout, awvalid, wvalid, and arvalid may be dropped before they are
accepted by awready at the master interface. While the behavior violates the AXI
specification, it occurs only on an interface connected to the slave which has been
certified dysfunctional by the AXI Timeout Bridge.

Write channel refers to the AXI write address, data and response channels. Similarly,
read channel refers to the AXI read address and data channels. AXI write and read
channels are independent of each other. However, when a timeout occurs on either
channel, the bridge generates error responses on both channels.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

230

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 89. Burst Start and End Definitions for the AXI Timeout Bridge

Channel Start End

Write When an address is issued. First cycle of awvalid,
even if data of the same burst is issued before the
address (first cycle of wvalid).

When the response is issued. First cycle of
bvalid.

Read When an address is issued. First cycle of arvalid. When the last data is issued. First cycle of rvalid
and rlast.

The AXI Timeout Bridge has four required interfaces: Master, Slave, Configuration and
Status Register (CSR) (AMBA 3 AXI-Lite), and Interrupt. Platform Designer allows the
AXI Timeout Bridge to connect to any AMBA 3 AXI, AMBA 3 AXI, or Avalon master or
slave interface. Avalon masters must utilize the bridge’s interrupt output to detect a
timeout.

The bridge slave interface accepts write addresses, write data, and read addresses,
and then generates the SLVERR response at the write response and read data
channels. Do not use buser, rdata and ruser at this stage of processing.

To resume normal operation, the dysfunctional slave must be reset and the bridge
notified of the change in status via the CSR. Once the CSR notifies the bridge that the
slave is ready, the bridge does not accept new commands until all outstanding bursts
are responded to with an error response.

The CSR has a 4-bit address width and a 32-bit data width. The CSR reports status
and address information when the bridge asserts an interrupt.

Table 90. CSR Interrupt Status Information for the AXI Timeout Bridge

Address Attribute Name

0x0 write-only Slave is reset

0x4 read-only Timed out operation

0x8 through 0xF read-only Timed out address

4.1.7.2. AXI Timeout Bridge Parameters

Table 91. AXI Timeout Bridge Parameters

Parameter Description

ID width The width of awid, bid, arid, or rid.

Address width The width of awaddr or araddr.

Data width The width of wdata or rdata.

User width The width of awuser, wuser, buser, aruser, or ruser.

Maximum number of
outstanding writes

The expected maximum number of outstanding writes.

Maximum number of
outstanding reads

The expected maximum number of outstanding reads.

Maximum number of
cycles

The number of cycles within which a burst must complete.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

231

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.1.8. Address Span Extender

The Address Span Extender allows memory-mapped master interfaces to access a
larger or smaller address map than the width of their address signals allows. The
address span extender splits the addressable space into multiple separate windows, so
that the master can access the appropriate part of the memory through the window.

The address span extender does not limit master and slave widths to a 32-bit and 64-
bit configuration. You can use the address span extender with 1-64 bit address
windows.

Figure 124. Address Span Extender

S

S

Control Port

Address Span Extender

Mapping Table

Control Register Z-1

Control Register 0

Slave Word Address

Expanded Master Address

. .
.

M

If a processor can address only 2 GB of an address span, and your system contains 4
GB of memory, the address span extender can provide two, 2 GB windows in the 4 GB
memory address space. This issue sometimes occurs with Intel SoC devices.

For example, an HPS subsystem in an SoC device can address only 1 GB of an address
span within the FPGA, using the HPS-to-FPGA bridge. The address span extender
enables the SoC device to address all the address space in the FPGA using multiple 1
GB windows.

4.1.8.1. CTRL Register Layout

The control registers consist of one 64-bit register for each window, where you specify
the window's base address. For example, if CTRL_BASE is the base address of the
control register, and address span extender contains two windows (0 and 1), then
window 0’s control register starts at CTRL_BASE, and window 1’s control register
starts at CTRL_BASE + 8 (using byte addresses).

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

232

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.1.8.2. Address Span Extender Parameters

Table 92. Address Span Extender Parameters

Parameter Description

Datapath Width Width of write data and read data signals.

Expanded Master Byte Address
Width

Width of the master byte address port. That is, the address span size of all the
downstream slaves that attach to the address span extender.

Slave Word Address Width Width of the slave word address port. That is, the address span size of the
downstream slaves that the upstream master accesses.

Burstcount Width Burst count port width of the downstream slave and the upstream master that
attach to the address span extender.

Number of sub-windows The slave port can represent one or more windows in the master address span.
You can subdivide the slave address span into N equal spans in N sub-windows.
A remapping register in the CSR slave represents each sub-window, and
configures the base address that each sub-window remaps to. The address span
extender replaces the upper bits of the address with the stored index value in
the remapping register before the master initiates a transaction.

Enable Slave Control Port Dictates run-time control over the sub-window indexes. If you can define static
re-mappings that do not need any change, you do not need to enable this CSR
slave.

Maximum Pending Reads Sets the bridge slave's maximumPendingReadTransactions property. In
certain system configurations, you must increase this value to improve
performance. This value usually aligns with the properties of the downstream
slaves that you attach to this bridge.

4.1.8.3. Calculating the Address Span Extender Slave Address

The diagram describes how Platform Designer calculates the slave address. In this
example, the address span extender is configured with a 28-bit address space for
slaves. The upper 2 bits [27:26] are used to select the control registers.

The lower 26 bits ([25:0]) originate from the address span extender's data port, and
are the offset into a particular window.

Figure 125. Address Span Extender

Control Registers[63:0]

Mapping Table (Sub-Windows)

[27:26] [25:0]

28-bit Slave Word Address

38-bit Master Word Address

Control
Port

0x00000000_04000000
0x00000000_08000000
0x00000000_0C000000
0x00000000_00000000

0

1

2

3

{ ”Control Register”[37:26] , “Slave addr”[25:0] }

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

233

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.1.8.4. Using the Address Span Extender

This example shows when and how to use address span extender component in your
Platform Designer design.

Figure 126. Block Diagram with Address Span Extender

 External Streaming
Source (Example: SDI)

Modular
SGDMA

4GB SDRAM

Address Span
 Extender

 Peripherals
(LED and UART)

32-bit Address
 Master

Avalon MM/AXI

Avalon ST

In the above design, a 32-bit master shares 4 GB SDRAM with an external streaming
interface. The master has the path to access streaming data from the SDRAM DDR
memory. However, if you connect the whole 32-bit address bus of the master to the
SDRAM DDR memory, you cannot connect the master to peripherals such as LED or
UART. To avoid this situation, you can implement the address span extender between
the master and DDR memory. The address span extender allows the master to access
the SDRAM DDR memory and the peripherals at the same time.

To implement address span extender for the above example, you can divide the
address window of the address span extender into two sub-windows of 512 MB each.
The sub-window 0 is for the master program area. You can dynamically map the sub-
window 1 to any area other than the program area.

You can change the offset of the address window by setting the base address of sub-
window 1 to the control register of the address span extender. However, you must
make sure that the sub-window address span masks the base address. You can
choose any arbitrary base address. If you set the value 0xa000_0000 to the control
register, Platform Designer maps the sub-window 1 to 0xa000_0000.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

234

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 93. CSR Mapping Table

Address Data

0x8000_0000 0x0000_0000

0x8000_0008 0xa000_0000

Figure 127. Memory mapping for Address Span Extender

 Peripherals

 CSR Area

 Address Span Extender

 Extended Master Area

0xFFFF_FFFF

0x8000_0000

0x3FFF_FFFF

0x0000_0000

Master

 Sub-window 1

 Sub-window 0
0x2000_0000

0xa000_0000

4GB SDRAM

 Streaming Data

Address: 0x8000_0008

0xa0000_0000

The table below indicates the Platform Designer parameter settings for this address
span extender example.

Table 94. Parameter Settings for the Address Span Extender Example

Parameter Value Description

Datapath Width 32 bits The CPU has 32-bits data width and the SDRAM DDR
memory has 512-bits data width. Since the transaction
between the master and SDRAM DDR memory is minimal,
set the datapath width to align with the upstream master.

Expanded Master Byte Address 32 bits The address span extender has a 4 GB address span.

Slave Word Address Width 18 bits There are two 512 MB sub-windows in reserve for the
master. The number of bytes over the data word width in
the Datapath Properties (4 bytes for this example)
accounts for the slave address.

Burstcount Width 4 bits The address span extender must handle up to 8 words burst
in this example.

Number of sub-windows 2 Address window of the address span extender has two sub-
windows of 512 MB each.

Enable Slave Control Port true The address span extender component must have control to
change the base address of the sub-window.

Maximum Pending Reads 4 This number is the same as SDRAM DDR memory burst
count.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

235

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 128. Address Span Extender Parameter Editor

Note: You can view the address span extender connections in the System View tab. The
windowed slave port and control port connect to the master. The expanded master
port connects to the SDRAM DDR memory.

4.1.8.5. Alternate Options for the Address Span Extender

You can set parameters for the address span extender with an initial fixed address
value. Enter an address for the Reset Default for Master Window option, and
select True for the Disable Slave Control Port option. This allows the address span
extender to function as a fixed, non-programmable component.

Each sub-window is equal in size and stacks sequentially in the windowed slave
interface's address space. To control the fixed address bits of a particular sub-window,
you can write to the sub-window’s register in the register control slave interface.
Platform Designer structures the logic so that Platform Designer can optimize and
remove bits that are not needed.

If Burstcount Width is greater than 1, Platform Designer processes the read burst in
a single cycle, and assumes all byteenable signals are asserted on every cycle.

4.1.8.6. Nios II Support

If the address span extender window is fixed, for example, the Disable Slave
Control Port option is turned on, then the address span extender performs as a
bridge. Components on the slave side of the address span extender that are within the
window are visible to the Nios II processor. Components partially within a window
appear to the Nios II processor as if they have a reduced span. For example, a
memory partially within a window appears as having a smaller size.

You can also use the address span extender to provide a window for the Nios II
processor, so that the HPS memory map is visible to the Nios II processor. This
technique allows the Nios II processor to communicate with HPS peripherals.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

236

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the example, a Nios II processor has an address span extender from address
0x40000 to 0x80000. There is a window within the address span extender starting at
0x100000. Within the address span extender's address space there is a slave at base
address 0x1100000. The slave appears to the Nios II processor as being at address:

0x110000 - 0x100000 + 0x40000 = 0x050000

Figure 129. Nios II Support and the Address Span Extender

0x80000

0x40000

Nios II

Address Span
Extender

Avalon-MM
Slave

0x140000

0x120000

0x110000

0x100000

Effective Slave Base Address =
0x110000 - 0x100000 + 0x040000

= 0x050000

The address span extender window is dynamic. For example, when the Disable Slave
Control Port option is turned off, the Nios II processor is unable to see components
on the slave side of the address span extender.

4.2. Error Response Slave

The Error Response Slave provides a predictable error response service for master
interfaces that attempt to access an undefined memory region.

The Error Response Slave is an AMBA 3 AXI component, and appears in the Platform
Designer IP Catalog under Platform Designer Interconnect.

To comply with the AXI protocol, the interconnect logic must return the DECERR error
response in cases where the interconnect cannot decode slave access. Therefore, an
AXI system with address space not fully decoded to slave interfaces requires the Error
Response Slave.

The Error Response Slave behaves like any other component in the system, and
connects to other components via translation and adaptation interconnect logic.
Connecting an Error Response Slave to masters of different data widths, including
Avalon or AXI-Lite masters, can increase resource usage.

An Error Response Slave can connect to clock, reset, and IRQ signals as well as AMBA
3 AXI and AMBA 4 AXI master interfaces without instantiating a bridge. When you
connect an Error Response Slave to a master, the Error Response Slave accepts cycles
sent from the master, and returns the DECERR error response. On the AXI interface,
the Error Response Slave supports only a read and write acceptance of capability 1,

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

237

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

and does not support write data interleaving. The Error Response Slave can return
responses when simultaneously targeted by a read and write cycle, because its read
and write channels are independent.

An optional Avalon interface on the Error Response Slave provides information in a set
of CSR registers. CSR registers log the required information when returning an error
response.

• To set the Error Response Slave as the default slave for a master interface in your
system, connect the slave to the master in your Platform Designer system.

• A system can contain more than one Error Response Slave.

• As a best practice, instantiate separate Error Response Slave components for each
AXI master in your system.

Related Information

• AMBA 3 AXI Protocol Specification Support (version 1.0) on page 188

• Designating a Default Slave on page 242

4.2.1. Error Response Slave Parameters

Figure 130. Error Response Slave Parameter Editor

If you turn on Enable CSR Support (for error logging) more parameters become
available.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

238

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 131. Error Response Slave Parameter Editor with Enabled CSR Support

Table 95. Error Response Slave Parameters

Parameter Value Description

AXI master ID width 1-8 bits Specifies the master ID width for error logging.

AXI address width 8-64 bits Specifies the address width for error logging.
This value also affects the overall address width of the
system, and should not exceed the maximum address
width required in the system.

AXI data width 32, 64, or
128 bits

Specifies the data width for error logging.

Enable CSR Support (for error logging) On / Off When turned on, instantiates an Avalon CSR interface
for error logging.

CSR Error Log Depth 1-16 bits Depth of the transaction log, for example, the number of
transactions the CSR logs for cycles with errors.

Register Avalon CSR inputs On / Off When turned on, controls debug access to the CSR
interface.

4.2.2. Error Response Slave CSR Registers

The Error Response Slave with enabled CSR support provides a service to handle
access violations. This service uses CSR registers for status and logging purposes.

The sequence of actions in the access violation service is equivalent for read and write
access violations, but the CSR status bits and log registers are different.

4.2.2.1. Error Response Slave Access Violation Service

When an access violation occurs, and the CSR port is enabled:

1. The Error Response Slave generates an interrupt:

— For a read access violation, the Error Response Slave sets the Read Access
Violation Interrupt register bit in the Interrupt Status register.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

239

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

— For a write access violation, the Error Response Slave sets the Write Access
Violation Interrupt register bit in the Interrupt Status register.

2. The Error Response Slave transfers transaction information to the access violation
log FIFO. The amount of information that the FIFO can handle is given by the
Error Log Depth parameter.

You define the Error Log Depth in the Parameter Editor, when you enable CSR
Support.

3. Software reads entries of the access violation log FIFO until the corresponding
cycle log valid bit is cleared, and then exits the service routine.

— The Read cycle log valid bit is in the Read Access Violation Log
CSR Registers.

— The Write cycle log valid bit is in the Write Access Violation
Log CSR Registers.

4. The Error Response Slave clears the interrupt bit when there are no access
violations to report.

Some special cases are:

• If any error occurs when the FIFO is full, the Error Response Slave sets the
corresponding Access Violation Interrupt Overflow register bit (bits
2 and 3 of the Status Register for write and read access violations, respectively).
Setting this bit means that not all error entries were written to the access violation
log.

• After Software reads an entry in the Access Violation log, the Error Response Slave
can write a new entry to the log.

• Software can specify the number of entries to read before determining that the
access violation service is taking too long to complete, and exit the routine.

4.2.2.2. CSR Interrupt Status Registers

Table 96. CSR Interrupt Status Registers
For CSR register maps: Address = Memory Address Base + Offset.

Offset Bits Attribute Default Description

0x00 31:4 Reserved.

3 RW1C 0 Read Access Violation Interrupt Overflow register

Asserted when a read access causes the Interconnect to return a
DECERR response, and the buffer log depth is full. Indicates that
there is a logging error lost due to an exceeded buffer log depth.
Cleared by setting the bit to 1.

2 RW1C 0 Write Access Violation Interrupt Overflow register

Asserted when a write access causes the Interconnect to return a
DECERR response, and the buffer log depth is full. Indicates that
there is a logging error lost due to an exceeded buffer log depth.
Cleared by setting the bit to 1.

1 RW1C 0 Read Access Violation Interrupt register

Asserted when a read access causes the Interconnect to return a
DECERR response. Cleared by setting the bit to 1.

continued...

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

240

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Offset Bits Attribute Default Description

Note: Access violation are logged until the bit is cleared.

0 RW1C 0 Write Access Violation Interrupt register

Asserted when a write access causes the Interconnect to return a
DECERR response. Cleared by setting the bit to 1.
Note: Access violation are logged until the bit is cleared.

4.2.2.3. CSR Read Access Violation Log Registers

The CSR read access violation log settings are valid only when an associated read
interrupt register is set. Read this set of registers until the validity bit is cleared.

Table 97. CSR Read Access Violation Log Registers

Offset Bits Attribute Default Description

0x100 31:13 Reserved.

12:11 R0 0 Offending Read cycle burst type: Specifies the burst type
of the initiating cycle that causes the access violation.

10:7 R0 0 Offending Read cycle burst length: Specifies the burst
length of the initiating cycle that causes the access violation.

6:4 R0 0 Offending Read cycle burst size: Specifies the burst size
of the initiating cycle that causes the access violation.

3:1 R0 0 Offending Read cycle PROT: Specifies the PROT of the
initiating cycle that causes the access violation.

0 R0 0 Read cycle log valid: Specifies the validity of the read access
violation log. This bit is cleared when the interrupt register is
cleared.

0x104 31:0 R0 0 Offending read cycle ID: Master ID for the cycle that causes
the access violation.

0x108 31:0 R0 0 Offending read cycle target address: Target address for
the cycle that causes the access violation (lower 32-bit).

0x10C 31:0 R0 0 Offending read cycle target address: Target address for
the cycle that causes the access violation (upper 32-bit). Valid only
if widest address in system is larger than 32 bits.
Note: When this register is read, the current read access violation

log is recovered from FIFO.

4.2.2.4. CSR Write Access Violation Log Registers

The CSR write access violation log settings are valid only when an associated write
interrupt register is set. Read this set of registers until the validity bit is cleared.

Table 98. CSR Write Access Violation Log

Offset Bits Attribute Default Description

0x190 31:13 Reserved.

12:11 R0 0 Offending write cycle burst type: Specifies the burst type
of the initiating cycle that causes the access violation.

10:7 R0 0 Offending write cycle burst length: Specifies the burst
length of the initiating cycle that causes the access violation.

continued...

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

241

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Offset Bits Attribute Default Description

6:4 R0 0 Offending write cycle burst size: Specifies the burst size
of the initiating cycle that causes the access violation.

3:1 R0 0 Offending write cycle PROT: Specifies the PROT of the
initiating cycle that causes the access violation.

0 R0 0 Write cycle log valid: Specifies whether the log for the
transaction is valid. This bit is cleared when the interrupt register is
cleared.

0x194 31:0 R0 0 Offending write cycle ID: Master ID for the cycle that
causes the access violation.

0x198 31:0 R0 0 Offending write cycle target address: Write target
address for the cycle that causes the access violation (lower 32-
bit).

0x19C 31:0 R0 0 Offending write cycle target address: Write target
address for the cycle that causes the access violation (upper 32-
bit). Valid only if widest address in system is larger than 32 bits.

0x1A0 31:0 R0 0 Offending write cycle first write data: First 32 bits of
the write data for the write cycle that causes the access violation.
Note: When this register is read, the current write access

violation log is recovered from FIFO, when the data width is
32 bits.

0x1A4 31:0 R0 0 Offending write cycle first write data: Bits [63:32] of
the write data for the write cycle that causes the access violation.
Valid only if the data width is greater than 32 bits.

0x1A8 31:0 R0 0 Offending write cycle first write data: Bits [95:64] of
the write data for the write cycle that causes the access violation.
Valid only if the data width is greater than 64 bits.

0x1AC 31:0 R0 0 Offending write cycle first write data: The first bits
[127:96] of the write data for the write cycle that causes the
access violation. Valid only if the data width is greater than 64 bits.
Note: When this register is read, the current write access

violation log is recovered from FIFO.

4.2.3. Designating a Default Slave

You can designate any slave in your Platform Designer system as the error response
default slave. The default slave you designate provides an error response service for
masters that attempt access to an undefined memory region.

1. In your Platform Designer system, in the System View tab, right-click the header
and turn on Show Default Slave Column.

2. Select the slave that you want to designate as the default slave, and then click the
checkbox for the slave in the Default Slave column.

3. In the System View tab, in the Connections column, connect the designated
default slave to one or more masters.

Related Information

Specifying a Default Slave on page 52

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

242

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.3. Tri-State Components

The tri-state interface type allows you to design Platform Designer subsystems that
connect to tri-state devices on your PCB. You can use tri-state components to
implement pin sharing, convert between unidirectional and bidirectional signals, and
create tri-state controllers for devices whose interfaces can be described using the tri-
state signal types.

Example 10. Tri-State Conduit System to Control Off-Chip SRAM and Flash Devices

In this example, there are two generic Tri-State Conduit Controllers. The first is
customized to control a flash memory. The second is customized to control an off-chip
SSRAM. The Tri-State Conduit Pin Sharer multiplexes between these two controllers,
and the Tri-State Conduit Bridge converts between an on-chip encoding of tri-state
signals and true bidirectional signals. By default, the Tri-State Conduit Pin Sharer and
Tri-State Conduit Bridge present byte addresses. Typically, each address location
contains more than one byte of data.

Figure 132. Tri-State Conduit System to Control Off-Chip SRAM and Flash Devices

Intel FPGA

Printed Circuit Board

M

M

M

Nios II
Processor

Cn SSRAM

Cn Flash
TCM

S TCM

Generic Tri-state
Controller

Parameterized
for 2 MByte
x32 SSRAM

TCM

TCS
Tri-state
Conduit

Pin
Sharer

Avalon-MM Master

Avalon-MM Slave

CnTCS
Tri-state
Conduit
Bridge

Generic Tri-state
Controller

Parameterized
for 8 MByte

x16 FlashS

S

TCS

TCM Avalon-TC Master

Avalon-TC Slave

Conduit Cn

TCS

Address Connections from Platform Designer System to PCB

The flash device operates on 16-bit words and must ignore the least-significant bit of
the Avalon-MM address. The figure shows addr[0]as not connected. The SSRAM
memory operates on 32-bit words and must ignore the two low-order memory bits.
Because neither device requires a byte address, addr[0] is not routed on the PCB.

The flash device responds to address range 0 MB to 8 MB-1. The SSRAM responds to
address range 8 MB to 10 MB-1. The PCB schematic for the PCB connects
addr[21:0] to addr[18:0] of the SSRAM device because the SSRAM responds to
32-bit word address. The 8 MB flash device accesses 16-bit words; consequently, the
schematic does not connect addr[0]. The chipselect signals select between the
two devices.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

243

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 133. Address Connections from Platform Designer System to PCB

PCB_Addr [21:0]

2 MByte SSRAM
(32-bit word)

0

8 MB

16 MB

10 MB

PCB_Addr [19:1]

Addr [21:0]

8 MByte Flash
 (16-bit word) 8 MByte Flash

 (16-bit word)

Unused

2 MByte SSRAM
(32-bit word)

Addr [18:0]

PCB

Platform Designer

Address Map

Addr [22:1]
PCB_Addr [21:0]

 Addr [0]

Addr [23] x

x

Tristate Conduit
Bridge

Note: If you create a custom tri-state conduit master with word aligned addresses, the
Tri-state Conduit Pin Sharer does not change or align the address signals.

Figure 134. Tri-State Conduit System in Platform Designer

Related Information

• Avalon Tri-State Conduit Components User Guide

• Avalon Interface Specifications

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

244

http://www.altera.com/literature/ug/ug_avalon_tc.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Tristate
https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.3.1. Generic Tri-State Controller

The Generic Tri-State Controller provides a template for a controller. You can
customize the tri-state controller with various parameters to reflect the behavior of an
off-chip device. The following types of parameters are available for the tri-state
controller:

• Width of the address and data signals

• Read and write wait times

• Bus-turnaround time

• Data hold time

Note: In calculating delays, the Generic Tri-State Controller chooses the larger of the
bus-turnaround time and read latency. Turnaround time is measured from the time
that a command is accepted, not from the time that the previous read returned data.

The Generic Tri-State Controller includes the following interfaces:

• Memory-mapped slave interface—This interface connects to a memory-mapped
master, such as a processor.

• Tristate Conduit Master interface—The tri-state master interface usually
connects to the tri-state conduit slave interface of the tri-state conduit pin sharer.

• Clock sink—The component’s clock reference. You must connect this interface to
a clock source.

• Reset sink—This interface connects to a reset source interface.

4.3.2. Tri-State Conduit Pin Sharer

The Tri-state Conduit Pin Sharer multiplexes between the signals of the connected
tri-state controllers. You connect all signals from the tri-state controllers to the
Tri-state Conduit Pin Sharer and use the parameter editor to specify the signals that
are shared.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

245

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 135. Tri-State Conduit Pin Sharer Parameter Editor
The parameter editor includes a Shared Signal Name column. If the widths of shared signals differ, the
signals are aligned on their 0th bit and the higher-order pins are driven to 0 whenever the smaller signal has
control of the bus. Unshared signals always propagate through the pin sharer. The tri-state conduit pin sharer
uses the round-robin arbiter to select between tri-state conduit controllers.

Note: All tri-state conduit components connected to a pin sharer must be in the same clock
domain.

Related Information

Avalon-ST Round Robin Scheduler on page 270

4.3.3. Tri-State Conduit Bridge

The Tri-State Conduit Bridge instantiates bidirectional signals for each tri-state signal
while passing all other signals straight through the component. The Tri-State Conduit
Bridge registers all outgoing and incoming signals, which adds two cycles of latency
for a read request. You must account for this additional pipelining when designing a
custom controller. During reset, all outputs are placed in a high-impedance state.
Outputs are enabled in the first clock cycle after reset is deasserted, and the output
signals are then bidirectional.

4.4. Test Pattern Generator and Checker Cores

The test pattern generator inserts different error conditions, and the test pattern
checker reports these error conditions to the control interface, each via an Avalon
Memory-Mapped (Avalon-MM) slave.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

246

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The data generation and monitoring solution for Avalon-ST consists of two
components: a test pattern generator core that generates data, and sends it out on an
Avalon-ST data interface, and a test pattern checker core that receives the same data
and verifies it. Optionally, the data can be formatted as packets, with accompanying
start_of_packet and end_of_packet signals.

The Throttle Seed is the starting value for the throttle control random number
generator. Intel recommends a unique value for each instance of the test pattern
generator and checker cores in a system.

4.4.1. Test Pattern Generator

Figure 136. Test Pattern Generator Core
The test pattern generator core accepts commands to generate data via an Avalon-MM command interface, and
drives the generated data to an Avalon-ST data interface. You can parameterize most aspects of the Avalon-ST
data interface, such as the number of error bits and data signal width, thus allowing you to test components
with different interfaces.

Avalon-MM
Slave Port

Av
alo

n-
M

M
Sla

ve
 Po

rt

Avalon-ST
 SourceTEST PATTERN

 GENERATOR

command data_out

control & status

The data pattern is calculated as: Symbol Value = Symbol Position in Packet XOR Data
Error Mask. Data that is not organized in packets is a single stream with no beginning
or end. The test pattern generator has a throttle register that is set via the Avalon-MM
control interface. The test pattern generator uses the value of the throttle register in
conjunction with a pseudo-random number generator to throttle the data generation
rate.

4.4.1.1. Test Pattern Generator Command Interface

The command interface for the Test Pattern Generator is a 32-bit Avalon-MM write
slave that accepts data generation commands. It is connected to a 16-element deep
FIFO, thus allowing a master peripheral to drive commands into the test pattern
generator.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

247

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The command interface maps to the following registers: cmd_lo and cmd_hi. The
command is pushed into the FIFO when the register cmd_lo (address 0) is addressed.
When the FIFO is full, the command interface asserts the waitrequest signal. You
can create errors by writing to the register cmd_hi (address 1). The errors are cleared
when 0 is written to this register, or its respective fields.

4.4.1.2. Test Pattern Generator Control and Status Interface

The control and status interface of the Test Pattern Generator is a 32-bit Avalon-MM
slave that allows you to enable or disable the data generation, as well as set the
throttle. This interface also provides generation-time information, such as the number
of channels and whether data packets are supported.

4.4.1.3. Test Pattern Generator Output Interface

The output interface of the Test Pattern Generator is an Avalon-ST interface that
optionally supports data packets. You can configure the output interface to align with
your system requirements. Depending on the incoming stream of commands, the
output data may contain interleaved packet fragments for different channels. To keep
track of the current symbol’s position within each packet, the test pattern generator
maintains an internal state for each channel.

You can configure the output interface of the test pattern generator with the following
parameters:

• Number of Channels—Number of channels that the test pattern generator
supports. Valid values are 1 to 256.

• Data Bits Per Symbol—Bits per symbol is related to the width of readdata and
writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—Number of symbols (words) that are transferred per
beat. Valid values are 1 to 256.

• Include Packet Support—Indicates whether packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty signals.

• Error Signal Width (bits)—Width of the error signal on the output interface.
Valid values are 0 to 31. A value of 0 indicates that the error signal is not in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

4.4.1.4. Test Pattern Generator Functional Parameter

The Test Pattern Generator functional parameter allows you to configure the test
pattern generator as a whole system.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

248

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.4.2. Test Pattern Checker

Figure 137. Test Pattern Checker
The test pattern checker core accepts data via an Avalon-ST interface and verifies it against the same
predetermined pattern that the test pattern generator uses to produce the data. The test pattern checker core
reports any exceptions to the control interface. You can parameterize most aspects of the test pattern
checker's Avalon-ST interface such as the number of error bits and the data signal width. This enables the
ability to test components with different interfaces. The test pattern checker has a throttle register that is set
via the Avalon-MM control interface. The value of the throttle register controls the rate at which data is
accepted.

Avalon-MM
Slave Port

Av
alo

n-
ST

Sin
k

TEST PATTERN
 CHECKER

data_in

control & status

The test pattern checker detects exceptions and reports them to the control interface
via a 32-element deep internal FIFO. Possible exceptions are data error, missing start-
of-packet (SOP), missing end-of-packet (EOP), and signaled error.

As each exception occurs, an exception descriptor is pushed into the FIFO. If the same
exception occurs more than once consecutively, only one exception descriptor is
pushed into the FIFO. All exceptions are ignored when the FIFO is full. Exception
descriptors are deleted from the FIFO after they are read by the control and status
interface.

4.4.2.1. Test Pattern Checker Input Interface

The Test Pattern Checker input interface is an Avalon-ST interface that optionally
supports data packets. You can configure the input interface to align with your system
requirements. Incoming data may contain interleaved packet fragments. To keep track
of the current symbol’s position, the test pattern checker maintains an internal state
for each channel.

4.4.2.2. Test Pattern Checker Control and Status Interface

The Test Pattern Checker control and status interface is a 32-bit Avalon-MM slave that
allows you to enable or disable data acceptance, as well as set the throttle. This
interface provides generation-time information, such as the number of channels and
whether the test pattern checker supports data packets. The control and status
interface also provides information on the exceptions detected by the test pattern
checker. The interface obtains this information by reading from the exception FIFO.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

249

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.4.2.3. Test Pattern Checker Functional Parameter

The Test Pattern Checker functional parameter allows you to configure the test pattern
checker as a whole system.

4.4.2.4. Test Pattern Checker Input Parameters

You can configure the input interface of the test pattern checker using the following
parameters:

• Data Bits Per Symbol—Bits per symbol is related to the width of readdata and
writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—Number of symbols (words) that are transferred per
beat. Valid values are 1 to 32.

• Include Packet Support—Indicates whether data packet transfers are
supported. Packet support includes the startofpacket, endofpacket, and
empty signals.

• Number of Channels—Number of channels that the test pattern checker
supports. Valid values are 1 to 256.

• Error Signal Width (bits)—Width of the error signal on the input interface.
Valid values are 0 to 31. A value of 0 indicates that the error signal in not in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

4.4.3. Software Programming Model for the Test Pattern Generator and
Checker Cores

The HAL system library support, software files, and register maps describe the
software programming model for the test pattern generator and checker cores.

4.4.3.1. HAL System Library Support

For Nios II processor users, Intel provides HAL system library drivers that allow you to
initialize and access the test pattern generator and checker cores. Intel recommends
you use the provided drivers to access the cores instead of accessing the registers
directly.

For Nios II IDE users, copy the provided drivers from the following installation folders
to your software application directory:

• <IP installation directory>/ip/sopc_builder_ip/
altera_Avalon_data_source/HAL

• <IP installation directory>/ip/sopc_builder_ip/
altera_Avalon_data_sink/HAL

Note: This instruction does not apply if you use the Nios II command-line tools.

4.4.3.2. Test Pattern Generator and Test Pattern Checker Core Files

The following files define the low-level access to the hardware, and provide the
routines for the HAL device drivers.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

250

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Do not modify the test pattern generator or test pattern checker core files.

• Test pattern generator core files:

— data_source_regs.h—Header file that defines the test pattern generator's
register maps.

— data_source_util.h, data_source_util.c—Header and source code for the
functions and variables required to integrate the driver into the HAL system
library.

• Test pattern checker core files:

— data_sink_regs.h—Header file that defines the core’s register maps.

— data_sink_util.h, data_sink_util.c—Header and source code for the
functions and variables required to integrate the driver into the HAL system
library.

4.4.3.3. Register Maps for the Test Pattern Generator and Test Pattern Checker
Cores

4.4.3.3.1. Test Pattern Generator Control and Status Registers

Table 99. Test Pattern Generator Control and Status Register Map
Shows the offset for the test pattern generator control and status registers. Each register is 32-bits wide.

Offset Register Name

base + 0 status

base + 1 control

base + 2 fill

Table 100. Test Pattern Generator Status Register Bits

Bits Name Access Description

[15:0] ID RO A constant value of 0x64.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates data packet support.

Table 101. Test Pattern Generator Control Register Bits

Bits Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the test pattern generator core.

[7:1] Reserved

[16:8] THROTTLE RW Specifies the throttle value which can be between 0–256, inclusively. The
test pattern generator uses this value in conjunction with a pseudo-random
number generator to throttle the data generation rate.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset. Write
0 to this bit to exit reset.

[31:18] Reserved

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

251

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 102. Test Pattern Generator Fill Register Bits

Bits Name Access Description

[0] BUSY RO A value of 1 indicates that data transmission is in progress, or that there is
at least one command in the command queue.

[6:1] Reserved

[15:7] FILL RO The number of commands currently in the command FIFO.

[31:16] Reserved

4.4.3.3.2. Test Pattern Generator Command Registers

Table 103. Test Pattern Generator Command Register Map
Shows the offset for the command registers. Each register is 32-bits wide.

Offset Register Name

base + 0 cmd_lo

base + 1 cmd_hi

The cmd_lo is pushed into the FIFO only when the cmd_lo register is addressed.

Table 104. cmd_lo Register Bits

Bits Name Access Description

[15:0] SIZE RW The segment size in symbols. Except for the last segment in a packet, the
size of all segments must be a multiple of the configured number of
symbols per beat. If this condition is not met, the test pattern generator
core inserts additional symbols to the segment to ensure the condition is
fulfilled.

[29:16] CHANNEL RW The channel to send the segment on. If the channel signal is less than
14 bits wide, the test pattern generator uses the low order bits of this
register to drive the signal.

[30] SOP RW Set this bit to 1 when sending the first segment in a packet. This bit is
ignored when data packets are not supported.

[31] EOP RW Set this bit to 1 when sending the last segment in a packet. This bit is
ignored when data packets are not supported.

Table 105. cmd_hi Register Bits

Bits Name Access Description

[15:0] SIGNALED
ERROR

RW Specifies the value to drive the error signal. A non-zero value creates a
signaled error.

[23:16] DATA ERROR RW The output data is XORed with the contents of this register to create data
errors. To stop creating data errors, set this register to 0.

[24] SUPPRESS
SOP

RW Set this bit to 1 to suppress the assertion of the startofpacket signal
when the first segment in a packet is sent.

[25] SUPRESS
EOP

RW Set this bit to 1 to suppress the assertion of the endofpacket signal when
the last segment in a packet is sent.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

252

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.4.3.3.3. Test Pattern Checker Control and Status Registers

Table 106. Test Pattern Checker Control and Status Register Map
Shows the offset for the control and status registers. Each register is 32 bits wide.

Offset Register Name

base + 0 status

base + 1 control

base + 2 Reserved

base + 3

base + 4

base + 5 exception_descriptor

base + 6 indirect_select

base + 7 indirect_count

Table 107. Test Pattern Checker Status Register Bits

Bit(s) Name Access Description

[15:0] ID RO Contains a constant value of 0x65.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates packet support.

Table 108. Test Pattern Checker Control Register Bits

Bit(s) Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the test pattern checker.

[7:1] Reserved

[16:8] THROTTLE RW Specifies the throttle value which can be between 0–256, inclusively.
Platform Designer uses this value in conjunction with a pseudo-random
number generator to throttle the data generation rate.
Setting THROTTLE to 0 stops the test pattern generator core. Setting it to
256 causes the test pattern generator core to run at full throttle. Values
between 0–256 result in a data rate proportional to the throttle value.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset. Write
0 to this bit to exit reset.

[31:18] Reserved

If there is no exception, reading the exception_descriptor register bit register
returns 0.

Table 109. exception_descriptor Register Bits

Bit(s) Name Access Description

[0] DATA ERROR RO A value of 1 indicates that an error is detected in the incoming data.

[1] MISSINGSOP RO A value of 1 indicates missing start-of-packet.

continued...

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

253

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit(s) Name Access Description

[2] MISSINGEOP RO A value of 1 indicates missing end-of-packet.

[7:3] Reserved

[15:8] SIGNALLED
ERROR

RO The value of the error signal.

[23:16] Reserved

[31:24] CHANNEL RO The channel on which the exception was detected.

Table 110. indirect_select Register Bits

Bit Bits Name Access Description

[7:0] INDIRECT
CHANNEL

RW Specifies the channel number that applies to the INDIRECT PACKET
COUNT, INDIRECT SYMBOL COUNT, and INDIRECT ERROR COUNT
registers.

[15:8] Reserved

[31:16] INDIRECT
ERROR

RO The number of data errors that occurred on the channel specified by
INDIRECT CHANNEL.

Table 111. indirect_count Register Bits

Bit Bits Name Access Description

[15:0] INDIRECT
PACKET
COUNT

RO The number of data packets received on the channel specified by INDIRECT
CHANNEL.

[31:16] INDIRECT
SYMBOL
COUNT

RO The number of symbols received on the channel specified by INDIRECT
CHANNEL.

.

4.4.4. Test Pattern Generator API

The following subsections describe application programming interface (API) for the
test pattern generator.

Note: API functions are currently not available from the interrupt service routine (ISR).

data_source_reset() on page 255

data_source_init() on page 255

data_source_get_id() on page 255

data_source_get_supports_packets() on page 256

data_source_get_num_channels() on page 256

data_source_get_symbols_per_cycle() on page 256

data_source_get_enable() on page 256

data_source_set_enable() on page 257

data_source_get_throttle() on page 257

data_source_set_throttle() on page 257

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

254

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_source_is_busy() on page 258

data_source_fill_level() on page 258

data_source_send_data() on page 258

4.4.4.1. data_source_reset()

Table 112. data_source_reset()

Information Type Description

Prototype void data_source_reset(alt_u32 base);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns void

Description Resets the test pattern generator core including all internal counters and FIFOs.
The control and status registers are not reset by this function.

4.4.4.2. data_source_init()

Table 113. data_source_init()

Information Type Description

Prototype int data_source_init(alt_u32 base, alt_u32 command_base);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.
command_base—Base address of the command slave.

Returns 1—Initialization is successful.
0—Initialization is unsuccessful.

Description Performs the following operations to initialize the test pattern generator core:
• Resets and disables the test pattern generator core.
• Sets the maximum throttle.
• Clears all inserted errors.

4.4.4.3. data_source_get_id()

Table 114. data_source_get_id()

Information Type Description

Prototype int data_source_get_id(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Test pattern generator core identifier.

Description Retrieves the test pattern generator core’s identifier.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

255

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.4.4.4. data_source_get_supports_packets()

Table 115. data_source_get_supports_packets()

Information Type Description

Prototype int data_source_init(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns 1—Data packets are supported.
0—Data packets are not supported.

Description Checks if the test pattern generator core supports data packets.

4.4.4.5. data_source_get_num_channels()

Table 116. data_source_get_num_channels()

Description Description

Prototype int data_source_get_num_channels(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of channels supported.

Description Retrieves the number of channels supported by the test pattern generator core.

4.4.4.6. data_source_get_symbols_per_cycle()

Table 117. data_source_get_symbols_per_cycle()

Description Description

Prototype int data_source_get_symbols(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of symbols transferred in a beat.

Description Retrieves the number of symbols transferred by the test pattern generator core
in each beat.

4.4.4.7. data_source_get_enable()

Table 118. data_source_get_enable()

Information Type Description

Prototype int data_source_get_enable(alt_u32 base);

Thread-safe Yes

continued...

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

256

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Value of the ENABLE bit.

Description Retrieves the value of the ENABLE bit.

4.4.4.8. data_source_set_enable()

Table 119. data_source_set_enable()

Information Type Description

Prototype void data_source_set_enable(alt_u32 base, alt_u32 value);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.
value— ENABLE bit set to the value of this parameter.

Returns void

Description Enables or disables the test pattern generator core. When disabled, the test
pattern generator core stops data transmission but continues to accept
commands and stores them in the FIFO

4.4.4.9. data_source_get_throttle()

Table 120. data_source_get_throttle()

Information Type Description

Prototype int data_source_get_throttle(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Throttle value.

Description Retrieves the current throttle value.

4.4.4.10. data_source_set_throttle()

Table 121. data_source_set_throttle()

Information Type Description

Prototype void data_source_set_throttle(alt_u32 base, alt_u32 value);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

continued...

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

257

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

value—Throttle value.

Returns void

Description Sets the throttle value, which can be between 0–256 inclusively. The throttle
value, when divided by 256 yields the rate at which the test pattern generator
sends data.

4.4.4.11. data_source_is_busy()

Table 122. data_source_is_busy()

Information Type Description

Prototype int data_source_is_busy(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns 1—Test pattern generator core is busy.
0—Test pattern generator core is not busy.

Description Checks if the test pattern generator is busy. The test pattern generator core is
busy when it is sending data or has data in the command FIFO to be sent.

4.4.4.12. data_source_fill_level()

Table 123. data_source_fill_level()

Information Type Description

Prototype int data_source_fill_level(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of commands in the command FIFO.

Description Retrieves the number of commands currently in the command FIFO.

4.4.4.13. data_source_send_data()

Table 124. data_source_send_data()

Information Type Description

Prototype int data_source_send_data(alt_u32 cmd_base, alt_u16 channel,
alt_u16 size, alt_u32 flags, alt_u16 error, alt_u8
data_error_mask);

Thread-safe No

Include <data_source_util.h >

Parameters cmd_base—Base address of the command slave.
channel—Channel to send the data.

continued...

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

258

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

size—Data size.
flags —Specifies whether to send or suppress SOP and EOP signals. Valid
values are DATA_SOURCE_SEND_SOP, DATA_SOURCE_SEND_EOP,
DATA_SOURCE_SEND_SUPRESS_SOP and DATA_SOURCE_SEND_SUPRESS_EOP.
error—Value asserted on the error signal on the output interface.
data_error_mask—Parameter and the data are XORed together to produce
erroneous data.

Returns Returns 1.

Description Sends a data fragment to the specified channel. If data packets are supported,
applications must ensure consistent usage of SOP and EOP in each channel.
Except for the last segment in a packet, the length of each segment is a multiple
of the data width.
If data packets are not supported, applications must ensure that there are no
SOP and EOP indicators in the data. The length of each segment in a packet is a
multiple of the data width.

4.4.5. Test Pattern Checker API

The following subsections describe API for the test pattern checker core. The API
functions are currently not available from the ISR.

data_sink_reset() on page 260

data_sink_init() on page 260

data_sink_get_id() on page 260

data_sink_get_supports_packets() on page 261

data_sink_get_num_channels() on page 261

data_sink_get_symbols_per_cycle() on page 261

data_sink_get_enable() on page 261

data_sink_set enable() on page 262

data_sink_get_throttle() on page 262

data_sink_set_throttle() on page 262

data_sink_get_packet_count() on page 263

data_sink_get_error_count() on page 263

data_sink_get_symbol_count() on page 263

data_sink_get_exception() on page 264

data_sink_exception_is_exception() on page 264

data_sink_exception_has_data_error() on page 264

data_sink_exception_has_missing_sop() on page 265

data_sink_exception_has_missing_eop() on page 265

data_sink_exception_signalled_error() on page 265

data_sink_exception_channel() on page 266

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

259

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.4.5.1. data_sink_reset()

Table 125. data_sink_reset()

Information Type Description

Prototype void data_sink_reset(alt_u32 base);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns void

Description Resets the test pattern checker core including all internal counters.

4.4.5.2. data_sink_init()

Table 126. data_sink_init()

Information Type Description

Prototype int data_source_init(alt_u32 base);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns 1—Initialization is successful.
0—Initialization is unsuccessful.

Description Performs the following operations to initialize the test pattern checker core:
• Resets and disables the test pattern checker core.
• Sets the throttle to the maximum value.

4.4.5.3. data_sink_get_id()

Table 127. data_sink_get_id()

Information Type Description

Prototype int data_sink_get_id(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Test pattern checker core identifier.

Description Retrieves the test pattern checker core’s identifier.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

260

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.4.5.4. data_sink_get_supports_packets()

Table 128. data_sink_get_supports_packets()

Information Type Description

Prototype int data_sink_init(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns 1—Data packets are supported.
0—Data packets are not supported.

Description Checks if the test pattern checker core supports data packets.

4.4.5.5. data_sink_get_num_channels()

Table 129. data_sink_get_num_channels()

Information Type Description

Prototype int data_sink_get_num_channels(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of channels supported.

Description Retrieves the number of channels supported by the test pattern checker core.

4.4.5.6. data_sink_get_symbols_per_cycle()

Table 130. data_sink_get_symbols_per_cycle()

Information Type Description

Prototype int data_sink_get_symbols(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of symbols received in a beat.

Description Retrieves the number of symbols received by the test pattern checker core in
each beat.

4.4.5.7. data_sink_get_enable()

Table 131. data_sink_get_enable()

Information Type Description

Prototype int data_sink_get_enable(alt_u32 base);

Thread-safe Yes

continued...

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

261

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Value of the ENABLE bit.

Description Retrieves the value of the ENABLE bit.

4.4.5.8. data_sink_set enable()

Table 132. data_sink_set enable()

Information Type Description

Prototype void data_sink_set_enable(alt_u32 base, alt_u32 value);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.
value—ENABLE bit is set to the value of the parameter.

Returns void

Description Enables the test pattern checker core.

4.4.5.9. data_sink_get_throttle()

Table 133. data_sink_get_throttle()

Information Type Description

Prototype int data_sink_get_throttle(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Throttle value.

Description Retrieves the throttle value.

4.4.5.10. data_sink_set_throttle()

Table 134. data_sink_set_throttle()

Information Type Description

Prototype void data_sink_set_throttle(alt_u32 base, alt_u32 value);

Thread-safe No

Include: <data_sink_util.h >

Parameters base—Base address of the control and status slave.

continued...

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

262

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

value—Throttle value.

Returns void

Description Sets the throttle value, which can be between 0–256 inclusively. The throttle
value, when divided by 256 yields the rate at which the test pattern checker
receives data.

4.4.5.11. data_sink_get_packet_count()

Table 135. data_sink_get_packet_count()

Information Type Description

Prototype int data_sink_get_packet_count(alt_u32 base, alt_u32
channel);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.
channel—Channel number.

Returns Number of data packets received on the channel.

Description Retrieves the number of data packets received on a channel.

4.4.5.12. data_sink_get_error_count()

Table 136. data_sink_get_error_count()

Information Type Description

Prototype int data_sink_get_error_count(alt_u32 base, alt_u32 channel);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.
channel—Channel number.

Returns Number of errors received on the channel.

Description Retrieves the number of errors received on a channel.

4.4.5.13. data_sink_get_symbol_count()

Table 137. data_sink_get_symbol_count()

Information Type Description

Prototype int data_sink_get_symbol_count(alt_u32 base, alt_u32
channel);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

continued...

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

263

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

channel—Channel number.

Returns Number of symbols received on the channel.

Description Retrieves the number of symbols received on a channel.

4.4.5.14. data_sink_get_exception()

Table 138. data_sink_get_exception()

Information Type Description

Prototype int data_sink_get_exception(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns First exception descriptor in the exception FIFO.
0—No exception descriptor found in the exception FIFO.

Description Retrieves the first exception descriptor in the exception FIFO and pops it off the
FIFO.

4.4.5.15. data_sink_exception_is_exception()

Table 139. data_sink_exception_is_exception()

Information Type Description

Prototype int data_sink_exception_is_exception(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor

Returns 1—Indicates an exception.
0—No exception.

Description Checks if an exception descriptor describes a valid exception.

4.4.5.16. data_sink_exception_has_data_error()

Table 140. data_sink_exception_has_data_error()

Information Type Description

Prototype int data_sink_exception_has_data_error(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns 1—Data has errors.
0—No errors.

Description Checks if an exception indicates erroneous data.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

264

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.4.5.17. data_sink_exception_has_missing_sop()

Table 141. data_sink_exception_has_missing_sop()

Information Type Description

Prototype int data_sink_exception_has_missing_sop(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns 1—Missing SOP.
0—Other exception types.

Description Checks if an exception descriptor indicates missing SOP.

4.4.5.18. data_sink_exception_has_missing_eop()

Table 142. data_sink_exception_has_missing_eop()

Information Type Description

Prototype int data_sink_exception_has_missing_eop(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns 1—Missing EOP.
0—Other exception types.

Description Checks if an exception descriptor indicates missing EOP.

4.4.5.19. data_sink_exception_signalled_error()

Table 143. data_sink_exception_signalled_error()

Information Type Description

Prototype int data_sink_exception_signalled_error(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns Signal error value.

Description Retrieves the value of the signaled error from the exception.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

265

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.4.5.20. data_sink_exception_channel()

Table 144. data_sink_exception_channel()

Information Type Description

Prototype int data_sink_exception_channel(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns Channel number on which an exception occurred.

Description Retrieves the channel number on which an exception occurred.

4.5. Avalon-ST Splitter Core

Figure 138. Avalon-ST Splitter Core
The Avalon-ST Splitter Core allows you to replicate transactions from an Avalon-ST sink interface to multiple
Avalon-ST source interfaces. This core supports from 1 to 16 outputs.

Output 0

In_Data

Out_Data

Av
alo

n-
ST

Sin
k

Avalon-ST

Splitter Core

Output N

Avalon-ST
Source 0

Clock

Avalon-ST
Source N

The Avalon-ST Splitter core copies input signals from the input interface to the
corresponding output signals of each output interface without altering the size or
functionality. This includes all signals except for the ready signal. The core includes a
clock signal to determine the Avalon-ST interface and clock domain where the core
resides. Because the splitter core does not use the clock signal internally, latency is
not introduced when using this core.

4.5.1. Splitter Core Backpressure

The Avalon-ST Splitter core integrates with backpressure by AND-ing the ready
signals from the output interfaces and sending the result to the input interface. As a
result, if an output interface deasserts the ready signal, the input interface receives
the deasserted ready signal, as well. This functionality ensures that backpressure on
the output interfaces is propagated to the input interface.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

266

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When the Qualify Valid Out option is enabled, the out_valid signals on all other
output interfaces are gated when backpressure is applied from one output interface.
In this case, when any output interface deasserts its ready signal, the out_valid
signals on the other output interfaces are also deasserted.

When the Qualify Valid Out option is disabled, the output interfaces have a non-
gated out_valid signal when backpressure is applied. In this case, when an output
interface deasserts its ready signal, the out_valid signals on the other output
interfaces are not affected.

Because the logic is combinational, the core introduces no latency.

4.5.2. Splitter Core Interfaces

The Avalon-ST Splitter core supports streaming data, with optional packet, channel,
and error signals. The core propagates backpressure from any output interface to the
input interface.

Table 145. Avalon-ST Splitter Core Support

Feature Support

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

4.5.3. Splitter Core Parameters

Table 146. Avalon-ST Splitter Core Parameters

Parameter Legal Values Default Value Description

Number Of Outputs 1 to 16 2 The number of output interfaces. Platform Designer
supports 1 for some systems where no duplicated
output is required.

Qualify Valid Out Enabled,
Disabled

Enabled If enabled, the out_valid signal of all output
interfaces is gated when back pressure is applied.

Data Width 1–512 8 The width of the data on the Avalon-ST data
interfaces.

Bits Per Symbol 1–512 8 The number of bits per symbol for the input and
output interfaces. For example, byte-oriented
interfaces have 8-bit symbols.

Use Packets Enabled,
Disabled

Disabled Enable support of data packet transfers. Packet
support includes the startofpacket,
endofpacket, and empty signals.

Use Channel Enabled,
Disabled

Disabled Enable the channel signal.

Channel Width 0-8 1 The width of the channel signal on the data
interfaces. This parameter is disabled when Use
Channel is set to 0.

continued...

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

267

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Legal Values Default Value Description

Max Channels 0-255 1 The maximum number of channels that a data
interface can support. This parameter is disabled
when Use Channel is set to 0.

Use Error Enabled,
Disabled

Disabled Enable the error signal.

Error Width 0–31 1 The width of the error signal on the output
interfaces. A value of 0 indicates that the splitter
core is not using the error signal. This parameter
is disabled when Use Error is set to 0.

4.6. Avalon-ST Delay Core

Figure 139. Avalon-ST Delay Core
The Avalon-ST Delay Core provides a solution to delay Avalon-ST transactions by a constant number of clock
cycles. This core supports up to 16 clock cycle delays.

Out_Data
In_Data

Clock

Av
alo

n-
ST

Sin
k

Avalon-ST
 Source

Avalon-ST
Delay Core

The Avalon-ST Delay core adds a delay between the input and output interfaces. The
core accepts transactions presented on the input interface and reproduces them on
the output interface N cycles later without changing the transaction.

The input interface delays the input signals by a constant N number of clock cycles to
the corresponding output signals of the output interface. The Number Of Delay
Clocks parameter defines the constant N, which must be from 0 to 16. The change of
the in_valid signal is reflected on the out_valid signal exactly N cycles later.

4.6.1. Delay Core Reset Signal

The Avalon-ST Delay core has a reset signal that is synchronous to the clk signal.
When the core asserts the reset signal, the output signals are held at 0. After the
reset signal is deasserted, the output signals are held at 0 for N clock cycles. The
delayed values of the input signals are then reflected at the output signals after N
clock cycles.

4.6.2. Delay Core Interfaces

The Delay core supports streaming data, with optional packet, channel, and error
signals. The delay core does not support backpressure.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

268

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 147. Avalon-ST Delay Core Support

Feature Support

Backpressure Not supported.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

4.6.3. Delay Core Parameters

Table 148. Avalon-ST Delay Core Parameters

Parameter Legal Values Default Value Description

Number Of Delay Clocks 0 to 16 1 Specifies the delay the core introduces, in clock
cycles. Platform Designer supports 0 for some
systems where no delay is required.

Data Width 1–512 8 The width of the data on the Avalon-ST data
interfaces.

Bits Per Symbol 1–512 8 The number of bits per symbol for the input and
output interfaces. For example, byte-oriented
interfaces have 8-bit symbols.

Use Packets 0 or 1 0 Indicates whether data packet transfers are
supported. Packet support includes the
startofpacket, endofpacket, and empty
signals.

Use Channel 0 or 1 0 The option to enable or disable the channel signal.

Channel Width 0-8 1 The width of the channel signal on the data
interfaces. This parameter is disabled when Use
Channel is set to 0.

Max Channels 0-255 1 The maximum number of channels that a data
interface can support. This parameter is disabled
when Use Channel is set to 0.

Use Error 0 or 1 0 The option to enable or disable the error signal.

Error Width 0–31 1 The width of the error signal on the output
interfaces. A value of 0 indicates that the error
signal is not in use. This parameter is disabled
when Use Error is set to 0.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

269

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.7. Avalon-ST Round Robin Scheduler

Figure 140. Avalon-ST Round Robin Scheduler
The Avalon-ST Round Robin Scheduler core controls the read operations from a multi-channel Avalon-ST
component that buffers data by channels. It reads the almost-full threshold values from the multiple channels
in the multi-channel component and issues the read request to the Avalon-ST source according to a
round-robin scheduling algorithm.

Request
(Channel_select) Almost Full Status

Avalon-ST
Round-Robin

SchedulerA v
alo

n-
M

M

W
ri t

e M
as

te
r Avalon-ST Sink

In a multi-channel component, the component can store data either in the sequence
that it comes in (FIFO), or in segments according to the channel. When data is stored
in segments according to channels, a scheduler is needed to schedule the read
operations.

4.7.1. Almost-Full Status Interface (Round Robin Scheduler)

The Almost-Full Status interface is an Avalon-ST sink interface that collects the
almost-full status from the sink components for the channels in the sequence
provided.

Table 149. Avalon-ST Interface Feature Support

Feature Property

Backpressure Not supported

Data Width Data width = 1; Bits per symbol = 1

Channel Maximum channel = 32; Channel width = 5

Error Not supported

Packet Not supported

4.7.2. Request Interface (Round Robin Scheduler)

The Request Interface is an Avalon-MM write master interface that requests data from
a specific channel. The Avalon-ST Round Robin Scheduler cycles through the channels
it supports and schedules data to be read.

4.7.3. Round Robin Scheduler Operation

If a particular channel is almost full, the Avalon-ST Round Robin Scheduler does not
schedule data to be read from that channel in the source component.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

270

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The scheduler only requests 1 bit of data from a channel at each transaction. To
request 1 bit of data from channel n, the scheduler writes the value 1 to address (4
×n). For example, if the scheduler is requesting data from channel 3, the scheduler
writes 1 to address 0xC. At every clock cycle, the scheduler requests data from the
next channel. Therefore, if the scheduler starts requesting from channel 1, at the next
clock cycle, it requests from channel 2. The scheduler does not request data from a
particular channel if the almost-full status for the channel is asserted. In this case, the
scheduler uses one clock cycle without a request transaction.

The Avalon-ST Round Robin Scheduler cannot determine if the requested component
is able to service the request transaction. The component asserts waitrequest when
it cannot accept new requests.

Table 150. Avalon-ST Round Robin Scheduler Ports

Signal Direction Description

Clock and Reset

clk In Clock reference.

reset_n In Asynchronous active low reset.

Avalon-MM Request Interface

request_address (log2
Max_Channels–1:0)

Out The write address that indicates which channel has the
request.

request_write Out Write enable signal.

request_writedata Out The amount of data requested from the particular channel.
This value is always fixed at 1.

request_waitrequest In Wait request signal that pauses the scheduler when the
slave cannot accept a new request.

Avalon-ST Almost-Full Status Interface

almost_full_valid In Indicates that almost_full_channel and
almost_full_data are valid.

almost_full_channel
(Channel_Width–1:0)

In Indicates the channel for the current status indication.

almost_full_data (log2
Max_Channels–1:0)

In A 1-bit signal that is asserted high to indicate that the
channel indicated by almost_full_channel is almost full.

4.7.4. Round Robin Scheduler Parameters

Table 151. Avalon-ST Round Robin Scheduler Parameters

Parameters Legal Values Default Value Description

Number of channels 2–32 2 Specifies the number of channels the Avalon-ST
Round Robin Scheduler supports.

Use almost-full status Enabled,
Disabled

Disabled If enabled, the scheduler uses the almost-full
interface. If not, the core requests data from the
next channel at the next clock cycle.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

271

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.8. Avalon Packets to Transactions Converter

Figure 141. Avalon Packets to Transactions Converter Core
The Avalon Packets to Transactions Converter core receives streaming data from upstream components and
initiates Avalon-MM transactions. The core then returns Avalon-MM transaction responses to the requesting
components.

Av
alo

n-
ST

Sin

k
Avalon

Packets to
Transactions

Converter

data_out

Av
alo

n-
M

M
 M

as
te

r

data_in
Av

alo
n-

ST

So
ur

ce
Avalon-MM

Slave
Component

Note: The SPI Slave to Avalon Master Bridge and JTAG to Avalon Master Bridge are examples
of the Packets to Transactions Converter core. For more information, refer to the
Avalon Interface Specifications.

Related Information

Avalon Interface Specifications

4.8.1. Packets to Transactions Converter Interfaces

Table 152. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Not supported.

Error Not used.

Packet Supported.

The Avalon-MM master interface supports read and write transactions. The data width
is set to 32 bits, and burst transactions are not supported.

4.8.2. Packets to Transactions Converter Operation

The Packets to Transactions Converter core receives streams of packets on its Avalon-
ST sink interface and initiates Avalon-MM transactions. Upon receiving transaction
responses from Avalon-MM slaves, the core transforms the responses to packets and
returns them to the requesting components via its Avalon-ST source interface. The
core does not report Avalon-ST errors.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

272

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.8.2.1. Packets to Transactions Converter Data Packet Formats

A response packet is returned for every write transaction. The core also returns a
response packet if a no transaction (0x7f) is received. An invalid transaction code is
regarded as a no transaction. For read transactions, the core returns the data read.

The Packets to Transactions Converter core expects incoming data streams to be in
the formats shown in the table below.

Table 153. Data Packet Formats

Byte Field Description

Transaction Packet Format

0 Transaction code Type of transaction.

1 Reserved Reserved for future use.

[3:2] Size Transaction size in bytes. For write transactions, the size indicates
the size of the data field. For read transactions, the size indicates
the total number of bytes to read.

[7:4] Address 32-bit address for the transaction.

[n:8] Data Transaction data; data to be written for write transactions.

Response Packet Format

0 Transaction code The transaction code with the most significant bit inversed.

1 Reserved Reserved for future use.

[4:2] Size Total number of bytes read/written successfully.

Related Information

Packets to Transactions Converter Interfaces on page 272

4.8.2.2. Packets to Transactions Converter Supported Transactions

The Packets to Transactions Converter core supports the following Avalon-MM
transactions:

Table 154. Packets to Transactions Converter Supported Transactions

Transactio
n Code

Avalon-MM Transaction Description

0x00 Write, non-incrementing address. Writes data to the address until the total number of bytes written
to the same word address equals to the value specified in the size
field.

0x04 Write, incrementing address. Writes transaction data starting at the current address.

0x10 Read, non-incrementing address. Reads 32 bits of data from the address until the total number of
bytes read from the same address equals to the value specified in
the size field.

0x14 Read, incrementing address. Reads the number of bytes specified in the size parameter
starting from the current address.

0x7f No transaction. No transaction is initiated. You can use this transaction type for
testing purposes. Although no transaction is initiated on the
Avalon-MM interface, the core still returns a response packet for
this transaction code.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

273

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Packets to Transactions Converter core can process only a single transaction at a
time. The ready signal on the core's Avalon-ST sink interface is asserted only when
the current transaction is completely processed.

No internal buffer is implemented on the datapaths. Data received on the Avalon-ST
interface is forwarded directly to the Avalon-MM interface and vice-versa. Asserting
the waitrequest signal on the Avalon-MM interface backpressures the Avalon-ST
sink interface. In the opposite direction, if the Avalon-ST source interface is
backpressured, the read signal on the Avalon-MM interface is not asserted until the
backpressure is alleviated. Backpressuring the Avalon-ST source in the middle of a
read can result in data loss. In this cases, the core returns the data that is
successfully received.

A transaction is considered complete when the core receives an EOP. For write
transactions, the actual data size is expected to be the same as the value of the size
property. Whether or not both values agree, the core always uses the end of packet
(EOP) to determine the end of data.

4.8.2.3. Packets to Transactions Converter Malformed Packets

The following are examples of malformed packets:

• Consecutive start of packet (SOP)—An SOP marks the beginning of a
transaction. If an SOP is received in the middle of a transaction, the core drops
the current transaction without returning a response packet for the transaction,
and initiates a new transaction. This effectively processes packets without an end
of packet (EOP).

• Unsupported transaction codes—The core processes unsupported transactions
as a no transaction.

4.9. Avalon-ST Streaming Pipeline Stage

The Avalon-ST pipeline stage receives data from an Avalon-ST source interface, and
outputs the data to an Avalon-ST sink interface. In the absence of back pressure, the
Avalon-ST pipeline stage source interface outputs data one cycle after receiving the
data on its sink interface.

If the pipeline stage receives back pressure on its source interface, it continues to
assert its source interface's current data output. While the pipeline stage is receiving
back pressure on its source interface and it receives new data on its sink interface, the
pipeline stage internally buffers the new data. It then asserts back pressure on its sink
interface.

After the backpressure is deasserted, the pipeline stage's source interface is
deasserted and the pipeline stage asserts internally buffered data (if present).
Additionally, the pipeline stage deasserts back pressure on its sink interface.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

274

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 142. Pipeline Stage Simple Register
If the ready signal is not pipelined, the pipeline stage becomes a simple register.

Sink Sourcedata_in data_outRegister 0

Figure 143. Pipeline Stage Holding Register
If the ready signal is pipelined, the pipeline stage must also include a second "holding" register.

Sink Sourcedata_in data_out
Register 1

Register 0

Full?

Full?

4.10. Streaming Channel Multiplexer and Demultiplexer Cores

The Avalon-ST channel multiplexer core receives data from various input interfaces
and multiplexes the data into a single output interface, using the optional channel
signal to indicate the origin of the data. The Avalon-ST channel demultiplexer core
receives data from a channelized input interface and drives that data to multiple
output interfaces, where the output interface is selected by the input channel signal.

The multiplexer and demultiplexer cores can transfer data between interfaces on cores
that support unidirectional flow of data. The multiplexer and demultiplexer allow you
to create multiplexed or demultiplexed datapaths without having to write custom HDL
code. The multiplexer includes an Avalon-ST Round Robin Scheduler.

Related Information

Avalon-ST Round Robin Scheduler on page 270

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

275

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.10.1. Software Programming Model For the Multiplexer and
Demultiplexer Components

The multiplexer and demultiplexer components do not have any user-visible control or
status registers. Therefore, Platform Designer cannot control or configure any aspect
of the multiplexer or demultiplexer at run-time. The components cannot generate
interrupts.

4.10.2. Avalon-ST Multiplexer

Figure 144. Avalon-ST Multiplexer
The Avalon-ST multiplexer takes data from a variety of input data interfaces, and multiplexes the data onto a
single output interface. The multiplexer includes a round-robin scheduler that selects from the next input
interface that has data. Each input interface has the same width as the output interface, so that the other input
interfaces are backpressured when the multiplexer is carrying data from a different input interface.

src
sink

data_in_ n

sink

data_in _0

data_out

. .
 .

Round Robin, Burst
Aware Scheduler

(optional)

sink

sink
. .

 .

channel

The multiplexer includes an optional channel signal that enables each input interface
to carry channelized data. The output interface channel width is equal to:

(log2 (n-1)) + 1 + w

where n is the number of input interfaces, and w is the channel width of each input
interface. All input interfaces must have the same channel width. These bits are
appended to either the most or least significant bits of the output channel signal.

The scheduler processes one input interface at a time, selecting it for transfer. Once
an input interface has been selected, data from that input interface is sent until one of
the following scenarios occurs:

• The specified number of cycles have elapsed.

• The input interface has no more data to send and the valid signal is deasserted
on a ready cycle.

• When packets are supported, endofpacket is asserted.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

276

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.10.2.1. Multiplexer Input Interfaces

Each input interface is an Avalon-ST data interface that optionally supports packets.
The input interfaces are identical; they have the same symbol and data widths, error
widths, and channel widths.

4.10.2.2. Multiplexer Output Interface

The output interface carries the multiplexed data stream with data from the inputs.
The symbol, data, and error widths are the same as the input interfaces.

The width of the channel signal is the same as the input interfaces, with the addition
of the bits needed to indicate the origin of the data.

You can configure the following parameters for the output interface:

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata
and writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred
per beat (transfer). Valid values are 1 to 32.

• Include Packet Support—Indicates whether packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty signals.

• Channel Signal Width (bits)— The number of bits Platform Designer uses for
the channel signal for output interfaces. For example, set this parameter to 1 if
you have two input interfaces with no channel, or set this parameter to 2 if you
have two input interfaces with a channel width of 1 bit. The input channel can
have a width between 0-31 bits.

• Error Signal Width (bits)—The width of the error signal for input and output
interfaces. A value of 0 means the error signal is not in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

4.10.2.3. Multiplexer Parameters

You can configure the following parameters for the multiplexer:

• Number of Input Ports—The number of input interfaces that the multiplexer
supports. Valid values are 2 to 16.

• Scheduling Size (Cycles)—The number of cycles that are sent from a single
channel before changing to the next channel.

• Use Packet Scheduling—When this parameter is turned on, the multiplexer only
switches the selected input interface on packet boundaries. Therefore, packets on
the output interface are not interleaved.

• Use high bits to indicate source port—When this parameter is turned on, the
multiplexer uses the high bits of the output channel signal to indicate the origin
of the input interface of the data. For example, if the input interfaces have 4-bit
channel signals, and the multiplexer has 4 input interfaces, the output interface
has a 6-bit channel signal. If this parameter is turned on, bits [5:4] of the output
channel signal indicate origin of the input interface of the data, and bits [3:0] are
the channel bits that were presented at the input interface.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

277

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.10.3. Avalon-ST Demultiplexer

Figure 145. Avalon-ST Demultiplexer
That Avalon-ST demultiplexer takes data from a channelized input data interface and provides that data to
multiple output interfaces, where the output interface selected for a particular transfer is specified by the input
channel signal.

sink
data_out_n

data_out_0

sink
sinkdata_in

src

src

. .
 . . .
 .

channel

The data is delivered to the output interfaces in the same order it is received at the
input interface, regardless of the value of channel, packet, frame, or any other
signal. Each of the output interfaces has the same width as the input interface; each
output interface is idle when the demultiplexer is driving data to a different output
interface. The demultiplexer uses log2 (num_output_interfaces) bits of the
channel signal to select the output for the data; the remainder of the channel bits
are forwarded to the appropriate output interface unchanged.

4.10.3.1. Demultiplexer Input Interface

Each input interface is an Avalon-ST data interface that optionally supports packets.
You can configure the following parameters for the input interface:

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata
and writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred
per beat (transfer). Valid values are 1 to 32.

• Include Packet Support—Indicates whether data packet transfers are
supported. Packet support includes the startofpacket, endofpacket, and
empty signals.

• Channel Signal Width (bits)—The number of bits for the channel signal for
output interfaces. A value of 0 means that output interfaces do not use the
optional channel signal.

• Error Signal Width (bits)—The width of the error signal for input and output
interfaces. A value of 0 means the error signal is in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

278

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.10.3.2. Demultiplexer Output Interface

Each output interface carries data from a subset of channels from the input interface.
Each output interface is identical; all have the same symbol and data widths, error
widths, and channel widths. The symbol, data, and error widths are the same as the
input interface. The width of the channel signal is the same as the input interface,
without the bits that the demultiplexer uses to select the output interface.

4.10.3.3. Demultiplexer Parameters

You can configure the following parameters for the demultiplexer:

• Number of Output Ports—The number of output interfaces that the multiplexer
supports Valid values are 2 to 16.

• High channel bits select output—When this option is turned on, the
demultiplexing function uses the high bits of the input channel signal, and the
low order bits are passed to the output. When this option is turned off, the
demultiplexing function uses the low order bits, and the high order bits are passed
to the output.

Where you place the signals in your design affects the functionality; for example,
there is one input interface and two output interfaces. If the low-order bits of the
channel signal select the output interfaces, the even channels go to channel 0, and the
odd channels go to channel 1. If the high-order bits of the channel signal select the
output interface, channels 0 to 7 go to channel 0 and channels 8 to 15 go to channel
1.

Figure 146. Select Bits for the Demultiplexer

sink

data_out_n

data_ out_0

sink
sink

data_ in
src

src

channel <4 .. 0 >

channel <3 .. 0 >

channel <3 .. 0 >

4.11. Single-Clock and Dual-Clock FIFO Cores

The Avalon-ST Single-Clock and Avalon-ST Dual-Clock FIFO cores are FIFO buffers
which operate with a common clock and independent clocks for input and output ports
respectively.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

279

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 147. Avalon-ST Single Clock FIFO Core

Avalon-ST
Single-Clock

FIFO

Avalon-MM
Slave

almost_full almost_empty

csr

Avalon-ST
Status
Source

Avalon-ST
Status
Source

outin Avalon-ST
Data
Sink

Avalon-ST
Data

Source

Figure 148. Avalon-ST Dual Clock FIFO Core

Avalon-MM
Slave

in_csr out_csr

Avalon-MM
Slave

outin

Clock A Clock B

Avalon-ST
Dual-Clock

FIFO

Avalon-ST
Data
Sink

Avalon-ST
Data

Source

4.11.1. Interfaces Implemented in FIFO Cores

The following interfaces are implemented in FIFO cores:

Avalon-ST Data Interface on page 281

Avalon-MM Control and Status Register Interface on page 281

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

280

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Status Interface on page 281

4.11.1.1. Avalon-ST Data Interface

Each FIFO core has an Avalon-ST data sink and source interfaces. The data sink and
source interfaces in the dual-clock FIFO core are driven by different clocks.

Table 155. Avalon-ST Interfaces Properties

Feature Property

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported, up to 255 channels.

Error Configurable.

Packet Configurable.

4.11.1.2. Avalon-MM Control and Status Register Interface

You can configure the single-clock FIFO core to include an optional Avalon-MM
interface, and the dual-clock FIFO core to include an Avalon-MM interface in each clock
domain. The Avalon-MM interface provides access to 32-bit registers, which allows you
to retrieve the FIFO buffer fill level and configure the almost-empty and almost-full
thresholds. In the single-clock FIFO core, you can also configure the packet and error
handling modes.

4.11.1.3. Avalon-ST Status Interface

The single-clock FIFO core has two optional Avalon-ST status source interfaces from
which you can obtain the FIFO buffer almost-full and almost empty statuses.

4.11.2. FIFO Operating Modes

• Default mode—The core accepts incoming data on the in interface (Avalon-ST
data sink) and forwards it to the out interface (Avalon-ST data source). The core
asserts the valid signal on the Avalon-ST source interface to indicate that data is
available at the interface.

• Store and forward mode—This mode applies only to the single-clock FIFO core.
The core asserts the valid signal on the out interface only when a full packet of
data is available at the interface. In this mode, you can also enable the drop-on-
error feature by setting the drop_on_error register to 1. When this feature is
enabled, the core drops all packets received with the in_error signal asserted.

• Cut-through mode—This mode applies only to the single-clock FIFO core. The
core asserts the valid signal on the out interface to indicate that data is
available for consumption when the number of entries specified in the
cut_through_threshold register are available in the FIFO buffer.

Note: To turn on Cut-through mode, the Use store and forward parameter must be set
to 0. Turning on Use store and forward mode prompts the user to turn on Use fill
level, and then the CSR appears.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

281

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.11.3. Fill Level of the FIFO Buffer

You can obtain the fill level of the FIFO buffer via the optional Avalon-MM control and
status interface. Turn on the Use fill level parameter (Use sink fill level and Use
source fill level in the dual-clock FIFO core) and read the fill_level register.

The dual-clock FIFO core has two fill levels, one in each clock domain. Due to the
latency of the clock crossing logic, the fill levels reported in the input and output clock
domains may be different for any instance. In both cases, the fill level may report
badly for the clock domain; that is, the fill level is reported high in the input clock
domain, and low in the output clock domain.

The dual-clock FIFO has an output pipeline stage to improve fMAX. This output stage is
accounted for when calculating the output fill level, but not when calculating the input
fill level. Therefore, the best measure of the amount of data in the FIFO is by the fill
level in the output clock domain. The fill level in the input clock domain represents the
amount of space available in the FIFO (available space = FIFO depth – input fill level).

4.11.4. Almost-Full and Almost-Empty Thresholds to Prevent Overflow
and Underflow

You can use almost-full and almost-empty thresholds as a mechanism to prevent FIFO
overflow and underflow. This feature is available only in the single-clock FIFO core. To
use the thresholds, turn on the Use fill level, Use almost-full status, and Use
almost-empty status parameters. You can access the almost_full_threshold
and almost_empty_threshold registers via the csr interface and set the registers
to an optimal value for your application.

You can obtain the almost-full and almost-empty statuses from almost_full and
almost_empty interfaces (Avalon-ST status source). The core asserts the
almost_full signal when the fill level is equal to or higher than the almost-full
threshold. Likewise, the core asserts the almost_empty signal when the fill level is
equal to or lower than the almost-empty threshold.

4.11.5. Single-Clock and Dual-Clock FIFO Core Parameters

Table 156. Single-Clock and Dual-Clock FIFO Core Parameters

Parameter Legal
Values

Description

Bits per symbol 1–32 These parameters determine the width of the FIFO.
FIFO width = Bits per symbol * Symbols per beat, where: Bits
per symbol is the number of bits in a symbol, and Symbols per
beat is the number of symbols transferred in a beat.

Symbols per beat 1–32

Error width 0–32 The width of the error signal.

FIFO depth 2 n The FIFO depth. An output pipeline stage is added to the FIFO to
increase performance, which increases the FIFO depth by one.
<n> = n=1,2,3,4 and so on.

Use packets — Turn on this parameter to enable data packet support on the
Avalon-ST data interfaces.

Channel width 1–32 The width of the channel signal.

Avalon-ST Single Clock FIFO Only
continued...

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

282

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Legal
Values

Description

Use fill level — Turn on this parameter to include the Avalon-MM control and status
register interface (CSR). The CSR is enabled when Use fill level is
set to 1.

Use Store and Forward To turn on Cut-through mode, Use store and forward must be
set to 0. Turning on Use store and forward prompts the user to
turn on Use fill level, and then the CSR appears.

Avalon-ST Dual Clock FIFO Only

Use sink fill level — Turn on this parameter to include the Avalon-MM control and status
register interface in the input clock domain.

Use source fill level — Turn on this parameter to include the Avalon-MM control and status
register interface in the output clock domain.

Write pointer synchronizer length 2–8 The length of the write pointer synchronizer chain. Setting this
parameter to a higher value leads to better metastability while
increasing the latency of the core.

Read pointer synchronizer length 2–8 The length of the read pointer synchronizer chain. Setting this
parameter to a higher value leads to better metastability.

Use Max Channel — Turn on this parameter to specify the maximum channel number.

Max Channel 1–255 Maximum channel number.

Note: For more information about metastability in Intel devices, refer to Understanding
Metastability in FPGAs. For more information about metastability analysis and
synchronization register chains, refer to the Managing Metastability.

Related Information

• Managing Metastability with the Software

• Understanding Metastability in FPGAs

4.11.6. Avalon-ST Single-Clock FIFO Registers

Table 157. Avalon-ST Single-Clock FIFO Registers
The CSR interface in the Avalon-ST Single Clock FIFO core provides access to registers.

32-Bit
Word
Offset

Name Access Reset Description

0 fill_lev
el

R 0 24-bit FIFO fill level. Bits 24 to 31 are not used.

1 Reserved — — Reserved for future use.

2 almost_f
ull_thre
shold

RW FIFO
depth–1

Set this register to a value that indicates the FIFO buffer is getting
full.

3 almost_e
mpty_thr
eshold

RW 0 Set this register to a value that indicates the FIFO buffer is getting
empty.

4 cut_thro
ugh_thre
shold

RW 0 0—Enables store and forward mode.

continued...

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

283

https://www.intel.com/content/www/us/en/docs/programmable/683082/current/managing-metastability-with-the-software-44819.html
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

32-Bit
Word
Offset

Name Access Reset Description

Greater than 0—Enables cut-through mode and specifies the
minimum of entries in the FIFO buffer before the valid signal on
the Avalon-ST source interface is asserted. Once the FIFO core
starts sending the data to the downstream component, it continues
to do so until the end of the packet.
Note: To turn on Cut-through mode, Use store and forward

must be set to 0. Turning on Use store and forward
mode prompts the user to turn on Use fill level, and then
the CSR appears.

5 drop_on_
error

RW 0 0—Disables drop-on error.
1—Enables drop-on error.
This register applies only when the Use packet and Use store
and forward parameters are turned on.

Table 158. Register Description for Avalon-ST Dual-Clock FIFO
The in_csr and out_csr interfaces in the Avalon-ST Dual Clock FIFO core reports the FIFO fill level.

32-Bit Word Offset Name Access Reset Value Description

0 fill_level R 0 24-bit FIFO fill level. Bits 24 to 31 are not used.

Related Information

Avalon Interface Specifications

4.12. Platform Designer System Design Components Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2017.11.06 17.1.0 • Changed instances of Qsys to Platform Designer.
• Changed instances of AXI Default Slave to Error Response Slave.
• Updated topics: Error Response Slave.
• Updated Figure: Error Response Slave Parameter Editor.
• Added Figure: Error Response Slave Parameter Editor with Enabled CSR

Support.
• Updated topics: CSR Registers and renamed to Error Response Slave

CSR Registers.
• Added topic: Error Response Slave Access Violation Service.

2016.05.03 16.0.0 Updated Address Span Extender
• Address Span Extender register mapping better explained
• Address Span Extender Parameters table added
• Address Span Extender example added

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Avalon-MM Unaligned Burst Expansion Bridge and Avalon-MM Pipeline
Bridge, Maximum pending read transactions parameter. Extended
description.

continued...

4. Platform Designer System Design Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

284

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

December 2014 14.1.0 • AXI Timeout Bridge.
• Added notes to Avalon-MM Clock Crossing Bridge pertaining to:

— SDC constraints for its internal asynchronous FIFOs.
— FIFO-based clock crossing.

June 2014 14.0.0 • AXI Bridge support.
• Address Span Extender updates.
• Avalon-MM Unaligned Burst Expansion Bridge support.

November 2013 13.1.0 • Address Span Extender

May 2013 13.0.0 • Added Streaming Pipeline Stage support.
• Added AMBA APB support.

November 2012 12.1.0 • Moved relevant content from the Embedded Peripherals IP User Guide.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

4. Platform Designer System Design Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

285

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Creating Platform Designer Components

You can create a Hardware Component Definition File (_hw.tcl) to describe and
package IP components for use in a Platform Designer system.

Note: Intel now refers to Qsys as Platform Designer (Standard).

A _hw.tcl describes IP components, interfaces and HDL files. Platform Designer
provides the Component Editor to help you create a simple _hw.tcl file.

Refer to the Demo AXI Memory example on the Design Examples page for full code
examples that appear in this chapter.

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

Related Information

• Avalon Interface Specifications

• Protocol Specifications

• Demo AXI Memory Example

5.1. Platform Designer Components

A Platform Designer component includes the following elements:

• Information about the component type, such as name, version, and author.

• HDL description of the component’s hardware, including SystemVerilog, Verilog
HDL, or VHDL files.

• Constraint files (both or either Synopsys* Design Constraints File .sdc and Intel
Quartus Prime IP File .qip) that define the component for synthesis and
simulation.

• A component’s interfaces, including I/O signals.

• The parameters that configure the operation of the component.

5.1.1. Platform Designer Interface Support

Platform Designer is most effective when you use standard interfaces available in the
IP Catalog to design custom IP. Standard interfaces operate efficiently with Intel FPGA
IP components, and you can take advantage of the bus functional models (BFMs),
monitors, and other verification IP that the IP Catalog provides.

683364 | 2018.12.15

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Platform Designer supports the following interface specifications:

• Intel FPGA Avalon Memory-Mapped and Streaming

• Arm AMBA 3 AXI (version 1.0)

• Arm AMBA 4 AXI (version 2.0)

• Arm AMBA 4 AXI-Lite (version 2.0)

• Arm AMBA 4 AXI-Stream (version 1.0)

• Arm AMBA 3 APB (version 1.0)

IP components (IP Cores) can have any number of interfaces in any combination. Each
interface represents a set of signals that you can connect within a Platform Designer
system, or export outside of a Platform Designer system.

Platform Designer IP components can include the following interface types:

Table 159. IP Component Interface Types

Interface Type Description

Memory-Mapped Connects memory-referencing master devices with slave memory devices. Master devices can
be processors and DMAs, while slave memory devices can be RAMs, ROMs, and control
registers. Data transfers between master and slave may be uni-directional (read only or write
only), or bi-directional (read and write).

Streaming Connects Avalon Streaming (Avalon-ST) sources and sinks that stream unidirectional data, as
well as high-bandwidth, low-latency IP components. Streaming creates datapaths for
unidirectional traffic, including multichannel streams, packets, and DSP data. The Avalon-ST
interconnect is flexible and can implement on-chip interfaces for industry standard
telecommunications and data communications cores, such as Ethernet, Interlaken, and video.
You can define bus widths, packets, and error conditions.

Interrupts Connects interrupt senders to interrupt receivers. Platform Designer supports individual,
single-bit interrupt requests (IRQs). In the event that multiple senders assert their IRQs
simultaneously, the receiver logic (typically under software control) determines which IRQ has
highest priority, then responds appropriately.

Clocks Connects clock output interfaces with clock input interfaces. Clock outputs can fan-out without
the use of a bridge. A bridge is required only when a clock from an external (exported) source
connects internally to more than one source.

Resets Connects reset sources with reset input interfaces. If your system requires a particular
positive-edge or negative-edge synchronized reset, Platform Designer inserts a reset controller
to create the appropriate reset signal. If you design a system with multiple reset inputs, the
reset controller ORs all reset inputs and generates a single reset output.

Conduits Connects point-to-point conduit interfaces, or represent signals that you export from the
Platform Designer system. Platform Designer uses conduits for component I/O signals that are
not part of any supported standard interface. You can connect two conduits directly within a
Platform Designer system as a point-to-point connection. Alternatively, you can export conduit
interfaces and bring the interfaces to the top-level of the system as top-level system I/O. You
can use conduits to connect to external devices, for example external DDR SDRAM memory,
and to FPGA logic defined outside of the Platform Designer system.

Related Information

• Avalon Interface Specifications

• AMBA Protocol Specifications

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

287

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.2. Component Structure

Intel provides components automatically installed with the Intel Quartus Prime
software. You can obtain a list of Platform Designer-compliant components provided
by third-party IP developers on Altera's Intellectual Property & Reference
Designs page by typing: qsys certified in the Search box, and then selecting IP
Core & Reference Designs. Components are also provided with Intel development
kits, which are listed on the All Development Kits page.

Every component is defined with a <component_name>_hw.tcl file, a text file
written in the Tcl scripting language that describes the component to Platform
Designer. When you design your own custom component, you can create the _hw.tcl
file manually, or by using the Platform Designer Component Editor.

The Component Editor simplifies the process of creating _hw.tcl files by creating a
file that you can edit outside of the Component Editor to add advanced procedures.
When you edit a previously saved _hw.tcl file, Platform Designer automatically backs
up the earlier version as _hw.tcl~.

You can move component files into a new directory, such as a network location, so
that other users can use the component in their systems. The _hw.tcl file contains
relative paths to the other files, so if you move an _hw.tcl file, you should also move
all the HDL and other files associated with it.

There are three component types:

• Static— Static components always generate the same output, regardless of their
parameterization. Components that instantiate static components must have only
static children.

• Generated—A generated component's fileset callback allows an instance of the
component to create unique HDL design files based on the instance's parameter
values.

• Composed—Composed components are subsystems constructed from instances
of other components. You can use a composition callback to manage the
subsystem in a composed component.

Related Information

• Create a Composed Component or Subsystem on page 316

• Add Component Instances to a Static or Generated Component on page 319

5.1.3. Component File Organization

A typical component uses the following directory structure where the names of the
directories are not significant:

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

288

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

<component_directory>/

• <hdl>/—Contains the component HDL design files, for example .v, .sv, or .vhd
files that contain the top-level module, along with any required constraint files.

• <component_name> _hw.tcl—The component description file.

• <component_name> _sw.tcl—The software driver configuration file. This file
specifies the paths for the .c and .h files associated with the component, when
required.

• <software>/—Contains software drivers or libraries related to the component.

Note: Refer to the Nios II Software Developer’s Handbook for information about writing a
device driver or software package suitable for use with the Nios II processor.

Related Information

Nios II Software Developer’s Handbook
Refer to the "Nios II Software Build Tools" and "Overview of the Hardware
Abstraction Layer" chapters.

5.1.4. Component Versions

Platform Designer systems support multiple versions of the same component within
the same system; you can create and maintain multiple versions of the same
component.

If you have multiple _hw.tcl files for components with the same NAME module
properties and different VERSION module properties, both versions of the component
are available.

If multiple versions of the component are available in the IP Catalog, you can add a
specific version of a component by right-clicking the component, and then selecting
Add version <version_number>.

5.1.4.1. Upgrade IP Components to the Latest Version

When you open a Platform Designer design, if Platform Designer detects IP
components that require regeneration, the Upgrade IP Cores dialog box appears and
allows you to upgrade outdated components.

Components that you must upgrade in order to successfully compile your design
appear in red. Status icons indicate whether a component is currently being
regenerated, the component is encrypted, or that there is not enough information to
determine the status of component. To upgrade a component, in the Upgrade IP
Cores dialog box, select the component that you want to upgrade, and then click
Upgrade. The Intel Quartus Prime software maintains a list of all IP components
associated with your design on the Components tab in the Project Navigator.

Related Information

Upgrade IP Components Dialog Box
In Intel Quartus Prime Help

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

289

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2.pdf
http://quartushelp.altera.com/current/index.htm#global/pjn/pjn_com_regenerate_ip.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.2. Design Phases of an IP Component

When you define a component with the Platform Designer Component Editor, or a
custom _hw.tcl file, you specify the information that Platform Designer requires to
instantiate the component in a Platform Designer system and to generate the
appropriate output files for synthesis and simulation.

The following phases describe the process when working with components in Platform
Designer:

• Discovery—During the discovery phase, Platform Designer reads the _hw.tcl
file to identify information that appears in the IP Catalog, such as the component's
name, version, and documentation URLs. Each time you open Platform Designer,
the tool searches for the following file types using the default search locations and
entries in the IP Search Path:

— _hw.tcl files—Each _hw.tcl file defines a single component.

— IP Index (.ipx) files—Each .ipx file indexes a collection of available
components, or a reference to other directories to search.

• Static Component Definition—During the static component definition phase,
Platform Designer reads the _hw.tcl file to identify static parameter declarations,
interface properties, interface signals, and HDL files that define the component. At
this stage of the life cycle, the component interfaces may be only partially defined.

• Parameterization—During the parameterization phase, after an instance of the
component is added to a Platform Designer system, the user of the component
specifies parameters with the component’s parameter editor.

• Validation—During the validation phase, Platform Designer validates the values
of each instance's parameters against the allowed ranges specified for each
parameter. You can use callback procedures that run during the validation phase
to provide validation messages. For example, if there are dependencies between
parameters where only certain combinations of values are supported, you can
report errors for the unsupported values.

• Elaboration—During the elaboration phase, Platform Designer queries the
component for its interface information. Elaboration is triggered when an instance
of a component is added to a system, when its parameters are changed, or when
a system property changes. You can use callback procedures that run during the
elaboration phase to dynamically control interfaces, signals, and HDL files based
on the values of parameters. For example, interfaces defined with static
declarations can be enabled or disabled during elaboration. When elaboration is
complete, the component's interfaces and design logic must be completely
defined.

• Composition—During the composition phase, a component can manipulate the
instances in the component's subsystem. The _hw.tcl file uses a callback
procedure to provide parameterization and connectivity of sub-components.

• Generation—During the generation phase, Platform Designer generates synthesis
or simulation files for each component in the system into the appropriate output
directories, as well as any additional files that support associated tools

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

290

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3. Create IP Components in the Platform Designer Component
Editor

The Platform Designer Component Editor allows you to create and package an IP
component. When you use the Component Editor to define a component, Platform
Designer writes the information to an _hw.tcl file.

The Platform Designer Component Editor allows you to perform the following tasks:

• Specify component’s identifying information, such as name, version, author, etc.

• Specify the SystemVerilog, Verilog HDL, VHDL files, and constraint files that define
the component for synthesis and simulation.

• Create an HDL template to define a component interfaces, signals, and
parameters.

• Set parameters on interfaces and signals that can alter the component's structure
or functionality.

If you add the top-level HDL file that defines the component on Files tab in the
Platform Designer Component Editor, you must define the component's parameters
and signals in the HDL file. You cannot add or remove them in the Component Editor.

If you do not have a top-level HDL component file, you can use the Platform Designer
Component Editor to add interfaces, signals, and parameters. In the Component
Editor, the order in which the tabs appear reflects the recommended design flow for
component development. You can use the Prev and Next buttons to guide you
through the tabs.

In a Platform Designer system, the interfaces of a component are connected in the
system, or exported as top-level signals from the system.

If the component is not based on an existing HDL file, enter the parameters, signals,
and interfaces first, and then return to the Files tab to create the top-level HDL file
template. When you click Finish, Platform Designer creates the component _hw.tcl
file with the details that you enter in the Component Editor.

When you save the component, it appears in the IP Catalog.

If you require custom features that the Platform Designer Component Editor does not
support, for example, an elaboration callback, use the Component Editor to create the
_hw.tcl file, and then manually edit the file to complete the component definition.

Note: If you add custom coding to a component, do not open the component file in the
Platform Designer Component Editor. The Platform Designer Component Editor
overwrites your custom edits.

Example 11. Platform Designer Creates an _hw.tcl File from Entries in the Component
Editor

connection point clock

add_interface clock clock end
set_interface_property clock clockRate 0
set_interface_property clock ENABLED true

add_interface_port clock clk clk Input 1

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

291

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

connection point reset

add_interface reset reset end
set_interface_property reset associatedClock clock
set_interface_property reset synchronousEdges DEASSERT
set_interface_property reset ENABLED true

add_interface_port reset reset_n reset_n Input 1

connection point streaming

add_interface streaming avalon_streaming start
set_interface_property streaming associatedClock clock
set_interface_property streaming associatedReset reset
set_interface_property streaming dataBitsPerSymbol 8
set_interface_property streaming errorDescriptor ""
set_interface_property streaming firstSymbolInHighOrderBits true
set_interface_property streaming maxChannel 0
set_interface_property streaming readyLatency 0
set_interface_property streaming ENABLED true

add_interface_port streaming aso_data data Output 8
add_interface_port streaming aso_valid valid Output 1
add_interface_port streaming aso_ready ready Input 1

connection point slave

add_interface slave axi end
set_interface_property slave associatedClock clock
set_interface_property slave associatedReset reset
set_interface_property slave readAcceptanceCapability 1
set_interface_property slave writeAcceptanceCapability 1
set_interface_property slave combinedAcceptanceCapability 1
set_interface_property slave readDataReorderingDepth 1
set_interface_property slave ENABLED true

add_interface_port slave axs_awid awid Input AXI_ID_W
...
add_interface_port slave axs_rresp rresp Output 2

Related Information

Component Interface Tcl Reference on page 467

5.3.1. Save an IP Component and Create the _hw.tcl File

You save a component by clicking Finish in the Platform Designer Component Editor.
The Component Editor saves the component as <component_name> _hw.tcl file.

Intel recommends that you move _hw.tcl files and their associated files to an ip/
directory within your Intel Quartus Prime project directory. You can use IP components
with other applications, such as the C compiler and a board support package (BSP)
generator.

Refer to Creating a System with Platform Designer for information on how to search
for and add components to the IP Catalog for use in your designs.

Related Information

• Creating a System with Platform Designer on page 10

• Publishing Component Information to Embedded Software
In Nios II Gen 2 Software Developer’s Handbook

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

292

https://www.intel.com/content/www/us/en/docs/programmable/683525/current/publishing-component-information-to-64569.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Publishing Component Information to Embedded Software (Nios II Software
Developer’s Handbook)

• Creating a System with Platform Designer on page 10

5.3.2. Edit an IP Component with the Platform Designer Component
Editor

In Platform Designer, you make changes to a component by right-clicking the
component in the System View tab, and then clicking Edit. After making changes,
click Finish to save the changes to the _hw.tcl file.

You can open an _hw.tcl file in a text editor to view the hardware Tcl for the
component. If you edit the _hw.tcl file to customize the component with advanced
features, you cannot use the Component Editor to make further changes without over-
writing your customized file.

You cannot use the Component Editor to edit components installed with the Intel
Quartus Prime software, such as Intel-provided components. If you edit the HDL for a
component and change the interface to the top-level module, you must edit the
component to reflect the changes you make to the HDL.

5.4. Specify IP Component Type Information

The Component Type tab in the Platform Designer Component Editor allows you to
specify the following information about the component:

• Name—Specifies the name used in the _hw.tcl filename, as well as in the top-
level module name when you create a synthesis wrapper file for a non HDL-based
component.

• Display name—Identifies the component in the parameter editor, which you use
to configure and instance of the component, and also appears in the IP Catalog
under Project and on the System View tab.

• Version—Specifies the version number of the component.

• Group—Represents the category of the component in the list of available
components in the IP Catalog. You can select an existing group from the list, or
define a new group by typing a name in the Group box. Separating entries in the
Group box with a slash defines a subcategory. For example, if you type
Memories and Memory Controllers/On-Chip, the component appears in the IP
Catalog under the On-Chip group, which is a subcategory of the Memories and
Memory Controllers group. If you save the component in the project directory,
the component appears in the IP Catalog in the group you specified under
Project. Alternatively, if you save the component in the Intel Quartus Prime
installation directory, the component appears in the specified group under IP
Catalog.

• Description—Allows you to describe the component. This description appears
when the user views the component details.

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

293

http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Created By—Allows you to specify the author of the component.

• Icon—Allows you to enter the relative path to an icon file (.gif, .jpg, or .png
format) that represents the component and appears as the header in the
parameter editor for the component. The default image is the Intel FPGA IP
function icon.

• Documentation—Allows you to add links to documentation for the component,
and appears when you right-click the component in the IP Catalog, and then select
Details.

— To specify an Internet file, begin your path with http://, for example:
http://mydomain.com/datasheets/my_memory_controller.html.

— To specify a file in the file system, begin your path with file:/// for Linux,
and file://// for Windows; for example (Windows): file:////
company_server/datasheets my_memory_controller.pdf.

Figure 149. Component Type Tab in the Component Editor
The Display name, Group, Description, Created By, Icon, and Documentation entries are optional.

When you use the Component Editor to create a component, it writes this basic
component information in the _hw.tcl file. The package require command
specifies the Intel Quartus Prime software version that Platform Designer uses to
create the _hw.tcl file, and ensures compatibility with this version of the Platform
Designer API in future ACDS releases.

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

294

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 12. _hw.tcl Created from Entries in the Component Type Tab

The component defines its basic information with various module properties using the
set_module_property command. For example, set_module_property NAME
specifies the name of the component, while set_module_property VERSION allows
you to specify the version of the component. When you apply a version to the
_hw.tcl file, it allows the file to behave exactly the same way in future releases of
the Intel Quartus Prime software.

request TCL package from ACDS 14.0

package require -exact qsys 14.0

demo_axi_memory

set_module_property DESCRIPTION \
"Demo AXI-3 memory with optional Avalon-ST port"

set_module_property NAME demo_axi_memory
set_module_property VERSION 1.0
set_module_property GROUP "My Components"
set_module_property AUTHOR Altera
set_module_property DISPLAY_NAME "Demo AXI Memory"

Related Information

Component Interface Tcl Reference on page 467

5.5. Create an HDL File in the Platform Designer Component Editor

If you do not have an HDL file for your component, you can use the Platform Designer
Component Editor to define the component signals, interfaces, and parameters of your
component, and then create a simple top-level HDL file.

You can then edit the HDL file to add the logic that describes the component's
behavior.

1. In the Platform Designer Component Editor, specify the information about the
component in the Signals & Interfaces, and Interfaces, and Parameters tabs.

2. Click the Files tab.

3. Click Create Synthesis File from Signals.
The Component Editor creates an HDL file from the specified signals, interfaces,
and parameters, and the .v file appears in the Synthesis File table.

Related Information

Specify Synthesis and Simulation Files in the Platform Designer Component Editor on
page 297

5.6. Create an HDL File Using a Template in the Platform Designer
Component Editor

You can use a template to create interfaces and signals for your Platform Designer
component

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

295

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In Platform Designer, click New Component in the IP Catalog.

2. On the Component Type tab, define your component information in the Name,
Display Name, Version, Group, Description, Created by, Icon, and
Documentation boxes.

3. Click Finish.
Your new component appears in the IP Catalog under the category that you define
for "Group".

4. In Platform Designer, right-click your new component in the IP Catalog, and then
click Edit.

5. In the Platform Designer Component Editor, click any interface from the Templates
drop-down menu.
The Component Editor fills the Signals and Interfaces tabs with the component
interface template details.

6. On the Files tab, click Create Synthesis File from Signals.

7. Do the following in the Create HDL Template dialog box as shown below:

a. Verify that the correct files appears in File path, or browse to the location
where you want to save your file.

b. Select the HDL language.

c. Click Save to save your new interface, or Cancel to discard the new interface
definition.

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

296

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Create HDL Template Dialog Box

8. Verify the <component_name>.v file appears in the Synthesis Files table on
the Files tab.

Related Information

Specify Synthesis and Simulation Files in the Platform Designer Component Editor on
page 297

5.7. Specify Synthesis and Simulation Files in the Platform Designer
Component Editor

The Files tab in the Platform Designer Component Editor allows you to specify
synthesis and simulation files for your custom component.

If you already have an HDL file that describes the behavior and structure of your
component, you can specify those files on the Files tab.

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

297

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you do not yet have an HDL file, you can specify the signals, interfaces, and
parameters of the component in the Component Editor, and then use the Create
Synthesis File from Signals option on the Files tab to create the top-level HDL file.
The Component Editor generates the _hw.tcl commands to specify the files.

Note: After you analyze the component's top-level HDL file (on the Files tab), you cannot
add or remove signals or change the signal names on the Signals & Interfaces tab.
If you need to edit signals, edit your HDL source, and then click Create Synthesis
File from Signals on the Files tab to integrate your changes.

A component uses filesets to specify the different sets of files that you can generate
for an instance of the component. The supported fileset types are: QUARTUS_SYNTH,
for synthesis and compilation in the Intel Quartus Prime software, SIM_VERILOG, for
Verilog HDL simulation, and SIM_VHDL, for VHDL simulation.

In an _hw.tcl file, you can add a fileset with the add_fileset command. You can
then list specific files with the add_fileset_file command. The
add_fileset_property command allows you to add properties such as
TOP_LEVEL.

You can populate a fileset with a fixed list of files, add different files based on a
parameter value, or even generate an HDL file with a custom HDL generator function
outside of the _hw.tcl file.

Related Information

• Create an HDL File in the Platform Designer Component Editor on page 295

• Create an HDL File Using a Template in the Platform Designer Component Editor
on page 295

5.7.1. Specify HDL Files for Synthesis in the Platform Designer Component
Editor

In the Platform Designer Component Editor, you can add HDL files and other support
files with options on the Files tab.

A component must specify an HDL file as the top-level file. The top-level HDL file
contains the top-level module. The Synthesis Files list may also include supporting
HDL files, such as timing constraints, or other files required to successfully synthesize
and compile in the Intel Quartus Prime software. The synthesis files for a component
are copied to the generation output directory during Platform Designer system
generation.

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

298

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 150. Using HDL Files to Define a Component
In the Synthesis Files section on the Files tab in the Platform Designer Component Editor, the
demo_axi_memory.sv file should be selected as the top-level file for the component.

5.7.2. Analyze Synthesis Files in the Platform Designer Component Editor

After you specify the top-level HDL file in the Platform Designer Component Editor,
click Analyze Synthesis Files to analyze the parameters and signals in the top-level,
and then select the top-level module from the Top Level Module list. If there is a
single module or entity in the HDL file, Platform Designer automatically populates the
Top-level Module list.

Once analysis is complete and the top-level module is selected, you can view the
parameters and signals on the Parameters and Signals & Interfaces tabs. The
Component Editor may report errors or warnings at this stage, because the signals
and interfaces are not yet fully defined.

Note: At this stage in the Component Editor flow, you cannot add or remove parameters or
signals created from a specified HDL file without editing the HDL file itself.

The synthesis files are added to a fileset with the name QUARTUS_SYNTH and type
QUARTUS_SYNTH in the _hw.tcl file created by the Component Editor. The top-level
module is used to specify the TOP_LEVEL fileset property. Each synthesis file is
individually added to the fileset. If the source files are saved in a different directory
from the working directory where the _hw.tcl is located, you can use standard fixed
or relative path notation to identify the file location for the PATH variable.

Example 13. _hw.tcl Created from Entries in the Files tab in the Synthesis Files Section

file sets

add_fileset QUARTUS_SYNTH QUARTUS_SYNTH "" ""
set_fileset_property QUARTUS_SYNTH TOP_LEVEL demo_axi_memory

add_fileset_file demo_axi_memory.sv
SYSTEM_VERILOG PATH demo_axi_memory.sv

add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

299

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Specify HDL Files for Synthesis in the Platform Designer Component Editor on
page 298

• Component Interface Tcl Reference on page 467

5.7.3. Name HDL Signals for Automatic Interface and Type Recognition in
the Platform Designer Component Editor

If you create the component's top-level HDL file before using the Component Editor,
the Component Editor recognizes the interface and signal types based on the signal
names in the source HDL file. This auto-recognition feature eliminates the task of
manually assigning each interface and signal type in the Component Editor.

To enable auto-recognition, you must create signal names using the following naming
convention:

<interface type prefix>_<interface name>_<signal type>

Specifying an interface name with <interface name> is optional if you have only one
interface of each type in the component definition. For interfaces with only one signal,
such as clock and reset inputs, the <interface type prefix> is also optional.

Table 160. Interface Type Prefixes for Automatic Signal Recognition
When the Component Editor recognizes a valid prefix and signal type for a signal, it automatically assigns an
interface and signal type to the signal based on the naming convention. If no interface name is specified for a
signal, you can choose an interface name on the Signals & Interfaces tab in the Component Editor.

Interface Prefix Interface Type

asi Avalon-ST sink (input)

aso Avalon-ST source (output)

avm Avalon-MM master

avs Avalon-MM slave

axm AXI master

axs AXI slave

apm APB master

aps APB slave

coe Conduit

csi Clock Sink (input)

cso Clock Source (output)

inr Interrupt receiver

ins Interrupt sender

ncm Nios II custom instruction master

ncs Nios II custom instruction slave

rsi Reset sink (input)

continued...

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

300

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interface Prefix Interface Type

rso Reset source (output)

tcm Avalon-TC master

tcs Avalon-TC slave

Refer to the Avalon Interface Specifications or the AMBA Protocol Specification for the
signal types available for each interface type.

Related Information

• Avalon Interface Specifications

• Protocol Specifications

5.7.4. Specify Files for Simulation in the Component Editor

To support Platform Designer system generation for your custom component, you
must specify VHDL or Verilog simulation files.

You can choose to generate Verilog or VHDL simulation files. In most cases, these files
are the same as the synthesis files. If there are simulation-specific HDL files or
simulation models, you can use them in addition to, or in place of the synthesis files.
To use your synthesis files as your simulation files, click Copy From Synthesis Files
on the Files tab in the Platform Designer Component Editor.

Note: The order that you add files to the fileset determines the order of compilation. For
VHDL filesets with VHDL files, you must add the files bottom-up, adding the top-level
file last.

Figure 151. Specifying the Simulation Output Files on the Files Tab

You specify the simulation files in a similar way as the synthesis files with the fileset
commands in a _hw.tcl file. The code example below shows SIM_VERILOG and
SIM_VHDL filesets for Verilog and VHDL simulation output files. In this example, the
same Verilog files are used for both Verilog and VHDL outputs, and there is one
additional SystemVerilog file added. This method works for designers of Verilog IP to

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

301

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

support users who want to generate a VHDL top-level simulation file when they have a
mixed-language simulation tool and license that can read the Verilog output for the
component.

Example 14. _hw.tcl Created from Entries in the Files tab in the Simulation Files Section

add_fileset SIM_VERILOG SIM_VERILOG "" ""
set_fileset_property SIM_VERILOG TOP_LEVEL demo_axi_memory
add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

add_fileset_file demo_axi_memory.sv SYSTEM_VERILOG PATH \
demo_axi_memory.sv

add_fileset SIM_VHDL SIM_VHDL "" ""
set_fileset_property SIM_VHDL TOP_LEVEL demo_axi_memory
set_fileset_property SIM_VHDL ENABLE_RELATIVE_INCLUDE_PATHS false

add_fileset_file demo_axi_memory.sv SYSTEM_VERILOG PATH \
demo_axi_memory.sv

add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

Related Information

Component Interface Tcl Reference on page 467

5.7.5. Include an Internal Register Map Description in the .svd for Slave
Interfaces Connected to an HPS Component

Platform Designer supports the ability for IP component designers to specify register
map information on their slave interfaces. This allows components with slave
interfaces that are connected to an HPS component to include their internal register
description in the generated .svd file.

To specify their internal register map, the IP component designer must write and
generate their own .svd file and attach it to the slave interface using the following
command:

set_interface_property <slave interface> CMSIS_SVD_FILE <file path>

The CMSIS_SVD_VARIABLES interface property allows for variable substitution inside
the .svd file. You can dynamically modify the character data of the .svd file by using
the CMSIS_SVD_VARIABLES property.

Example 15. Setting the CMSIS_SVD_VARIBLES Interface Property

For example, if you set the CMSIS_SVD_VARIABLES in the _hw tcl file, then in
the .svd file if there is a variable {width} that describes the element <size>$
{width}</size>, it is replaced by <size>23</size> during generation of
the .svd file. Note that substitution works only within character data (the data
enclosed by <element>...</element>) and not on element attributes.

set_interface_property <interface name> \
CMSIS_SVD_VARIABLES "{width} {23}"

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

302

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Component Interface Tcl Reference on page 467

• CMSIS - Cortex Microcontroller Software

5.8. Add Signals and Interfaces in the Platform Designer
Component Editor

In the Platform Designer Component Editor, the Signals & Interfaces tab allows you
to add signals and interfaces for your custom IP component.

As you select interfaces and associated signals, you can customize the parameters.
Messages appear as you add interfaces and signals to guide you when customizing the
component. In the parameter editor, a block diagram displays for each interface.
Some interfaces display waveforms to show the timing of the interface. If you update
timing parameters, the waveforms update automatically.

1. In Platform Designer, click New Component in the IP Catalog.

2. In the Platform Designer Component Editor, click the Signals & Interfaces tab.

3. To add an interface, click <<add interface>> in the left pane.
A drop-down list appears where you select the interface type.

4. Select an interface from the drop-down list.
The selected interface appears in the parameter editor where you can specify its
parameters.

5. To add signals for the selected interface click <<add signal>> below the selected
interface.

6. To move signals between interfaces, select the signal, and then drag it to another
interface.

7. To rename a nsignal or interface, select the element, and then press F2.

8. To remove a signal or interface, right-click the element, and then click Remove.
Alternatively, to remove an signal or interface, you can select the element, and
then press Delete. When you remove an interface, Platform Designer also
removes all of its associated signals.

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

303

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 152. Platform Designer Signals & Interfaces tab

5.9. Specify Parameters in the Platform Designer Component Editor

Components can include parameterized HDL, which allow users of the component
flexibility in meeting their system requirements. For example, a component with a
configurable memory size or data width, allows using one HDL implementation in
different systems, each with unique parameters values.

The Parameters tab allows you specify the parameters that are used to configure
instances of the component in a Platform Designer system. You can specify various
properties for each parameter that describe how to display and use the parameter. You
can also specify a range of allowed values that are checked during the validation
phase. The Parameters table displays the HDL parameters that are declared in the
top-level HDL module. If you have not yet created the top-level HDL file, the top-level
synthesis file template created from the Files tab include the parameters that you
create on the Parameters tab.

When the component includes HDL files, the parameters match those defined in the
top-level module, and you cannot add or remove them on the Parameters tab. To
add or remove the parameters, edit your HDL source, and then re-analyze the file.

If you create a top-level template HDL file for synthesis with the Component Editor,
you can remove the newly-created file from the Synthesis Files list on the Files tab,
make your parameter changes, and then re-analyze the top-level synthesis file.

You can use the Parameters table to specify the following information about each
parameter:

• Name—Specifies the name of the parameter.

• Default Value—Sets the default value for new instances of the component.

• Editable—Specifies whether or not the user can edit the parameter value.

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

304

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Type—Defines the parameter type as string, integer, boolean, std_logic, logic
vector, natural, or positive.

• Group—Allows you to group parameters in parameter editor.

• Tooltip—Allows you to add a description of the parameter that appears when the
user of the component points to the parameter in the editor.

Figure 153. Parameters Tab in the Platform Designer Components Editor

On the Parameters tab, you can click Preview the GUI at any time to see how the
declared parameters appear in the parameter editor. Parameters with their default
values appear with checks in the Editable column. Editable parameters cannot
contain computed expressions. You can group parameters under a common heading or
section in the editor with the Group column, and a tooltip helps users of the
component understand the function of the parameter. Various parameter properties
allow you to customize the component’s parameter editor, such as using radio buttons
for parameter selections, or displaying an image.

Example 16. _hw.tcl Created from Entries in the Parameters Tab

In this example, the first add_parameter command includes commonly-specified
properties. The set_parameter_property command specifies each property
individually. The Tooltip column on the Parameters tab maps to the DESCRIPTION
property, and there is an additional unused UNITS property created in the code. The
HDL_PARAMETER property specifies that the value of the parameter is specified in the
HDL instance wrapper when creating instances of the component. The Group column
in the Parameters tab maps to the display items section with the
add_display_item commands.

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

305

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If a parameter <n> defines the width of a signal, the signal width must follow the
format <n-1> : 0.

parameters

add_parameter AXI_ID_W INTEGER 4 "Width of ID fields"
set_parameter_property AXI_ID_W DEFAULT_VALUE 4
set_parameter_property AXI_ID_W DISPLAY_NAME AXI_ID_W
set_parameter_property AXI_ID_W TYPE INTEGER
set_parameter_property AXI_ID_W UNITS None
set_parameter_property AXI_ID_W DESCRIPTION "Width of ID fields"
set_parameter_property AXI_ID_W HDL_PARAMETER true
add_parameter AXI_ADDRESS_W INTEGER 12
set_parameter_property AXI_ADDRESS_W DEFAULT_VALUE 12

add_parameter AXI_DATA_W INTEGER 32
...

display items

add_display_item "AXI Port Widths" AXI_ID_W PARAMETER ""

Note: If an AXI slave's ID bit width is smaller than required for your system, the AXI slave
response may not reach all AXI masters. The formula of an AXI slave ID bit width is
calculated as follows:

maximum_master_id_width_in_the_interconnect + log2
(number_of_masters_in_the_same_interconnect)

For example, if an AXI slave connects to three AXI masters and the maximum AXI
master ID length of the three masters is 5 bits, then the AXI slave ID is 7 bits, and is
calculated as follows:

5 bits + 2 bits (log2(3 masters)) = 7

Table 161. AXI Master and Slave Parameters
Platform Designer refers to AXI interface parameters to build AXI interconnect. If these parameter settings are
incompatible with the component's HDL behavior, Platform Designer interconnect and transactions may not
work correctly. To prevent unexpected interconnect behavior, you must set the AXI component parameters.

AXI Master Parameters AXI Slave Parameters

readIssuingCapability readAcceptanceCapability

writeIssuingCapability writeAcceptanceCapability

combinedIssuingCapability combinedAcceptanceCapability

readDataReorderingDepth

Related Information

Component Interface Tcl Reference on page 467

5.9.1. Valid Ranges for Parameters in the _hw.tcl File

In the _hw.tcl file, you can specify valid ranges for parameters.

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

306

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Platform Designer validation checks each parameter value against the
ALLOWED_RANGES property. If the values specified are outside of the allowed ranges,
Platform Designer displays an error message. Specifying choices for the allowed
values enables users of the component to choose the parameter value from a drop-
down list or radio button in the parameter editor GUI instead of entering a value.

The ALLOWED_RANGES property is a list of valid ranges, where each range is a single
value, or a range of values defined by a start and end value.

Table 162. ALLOWED_RANGES Property

ALLOWED_RANGES Property Values

{a b c} a, b, or c

{"No Control" "Single Control" "Dual Controls"} Unique string values. Quotation marks are required if the
strings include spaces .

{1 2 4 8 16} 1, 2, 4, 8, or 16

{1:3} 1 through 3, inclusive.

{1 2 3 7:10} 1, 2, 3, or 7 through 10 inclusive.

Related Information

Declare Parameters with Custom _hw.tcl Commands on page 308

5.9.2. Types of Platform Designer Parameters

Platform Designer uses the following parameter types: user parameters, system
information parameters, and derived parameters.

Platform Designer User Parameters on page 307

Platform Designer System Information Parameters on page 307

Platform Designer Derived Parameters on page 308

Related Information

Declare Parameters with Custom _hw.tcl Commands on page 308

5.9.2.1. Platform Designer User Parameters

User parameters are parameters that users of a component can control, and appear in
the parameter editor for instances of the component. User parameters map directly to
parameters in the component HDL. For user parameter code examples, such as
AXI_DATA_W and ENABLE_STREAM_OUTPUT, refer to Declaring Parameters with
Custom hw.tcl Commands.

5.9.2.2. Platform Designer System Information Parameters

A SYSTEM_INFO parameter is a parameter whose value is set automatically by the
Platform Designer system. When you define a SYSTEM_INFO parameter, you provide
an information type, and additional arguments.

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

307

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, you can configure a parameter to store the clock frequency driving a
clock input for your component. To do this, define the parameter as SYSTEM_INFO of
type CLOCK_RATE:

set_parameter_property <param> SYSTEM_INFO CLOCK_RATE

You then set the name of the clock interface as the SYSTEM_INFO argument:

set_parameter_property <param> SYSTEM_INFO_ARG <clkname>

5.9.2.3. Platform Designer Derived Parameters

Derived parameter values are calculated from other parameters during the Elaboration
phase, and are specified in the hw.tcl file with the DERIVED property. Derived
parameter values are calculated from other parameters during the Elaboration phase,
and are specified in the hw.tcl file with the DERIVED property. For example, you can
derive a clock period parameter from a data rate parameter. Derived parameters are
sometimes used to perform operations that are difficult to perform in HDL, such as
using logarithmic functions to determine the number of address bits that a component
requires.

Related Information

Declare Parameters with Custom _hw.tcl Commands on page 308

5.9.2.3.1. Parameterized Parameter Widths

Platform Designer allows a std_logic_vector parameter to have a width that is
defined by another parameter, similar to derived parameters. The width can be a
constant or the name of another parameter.

5.9.3. Declare Parameters with Custom _hw.tcl Commands

The example below illustrates a custom _hw.tcl file, with more advanced parameter
commands than those generated when you specify parameters in the Component
Editor. Commands include the ALLOWED_RANGES property to provide a range of values
for the AXI_ADDRESS_W (Address Width) parameter, and a list of parameter values
for the AXI_DATA_W (Data Width) parameter. This example also shows the
parameter AXI_NUMBYTES (Data width in bytes) parameter; that uses the DERIVED
property. In addition, these commands illustrate the use of the GROUP property, which
groups some parameters under a heading in the parameter editor GUI. You use the
ENABLE_STREAM_OUTPUT_GROUP (Include Avalon streaming source port)
parameter to enable or disable the optional Avalon-ST interface in this design, and is
displayed as a check box in the parameter editor GUI because the parameter is of type
BOOLEAN. Refer to figure below to see the parameter editor GUI resulting from these
hw.tcl commands.

Example 17. Parameter Declaration

In this example, the AXI_NUMBYTES parameter is derived during the Elaboration
phase based on another parameter, instead of being assigned to a specific value.
AXI_NUMBYTES describes the number of bytes in a word of data. Platform Designer
calculates the AXI_NUMBYTES parameter from the DATA_WIDTH parameter by
dividing by 8. The _hw.tcl code defines the AXI_NUMBYTES parameter as a derived

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

308

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

parameter, since its value is calculated in an elaboration callback procedure. The
AXI_NUMBYTES parameter value is not editable, because its value is based on another
parameter value.

add_parameter AXI_ADDRESS_W INTEGER 12

set_parameter_property AXI_ADDRESS_W DISPLAY_NAME \
"AXI Slave Address Width"

set_parameter_property AXI_ADDRESS_W DESCRIPTION \
"Address width."

set_parameter_property AXI_ADDRESS_W UNITS bits
set_parameter_property AXI_ADDRESS_W ALLOWED_RANGES 4:16
set_parameter_property AXI_ADDRESS_W HDL_PARAMETER true

set_parameter_property AXI_ADDRESS_W GROUP \
"AXI Port Widths"

add_parameter AXI_DATA_W INTEGER 32
set_parameter_property AXI_DATA_W DISPLAY_NAME "Data Width"

set_parameter_property AXI_DATA_W DESCRIPTION \
"Width of data buses."

set_parameter_property AXI_DATA_W UNITS bits

set_parameter_property AXI_DATA_W ALLOWED_RANGES \
{8 16 32 64 128 256 512 1024}

set_parameter_property AXI_DATA_W HDL_PARAMETER true
set_parameter_property AXI_DATA_W GROUP "AXI Port Widths"

add_parameter AXI_NUMBYTES INTEGER 4
set_parameter_property AXI_NUMBYTES DERIVED true

set_parameter_property AXI_NUMBYTES DISPLAY_NAME \
"Data Width in bytes; Data Width/8"

set_parameter_property AXI_NUMBYTES DESCRIPTION \
"Number of bytes in one word"

set_parameter_property AXI_NUMBYTES UNITS bytes
set_parameter_property AXI_NUMBYTES HDL_PARAMETER true
set_parameter_property AXI_NUMBYTES GROUP "AXI Port Widths"

add_parameter ENABLE_STREAM_OUTPUT BOOLEAN true

set_parameter_property ENABLE_STREAM_OUTPUT DISPLAY_NAME \
"Include Avalon Streaming Source Port"

set_parameter_property ENABLE_STREAM_OUTPUT DESCRIPTION \
"Include optional Avalon-ST source (default),\
or hide the interface"

set_parameter_property ENABLE_STREAM_OUTPUT GROUP \
"Streaming Port Control"

...

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

309

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 154. Resulting Parameter Editor GUI from Parameter Declarations

Related Information

• Control Interfaces Dynamically with an Elaboration Callback on page 314

• Component Interface Tcl Reference on page 467

5.9.4. Validate Parameter Values with a Validation Callback

You can use a validation callback procedure to validate parameter values with more
complex validation operations than the ALLOWED_RANGES property allows. You define
a validation callback by setting the VALIDATION_CALLBACK module property to the
name of the Tcl callback procedure that runs during the validation phase. In the
validation callback procedure, the current parameter values is queried, and warnings
or errors are reported about the component's configuration.

Example 18. Demo AXI Memory Example

If the optional Avalon streaming interface is enabled, then the control registers must
be wide enough to hold an AXI RAM address, so the designer can add an error
message to ensure that the user enters allowable parameter values.

set_module_property VALIDATION_CALLBACK validate
proc validate {} {
if {
 [get_parameter_value ENABLE_STREAM_OUTPUT] &&
 ([get_parameter_value AXI_ADDRESS_W] >
 [get_parameter_value AV_DATA_W])
}
send_message error "If the optional Avalon streaming port\
is enabled, the AXI Data Width must be equal to or greater\
than the Avalon control port Address Width"
}
}

Related Information

• Component Interface Tcl Reference on page 467

• Demo AXI Memory Example

5.10. Declaring SystemVerilog Interfaces in _hw.tcl

Platform Designer supports interfaces written in SystemVerilog.

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

310

http://www.altera.com/support/examples/design-entry-tools/qsys/exm-demo-axi3-memory.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following example is _hw.tcl for a module with a SystemVerilog interface. The
sample code is divided into parts 1 and 2.

Part 1 defines the normal array of parameters, Platform Designer interface, and ports

Example 19. Example Part 1: Parameters, Platform Designer Interface, and Ports in
_hw.tcl

request TCL package from ACDS 17.1
#
package require -exact qsys 17.1

#
module ram_ip_sv_ifc_hw
#
set_module_property DESCRIPTION ""
set_module_property NAME ram_ip_sv_ifc_hw
set_module_property VERSION 1.0
set_module_property INTERNAL false
set_module_property OPAQUE_ADDRESS_MAP true
set_module_property AUTHOR ""
set_module_property DISPLAY_NAME ram_ip_hw_with_SV_d0
set_module_property INSTANTIATE_IN_SYSTEM_MODULE true
set_module_property EDITABLE true
set_module_property REPORT_TO_TALKBACK false
set_module_property ALLOW_GREYBOX_GENERATION false
set_module_property REPORT_HIERARCHY false

Part 1 – Add parameter, platform designer interface and ports
Adding parameter
add_parameter my_interface_parameter STRING "" "I am an interface parameter"

Adding platform designer interface clk
add_interface clk clock end
set_interface_property clk clockRate 0
Adding ports to clk interface
add_interface_port clk clk clk Input 1

Adding platform designer interface reset
add_interface reset reset end
set_interface_property reset associatedClock clk
#Adding ports to reset interface
add_interface_port reset reset reset Input 1

Adding platform designer interface avalon_slave
add_interface avalon_slave avalon end
set_interface_property avalon_slave addressUnits WORDS
Adding ports to avalon_slave interface
add_interface_port avalon_slave address address Input 10
add_interface_port avalon_slave write write Input 1
add_interface_port avalon_slave readdata readdata Output 32
add_interface_port avalon_slave writedata writedata Input 32
set_interface_property avalon_slave associatedClock clk
set_interface_property avalon_slave associatedReset reset

#Adding ram_ip files
add_fileset synthesis_fileset QUARTUS_SYNTH
set_fileset_property synthesis_fileset TOP_LEVEL ram_ip
add_fileset_file ram_ip.sv SYSTEM_VERILOG PATH ram_ip.sv

Part 2 defines the interface name, ports, and parameters of the SystemVerilog
interface.

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

311

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 20. Example Part 2: SystemVerilog Interface Parameters in _hw.tcl

Part 2 – Adding SV interface and its properties.
Adding SV interface
add_sv_interface bus mem_ifc

Setting the parameter property to add SV interface parameters
set_parameter_property my_interface_parameter SV_INTERFACE_PARAMETER bus

Setting the port properties to add them to SV interface port
set_port_property clk SV_INTERFACE_PORT bus
set_port_property reset SV_INTERFACE_PORT bus

Setting the port properties to add them as signals inside SV interface
set_port_property address SV_INTERFACE_SIGNAL bus
set_port_property write SV_INTERFACE_SIGNAL bus
set_port_property writedata SV_INTERFACE_SIGNAL bus
set_port_property readdata SV_INTERFACE_SIGNAL bus

#Adding the SV Interface File
add_fileset_file mem_ifc.sv SYSTEM_VERILOG PATH mem_ifc.sv
SYSTEMVERILOG_INTERFACE

Related Information

SystemVerilog Interface Commands on page 553

5.11. User Alterable HDL Parameters in _hw.tcl

Platform Designer supports the ability to reconfigure features of parameterized
modules, such as data bus width or FIFO depth. Platform Designer creates an HDL
wrapper when you perform Generate HDL. By modifying your _hw.tcl files to
specify parameter attributes and port properties, you can use Platform Designer to
generate reusable RTL.

1. To define an alterable HDL parameter, you must declare the following two
attributes for the parameter:

• set_parameter_property <parameter_name> HDL_PARAMETER true

• set_parameter_property <parameter_name> AFFECTS_GENERATION
false

2. To have parameterized ports created in the instantiation wrapper, you can either
set the width expression when adding a port to an interface, or set the width
expression in the port property in _hw.tcl:

• To set the width expression when adding a port:

add_interface_port <interface> <port> <signal_type> <direction>
<width_expression>

• To set the width expression in the port property:

set_port_property <port> WIDTH_EXPR <width_expression>

3. To create and generate the IP component in Platform Designer editor, click the
Open System ➤ IP Variant tab, specify the new IP variant name in the IP
Variant field and choose the _hw.tcl file that defines user alterable HDL
parameters in the Component type field.

4. Click Generate HDL to generate the IP core. Platform Designer generates a
parameterized HDL module for you directly.

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

312

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To instantiate the IP component in your HDL file, click Generate ➤ Show
Instantiation Template in the Platform Designer editor to display an instantiation
template in Verilog or VHDL. Now you can instantiate the IP core in your top-level
design HDL file with the template code.

Figure 155. Instantiation Template Dialog Box

The following sample contains _hw.tcl to set exportable width values:

Example 21. Sample _hw.tcl Component with User Alterable Expressions

package require -exact qsys 17.1

set_module_property NAME demo
set_module_property DISPLAY_NAME "Demo"
set_module_property ELABORATION_CALLBACK elaborate

add exportable hdl parameter RECONFIG_DATA_WIDTH
add_parameter RECONFIG_DATA_WIDTH INTEGER 48
set_parameter_property RECONFIG_DATA_WIDTH AFFECTS_GENERATION false
set_parameter_property RECONFIG_DATA_WIDTH HDL_PARAMETER true

add exportable hdl parameter RECONFIG_ADDR_WIDTH
add_parameter RECONFIG_ADDR_WIDTH INTEGER 32
set_parameter_property RECONFIG_ADDR_WIDTH AFFECTS_GENERATION false
set_parameter_property RECONFIG_ADDR_WIDTH HDL_PARAMETER true

add non-exportable hdl parameter
add_parameter l_addr INTEGER 32
set_parameter l_addr HDL_PARAMETER false

add interface
add_interface s0 conduit end

proc elaborate {} {
 add_interface_port s0 rdata readdata output "reconfig_data_width*2 + l_addr"
 add_interface_port s0 raddr readaddress output [get_parameter_value
RECONFIG_ADDR_WIDTH]
 set_port_property raddr WIDTH_EXPR "RECONFIG_ADDR_WIDTH"
}

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

313

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.12. Scripting Wire-Level Expressions

Platform Designer supports system scripting commands to apply wire-level
expressions to input ports in IP components.

The following commands function with the qsys-script utility or in a _hw.tcl file
to set, retrieve, or remove an expression on a port:

set_wirelevel_expression <instance_or_port_bit> <expression>
get_wirelevel_expressions <instance_or_port_bit>
remove_wirelevel_expressions <instance_or_port_bit

These commands require a string that you compose from the left-handed and right-
handed components of the expression. Platform Designer reports errors in syntax,
existence, or system hierarchy.

5.13. Control Interfaces Dynamically with an Elaboration Callback

You can allow user parameters to dynamically control your component's behavior with
a an elaboration callback procedure during the elaboration phase. Using an elaboration
callback allows you to change interface properties, remove interfaces, or add new
interfaces as a function of a parameter value. You define an elaboration callback by
setting the module property ELABORATION_CALLBACK to the name of the Tcl callback
procedure that runs during the elaboration phase. In the callback procedure, you can
query the parameter values of the component instance, and then change the
interfaces accordingly.

Example 22. Avalon-ST Source Interface Optionally Included in a Component Specified
with an Elaboration Callback

set_module_property ELABORATION_CALLBACK elaborate

proc elaborate {} {

 # Optionally disable the Avalon- ST data output

 if{[get_parameter_value ENABLE_STREAM_OUTPUT] == "false" }{
 set_port_property aso_data termination true
 set_port_property aso_valid termination true
 set_port_property aso_ready termination true
 set_port_property aso_ready termination_value 0
 }
 # Calculate the Data Bus Width in bytes

 set bytewidth_var [expr [get_parameter_value AXI_DATA_W]/8]
 set_parameter_value AXI_NUMBYTES $bytewidth_var
}

Related Information

• Declare Parameters with Custom _hw.tcl Commands on page 308

• Validate Parameter Values with a Validation Callback on page 310

• Component Interface Tcl Reference on page 467

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

314

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.14. Control File Generation Dynamically with Parameters and a
Fileset Callback

You can use a fileset callback to control which files are created in the output
directories during the generation phase based on parameter values, instead of
providing a fixed list of files. In a callback procedure, you can query the values of the
parameters and use them to generate the appropriate files. To define a fileset
callback, you specify a callback procedure name as an argument in the add_fileset
command. You can use the same fileset callback procedure for all of the filesets, or
create separate procedures for synthesis and simulation, or Verilog and VHDL.

Example 23. Fileset Callback Using Parameters to Control Filesets in Two Different Ways

The RAM_VERSION parameter chooses between two different source files to control
the implementation of a RAM block. For the top-level source file, a custom Tcl routine
generates HDL that optionally includes control and status registers, depending on the
value of the CSR_ENABLED parameter.

During the generation phase, Platform Designer creates a top-level Platform Designer
system HDL wrapper module to instantiate the component top-level module, and
applies the component's parameters, for any parameter whose parameter property
HDL_PARAMETER is set to true.

#Create synthesis fileset with fileset_callback and set top level

add_fileset my_synthesis_fileset QUARTUS_SYNTH fileset_callback

set_fileset_property my_synthesis_fileset TOP_LEVEL \
demo_axi_memory

Create Verilog simulation fileset with same fileset_callback
and set top level

add_fileset my_verilog_sim_fileset SIM_VERILOG fileset_callback

set_fileset_property my_verilog_sim_fileset TOP_LEVEL \
demo_axi_memory

Add extra file needed for simulation only

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

Create VHDL simulation fileset (with Verilog files
for mixed-language VHDL simulation)

add_fileset my_vhdl_sim_fileset SIM_VHDL fileset_callback
set_fileset_property my_vhdl_sim_fileset TOP_LEVEL demo_axi_memory

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH
verification_lib/verbosity_pkg.sv

Define parameters required for fileset_callback

add_parameter RAM_VERSION INTEGER 1
set_parameter_property RAM_VERSION ALLOWED_RANGES {1 2}
set_parameter_property RAM_VERSION HDL_PARAMETER false
add_parameter CSR_ENABLED BOOLEAN enable
set_parameter_property CSR_ENABLED HDL_PARAMETER false

Create Tcl callback procedure to add appropriate files to
filesets based on parameters

proc fileset_callback { entityName } {

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

315

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 send_message INFO "Generating top-level entity $entityName"
 set ram [get_parameter_value RAM_VERSION]
 set csr_enabled [get_parameter_value CSR_ENABLED]

 send_message INFO "Generating memory
 implementation based on RAM_VERSION $ram "

 if {$ram == 1} {
 add_fileset_file single_clk_ram1.v VERILOG PATH \
 single_clk_ram1.v
 } else {
 add_fileset_file single_clk_ram2.v VERILOG PATH \
 single_clk_ram2.v
 }

send_message INFO "Generating top-level file for \
CSR_ENABLED $csr_enabled"

generate_my_custom_hdl $csr_enabled demo_axi_memory_gen.sv

add_fileset_file demo_axi_memory_gen.sv VERILOG PATH \
demo_axi_memory_gen.sv
}

Related Information

• Specify Synthesis and Simulation Files in the Platform Designer Component Editor
on page 297

• Component Interface Tcl Reference on page 467

5.15. Create a Composed Component or Subsystem

A composed component is a subsystem containing instances of other components.
Unlike an HDL-based component, a composed component's HDL is created by
generating HDL for the components in the subsystem, in addition to the Platform
Designer interconnect to connect the subsystem instances.

You can add child instances in a composition callback of the _hw.tcl file.

With a composition callback, you can also instantiate and parameterize sub-
components as a function of the composed component’s parameter values. You define
a composition callback by setting the COMPOSITION_CALLBACK module property to
the name of the composition callback procedures.

A composition callback replaces the validation and elaboration phases. HDL for the
subsystem is generated by generating all of the sub-components and the top-level
that combines them.

To connect instances of your component, you must define the component's interfaces.
Unlike an HDL-based component, a composed component does not directly specify the
signals that are exported. Instead, interfaces of submodules are chosen as the
external interface, and each internal interface's ports are connected through the
exported interface.

Exporting an interface means that you are making the interface visible from the
outside of your component, instead of connecting it internally. You can set the
EXPORT_OF property of the externally visible interface from the main program or the
composition callback, to indicate that it is an exported view of the submodule's
interface.

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

316

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exporting an interface is different than defining an interface. An exported interface is
an exact copy of the subcomponent’s interface, and you are not allowed to change
properties on the exported interface. For example, if the internal interface is a 32-bit
or 64-bit master without bursting, then the exported interface is the same. An
interface on a subcomponent cannot be exported and also connected within the
subsystem.

When you create an exported interface, the properties of the exported interface are
copied from the subcomponent’s interface without modification. Ports are copied from
the subcomponent’s interface with only one modification; the names of the exported
ports on the composed component are chosen to ensure that they are unique.

Figure 156. Top-Level of a Composed Component

Reset
Bridge

clk

rst

slave
my_regs_microcore my_phy_microcore

pins

my_component

Clock
Bridge

Example 24. Composed _hw.tcl File that Instantiates Two Sub-Components

Platform Designer connects the components, and also connects the clocks and resets.
Note that clock and reset bridge components are required to allow both sub-
components to see common clock and reset inputs.

package require -exact qsys 14.0
set_module_property name my_component
set_module_property COMPOSITION_CALLBACK composed_component

proc composed_component {} {
 add_instance clk altera_clock_bridge
 add_instance reset altera_reset_bridge
 add_instance regs my_regs_microcore
 add_instance phy my_phy_microcore

 add_interface clk clock end
 add_interface reset reset end
 add_interface slave avalon slave
 add_interface pins conduit end

 set_interface_property clk EXPORT_OF clk.in_clk
 set_instance_property_value reset synchronous_edges deassert
 set_interface_property reset EXPORT_OF reset.in_reset
 set_interface_property slave EXPORT_OF regs.slave
 set_interface_property pins EXPORT_OF phy.pins

 add_connection clk.out_clk reset.clk
 add_connection clk.out_clk regs.clk
 add_connection clk.out_clk phy.clk
 add_connection reset.out_reset regs.reset
 add_connection reset.out_reset phy.clk_reset

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

317

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 add_connection regs.output phy.input
 add_connection phy.output regs.input
}

Related Information

Component Interface Tcl Reference on page 467

5.16. Create an IP Component with Platform Designer a System
View Different from the Generated Synthesis Output Files

There are cases where it may be beneficial to have the structural Platform Designer
system view of a component differ from the generated synthesis output files. The
structural composition callback allows you to define a structural hierarchy for a
component separately from the generated output files.

One application of this feature is for IP designers who want to send out a placed-and-
routed component that represents a Platform Designer system in order to ensure
timing closure for their client or team-mate. In this case, the designer creates a
design partition for the Platform Designer system, and then exports a post-fit Intel
Quartus Prime Exported Partition File (.qxp) when satisfied with the placement and
routing results.

The designer specifies a .qxp file as the generated synthesis output file for the new
component. The designer can specify whether to use a simulation output fileset for the
custom simulation model file, or to use simulation output files generated from the
original Platform Designer system.

When the client or team-mate adds this component to their Platform Designer system,
the designer wants the client or team-mate to see a structural representation of the
component, including lower-level components and the address map of the original
Platform Designer system. This structural view is a logical representation of the
component that is used during the elaboration and validation phases in Platform
Designer.

Example 25. Structural Composition Callback and .qxp File as the Generated Output

To specify a structural representation of the component for Platform Designer, connect
components or generate a hardware Tcl description of the Platform Designer system,
and then insert the Tcl commands into a structural composition callback. To invoke the
structural composition callback use the command:

set_module_property STRUCTURAL_COMPOSITION_CALLBACK
structural_hierarchy

package require -exact qsys 14.0
set_module_property name example_structural_composition

set_module_property STRUCTURAL_COMPOSITION_CALLBACK \
structural_hierarchy

add_fileset synthesis_fileset QUARTUS_SYNTH \
synth_callback_procedure

add_fileset simulation_fileset SIM_VERILOG \
sim_callback_procedure

set_fileset_property synthesis_fileset TOP_LEVEL \
my_custom_component

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

318

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_fileset_property simulation_fileset TOP_LEVEL \
my_custom_component

proc structural_hierarchy {} {

called during elaboration and validation phase
exported ports should be same in structural_hierarchy
and generated QXP

These commands could come from the exported hardware Tcl

 add_interface clk clock sink
 add_interface reset reset sink

 add_instance clk_0 clock_source
 set_interface_property clk EXPORT_OF clk_0.clk_in
 set_interface_property reset EXPORT_OF clk_0.clk_in_reset

 add_instance pll_0 altera_pll
 # connections and connection parameters
 add_connection clk_0.clk pll_0.refclk clock
 add_connection clk_0.clk_reset pll_0.reset reset
}

proc synth_callback_procedure { entity_name } {

the QXP should have the same name for ports
as exportedin structural_hierarchy

 add_fileset_file my_custom_component.qxp QXP PATH \
 "my_custom_component.qxp"
}

proc sim_callback_procedure { entity_name } {

the simulation files should have the same name for ports as
exported in structural_hierarchy

add_fileset_file my_custom_component.v VERILOG PATH \
"my_custom_component.v"
 ….
 ….
}

Related Information

Create a Composed Component or Subsystem on page 316

5.17. Add Component Instances to a Static or Generated
Component

You can create nested components by adding component instances to an existing
component. Both static and generated components can create instances of other
components. You can add child instances of a component in a _hw.tcl using
elaboration callback.

With an elaboration callback, you can also instantiate and parameterize sub-
components with the add_hdl_instance command as a function of the parent
component's parameter values.

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

319

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you instantiate multiple nested components, you must create a unique variation
name for each component with the add_hdl_instance command. Prefixing a
variation name with the parent component name prevents conflicts in a system. The
variation name can be the same across multiple parent components if the generated
parameterization of the nested component is exactly the same.

Note: If you do not adhere to the above naming variation guidelines, Platform Designer
validation-time errors occur, which are often difficult to debug.

Related Information

• Static Components on page 320

• Generated Components on page 321

5.17.1. Static Components

Static components always generate the same output, regardless of their
parameterization. Components that instantiate static components must have only
static children.

A design file that is static between all parameterizations of a component can only
instantiate other static design files. Since static IPs always render the same HDL
regardless of parameterization, Platform Designer generates static IPs only once
across multiple instantiations, meaning they have the same top-level name set.

Example 26. Typical Usage of the add_hdl_instance Command for Static Components

package require -exact qsys 14.0

set_module_property name add_hdl_instance_example
add_fileset synth_fileset QUARTUS_SYNTH synth_callback
set_fileset_property synth_fileset TOP_LEVEL basic_static
set_module_property elaboration_callback elab

proc elab {} {
 # Actual API to instantiate an IP Core
 add_hdl_instance emif_instance_name altera_mem_if_ddr3_emif

 # Make sure the parameters are set appropriately
 set_instance_parameter_value emif_instance_name SPEED_GRADE {7}
 ...
 }
proc synth_callback { output_name } {
 add_fileset_file "basic_static.v" VERILOG PATH basic_static.v
}

Example 27. Top-Level HDL Instance and Wrapper File Created by Platform Designer

In this example, Platform Designer generates a wrapper file for the instance name
specified in the _hw.tcl file.

//Top Level Component HDL
module basic_static (input_wire, output_wire, inout_wire);
input [31:0] input_wire;
output [31:0] output_wire;
inout [31:0] inout_wire;

// Instantiation of the instance added via add_hdl_instance
// command. This is an example of how the instance added via
// the add_hdl_instance command can be used
// in the top-level file of the component.

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

320

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

emif_instance_name fixed_name_instantiation_in_top_level(
.pll_ref_clk (input_wire), // pll_ref_clk.clk
.global_reset_n (input_wire), // global_reset.reset_n
.soft_reset_n (input_wire), // soft_reset.reset_n
...
...);
endmodule

//Wrapper for added HDL instance
// emif_instance_name.v
// Generated using ACDS version 14.0

`timescale 1 ps / 1 ps
module emif_instance_name (
input wire pll_ref_clk, // pll_ref_clk.clk
input wire global_reset_n, // global_reset.reset_n
input wire soft_reset_n, // soft_reset.reset_n
output wire afi_clk, // afi_clk.clk
...
...);
example_addhdlinstance_system
_add_hdl_instance_example_0_emif_instance
_name_emif_instance_name emif_instance_name (

.pll_ref_clk (pll_ref_clk), // pll_ref_clk.clk

.global_reset_n (global_reset_n), // global_reset.reset_n

.soft_reset_n (soft_reset_n), // soft_reset.reset_n

...

...);
endmodule

5.17.2. Generated Components

A generated component's fileset callback allows an instance of the component to
create unique HDL design files based on the instance's parameter values. For example,
you can write a fileset callback to include a control and status interface based on the
value of a parameter. The callback overcomes a limitation of HDL languages, which do
not allow run-time parameters.

Generated components change their generation output (HDL) based on their
parameterization. If a component is generated, then any component that may
instantiate it with multiple parameter sets must also be considered generated, since
its HDL changes with its parameterization. This case has an effect that propagates up
to the top-level of a design.

Since generated components are generated for each unique parameterized
instantiation, when implementing the add_hdl_instance command, you cannot use
the same fixed name (specified using instance_name) for the different variants of
the child HDL instances. To facilitate unique naming for the wrapper of each unique
parameterized instantiation of child HDL instances, you must use the following
command so that Platform Designer generates a unique name for each wrapper. You
can then access this unique wrapper name with a fileset callback so that the instances
are instantiated inside the component's top-level HDL.

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

321

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To declare auto-generated fixed names for wrappers, use the command:

set_instance_property instance_name HDLINSTANCE_USE_GENERATED_NAME \
true

Note: You can only use this command with a generated component in the global
context, or in an elaboration callback.

• To obtain auto-generated fixed name with a fileset callback, use the command:

get_instance_property instance_name HDLINSTANCE_GET_GENERATED_NAME

Note: You can only use this command with a fileset callback. This command
returns the value of the auto-generated fixed name, which you can then use
to instantiate inside the top-level HDL.

Example 28. Typical Usage of the add_hdl_instance Command for Generated Components

Platform Designer generates a wrapper file for the instance name specified in the
_hw.tcl file.

package require -exact qsys 14.0
set_module_property name generated_toplevel_component
set_module_property ELABORATION_CALLBACK elaborate
add_fileset QUARTUS_SYNTH QUARTUS_SYNTH generate
add_fileset SIM_VERILOG SIM_VERILOG generate
add_fileset SIM_VHDL SIM_VHDL generate

proc elaborate {} {

 # Actual API to instantiate an IP Core
 add_hdl_instance emif_instance_name altera_mem_if_ddr3_emif

 # Make sure the parameters are set appropriately
 set_instance_parameter_value emif_instance_name SPEED_GRADE {7}
 ...
 # instruct Platform Designer to use auto generated fixed name
 set_instance_property emif_instance_name \
 HDLINSTANCE_USE_GENERATED_NAME 1
}

proc generate { entity_name } {

 # get the autogenerated name for emif_instance_name added
 # via add_hdl_instance

 set autogeneratedfixedname [get_instance_property \
 emif_instance_name HDLINSTANCE_GET_GENERATED_NAME]

 set fileID [open "generated_toplevel_component.v" r]
 set temp ""

 # read the contents of the file

 while {[eof $fileID] != 1} {
 gets $fileID lineInfo

 # replace the top level entity name with the name provided
 # during generation

 regsub -all "substitute_entity_name_here" $lineInfo \
 "${entity_name}" lineInfo

 # replace the autogenerated name for emif_instance_name added
 # via add_hdl_instance

 regsub -all "substitute_autogenerated_emifinstancename_here" \
 $lineInfo"${autogeneratedfixedname}" lineInfo \

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

322

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 append temp "${lineInfo}\n"
}

adding a top level component file

add_fileset_file ${entity_name}.v VERILOG TEXT $temp
}

Example 29. Top-Level HDL Instance and Wrapper File Created By Platform Designer

// Top Level Component HDL

module substitute_entity_name_here (input_wire, output_wire,
inout_wire);

input [31:0] input_wire;
output [31:0] output_wire;
inout [31:0] inout_wire;

// Instantiation of the instance added via add_hdl_instance
// command. This is an example of how the instance added
// via add_hdl_instance command can be used
// in the top-level file of the component.

substitute_autogenerated_emifinstancename_here
fixed_name_instantiation_in_top_level (
.pll_ref_clk (input_wire), // pll_ref_clk.clk
.global_reset_n (input_wire), // global_reset.reset_n
.soft_reset_n (input_wire), // soft_reset.reset_n
...
...);
endmodule

// Wrapper for added HDL instance
// generated_toplevel_component_0_emif_instance_name.v is the
// auto generated //emif_instance_name
// Generated using ACDS version 13.

`timescale 1 ps / 1 ps
module generated_toplevel_component_0_emif_instance_name (
input wire pll_ref_clk, // pll_ref_clk.clk
input wire global_reset_n, // global_reset.reset_n
input wire soft_reset_n, // soft_reset.reset_n
output wire afi_clk, // afi_clk.clk
...
...);
example_addhdlinstance_system_add_hdl_instance_example_0_emif
_instance_name_emif_instance_name emif_instance_name (

.pll_ref_clk (pll_ref_clk), // pll_ref_clk.clk

.global_reset_n (global_reset_n), // global_reset.reset_n

.soft_reset_n (soft_reset_n), // soft_reset.reset_n

...

...);
endmodule

Related Information

• Control File Generation Dynamically with Parameters and a Fileset Callback on
page 315

• Intellectual Property & Reference Designs

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

323

http://www.altera.com/products/ip/ipm-index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.17.3. Design Guidelines for Adding Component Instances

In order to promote standard and predictable results when generating static and
generated components, Intel recommends the following best-practices:

• For two different parameterizations of a component, a component must never
generate a file of the same name with different instantiations. The contents of a
file of the same name must be identical for every parameterization of the
component.

• If a component generates a nested component, it must never instantiate two
different parameterizations of the nested component using the same instance
name. If the parent component's parameterization affects the parameters of the
nested component, the parent component must use a unique instance name for
each unique parameterization of the nested component.

• Static components that generate differently based on parameterization have the
potential to cause problems in the following cases:

— Different file names with the same entity names, results in same entity
conflicts at compilation-time

— Different contents with the same file name results in overwriting other
instances of the component, and in either file, compile-time conflicts or
unexpected behavior.

• Generated components that generate files not based on the output name and that
have different content results in either compile-time conflicts, or unexpected
behavior.

5.18. Creating Platform Designer Components Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.05.07 18.0 • Added scripting support for wire-level expressions.

2017.11.06 17.1.0 • Changed instances of Qsys to Platform Designer (Standard)
• Replaced mentions of altera_axi_default_slave to

altera_error_response_slave

2017.05.08 17.0.0 • Updated Figure: Address Span Extender

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 • Updated screen shots Files tab, Qsys Component Editor.
• Added topic: Specify Interfaces and Signals in the Qsys Component

Editor.
• Added topic: Create an HDL File in the Qsys Component Editor.
• Added topic: Create an HDL File Using a Template in the Qsys

Component Editor.

November 2013 13.1.0 • add_hdl_instance

• Added Creating a Component With Differing Structural Qsys View and
Generated Output Files.

May 2013 13.0.0 • Consolidated content from other Qsys chapters.
• Added Upgrading IP Components to the Latest Version.
• Updated for AMBA APB support.

continued...

5. Creating Platform Designer Components

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

324

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

November 2012 12.1.0 • Added AMBA AXI4 support.
• Added the demo_axi_memory example with screen shots and

example _hw.tcl code.

June 2012 12.0.0 • Added new tab structure for the Component Editor.
• Added AXI 3 support.

November 2011 11.1.0 Template update.

May 2011 11.0.0 • Removed beta status.
• Added Avalon Tri-state Conduit (Avalon-TC) interface type.
• Added many interface templates for Nios custom instructions and

Avalon-TC interfaces.

December 2010 10.1.0 Initial release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

5. Creating Platform Designer Components

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

325

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Platform Designer Command-Line Utilities
You can perform many of the functions available in the Platform Designer GUI at the
command-line, with Platform Designer command-line utilities.

You run Platform Designer command-line executables from the Intel Quartus Prime
installation directory:

<Intel Quartus Prime installation directory>\quartus\sopc_builder
\bin

For command-line help listing of all the options for any executable, type the following
command:

<Intel Quartus Prime installation directory>\quartus\sopc_builder
\bin\<executable name> --help

Note: You must add $QUARTUS_ROOTDIR/sopc_builder/bin/ to the PATH variable to
access command-line utilities. Once you add this PATH variable, you can launch the
utility from any directory location.

6.1. Run the Platform Designer Editor with qsys-edit

The qsys-edit utility allows you to run the Platform Designer editor from command-
line.

You can use the following options with the qsys-edit utility:

Table 163. qsys-edit Command-Line Options

Option Usage Description

1st arg file Optional Specifies the name of the .qsys system or .qvar
variation file to edit.

--search-path[=<value>] Optional If you omit this command, Platform Designer uses a
standard default path. If you provide a search path,
Platform Designer searches a comma-separated list of
paths. To include the standard path in your replacement,
use "$", for example:

/extra/dir,$

.

--family[=<value>] Optional Sets the device family.

--part[=<value>] Optional Sets the device part number. If set, this option overrides
the --family option.

continued...

683364 | 2018.12.15

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Option Usage Description

--project-directory[=<directory>] Optional Specifies the component locations relative to the project,
if any. Default option is '.' (current directory). To exclude
any project directory, use ''.

--new-component-type[=<value>] Optional Specifies the instance type for parameterization in a
variation.

--system-info[=<DEVICE_FAMILY|
DEVICE_FEATURES|CLOCK_RATE|\
CLOCK_DOMAIN|RESET_DOMAIN|
CLOCK_RESET_INFO|ADDRESS_WIDTH|
ADDRESS_MAP|MAX_SLAVE_DATA_WIDTH|\
INTERRUPTS_USED|TRISTATECONDUIT_MASTERS|
TRISTATECONDUIT_INFO|DEVICE|PART_TRAIT|\
DEVICE_SPEEDGRADE|
CUSTOM_INSTRUCTION_SLAVES|GENERATION_ID|
UNIQUE_ID|\
AVALON_SPEC|QUARTUS_INI|
DESIGN_ENVIRONMENT>]

Optional/
Repeatable

Specifies the value of a system info setting.

--require-generation Optional Marks the loading system as requiring generation.

--debug Optional Enables debugging features and output.

--host-controller Optional Specifies the instance type that you want to parameterize
in a variation.

--jvm-max-heap-size=<value> Optional The maximum memory size that Platform Designer uses
when running qsys-edit. You specify this value as
<size><unit>, where unit is m (or M) for multiples of
megabytes, or g (or G) for multiples of gigabytes. The
default value is 512m.

--help Optional Displays help for qsys-edit.

Important: The options --quartus-project and --new-quartus-project are mutually
exclusive. If you use --quartus-project you cannot use --new-quartus-
project and vice versa.

Extended Features with the --debug Options

The --debug option provides powerful tools for debugging. When you launch Platform
Designer with the --debug option enabled, you can:

• View debug messages when opening a system or generating HDL for that system.

• Add the --verbose argument when generating IP or a system using command-
line utilities.

• Access internal library components in the IP Catalog, for example, modules used
to create interconnect fabric.

• Access to debug tools and files from the Internal menu.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

327

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 157. Internal Menu Options

Table 164. Debug Options on the Internal Menu

Menu Item Description

Show hw.tcl Debugger Displays a Tcl debugger.

Show System File Displays the current system XML in a text dialog box.

Show SOPCINFO File Shows the SOPCINFO report XML in a text dialog box.

Show UI Properties Displays the UI properties in a text dialog box.

Show Command Line Arguments Displays all command-line arguments and environment variables in a text
dialog box.

Show System Changes Displays dynamic system changes in a text dialog box.

Make Model Read-only Makes the system you are working in read-only.

Take Screenshots Creates a .png file in the <project_directory> by default. You can navigate
and save to a directory of your choice.

Show Plug-In Catalog Displays library details such as type, version, tags, etc. for all IPs in the IP
Catalog.

Show Adapter Reports Displays adapter reports for any adapters added when transforming the
system.

• You can view detailed debugging messages in the Component Editor while
building a custom IP component.

• You can view the generated Tcl script while editing in the Component Editor with
the Advanced ➤ Show Tcl for Component command.

• You can launch the System Console with debug logging.

6.2. Scripting IP Core Generation

Use the qsys-script and qsys-generate utilities to define and generate an IP
core variation outside of the Intel Quartus Prime GUI.

To parameterize and generate an IP core at command-line, follow these steps:

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

328

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Run qsys-script to start a Tcl script that instantiates the IP and sets
parameters:

qsys-script --script=<script_file>.tcl

2. Run qsys-generate to generate the IP core variation:

qsys-generate <IP variation file>.qsys

Related Information

Generate a Platform Designer System with qsys-script on page 333

6.2.1. qsys-generate Command-Line Options

Table 165. Command-Line Options for qsys-generate
Options in alphabetical order.

Option Usage Description

<1st arg file> Required Specifies the name of the .qsys system file to generate.

--block-symbol-file Optional Creates a Block Symbol File (.bsf) for the Platform
Designer system.

--clear-output-directory Optional Clears the output directory corresponding to the selected
target, that is, simulation or synthesis.

--example-design=<value> Optional Creates example design files.
For example, --example-design or --example-
design=all. The default is All, which generates example
designs for all instances. Alternatively, choose specific
filesets based on instance name and fileset name. For
example --example-
design=instance0.example_design1,instance1.ex
ample_design 2. Specify an output directory for the
example design files creation.

--export-qsys-script Optional If you set this option to true, Platform Designer exports the
post-generation system as a Platform Designer script file
with the extension .tcl.

--family=<value> Optional Sets the device family name.

--help Optional Displays help for --qsys-generate.

--greybox Optional If you are synthesizing your design with a third-party EDA
synthesis tool, generate a netlist for the synthesis tool to
estimate timing and resource usage for this design.

--ipxact Optional If you specify this option, Platform Designer generates the
post-generation system as an IPXACT-compatible
component description.
Note: Platform Designer supports importing and exporting

files in IP-XACT 2009 format and exporting IP-XACT
files in 2014 format.

--jvm-max-heap-size=<value> Optional The maximum memory size that Platform Designer uses
when running qsys-generate. You specify the value as
<size><unit>, where unit is m (or M) for multiples of
megabytes or g (or G) for multiples of gigabytes. The
default value is 512m.

continued...

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

329

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--parallel[=<level>] Optional Directs Platform Designer to generate in parallel mode, with
the level of parallelism that you specify. If you omit the
level, Platform Designer determines a number based on
processor availability and number of files to be generated.

--part=<value> Optional Sets the device part number. If set, this option overrides the
--family option.

--output-directory=<value> Optional Sets the output directory. Platform Designer creates each
generation target in a sub-directory of the output directory.
If you do not specify the output directory, Platform Designer
uses a sub-directory of the current working directory
matching the name of the system.

--search-path=<value> Optional If you omit this command, Platform Designer uses a
standard default path. If you provide this command,
Platform Designer searches a comma-separated list of
paths. To include the standard path in your replacement,
use "$", for example, "/extra/dir,$".

--simulation=<VERILOG|VHDL> Optional Creates a simulation model for the Platform Designer
system. The simulation model contains generated HDL files
for the simulator, and may include simulation-only features.
Specify the preferred simulation language. The default value
is VERILOG.

--synthesis=<VERILOG|VHDL> Optional Creates synthesis HDL files that Platform Designer uses to
compile the system in an Intel Quartus Prime project.
Specify the generation language for the top-level RTL file for
the Platform Designer system. The default value is
VERILOG.

--testbench=<SIMPLE|STANDARD> Optional Creates a testbench system that instantiates the original
system, adding bus functional models (BFMs) to drive the
top-level interfaces. When you generate the system, the
BFMs interact with the system in the simulator. The default
value is STANDARD.

--testbench-
simulation=<VERILOG|VHDL>

Optional After you create the testbench system, create a simulation
model for the testbench system. The default value is
VERILOG.

--upgrade-ip-cores Optional Enables upgrading all the IP cores that support upgrade in
the Platform Designer system.

--upgrade-variation-file Optional If you set this option to true, the file argument for this
command accepts a .v file, which contains a IP variant.
This file parameterizes a corresponding instance in a
Platform Designer system of the same name.

6.3. Display Available IP Components with ip-catalog

The ip-catalog command displays a list of available IP components relative to the
current Intel Quartus Prime project directory, as either text or XML.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

330

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the following options with the ip-catalog utility:

Table 166. ip-catalog Command-Line Options

Option Usage Description

--project-dir= <directory> Optional Finds IP components relative to the Intel Quartus Prime project
directory. By default, Platform Designer uses ‘.’ as the current
directory. To exclude a project directory, leave the value empty.

--type Optional Provides a pattern to filter the type of available plug-ins. By
default, Platform Designer shows only IP components. To look
for a partial type string, surround with *, for instance,
connection.

--name=<value> Optional Provides a pattern to filter the names of the IP components
found. To show all IP components, use a * or ‘ ‘. By default,
Platform Designer shows all IP components. The argument is
not case sensitive. To look for a partial name, surround with *,
for instance, *uart*

--verbose Optional Reports the progress of the command.

--xml Optional Generates the output in XML format, in place of colon-
delimited format.

--search-path=<value> Optional If you omit this command, Platform Designer uses a standard
default path. If you provide this command, Platform Designer
searches a comma-separated list of paths. To include the
standard path in your replacement, use "$", for example, "/
extra/dir,$".

<1st arg value> Optional Specifies the directory or name fragment.

--jvm-max-heap-size=<value> Optional The maximum memory size that Platform Designer uses for
when running ip-catalog. You specify the value as <size
><unit>, where unit is m (or M) for multiples of megabytes
or g (or G) for multiples of gigabytes. The default value is
512m.

--help Optional Displays help for the ip-catalog command.

6.4. Create an .ipx File with ip-make-ipx

The ip-make-ipx command creates an .ipx index file. This file provides a
convenient way to include a collection of IP components from an arbitrary directory.
You can edit the .ipx file to disable visibility of one or more IP components in the IP
Catalog.

You can use the following options with the ip-make-ipx utility:

Table 167. ip-make-ipx Command-Line Options

Option Usage Description

--source-directory=<directory> Optional Specifies the directory containing your IP components. The
default directory is ‘.’. You can provide a comma-separated
list of directories.

--output=<file> Optional Specifies the name of the index file to generate. The default
name is /component.ipx. Set as --output=<""> to print
the output to the console.

continued...

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

331

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--relative-vars=<value> Optional Causes the output file to include references relative to the
specified variable or variables wherever possible. You can
specify multiple variables as a comma-separated list.

--thorough-descent Optional If you set this option, Platform Designer searches all the
component files, without skipping the sub-directories.

--message-before=<value> Optional Prints a log message at the start of reading an index file.

--message-after=<value> Optional Prints a log message at the end of reading an index file.

--jvm-max-heap-size=<value> Optional The maximum memory size Platform Designer uses when
running ipr-make-ipx. You specify this value as
<size><unit>, where unit is m (or M) for multiples of
megabytes, or g (or G) for multiples of gigabytes. The
default value is 512m.

--help Optional Displays help for the ip-make-ipx command.

6.5. Generate Simulation Scripts

You can use the ip-make-simscript utility to generate simulation scripts for one or
more simulators, given one or more Simulation Package Descriptor (.spd)
files, .qsys files, and .ip files.

In Platform Designer, ip-make-simscript generates simulation scripts in a
hierarchical structure instead of a flat view of the entire system. The ip-make-
simscript utility uses .spd and system files according to the options you select:

• When targeting only .spd files (ip-make-simscript --spd=<file>.spd) the
utility combines the contents of all input .spd files, and generates a common
directory which contains a set of <simulator>_files.tcl files under the
specified output directory.

• When targeting only system files (ip-make-simscript --system-
file=<file>) such as .qsys and .ip files, the utility searches for instances of
<simulator>_files.tcl files for each input system, and generates a combined
simulation script which contains a list of references of <simulator>_files.tcl.

• When the utility uses both --spd and --system-file options, ip-make-
simscript combines all input .spd files and generates a common/
<simulator>_files.tcl in the specified output directory. The generated
simulation script refers to the generated common/<simulator>_files.tcl
first, followed by a list of Tcl files from each input system.

Table 168. ip-make-simscript Command-Line Options

Option Usage Description

--spd[=<file>] Optional/Repeatable The .spd files describe the list of HDL files for
simulation, and memory models hierarchy. This
argument can either be a single path to an .spd file or
a comma-separated list of paths of .spd files.
For instance, --spd=ipcore_1.spd,ipcore_2.spd
The generated list is processed in the order of the
input .spd files.

continued...

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

332

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

Note: When this argument is used in combination with
--system-file, the .spd files are parsed
before the system files.

--system-file[=<file>] Optional/Repeatable Specifies the system files (.qsys or .ip files) used to
generate the simulation scripts. This argument can
contain either a single path to a Platform Designer
system file or a comma-separated list of paths to
Platform Designer system files.
The simulation script is generated in the order the
system files are listed.
Note: When this argument is used in combination with

--spd, the .spd files are parsed before the
system files.

--output-
directory[=<directory>]

Optional Specifies the directory path for the location of output
files. If you do not specify a directory, the output
directory defaults to the directory from which --ip-
make-simscript runs.

--compile-to-work Optional Compiles all design files to the default library - work.

--use-relative-paths Optional Uses relative paths whenever possible.

--nativelink-mode Optional Generates files for Intel Quartus Prime NativeLink RTL
simulation.

--cache-file[=<file>] Optional Generates cache file for managed flow.

--quiet Optional Quiet reporting mode. Does not report generated files.

--jvm-max-heap-size=<value> Optional The maximum memory size Platform Designer uses
when running ip-make-simscript.
You specify this value as

<size><unit>

where unit is m (or M) for multiples of megabytes, or g
(or G) for multiples of gigabytes. The default value is
512m.

--search-path=<value> Optional Comma-separated list of search paths.
If omitted, a default path including the current working
directory is used.
To include the standard path in your replacement,
append the $ symbol, for example:"/extra/dir,$"

--device-family=<value> Optional Overrides the existing device family when used.

--top-name=<value> Optional Specify a top-level entity name used in generated
simulation scripts.

--help Optional Displays help for --ip-make-simscript.

6.6. Generate a Platform Designer System with qsys-script

You can use the qsys-script utility to create and manipulate a Platform Designer
system with Tcl scripting commands. If you specify a system, Platform Designer loads
that system before executing any of the scripting commands.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

333

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You must provide a package version for the qsys-script. If you do not specify the
--package-version=<value> command, you must then provide a Tcl script and
request the system scripting API directly with the package require -exact
qsys<version> command.

Example 30. Platform Designer Command-Line Scripting

qsys-script --script=my_script.tcl \
--system-file=fancy.qsys

my_script.tcl contains:

package require -exact qsys 16.0
get all instance names in the system and print one by one
set instances [get_instances]
foreach instance $instances {
 send_message Info "$instance"
}

You can use the following options with the qsys-script utility:

Table 169. qsys-script Command-Line Options

Option Usage Description

--system-file=<file> Optional Specifies the path to a .qsys file. Platform Designer loads the
system before running scripting commands.

--script=<file> Optional A file that contains Tcl scripting commands that you can use to
create or manipulate a Platform Designer system. If you specify
both --cmd and --script, Platform Designer runs the --cmd
commands before the script specified by --script.

--cmd=<value> Optional A string that contains Tcl scripting commands that you can use
to create or manipulate a Platform Designer system. If you
specify both --cmd and --script, Platform Designer runs the
--cmd commands before the script specified by --script.

--package-version=<value> Optional Specifies which Tcl API scripting version to use and determines
the functionality and behavior of the Tcl commands. The Intel
Quartus Prime software supports Tcl API scripting commands.
The minimum supported version is 12.0. If you do not specify
the version on the command-line, your script must request the
scripting API directly with the package require -exact
qsys <version > command.

--search-path=<value> Optional If you omit this command, a Platform Designer uses a standard
default path. If you provide this command, Platform Designer
searches a comma-separated list of paths. To include the
standard path in your replacement, use "$", for example, /
<directory path>/dir,$. Separate multiple directory
references with a comma.

--quartus-project=<value> Optional Specifies the path to a .qpf Intel Quartus Prime project file.
Utilizes the specified Intel Quartus Prime project to add the file
saved using save_system command. If you omit this
command, Platform Designer uses the default revision as the
project name.

--new-quartus-project=<value> Optional Specifies the name of the new Intel Quartus Prime project.
Creates a new Intel Quartus Prime project at the specified path
and adds the file saved using save_system command to the
project. If you omit this command, Platform Designer uses the
Intel Quartus Prime project revision as the new Intel Quartus
Prime project name.

continued...

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

334

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--rev=<value> Optional Allows you to specify the name of the Intel Quartus Prime
project revision.

--jvm-max-heap-size=<value> Optional The maximum memory size that the qsys-script tool uses.
You specify this value as <size><unit>, where unit is m (or M)
for multiples of megabytes, or g (or G) for multiples of
gigabytes.

--help Optional Displays help for the qsys-script utility.

Related Information

Intel FPGA Wiki: Platform Designer Scripts

6.7. Platform Designer Scripting Command Reference

Platform Designer system scripting provides Tcl commands to manipulate your
system. The qsys-script provides a command-line alternative to the Platform
Designer tool. Use the qsys-script commands to create and modify your system,
as well as to create reports about the system.

To use the current version of the Tcl commands, include the following line at the top of
your script:

package require -exact qsys <version>

For example, for the current release of the Intel Quartus Prime software, include:

package require -exact qsys 18.0

The Platform Designer scripting commands fall under the following categories:

System on page 336

Subsystems on page 349

Instances on page 358

Connections on page 391

Top-level Exports on page 403

Validation on page 416

Miscellaneous on page 422

Wire-Level Connection Commands on page 435

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

335

https://fpgawiki.intel.com/wiki/Qsys_Scripts
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.1. System

This section lists the commands that allow you to manipulate a Platform Designer
system.

create_system on page 337

export_hw_tcl on page 338

get_device_families on page 339

get_devices on page 340

get_module_properties on page 341

get_module_property on page 342

get_project_properties on page 343

get_project_property on page 344

load_system on page 345

save_system on page 346

set_module_property on page 49

set_project_property on page 348

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

336

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.1.1. create_system

Description
Replaces the current system with a new system of the specified name.

Usage
create_system [<name>]

Returns
No return value.

Arguments

name (optional) The new system name.

Example

create_system my_new_system_name

Related Information

• load_system on page 345

• save_system on page 346

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

337

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.1.2. export_hw_tcl

Description
Allows you to save the currently open system as an _hw.tcl file in the project
directory. The saved systems appears under the System category in the IP Catalog.

Usage
export_hw_tcl

Returns
No return value.

Arguments
No arguments

Example

export_hw_tcl

Related Information

• load_system on page 345

• save_system on page 346

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

338

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.1.3. get_device_families

Description
Returns the list of installed device families.

Usage
get_device_families

Returns

String[] The list of device families.

Arguments
No arguments

Example

get_device_families

Related Information

get_devices on page 340

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

339

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.1.4. get_devices

Description
Returns the list of installed devices for the specified family.

Usage
get_devices <family>

Returns

String[] The list of devices.

Arguments

family Specifies the family name to get the devices for.

Example

get_devices exampleFamily

Related Information

get_device_families on page 339

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

340

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.1.5. get_module_properties

Description
Returns the properties that you can manage for a top-level module of the Platform
Designer system.

Usage
get_module_properties

Returns
The list of property names.

Arguments
No arguments.

Example

get_module_properties

Related Information

• get_module_property on page 342

• set_module_property on page 49

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

341

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.1.6. get_module_property

Description
Returns the value of a top-level system property.

Usage
get_module_property <property>

Returns
The property value.

Arguments

property The property name to query. Refer to Module Properties.

Example

get_module_property NAME

Related Information

• get_module_properties on page 341

• set_module_property on page 49

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

342

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.1.7. get_project_properties

Description
Returns the list of properties that you can query for properties pertaining to the Intel
Quartus Prime project.

Usage
get_project_properties

Returns
The list of project properties.

Arguments
No arguments

Example

get_project_properties

Related Information

• get_project_property on page 344

• set_project_property on page 348

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

343

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.1.8. get_project_property

Description
Returns the value of an Intel Quartus Prime project property.

Usage
get_project_property <property>

Returns
The property value.

Arguments

property The project property name. Refer to Project properties.

Example

get_project_property DEVICE_FAMILY

Related Information

• get_module_properties on page 341

• get_module_property on page 342

• set_module_property on page 49

• Project Properties on page 453

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

344

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.1.9. load_system

Description
Loads the Platform Designer system from a file, and uses the system as the current
system for scripting commands.

Usage
load_system <file>

Returns
No return value.

Arguments

file The path to the .qsys file.

Example

load_system example.qsys

Related Information

• create_system on page 337

• save_system on page 346

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

345

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.1.10. save_system

Description

Saves the current system to the specified file. If you do not specify the file, Platform
Designer saves the system to the same file opened with the load_system command.

Usage
save_system <file>

Returns
No return value.

Arguments

file If available, the path of the .qsys file to save.

Example

save_system

save_system file.qsys

Related Information

• load_system on page 345

• create_system on page 337

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

346

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.1.11. set_module_property

Description
Specifies the Tcl procedure to evaluate changes in Platform Designer system instance
parameters.

Usage
set_module_property <property> <value>

Returns
No return value.

Arguments

property The property name. Refer to Module Properties.

value The new value of the property.

Example

set_module_property COMPOSITION_CALLBACK "my_composition_callback"

Related Information

• get_module_properties on page 341

• get_module_property on page 342

• Module Properties on page 447

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

347

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.1.12. set_project_property

Description
Sets the project property value, such as the device family.

Usage
set_project_property <property> <value>

Returns
No return value.

Arguments

property The property name. Refer to Project Properties.

value The new property value.

Example

set_project_property DEVICE_FAMILY "Cyclone IV GX"

Related Information

• get_project_properties on page 343

• get_project_property on page 344

• Project Properties on page 453

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

348

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.2. Subsystems

This section lists the commands that allow you to obtain the connection and parameter
information of instances in your Platform Designer subsystem.

get_composed_connections on page 350

get_composed_connection_parameter_value on page 351

get_composed_connection_parameters on page 352

get_composed_instance_assignment on page 353

get_composed_instance_assignments on page 354

get_composed_instance_parameter_value on page 355

get_composed_instance_parameters on page 356

get_composed_instances on page 357

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

349

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.2.1. get_composed_connections

Description
Returns the list of all connections in the subsystem for an instance that contains the
subsystem of the Platform Designer system.

Usage
get_composed_connections <instance>

Returns
The list of connection names in the subsystem.

Arguments

instance The child instance containing the subsystem.

Example

get_composed_connections subsystem_0

Related Information

• get_composed_connection_parameter_value on page 351

• get_composed_connection_parameters on page 352

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

350

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.2.2. get_composed_connection_parameter_value

Description
Returns the parameter value of a connection in a child instance containing the
subsystem.

Usage
get_composed_connection_parameter_value <instance> <child_connection>
<parameter>

Returns
The parameter value.

Arguments

instance The child instance that contains the subsystem.

child_connection The connection name in the subsystem.

parameter The parameter name to query for the connection.

Example

get_composed_connection_parameter_value subsystem_0 cpu.data_master/memory.s0
baseAddress

Related Information

• get_composed_connection_parameters on page 352

• get_composed_connections on page 350

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

351

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.2.3. get_composed_connection_parameters

Description
Returns the list of parameters of a connection in the subsystem, for an instance that
contains the subsystem.

Usage
get_composed_connection_parameters <instance> <child_connection>

Returns
The list of parameter names.

Arguments

instance The child instance containing the subsystem.

child_connection The name of the connection in the subsystem.

Example

get_composed_connection_parameters subsystem_0 cpu.data_master/memory.s0

Related Information

• get_composed_connection_parameter_value on page 351

• get_composed_connections on page 350

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

352

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.2.4. get_composed_instance_assignment

Description
Returns the assignment value of the child instance in the subsystem.

Usage
get_composed_instance_assignment <instance> <child_instance>
<assignment>

Returns
The assignment value.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

assignment The assignment key.

Example

get_composed_instance_assignment subsystem_0 video_0
"embeddedsw.CMacro.colorSpace"

Related Information

• get_composed_instance_assignments on page 354

• get_composed_instances on page 357

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

353

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.2.5. get_composed_instance_assignments

Description
Returns the list of assignments of the child instance in the subsystem.

Usage
get_composed_instance_assignments <instance> <child_instance>

Returns
The list of assignment names.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

Example

get_composed_instance_assignments subsystem_0 cpu

Related Information

• get_composed_instance_assignment on page 353

• get_composed_instances on page 357

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

354

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.2.6. get_composed_instance_parameter_value

Description
Returns the parameter value of the child instance in the subsystem.

Usage
get_composed_instance_parameter_value <instance> <child_instance>
<parameter>

Returns
The parameter value of the instance in the subsystem.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

parameter The parameter name to query on the child instance in the
subsystem.

Example

get_composed_instance_parameter_value subsystem_0 cpu DATA_WIDTH

Related Information

• get_composed_instance_parameters on page 356

• get_composed_instances on page 357

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

355

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.2.7. get_composed_instance_parameters

Description
Returns the list of parameters of the child instance in the subsystem.

Usage
get_composed_instance_parameters <instance> <child_instance>

Returns
The list of parameter names.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

Example

get_composed_instance_parameters subsystem_0 cpu

Related Information

• get_composed_instance_parameter_value on page 355

• get_composed_instances on page 357

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

356

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.2.8. get_composed_instances

Description
Returns the list of child instances in the subsystem.

Usage
get_composed_instances <instance>

Returns
The list of instance names in the subsystem.

Arguments

instance The subsystem containing the child instance.

Example

get_composed_instances subsystem_0

Related Information

• get_composed_instance_assignment on page 353

• get_composed_instance_assignments on page 354

• get_composed_instance_parameter_value on page 355

• get_composed_instance_parameters on page 356

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

357

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3. Instances

This section lists the commands that allow you to manipulate the instances of IP
components in your Platform Designer system.

add_instance on page 359

apply_instance_preset on page 360

create_ip on page 361

add_component on page 362

duplicate_instance on page 363

enable_instance_parameter_update_callback on page 364

get_instance_assignment on page 365

get_instance_assignments on page 366

get_instance_documentation_links on page 367

get_instance_interface_assignment on page 368

get_instance_interface_assignments on page 369

get_instance_interface_parameter_property on page 370

get_instance_interface_parameter_value on page 371

get_instance_interface_parameters on page 372

get_instance_interface_port_property on page 373

get_instance_interface_ports on page 374

get_instance_interface_properties on page 375

get_instance_interface_property on page 376

get_instance_interfaces on page 377

get_instance_parameter_property on page 378

get_instance_parameter_value on page 43

get_instance_parameter_values on page 380

get_instance_parameters on page 44

get_instance_port_property on page 382

get_instance_properties on page 383

get_instance_property on page 384

get_instances on page 385

is_instance_parameter_update_callback_enabled on page 386

remove_instance on page 387

set_instance_parameter_value on page 388

set_instance_parameter_values on page 389

set_instance_property on page 390

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

358

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.1. add_instance

Description
Adds an instance of a component, referred to as a child or child instance, to the
system.

Usage
add_instance <name> <type> [<version>]

Returns
No return value.

Arguments

name Specifies a unique local name that you can use to manipulate the
instance. Platform Designer uses this name in the generated HDL to
identify the instance.

type Refers to a kind of instance available in the IP Catalog, for example
altera_avalon_uart.

version (optional) The required version of the specified instance type. If you do
not specify any instance, Platform Designer uses the latest
version.

Example

add_instance uart_0 altera_avalon_uart 16.1

Related Information

• get_instance_property on page 384

• get_instances on page 385

• remove_instance on page 387

• set_instance_parameter_value on page 388

• get_instance_parameter_value on page 43

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

359

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.2. apply_instance_preset

Description
Applies the settings in a preset to the specified instance.

Usage
apply_instance_preset <preset_name>

Returns
No return value.

Arguments

preset_name The preset name.

Example

apply_preset "Custom Debug Settings"

Related Information

set_instance_parameter_value on page 388

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

360

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.3. create_ip

Description
Creates a new IP Variation system with the given instance.

Usage
create_ip <type> [<instance_name> <version>]

Returns
No return value.

Arguments

type Kind of instance available in the IP catalog, for example,
altera_avalon_uart.

instance_name
(optional)

A unique local name that you can use to manipulate the
instance. If not specified, Platform Designer uses a
default name.

version (optional) The required version of the specified instance type. If not
specified, Platform Designer uses the latest version.

Example

create_ip altera_avalon_uart altera_avalon_uart_inst 17.0

Related Information

• add_component on page 362

• load_system on page 345

• save_system on page 346

• set_instance_parameter_value on page 388

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

361

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.4. add_component

Description
Adds a new IP Variation component to the system.

Usage
add_component <instance_name> <file_name> [<component_type>
<component_instance_name> <component_version>]

Returns
No return value.

Arguments

instance_name A unique local name that you can use to manipulate the
instance.

file_name The IP variation file name. If a path is not specified, Platform
Designer saves the file in the ./ip/system/ sub-folder of your
system.

component_type
(optional)

The kind of instance available in the IP catalog, for
example altera_avalon_uart.

component_instance_name
(optional)

The instance name of the component in the
IP variation file. If not specified, Platform
Designer uses a default name.

component_version
(optional)

The required version of the specified instance
type. If not specified, Platform Designer uses the
latest version.

Example

add_component myuart_0 myuart.ip altera_avalon_uart altera_avalon_uart_inst 17.0

Related Information

• load_component on page 0

• load_instantiation on page 0

• save_system on page 346

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

362

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.5. duplicate_instance

Description
Creates a duplicate instance of the specified instance.

Usage
duplicate_instance <instance> [<name>]

Returns

String The new instance name.

Arguments

instance Specifies the instance name to duplicate.

name (optional) Specifies the name of the duplicate instance.

Example

duplicate_instance cpu cpu_0

Related Information

• add_instance on page 359

• remove_instance on page 387

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

363

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.6. enable_instance_parameter_update_callback

Description
Enables the update callback for instance parameters.

Usage
enable_instance_parameter_update_callback [<value>]

Returns
No return value.

Arguments

value (optional) Specifies whether to enable/disable the instance parameters
callback. Default option is "1".

Example

enabled_instance_parameter_update_callback

Related Information

• is_instance_parameter_update_callback_enabled on page 386

• set_instance_parameter_value on page 388

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

364

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.7. get_instance_assignment

Description
Returns the assignment value of a child instance. Platform Designer uses assignments
to transfer information about hardware to embedded software tools and applications.

Usage
get_instance_assignment <instance> <assignment>

Returns

String The value of the specified assignment.

Arguments

instance The instance name.

assignment The assignment key to query.

Example

get_instance_assignment video_0 embeddedsw.CMacro.colorSpace

Related Information

get_instance_assignments on page 366

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

365

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.8. get_instance_assignments

Description
Returns the list of assignment keys for any defined assignments for the instance.

Usage
get_instance_assignments <instance>

Returns

String[] The list of assignment keys.

Arguments

instance The instance name.

Example

get_instance_assignments sdram

Related Information

get_instance_assignment on page 365

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

366

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.9. get_instance_documentation_links

Description
Returns the list of all documentation links provided by an instance.

Usage
get_instance_documentation_links <instance>

Returns

String[] The list of documentation links.

Arguments

instance The instance name.

Example

get_instance_documentation_links cpu_0

Notes
The list of documentation links includes titles and URLs for the links. For instance, a
component with a single data sheet link may return:

{Data Sheet} {http://url/to/data/sheet}

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

367

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.10. get_instance_interface_assignment

Description
Returns the assignment value for an interface of a child instance. Platform Designer
uses assignments to transfer information about hardware to embedded software tools
and applications.

Usage
get_instance_interface_assignment <instance> <interface> <assignment>

Returns

String The value of the specified assignment.

Arguments

instance The child instance name.

interface The interface name.

assignment The assignment key to query.

Example

get_instance_interface_assignment sdram s1 embeddedsw.configuration.isFlash

Related Information

get_instance_interface_assignments on page 369

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

368

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.11. get_instance_interface_assignments

Description
Returns the list of assignment keys for any assignments defined for an interface of a
child instance.

Usage
get_instance_interface_assignments <instance> <interface>

Returns

String[] The list of assignment keys.

Arguments

instance The child instance name.

interface The interface name.

Example

get_instance_interface_assignments sdram s1

Related Information

get_instance_interface_assignment on page 368

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

369

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.12. get_instance_interface_parameter_property

Description
Returns the property value for a parameter in an interface of an instance. Parameter
properties are metadata about how Platform Designer uses the parameter.

Usage
get_instance_interface_parameter_property <instance> <interface>
<parameter> <property>

Returns

various The parameter property value.

Arguments

instance The child instance name.

interface The interface name.

parameter The parameter name for the interface.

property The property name for the parameter. Refer to Parameter Properties.

Example

get_instance_interface_parameter_property uart_0 s0 setupTime ENABLED

Related Information

• get_instance_interface_parameters on page 372

• get_instance_interfaces on page 377

• get_parameter_properties on page 428

• Parameter Properties on page 448

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

370

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.13. get_instance_interface_parameter_value

Description
Returns the parameter value of an interface in an instance.

Usage
get_instance_interface_parameter_value <instance> <interface>
<parameter>

Returns

various The parameter value.

Arguments

instance The child instance name.

interface The interface name.

parameter The parameter name for the interface.

Example

get_instance_interface_parameter_value uart_0 s0 setupTime

Related Information

• get_instance_interface_parameters on page 372

• get_instance_interfaces on page 377

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

371

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.14. get_instance_interface_parameters

Description
Returns the list of parameters for an interface in an instance.

Usage
get_instance_interface_parameters <instance> <interface>

Returns

String[] The list of parameter names for parameters in the interface.

Arguments

instance The child instance name.

interface The interface name.

Example

get_instance_interface_parameters uart_0 s0

Related Information

• get_instance_interface_parameter_value on page 371

• get_instance_interfaces on page 377

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

372

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.15. get_instance_interface_port_property

Description
Returns the property value of a port in the interface of a child instance.

Usage
get_instance_interface_port_property <instance> <interface> <port>
<property>

Returns

various The port property value.

Arguments

instance The child instance name.

interface The interface name.

port The port name.

property The property name of the port. Refer to Port Properties.

Example

get_instance_interface_port_property uart_0 exports tx WIDTH

Related Information

• get_instance_interface_ports on page 374

• get_port_properties on page 412

• Port Properties on page 452

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

373

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.16. get_instance_interface_ports

Description
Returns the list of ports in an interface of an instance.

Usage
get_instance_interface_ports <instance> <interface>

Returns

String[] The list of port names in the interface.

Arguments

instance The instance name.

interface The interface name.

Example

get_instance_interface_ports uart_0 s0

Related Information

• get_instance_interface_port_property on page 373

• get_instance_interfaces on page 377

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

374

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.17. get_instance_interface_properties

Description
Returns the list of properties that you can query for an interface in an instance.

Usage
get_instance_interface_properties

Returns

String[] The list of property names.

Arguments
No arguments.

Example

get_instance_interface_properties

Related Information

• get_instance_interface_property on page 376

• get_instance_interfaces on page 377

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

375

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.18. get_instance_interface_property

Description
Returns the property value for an interface in a child instance.

Usage
get_instance_interface_property <instance> <interface> <property>

Returns

String The property value.

Arguments

instance The child instance name.

interface The interface name.

property The property name. Refer to Element Properties.

Example

get_instance_interface_property uart_0 s0 DESCRIPTION

Related Information

• get_instance_interface_properties on page 375

• get_instance_interfaces on page 377

• Element Properties on page 443

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

376

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.19. get_instance_interfaces

Description
Returns the list of interfaces in an instance.

Usage
get_instance_interfaces <instance>

Returns

String[] The list of interface names.

Arguments

instance The instance name.

Example

get_instance_interfaces uart_0

Related Information

• get_instance_interface_ports on page 374

• get_instance_interface_properties on page 375

• get_instance_interface_property on page 376

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

377

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.20. get_instance_parameter_property

Description
Returns the property value of a parameter in an instance. Parameter properties are
metadata about how Platform Designer uses the parameter.

Usage
get_instance_parameter_property <instance> <parameter> <property>

Returns

various The parameter property value.

Arguments

instance The instance name.

parameter The parameter name.

property The property name of the parameter. Refer to Parameter Properties.

Example

get_instance_parameter_property uart_0 baudRate ENABLED

Related Information

• get_instance_parameters on page 44

• get_parameter_properties on page 428

• Parameter Properties on page 448

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

378

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.21. get_instance_parameter_value

Description
Returns the parameter value in a child instance.

Usage
get_instance_parameter_value <instance> <parameter>

Returns

various The parameter value.

Arguments

instance The instance name.

parameter The parameter name.

Example

get_instance_parameter_value pixel_converter input_DPI

Related Information

• get_instance_parameters on page 44

• set_instance_parameter_value on page 388

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

379

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.22. get_instance_parameter_values

Description
Returns a list of the parameters' values in a child instance.

Usage
get_instance_parameter_values <instance> <parameters>

Returns

String[] A list of the parameters' value.

Arguments

instance The child instance name.

parameter A list of parameter names in the instance.

Example

get_instance_parameter_value uart_0 [list param1 param2]

Related Information

• get_instance_parameters on page 44

• set_instance_parameter_value on page 388

• set_instance_parameter_values on page 389

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

380

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.23. get_instance_parameters

Description
Returns the names of all parameters for a child instance that the parent can
manipulate. This command omits derived parameters and parameters that have the
SYSTEM_INFO parameter property set.

Usage
get_instance_parameters <instance>

Returns

instance The list of parameters in the instance.

Arguments

instance The instance name.

Example

get_instance_parameters uart_0

Related Information

• get_instance_parameter_property on page 378

• get_instance_parameter_value on page 43

• set_instance_parameter_value on page 388

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

381

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.24. get_instance_port_property

Description
Returns the property value of a port contained by an interface in a child instance.

Usage
get_instance_port_property <instance> <port> <property>

Returns

various The property value for the port.

Arguments

instance The child instance name.

port The port name.

property The property name. Refer to Port Properties.

Example

get_instance_port_property uart_0 tx WIDTH

Related Information

• get_instance_interface_ports on page 374

• get_port_properties on page 412

• Port Properties on page 452

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

382

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.25. get_instance_properties

Description
Returns the list of properties for a child instance.

Usage
get_instance_properties

Returns

String[] The list of property names for the child instance.

Arguments
No arguments.

Example

get_instance_properties

Related Information

get_instance_property on page 384

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

383

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.26. get_instance_property

Description
Returns the property value for a child instance.

Usage
get_instance_property <instance> <property>

Returns

String The property value.

Arguments

instance The child instance name.

property The property name. Refer to Element Properties.

Example

get_instance_property uart_0 ENABLED

Related Information

• get_instance_properties on page 383

• Element Properties on page 443

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

384

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.27. get_instances

Description
Returns the list of the instance names for all the instances in the system.

Usage
get_instances

Returns

String[] The list of child instance names.

Arguments
No arguments.

Example

get_instances

Related Information

• add_instance on page 359

• remove_instance on page 387

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

385

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.28. is_instance_parameter_update_callback_enabled

Description
Returns true if you enable the update callback for instance parameters.

Usage
is_instance_parameter_update_callback_enabled

Returns

boolean 1 if you enable the callback; 0 if you disable the callback.

Arguments
No arguments

Example

is_instance_parameter_update_callback_enabled

Related Information

enable_instance_parameter_update_callback on page 364

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

386

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.29. remove_instance

Description
Removes an instance from the system.

Usage
remove_instance <instance>

Returns
No return value.

Arguments

instance The child instance name to remove.

Example

remove_instance cpu

Related Information

• add_instance on page 359

• get_instances on page 385

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

387

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.30. set_instance_parameter_value

Description
Sets the parameter value for a child instance. You cannot set derived parameters and
SYSTEM_INFO parameters for the child instance with this command.

Usage
set_instance_parameter_value <instance> <parameter> <value>

Returns
No return value.

Arguments

instance The child instance name.

parameter The parameter name.

value The parameter value.

Example

set_instance_parameter_value uart_0 baudRate 9600

Related Information

• get_instance_parameter_value on page 43

• get_instance_parameter_property on page 378

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

388

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.31. set_instance_parameter_values

Description
Sets a list of parameter values for a child instance. You cannot set derived parameters
and SYSTEM_INFO parameters for the child instance with this command.

Usage
set_instance_parameter_value <instance> <parameter_value_pairs>

Returns
No return value.

Arguments

instance The child instance name.

parameter_value_pairs The pairs of parameter name and value to set.

Example

set_instance_parameter_value uart_0 [list baudRate 9600 parity odd]

Related Information

• get_instance_parameter_value on page 43

• get_instance_parameter_values on page 380

• get_instance_parameters on page 44

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

389

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3.32. set_instance_property

Description
Sets the property value of a child instance. Most instance properties are read-only and
can only be set by the instance itself. The primary use for this command is to update
the ENABLED parameter, which includes or excludes a child instance when generating
Platform Designer interconnect.

Usage
set_instance_property <instance> <property> <value>

Returns
No return value.

Arguments

instance The child instance name.

property The property name. Refer to Instance Properties.

value The property value.

Example

set_instance_property cpu ENABLED false

Related Information

• get_instance_parameters on page 44

• get_instance_property on page 384

• Instance Properties on page 444

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

390

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.4. Connections

This section lists the commands that allow you to manipulate the interface connections
in your Platform Designer system.

add_connection on page 392

auto_connect on page 393

get_connection_parameter_property on page 394

get_connection_parameter_value on page 395

get_connection_parameters on page 396

get_connection_properties on page 397

get_connection_property on page 398

get_connections on page 399

remove_connection on page 400

remove_dangling_connections on page 401

set_connection_parameter_value on page 402

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

391

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.4.1. add_connection

Description
Connects the named interfaces using an appropriate connection type. Both interface
names consist of an instance name, followed by the interface name that the module
provides.

Usage
add_connection <start> [<end>]

Returns
No return value.

Arguments

start The start interface that you connect, in
<instance_name>.<interface_name> format. If you do not specify
the end argument, the connection must be of the form
<instance1>.<interface>/<instance2>.<interface>.

end (optional) The end interface that you connect, in
<instance_name>.<interface_name> format.

Example

add_connection dma.read_master sdram.s1

Related Information

• get_connection_parameter_value on page 395

• get_connection_property on page 398

• get_connections on page 399

• remove_connection on page 400

• set_connection_parameter_value on page 402

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

392

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.4.2. auto_connect

Description
Creates connections from an instance or instance interface to matching interfaces of
other instances in the system. For example, Avalon-MM slaves connect to Avalon-MM
masters.

Usage
auto_connect <element>

Returns
No return value.

Arguments

element The instance interface name, or the instance name.

Example

auto_connect sdram
auto_connect uart_0.s1

Related Information

add_connection on page 392

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

393

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.4.3. get_connection_parameter_property

Description
Returns the property value of a parameter in a connection. Parameter properties are
metadata about how Platform Designer uses the parameter.

Usage
get_connection_parameter_property <connection> <parameter> <property>

Returns

various The parameter property value.

Arguments

connection The connection to query.

parameter The parameter name.

property The property of the connection. Refer to Parameter Properties.

Example

get_connection_parameter_property cpu.data_master/dma0.csr baseAddress UNITS

Related Information

• get_connection_parameter_value on page 395

• get_connection_property on page 398

• get_connections on page 399

• get_parameter_properties on page 428

• Parameter Properties on page 448

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

394

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.4.4. get_connection_parameter_value

Description
Returns the parameter value of the connection. Parameters represent aspects of the
connection that you can modify, such as the base address for an Avalon-MM
connection.

Usage
get_connection_parameter_value <connection> <parameter>

Returns

various The parameter value.

Arguments

connection The connection to query.

parameter The parameter name.

Example

get_connection_parameter_value cpu.data_master/dma0.csr baseAddress

Related Information

• get_connection_parameters on page 396

• get_connections on page 399

• set_connection_parameter_value on page 402

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

395

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.4.5. get_connection_parameters

Description
Returns the list of parameters of a connection.

Usage
get_connection_parameters <connection>

Returns

String[] The list of parameter names.

Arguments

connection The connection to query.

Example

get_connection_parameters cpu.data_master/dma0.csr

Related Information

• get_connection_parameter_property on page 394

• get_connection_parameter_value on page 395

• get_connection_property on page 398

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

396

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.4.6. get_connection_properties

Description
Returns the properties list of a connection.

Usage
get_connection_properties

Returns

String[] The list of connection properties.

Arguments
No arguments.

Example

get_connection_properties

Related Information

• get_connection_property on page 398

• get_connections on page 399

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

397

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.4.7. get_connection_property

Description
Returns the property value of a connection. Properties represent aspects of the
connection that you can modify, such as the connection type.

Usage
get_connection_property <connection> <property>

Returns

String The connection property value.

Arguments

connection The connection to query.

property The connection property name. Refer to Connection Properties.

Example

get_connection_property cpu.data_master/dma0.csr TYPE

Related Information

• get_connection_properties on page 397

• Connection Properties on page 440

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

398

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.4.8. get_connections

Description
Returns the list of all connections in the system if you do not specify any element. If
you specify a child instance, for example cpu, Platform Designer returns all
connections to any interface on the instance. If you specify an interface of a child
instance, for example cpu.instruction_master, Platform Designer returns all
connections to that interface.

Usage
get_connections [<element>]

Returns

String[] The list of connections.

Arguments

element (optional) The child instance name, or the qualified interface name on
a child instance.

Example

get_connections
get_connections cpu
get_connections cpu.instruction_master

Related Information

• add_connection on page 392

• remove_connection on page 400

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

399

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.4.9. remove_connection

Description
Removes a connection from the system.

Usage
remove_connection <connection>

Returns
No return value.

Arguments

connection The connection name to remove.

Example

remove_connection cpu.data_master/sdram.s0

Related Information

• add_connection on page 392

• get_connections on page 399

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

400

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.4.10. remove_dangling_connections

Description

Removes connections where both end points of the connection no longer exist in the
system.

Usage
remove_dangling_connections

Returns
No return value.

Arguments
No arguments.

Example

remove_dangling_connections

Related Information

• add_connection on page 392

• get_connections on page 399

• remove_connection on page 400

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

401

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.4.11. set_connection_parameter_value

Description
Sets the parameter value for a connection.

Usage
set_connection_parameter_value <connection> <parameter> <value>

Returns
No return value.

Arguments

connection The connection name.

parameter The parameter name.

value The new parameter value.

Example

set_connection_parameter_value cpu.data_master/dma0.csr baseAddress "0x000a0000"

Related Information

• get_connection_parameter_value on page 395

• get_connection_parameters on page 396

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

402

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.5. Top-level Exports

This section lists the commands that allow you to manipulate the exported interfaces
in your Platform Designer system.

add_interface on page 404

get_exported_interface_sysinfo_parameter_value on page 405

get_exported_interface_sysinfo_parameters on page 406

get_interface_port_property on page 407

get_interface_ports on page 408

get_interface_properties on page 409

get_interface_property on page 410

get_interfaces on page 411

get_port_properties on page 412

remove_interface on page 413

set_interface_port_property on page 414

set_interface_property on page 415

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

403

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.5.1. add_interface

Description
Adds an interface to your system, which Platform Designer uses to export an interface
from within the system. You specify the exported internal interface with
set_interface_property <interface> EXPORT_OF instance.interface.

Usage
add_interface <name> <type> <direction>.

Returns
No return value.

Arguments

name The name of the interface that Platform Designer exports from the
system.

type The type of interface.

direction The interface direction.

Example

add_interface my_export conduit end
set_interface_property my_export EXPORT_OF uart_0.external_connection

Related Information

• get_interface_ports on page 408

• get_interface_properties on page 409

• get_interface_property on page 410

• set_interface_property on page 415

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

404

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.5.2. get_exported_interface_sysinfo_parameter_value

Description
Gets the value of a system info parameter for an exported interface.

Usage
get_exported_interface_sysinfo_parameter_value <interface>
<parameter>

Returns

various The system info parameter value.

Arguments

interface Specifies the name of the exported interface.

parameter Specifies the name of the system info parameter. Refer to System
Info Type.

Example

get_exported_interface_sysinfo_parameter_value clk clock_rate

Related Information

• get_exported_interface_sysinfo_parameters on page 406

• set_exported_interface_sysinfo_parameter_value on page 0

• System Info Type Properties on page 454

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

405

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.5.3. get_exported_interface_sysinfo_parameters

Description
Returns the list of system info parameters for an exported interface.

Usage
get_exported_interface_sysinfo_parameters <interface> [<type>]

Returns

String[] The list of system info parameter names.

Arguments

interface Specifies the name of the exported interface.

type (optional) Specifies the parameters type to return. If you do not specify
this option, the command returns all the parameters. Refer to
Access Type.

Example

get_exported_interface_sysinfo_parameters clk

Related Information

• get_exported_interface_sysinfo_parameter_value on page 405

• set_exported_interface_sysinfo_parameter_value on page 0

• Access Type on page 460

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

406

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.5.4. get_interface_port_property

Description
Returns the value of a property of a port contained by one of the top-level exported
interfaces.

Usage
get_interface_port_property <interface> <port> <property>

Returns

various The property value.

Arguments

interface The name of a top-level interface of the system.

port The port name in the interface.

property The property name on the port. Refer to Port Properties.

Example

get_interface_port_property uart_exports tx DIRECTION

Related Information

• get_interface_ports on page 408

• get_port_properties on page 412

• Port Properties on page 452

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

407

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.5.5. get_interface_ports

Description
Returns the names of all the added ports to a given interface.

Usage
get_interface_ports <interface>

Returns

String[] The list of port names.

Arguments

interface The top-level interface name of the system.

Example

get_interface_ports export_clk_out

Related Information

• get_interface_port_property on page 407

• get_interfaces on page 411

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

408

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.5.6. get_interface_properties

Description
Returns the names of all the available interface properties common to all interface
types.

Usage
get_interface_properties

Returns

String[] The list of interface properties.

Arguments
No arguments.

Example

get_interface_properties

Related Information

• get_interface_property on page 410

• set_interface_property on page 415

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

409

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.5.7. get_interface_property

Description
Returns the value of a single interface property from the specified interface.

Usage
get_interface_property <interface> <property>

Returns

various The property value.

Arguments

interface The name of a top-level interface of the system.

property The name of the property. Refer to Interface Properties.

Example

get_interface_property export_clk_out EXPORT_OF

Related Information

• get_interface_properties on page 409

• set_interface_property on page 415

• Interface Properties on page 445

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

410

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.5.8. get_interfaces

Description
Returns the list of top-level interfaces in the system.

Usage
get_interfaces

Returns

String[] The list of the top-level interfaces exported from the system.

Arguments
No arguments.

Example

get_interfaces

Related Information

• add_interface on page 404

• get_interface_ports on page 408

• get_interface_property on page 410

• remove_interface on page 413

• set_interface_property on page 415

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

411

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.5.9. get_port_properties

Description
Returns the list of properties that you can query for ports.

Usage
get_port_properties

Returns

String[] The list of port properties.

Arguments
No arguments.

Example

get_port_properties

Related Information

• get_instance_interface_port_property on page 373

• get_instance_interface_ports on page 374

• get_instance_port_property on page 382

• get_interface_port_property on page 407

• get_interface_ports on page 408

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

412

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.5.10. remove_interface

Description
Removes an exported top-level interface from the system.

Usage
remove_interface <interface>

Returns
No return value.

Arguments

interface The name of the exported top-level interface.

Example

remove_interface clk_out

Related Information

• add_interface on page 404

• get_interfaces on page 411

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

413

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.5.11. set_interface_port_property

Description
Sets the port property in a top-level interface of the system.

Usage
set_interface_port_property <interface> <port> <property> <value>

Returns
No return value

Arguments

interface Specifies the top-level interface name of the system.

port Specifies the port name in a top-level interface of the system.

property Specifies the property name of the port. Refer to Port Properties.

value Specifies the property value.

Example

set_interface_port_property clk clk_clk NAME my_clk

Related Information

• Port Properties on page 465

• get_interface_ports on page 408

• get_interfaces on page 411

• get_port_properties on page 412

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

414

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.5.12. set_interface_property

Description
Sets the value of a property on an exported top-level interface. You use this command
to set the EXPORT_OF property to specify which interface of a child instance is
exported via this top-level interface.

Usage
set_interface_property <interface> <property> <value>

Returns
No return value.

Arguments

interface The name of an exported top-level interface.

property The name of the property. Refer to Interface Properties.

value The property value.

Example

set_interface_property clk_out EXPORT_OF clk.clk_out

Related Information

• add_interface on page 404

• get_interface_properties on page 409

• get_interface_property on page 410

• Interface Properties on page 445

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

415

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.6. Validation

This section lists the commands that allow you to validate the components, instances,
interfaces and connections in a Platform Designer system.

set_validation_property on page 417

validate_connection on page 418

validate_instance on page 419

validate_instance_interface on page 420

validate_system on page 421

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

416

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.6.1. set_validation_property

Description
Sets a property that affects how and when validation is run. To disable system
validation after each scripting command, set AUTOMATIC_VALIDATION to False.

Usage
set_validation_property <property> <value>

Returns
No return value.

Arguments

property The name of the property. Refer to Validation Properties.

value The new property value.

Example

set_validation_property AUTOMATIC_VALIDATION false

Related Information

• validate_system on page 421

• Validation Properties on page 457

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

417

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.6.2. validate_connection

Description
Validates the specified connection and returns validation messages.

Usage
validate_connection <connection>

Returns
A list of validation messages.

Arguments

connection The connection name to validate.

Example

validate_connection cpu.data_master/sdram.s1

Related Information

• validate_instance on page 419

• validate_instance_interface on page 420

• validate_system on page 421

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

418

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.6.3. validate_instance

Description
Validates the specified child instance and returns validation messages.

Usage
validate_instance <instance>

Returns
A list of validation messages.

Arguments

instance The child instance name to validate.

Example

validate_instance cpu

Related Information

• validate_connection on page 418

• validate_instance_interface on page 420

• validate_system on page 421

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

419

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.6.4. validate_instance_interface

Description
Validates an interface of an instance and returns validation messages.

Usage
validate_instance_interface <instance> <interface>

Returns
A list of validation messages.

Arguments

instance The child instance name.

interface The interface to validate.

Example

validate_instance_interface cpu data_master

Related Information

• validate_connection on page 418

• validate_instance on page 419

• validate_system on page 421

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

420

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.6.5. validate_system

Description
Validates the system and returns validation messages.

Usage
validate_system

Returns
A list of validation messages.

Arguments
No arguments.

Example

validate_system

Related Information

• validate_connection on page 418

• validate_instance on page 419

• validate_instance_interface on page 420

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

421

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.7. Miscellaneous

This section lists the miscellaneous commands that you can use for your Platform
Designer systems.

auto_assign_base_addresses on page 423

auto_assign_irqs on page 424

auto_assign_system_base_addresses on page 425

get_interconnect_requirement on page 426

get_interconnect_requirements on page 427

get_parameter_properties on page 428

lock_avalon_base_address on page 429

send_message on page 47

set_interconnect_requirement on page 431

set_use_testbench_naming_pattern on page 432

unlock_avalon_base_address on page 433

get_testbench_dutname on page 434

get_use_testbench_naming_pattern on page 435

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

422

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.7.1. auto_assign_base_addresses

Description
Assigns base addresses to all memory-mapped interfaces of an instance in the
system. Instance interfaces that are locked with lock_avalon_base_address keep
their addresses during address auto-assignment.

Usage
auto_assign_base_addresses <instance>

Returns
No return value.

Arguments

instance The name of the instance with memory-mapped interfaces.

Example

auto_assign_base_addresses sdram

Related Information

• auto_assign_system_base_addresses on page 425

• lock_avalon_base_address on page 429

• unlock_avalon_base_address on page 433

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

423

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.7.2. auto_assign_irqs

Description
Assigns interrupt numbers to all connected interrupt senders of an instance in the
system.

Usage
auto_assign_irqs <instance>

Returns
No return value.

Arguments

instance The name of the instance with an interrupt sender.

Example

auto_assign_irqs uart_0

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

424

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.7.3. auto_assign_system_base_addresses

Description
Assigns legal base addresses to all memory-mapped interfaces of all instances in the
system. Instance interfaces that are locked with lock_avalon_base_address keep
their addresses during address auto-assignment.

Usage
auto_assign_system_base_addresses

Returns
No return value.

Arguments
No arguments.

Example

auto_assign_system_base_addresses

Related Information

• auto_assign_base_addresses on page 423

• lock_avalon_base_address on page 429

• unlock_avalon_base_address on page 433

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

425

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.7.4. get_interconnect_requirement

Description
Returns the value of an interconnect requirement for a system or interface of a child
instance.

Usage
get_interconnect_requirement <element_id> <requirement>

Returns

String The value of the interconnect requirement.

Arguments

element_id {$system} for the system, or the qualified name of the interface of
an instance, in <instance>.<interface> format. In Tcl, the
system identifier is escaped, for example, {$system}.

requirement The name of the requirement.

Example

get_interconnect_requirement {$system} qsys_mm.maxAdditionalLatency

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

426

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.7.5. get_interconnect_requirements

Description
Returns the list of all interconnect requirements in the system.

Usage
get_interconnect_requirements

Returns

String[] A flattened list of interconnect requirements. Every sequence of three
elements in the list corresponds to one interconnect requirement. The
first element in the sequence is the element identifier. The second
element is the requirement name. The third element is the value. You
can loop over the returned list with a foreach loop, for example:

foreach { element_id name value } $requirement_list { loop_body
 }

Arguments
No arguments.

Example

get_interconnect_requirements

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

427

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.7.6. get_parameter_properties

Description
Returns the list of properties that you can query for any parameters, for example
parameters of instances, interfaces, instance interfaces, and connections.

Usage
get_parameter_properties

Returns

String[] The list of parameter properties.

Arguments
No arguments.

Example

get_parameter_properties

Related Information

• get_connection_parameter_property on page 394

• get_instance_interface_parameter_property on page 370

• get_instance_parameter_property on page 378

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

428

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.7.7. lock_avalon_base_address

Description
Prevents the memory-mapped base address from being changed for connections to
the specified interface of an instance when Platform Designer runs the
auto_assign_base_addresses or auto_assign_system_base_addresses
commands.

Usage
lock_avalon_base_address <instance.interface>

Returns
No return value.

Arguments

instance.interface The qualified name of the interface of an instance, in
<instance>.<interface> format.

Example

lock_avalon_base_address sdram.s1

Related Information

• auto_assign_base_addresses on page 423

• auto_assign_system_base_addresses on page 425

• unlock_avalon_base_address on page 433

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

429

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.7.8. send_message

Description
Sends a message to the user of the component. The message text is normally HTML.
You can use the element to provide emphasis. If you do not want the message
text to be HTML, then pass a list like { Info Text } as the message level,

Usage
send_message <level> <message>

Returns
No return value.

Arguments

level Intel Quartus Prime supports the following message levels:

• ERROR—provides an error message.

• WARNING—provides a warning message.

• INFO—provides an informational message.

• PROGRESS—provides a progress message.

• DEBUG—provides a debug message when debug mode is enabled.

message The text of the message.

Example

send_message ERROR "The system is down!"
send_message { Info Text } "The system is up!"

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

430

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.7.9. set_interconnect_requirement

Description
Sets the value of an interconnect requirement for a system or an interface of a child
instance.

Usage
set_interconnect_requirement <element_id> <requirement> <value>

Returns
No return value.

Arguments

element_id {$system} for the system, or qualified name of the interface of an
instance, in <instance>.<interface> format. In Tcl, the system
identifier is escaped, for example, {$system}.

requirement The name of the requirement.

value The requirement value.

Example

set_interconnect_requirement {$system} qsys_mm.clockCrossingAdapter HANDSHAKE

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

431

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.7.10. set_use_testbench_naming_pattern

Description
Use this command to create testbench systems so that the generated file names for
the test system match the system's original generated file names. Without setting this
command, the generated file names for the test system receive the top-level
testbench system name.

Usage
set_use_testbench_naming_pattern <value>

Returns
No return value.

Arguments

value True or false.

Example

set_use_testbench_naming_pattern true

Notes
Use this command only to create testbench systems.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

432

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.7.11. unlock_avalon_base_address

Description
Allows the memory-mapped base address to change for connections to the specified
interface of an instance when Platform Designer runs the
auto_assign_base_addresses or auto_assign_system_base_addresses
commands.

Usage
unlock_avalon_base_address <instance.interface>

Returns
No return value.

Arguments

instance.interface The qualified name of the interface of an instance, in
<instance>.<interface> format.

Example

unlock_avalon_base_address sdram.s1

Related Information

• auto_assign_base_addresses on page 423

• auto_assign_system_base_addresses on page 425

• lock_avalon_base_address on page 429

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

433

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.7.12. get_testbench_dutname

Description
Returns the currently set dutname for the test-bench systems. Use this command only
when creating test-bench systems.

Usage
get_testbench_dutname

Returns

String The currently set dutname. Returns NULL if empty.

Arguments
No arguments.

Example

get_testbench_dutname

Related Information

• get_use_testbench_naming_pattern on page 435

• set_use_testbench_naming_pattern on page 432

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

434

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.7.13. get_use_testbench_naming_pattern

Description
Verifies if the test-bench naming pattern is set to be used. Use this command only
when creating test-bench systems.

Usage
get_use_testbench_naming_pattern

Returns

boolean True, if the test-bench naming pattern is set to be used.

Arguments
No arguments.

Example

get_use_testbench_naming_pattern

Related Information

• get_testbench_dutname on page 434

• set_use_testbench_naming_pattern on page 432

6.7.8. Wire-Level Connection Commands

Wire-level commands accept optional input ports and wire-level expressions as
arguments for the qsys-script utility and in _hw.tcl files.

You can use wire-level commands to:

• Apply a wire-level expression to a port with set_wirelevel_expression.

• Retrieve a list of expressions from a port, instance, or all expressions in the
current level of system hierarchy with get_wirelevel_expression.

• Remove a list of expressions from a port, instance, or all expressions in the
current level of system hierarchy with remove_wirelevel_expression.

Note: The following restrictions apply when using wire-level commands _hw.tcl files:

• Wire-level commands are only valid in a composition callback.

• Wire-level expressions can only be applied to instances created by
add_instance.

Related Information

Create a Composed Component or Subsystem on page 316

6.7.8.1. set_wirelevel_expression

Description
Applies a wire-level expression to an optional input port or instance in the system.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

435

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage
set_wirelevel_expression <instance_or_port_bitselection> <expression>

Returns
No return value.

Arguments

instance_or_port_bitselection Specify the instance or port to which the wire-
level expression using the
<instance_name>.<port_name>[<bit_selection>]
format. The bit selection can be a bit-select, for
example [0], or a partial range defined in
descending order, for example [7:0]. If no bit
selection is specified, the full range of the port is
selected.

expression The expression to be applied to an optional input
port.

Examples

set_wirelevel_expression {module0.portA[7:0]} "8'b0"
set_wirelevel_expression module0.portA "8'b0"
set_wirelevel_expression {module0.portA[0]} "1'b0"

6.7.8.2. get_wirelevel_expressions

Description
Retrieve a list of wire-level expressions from an optional input port, instance, or all
expressions in the current level of system hierarchy. If the port bit selection is
specified as an argument, the range must be identical to what was used in the
set_wirelevel_expression statement.

Usage
get_wirelevel_expressions <instance_or_port_bitselection>

Returns

String[] A flattened list of wire-level expressions. Every item in the list consists
of right- and left-hand clauses of a wire-level expression. You can loop
over the returned list using foreach{port expr}
$return_list{}.

Arguments

instance_or_port_bitselection Specifies which instance or port from which a list
of wire-level expressions are retrieved using the
<instance_name>.<port_name>[<bit_selection>]
format.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

436

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• If no <port_name>[<bit_selection>] is
specified, the command causes the return of
all expressions from the specified instance.

• If no argument is present, the command
causes the return of all expressions from the
current level of system hierarchy.

The bit selection can be a bit-select, for example
[0], or a partial range defined in descending order,
for example [7:0]. If no bit selection is specified,
the full range of the port is selected.

Example

get_wirelevel_expressions
get_wirelevel_expressions module0
get_wirelevel_expressions {module0.portA[7:0]}

6.7.8.3. remove_wirelevel_expressions

Description
Remove a list of wire-level expressions from an optional input port, instance, or all
expressions in the current level of system hierarchy. If the port bit selection is
specified as an argument, the range must be identical to what was used in the
set_wirelevel_expressions statement.

Usage
remove_wirelevel_expressions <instance_or_port_bitselection>

Returns
No return value.

Arguments

instance_or_port_bitselection Specifies which instance or port from which a list
of wire-level expressions are removed using the
<instance_name>.<port_name>[<bit_selection>]
format.

• If no <port_name>[<bit_selection>] is
specified, the command causes the removal of
all expressions from the specified instance.

• If no argument is present, the command
causes the return of all expressions from the
current level of system hierarchy.

The bit selection can be a bit-select, for example
[0], or a partial range defined in descending order,
for example [7:0]. If no bit selection is specified,
the full range of the port is selected.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

437

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Examples

remove_wirelevel_expressions
remove_wirelevel_expressions module0
remove_wirelevel_expressions {module0.portA[7:0]}

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

438

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8. Platform Designer Scripting Property Reference

Interface properties work differently for _hw.tcl scripting than with Platform Designer
scripting. In _hw.tcl, interfaces do not distinguish between properties and
parameters. In Platform Designer scripting, the properties and parameters are unique.

The following are the Platform Designer scripting properties:

Connection Properties on page 440

Design Environment Type Properties on page 441

Direction Properties on page 442

Element Properties on page 443

Instance Properties on page 444

Interface Properties on page 445

Message Levels Properties on page 446

Module Properties on page 447

Parameter Properties on page 448

Parameter Status Properties on page 450

Parameter Type Properties on page 451

Port Properties on page 452

Project Properties on page 453

System Info Type Properties on page 454

Units Properties on page 456

Validation Properties on page 457

Interface Direction on page 458

File Set Kind on page 459

Access Type on page 460

Instantiation HDL File Properties on page 461

Instantiation Interface Duplicate Type on page 462

Instantiation Interface Properties on page 463

Instantiation Properties on page 464

Port Properties on page 465

VHDL Type on page 466

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

439

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.1. Connection Properties

Type Name Description

string END Indicates the end interface of the connection.

string NAME Indicates the name of the connection.

string START Indicates the start interface of the connection.

String TYPE The type of the connection.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

440

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.2. Design Environment Type Properties

Description
IP cores use the design environment to identify the most appropriate interfaces to
connect to the parent system.

Name Description

NATIVE Supports native IP interfaces.

QSYS Supports standard Platform Designer interfaces.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

441

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.3. Direction Properties

Name Description

BIDIR Indicates the direction for a bidirectional signal.

INOUT Indicates the direction for an input signal.

OUTPUT Indicates the direction for an output signal.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

442

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.4. Element Properties

Description
Element properties are, with the exception of ENABLED and NAME, read-only
properties of the types of instances, interfaces, and connections. These read-only
properties represent metadata that does not vary between copies of the same type.
ENABLED and NAME properties are specific to particular instances, interfaces, or
connections.

Type Name Description

String AUTHOR The author of the component or interface.

Boolean AUTO_EXPORT Indicates whether unconnected interfaces on the instance are automatically
exported.

String CLASS_NAME The type of the instance, interface or connection, for example, altera_nios2
or avalon_slave.

String DESCRIPTION The description of the instance, interface or connection type.

String DISPLAY_NAME The display name for referencing the type of instance, interface or connection.

Boolean EDITABLE Indicates whether you can edit the component in the Platform Designer
Component Editor.

Boolean ENABLED Indicates whether the instance is enabled.

String GROUP The IP Catalog category.

Boolean INTERNAL Hides internal IP components or sub-components from the IP Catalog..

String NAME The name of the instance, interface or connection.

String VERSION The version number of the instance, interface or connection, for example, 16.1.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

443

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.5. Instance Properties

Type Name Description

String AUTO_EXPORT Indicates whether Platform Designer automatically exports the unconnected
interfaces on the instance.

Boolean ENABLED If true, Platform Designer includes this instance in the generated system.

String NAME The name of the system, which Platform Designer uses as the name of the top-
level module in the generated HDL.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

444

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.6. Interface Properties

Type Name Description

String EXPORT_OF Indicates which interface of a child instance to export through the top-level interface.
Before using this command, you must create the top-level interface using the
add_interface command. You must use the format:
<instanceName.interfaceName>. For example:

set_interface_property CSC_input EXPORT_OF my_colorSpaceConverter.input_port

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

445

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.7. Message Levels Properties

Name Description

COMPONENT_INFO Reports an informational message only during component editing.

DEBUG Provides messages when debug mode is enabled.

ERROR Provides an error message.

INFO Provides an informational message.

PROGRESS Reports progress during generation.

TODOERROR Provides an error message that indicates the system is incomplete.

WARNING Provides a warning message.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

446

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.8. Module Properties

Type Name Description

String GENERATION_ID The generation ID for the system.

String NAME The name of the instance.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

447

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.9. Parameter Properties

Type Name Description

Boolean AFFECTS_ELABORATION Set AFFECTS_ELABORATION to false for parameters that do not
affect the external interface of the module. An example of a
parameter that does not affect the external interface is
isNonVolatileStorage. An example of a parameter that does
affect the external interface is width. When the value of a parameter
changes and AFFECTS_ELABORATION is false, the elaboration phase
does not repeat and improves performance. When
AFFECTS_ELABORATION is set to true, the default value, Platform
Designer reanalyzes the HDL file to determine the port widths and
configuration each time a parameter changes.

Boolean AFFECTS_GENERATION The default value of AFFECTS_GENERATION is false if you provide a
top-level HDL module. The default value is true if you provide a fileset
callback. Set AFFECTS_GENERATION to false if the value of a
parameter does not change the results of fileset generation.

Boolean AFFECTS_VALIDATION The AFFECTS_VALIDATION property determines whether a
parameter's value sets derived parameters, and whether the value
affects validation messages. Setting this property to false may
improve response time in the parameter editor when the value
changes.

String[] ALLOWED_RANGES Indicates the range or ranges of the parameter. For integers, each
range is a single value, or a range of values defined by a start and
end value, and delimited by a colon, for example, 11:15. This
property also specifies the legal values and description strings for
integers, for example, {0:None 1:Monophonic 2:Stereo
4:Quadrophonic}, where 0, 1, 2, and 4 are the legal values. You
can assign description strings in the parameter editor for string
variables. For example,

ALLOWED_RANGES {"dev1:Cyclone IV GX""dev2:Stratix® V
 GT"}

String DEFAULT_VALUE The default value.

Boolean DERIVED When True, indicates that the parameter value is set by the
component and cannot be set by the user. Derived parameters are not
saved as part of an instance's parameter values. The default value is
False.

String DESCRIPTION A short user-visible description of the parameter, suitable for a tooltip
description in the parameter editor.

String[] DISPLAY_HINT Provides a hint about how to display a property.
• boolean--For integer parameters whose value are 0 or 1. The

parameter displays as an option that you can turn on or off.
• radio—displays a parameter with a list of values as radio buttons.
• hexadecimal—for integer parameters, displays and interprets

the value as a hexadecimal number, for example: 0x00000010
instead of 16.

• fixed_size—for string_list and integer_list
parameters, the fixed_size DISPLAY_HINT eliminates the
Add and Remove buttons from tables.

String DISPLAY_NAME The GUI label that appears to the left of this parameter.

String DISPLAY_UNITS The GUI label that appears to the right of the parameter.

Boolean ENABLED When False, the parameter is disabled. The parameter displays in
the parameter editor but is grayed out, indicating that you cannot edit
this parameter.

String GROUP Controls the layout of parameters in the GUI.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

448

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

Boolean HDL_PARAMETER When True, Platform Designer passes the parameter to the HDL
component description. The default value is False.

String LONG_DESCRIPTION A user-visible description of the parameter. Similar to DESCRIPTION,
but allows a more detailed explanation.

String NEW_INSTANCE_VALUE Changes the default value of a parameter without affecting older
components that do not explicitly set a parameter value, and use the
DEFAULT_VALUE property. Oder instances continue to use
DEFAULT_VALUE for the parameter and new instances use the value
assigned by NEW_INSTANCE_VALUE.

String[] SYSTEM_INFO Allows you to assign information about the instantiating system to a
parameter that you define. SYSTEM_INFO requires an argument
specifying the type of information. For example:

SYSTEM_INFO <info-type>

String SYSTEM_INFO_ARG Defines an argument to pass to SYSTEM_INFO. For example, the
name of a reset interface.

(various) SYSTEM_INFO_TYPE Specifies the types of system information that you can query. Refer to
System Info Type Properties.

(various) TYPE Specifies the type of the parameter. Refer to Parameter Type
Properties.

(various) UNITS Sets the units of the parameter. Refer to Units Properties.

Boolean VISIBLE Indicates whether or not to display the parameter in the parameter
editor.

String WIDTH Indicates the width of the logic vector for the STD_LOGIC_VECTOR
parameter.

Related Information

• System Info Type Properties on page 454

• Parameter Type Properties on page 451

• Units Properties on page 456

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

449

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.10. Parameter Status Properties

Type Name Description

Boolean ACTIVE Indicates that this parameter is an active parameter.

Boolean DEPRECATED Indicates that this parameter exists only for backwards compatibility, and may
not have any effect.

Boolean EXPERIMENTAL Indicates that this parameter is experimental and not exposed in the design
flow.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

450

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.11. Parameter Type Properties

Name Description

BOOLEAN A boolean parameter set to true or false.

FLOAT A signed 32-bit floating point parameter. (Not supported for HDL parameters.)

INTEGER A signed 32-bit integer parameter.

INTEGER_LIST A parameter that contains a list of 32-bit integers. (Not supported for HDL
parameters.)

LONG A signed 64-bit integer parameter. (Not supported for HDL parameters.)

NATURAL A 32-bit number that contains values 0 to 2147483647 (0x7fffffff).

POSITIVE A 32-bit number that contains values 1 to 2147483647 (0x7fffffff).

STD_LOGIC A single bit parameter set to 0 or 1.

STD_LOGIC_VECTOR An arbitrary-width number. The parameter property WIDTH determines the size of the
logic vector.

STRING A string parameter.

STRING_LIST A parameter that contains a list of strings. (Not supported for HDL parameters.)

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

451

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.12. Port Properties

Type Name Description

(various) DIRECTION The direction of the signal. Refer to Direction Properties.

String ROLE The type of the signal. Each interface type defines a set of interface types for its
ports.

Integer WIDTH The width of the signal in bits.

Related Information

Direction Properties on page 442

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

452

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.13. Project Properties

Type Name Description

String DEVICE The device part number in the Intel Quartus Prime project that contains the
Platform Designer system.

String DEVICE_FAMILY The device family name in the Intel Quartus Prime project that contains the
Platform Designer system.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

453

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.14. System Info Type Properties

Type Name Description

String ADDRESS_MAP An XML-formatted string that describes the address map
for the interface specified in the SYSTEM_INFO
parameter property.

Integer ADDRESS_WIDTH The number of address bits that Platform Designer
requires to address memory-mapped slaves connected
to the specified memory-mapped master in this
instance.

String AVALON_SPEC The version of the Platform Designer interconnect. Refer
to Avalon Interface Specifications.

Integer CLOCK_DOMAIN An integer that represents the clock domain for the
interface specified in the SYSTEM_INFO parameter
property. If this instance has interfaces on multiple clock
domains, you can use this property to determine which
interfaces are on each clock domain. The absolute value
of the integer is arbitrary.

Long, Integer CLOCK_RATE The rate of the clock connected to the clock input
specified in the SYSTEM_INFO parameter property. If
zero, the clock rate is currently unknown.

String CLOCK_RESET_INFO The name of this instance's primary clock or reset sink
interface. You use this property to determine the reset
sink for global reset when you use Platform Designer
interconnect that conforms to Avalon Interface
Specifications.

String CUSTOM_INSTRUCTION_SLAVES Provides slave information, including the name, base
address, address span, and clock cycle type.

String DESIGN_ENVIRONMENT A string that identifies the current design environment.
Refer to Design Environment Type Properties.

String DEVICE The device part number of the selected device.

String DEVICE_FAMILY The family name of the selected device.

String DEVICE_FEATURES A list of key/value pairs delimited by spaces that
indicate whether a device feature is available in the
selected device family. The format of the list is suitable
for passing to the array command. The keys are device
features. The values are 1 if the feature is present, and
0 if the feature is absent.

String DEVICE_SPEEDGRADE The speed grade of the selected device.

Integer GENERATION_ID An integer that stores a hash of the generation time that
Platform Designer uses as a unique ID for a generation
run.

BigInteger,
Long

INTERRUPTS_USED A mask indicating which bits of an interrupt receiver are
connected to interrupt senders. The interrupt receiver is
specified in the system info argument.

Integer MAX_SLAVE_DATA_WIDTH The data width of the widest slave connected to the
specified memory-mapped master.

String,
Boolean,
Integer

QUARTUS_INI The value of the quartus.ini setting specified in the
system info argument.

Integer RESET_DOMAIN An integer representing the reset domain for the
interface specified in the SYSTEM_INFO parameter
property If this instance has interfaces on multiple reset

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

454

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

domains, you can use this property to determine which
interfaces are on each reset domain. The absolute value
of the integer is arbitrary.

String TRISTATECONDUIT_INFO An XML description of the tri-state conduit masters
connected to a tri-state conduit slave. The slave is
specified as the SYSTEM_INFO parameter property. The
value contains information about the slave, connected
master instance and interface names, and signal names,
directions, and widths.

String TRISTATECONDUIT_MASTERS The names of the instance's interfaces that are tri-state
conduit slaves.

String UNIQUE_ID A string guaranteed to be unique to this instance.

Related Information

• Design Environment Type Properties on page 441

• Avalon Interface Specifications

• Platform Designer Interconnect on page 128

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

455

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.15. Units Properties

Name Description

ADDRESS A memory-mapped address.

BITS Memory size in bits.

BITSPERSECOND Rate in bits per second.

BYTES Memory size in bytes.

CYCLES A latency or count in clock cycles.

GIGABITSPERSECOND Rate in gigabits per second.

GIGABYTES Memory size in gigabytes.

GIGAHERTZ Frequency in GHz.

HERTZ Frequency in Hz.

KILOBITSPERSECOND Rate in kilobits per second.

KILOBYTES Memory size in kilobytes.

KILOHERTZ Frequency in kHz.

MEGABITSPERSECOND Rate, in megabits per second.

MEGABYTES Memory size in megabytes.

MEGAHERTZ Frequency in MHz.

MICROSECONDS Time in microseconds.

MILLISECONDS Time in milliseconds.

NANOSECONDS Time in nanoseconds.

NONE Unspecified units.

PERCENT A percentage.

PICOSECONDS Time in picoseconds.

SECONDS Time in seconds.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

456

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.16. Validation Properties

Type Name Description

Boolean AUTOMATIC_VALIDATION When true, Platform Designer runs system validation and
elaboration after each scripting command. When false, Platform
Designer runs system validation with validation scripting commands.
Some queries affected by system elaboration may be incorrect if
automatic validation is disabled. You can disable validation to make a
system script run faster.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

457

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.17. Interface Direction

Type Name Description

String INPUT Indicates that the interface is a slave (input, transmitter, sink, or end).

String OUTPUT Indicates that the interface is a master (output, receiver, source, or start).

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

458

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.18. File Set Kind

Name Description

EXAMPLE_DESIGN This file-set contains example design files.

QUARTUS_SYNTH This file-set contains files that Platform Designer uses for Intel Quartus Prime Synthesis

SIM_VERILOG This file-set contains files that Platform Designer uses for Verilog HDL Simulation.

SIM_VHDL This file-set contains files that Platform Designer uses for VHDL Simulation.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

459

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.19. Access Type

Name Type Description

String READ_ONLY Indicates that the parameter can be only read-only.

String WRITABLE Indicates that the parameter has read/write properties.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

460

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.20. Instantiation HDL File Properties

Name Type Description

Boolean CONTAINS_INLINE_CONFIGURATION Returns True if the HDL file contains inline configuration.

Boolean IS_CONFIGURATION_PACKAGE Returns True if the HDL file is a configuration package.

Boolean IS_TOP_LEVEL Returns True if the HDL file is the top-level HDL file.

String OUTPUT_PATH Specifies the output path of the HDL file.

String TYPE Specifies the HDL file type of the HDL file.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

461

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.21. Instantiation Interface Duplicate Type

Type Name Description

String CLONE Creates a copy of an interface and all the interface ports.

String MIRROR Creates a copy of an interface with all the port roles and directions reversed.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

462

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.22. Instantiation Interface Properties

Name Type Description

String DIRECTION The direction of the interface.

String TYPE The type of the interface.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

463

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.23. Instantiation Properties

Name Type Description

String HDL_COMPILATION_LIBRARY Indicates the HDL compilation library name of the generic
component.

String HDL_ENTITY_NAME Indicates the HDL entity name of the Generic Component.

String IP_FILE Indicates the .ip file path that implements the generic component.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

464

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.24. Port Properties

Name Type Description

String DIRECTION Specifies the direction of the signal

String NAME Renames a top-level port. Only use with set_interface_port_property

String ROLE Specifies the type of the signal. Each interface type defines a set of interface types
for its ports.

String VHDL_TYPE Specifies the VHDL type of the signal. Can be either STANDARD_LOGIC, or
STANDARD_LOGIC_VECTOR.

Integer WIDTH Specifies the width of the signal in bits.

Related Information

Direction Properties on page 442

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

465

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.25. VHDL Type

Name Description

STD_LOGIC Represents the value of a digital signal in a wire.

STD_LOGIC_VECTOR Represents an array of digital signals and variables.

6.9. Platform Designer Command-Line Interface Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.12.15 18.1.0 First release as separate chapter.

2016.05.03 16.0.0 • Qsys Command-Line Utilities updated with latest supported command-
line options.

June 2012 12.0.0 • Added command-line utilities, and scripts.

December 2010 10.1.0 Initial release of content.

6. Platform Designer Command-Line Utilities

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

466

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Component Interface Tcl Reference
Tcl commands allow you to perform a wide range of functions in Platform Designer.
Command descriptions contain the Platform Designer phases where you can use the
command, for example, main program, elaboration, composition, or fileset callback.
This reference denotes optional command arguments in brackets [].

Note: Intel now refers to Qsys as Platform Designer (Standard).

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

For more information about procedures for creating IP component _hw.tcl files in the
Platform Designer Component Editor, and supported interface standards, refer to
Creating Platform Designer Components and Platform Designer Interconnect.

If you are developing an IP component to work with the Nios II processor, refer to
Publishing Component Information to Embedded Software in section 3 of the Nios II
Software Developer's Handbook, which describes how to publish hardware IP
component information for embedded software tools, such as a C compiler and a
Board Support Package (BSP) generator.

Related Information

• Avalon Interface Specifications

• AMBA Protocol Specifications

• Creating Platform Designer Components on page 286

• Platform Designer Interconnect on page 128

• Publishing Component Information to Embedded Software
In Nios II Gen2 Software Developer's Handbook

7.1. Platform Designer _hw.tcl Command Reference

683364 | 2018.12.15

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
https://www.intel.com/content/www/us/en/docs/programmable/683525/current/publishing-component-information-to-64569.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

7.1.1. Interfaces and Ports

add_interface on page 469

add_interface_port on page 471

get_interfaces on page 473

get_interface_assignment on page 474

get_interface_assignments on page 475

get_interface_ports on page 476

get_interface_properties on page 477

get_interface_property on page 478

get_port_properties on page 479

get_port_property on page 480

set_interface_assignment on page 481

set_interface_property on page 483

set_port_property on page 484

set_interface_upgrade_map on page 485

Related Information

Interface Properties on page 565

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

468

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.1. add_interface

Description
Adds an interface to your module. An interface represents a collection of related
signals that are managed together in the parent system. These signals are
implemented in the IP component's HDL, or exported from an interface from a child
instance. As the IP component author, you choose the name of the interface.

Availability
Discovery, Main Program, Elaboration, Composition

Usage
add_interface <name> <type> <direction> [<associated_clock>]

Returns
No returns value.

Arguments

name A name you choose to identify an interface.

type The type of interface.

direction The interface direction.

associated_clock
(optional)

(deprecated) For interfaces requiring associated clocks,
use: set_interface_property <interface>
associatedClock <clockInterface> For interfaces
requiring associated resets, use:
set_interface_property <interface>
associatedReset <resetInterface>

Example

add_interface mm_slave avalon slave

add_interface my_export conduit end
set_interface_property my_export EXPORT_OF uart_0.external_connection

Notes
By default, interfaces are enabled. You can set the interface property ENABLED to
false to disable an interface. If an interface is disabled, it is hidden and its ports are
automatically terminated to their default values. Active high signals are terminated to
0. Active low signals are terminated to 1.

If the IP component is composed of child instances, the top-level interface is
associated with a child instance's interface with set_interface_property
interface EXPORT_OF child_instance.interface.

The following direction rules apply to Platform Designer-supported interfaces.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

469

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interface Type Direction

avalon master, slave

axi master, slave

tristate_conduit master, slave

avalon_streaming source, sink

interrupt sender, receiver

conduit end

clock source, sink

reset source, sink

nios_custom_instruction slave

Related Information

• add_interface_port on page 471

• get_interface_assignments on page 475

• get_interface_properties on page 477

• get_interfaces on page 473

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

470

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.2. add_interface_port

Description
Adds a port to an interface on your module. The name must match the name of a
signal on the top-level module in the HDL of your IP component. The port width and
direction must be set before the end of the elaboration phase. You can set the port
width as follows:

• In the Main program, you can set the port width to a fixed value or a width
expression.

• If the port width is set to a fixed value in the Main program, you can update the
width in the elaboration callback.

Availability
Main Program, Elaboration

Usage
add_interface_port <interface> <port> [<signal_type> <direction>
<width_expression>]

Returns

Arguments

interface The name of the interface to which this port belongs.

port The name of the port. This name must match a signal in your top-level
HDL for this IP component.

signal_type
(optional)

The type of signal for this port, which must be unique. Refer
to the Avalon Interface Specifications for the signal types
available for each interface type.

direction (optional) The direction of the signal. Refer to Direction Properties.

width_expression
(optional)

The width of the port, in bits. The width may be a
fixed value, or a simple arithmetic expression of
parameter values.

Example

fixed width:
add_interface_port mm_slave s0_rdata readdata output 32

width expression:
add_parameter DATA_WIDTH INTEGER 32
add_interface_port s0 rdata readdata output "DATA_WIDTH/2"

Related Information

• add_interface on page 469

• get_port_properties on page 479

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

471

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• get_port_property on page 480

• get_port_property on page 480

• Direction Properties on page 574

• Avalon Interface Specifications

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

472

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.3. get_interfaces

Description
Returns a list of top-level interfaces.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_interfaces

Returns
A list of the top-level interfaces exported from the system.

Arguments
No arguments.

Example

get_interfaces

Related Information

add_interface on page 469

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

473

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.4. get_interface_assignment

Description
Returns the value of the specified assignment for the specified interface

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_interface_assignment <interface> <assignment>

Returns
The value of the assignment.

Arguments

interface The name of a top-level interface.

assignment The name of an assignment.

Example

get_interface_assignment s1 embeddedsw.configuration.isFlash

Related Information

• add_interface on page 469

• get_interface_assignments on page 475

• get_interfaces on page 473

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

474

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.5. get_interface_assignments

Description
Returns the value of all interface assignments for the specified interface.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_interface_assignments <interface>

Returns
A list of assignment keys.

Arguments

interface The name of the top-level interface whose assignment is being
retrieved.

Example

get_interface_assignments s1

Related Information

• add_interface on page 469

• get_interface_assignment on page 474

• get_interfaces on page 473

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

475

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.6. get_interface_ports

Description
Returns the names of all of the ports that have been added to a given interface. If the
interface name is omitted, all ports for all interfaces are returned.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_interface_ports [<interface>]

Returns
A list of port names.

Arguments

interface (optional) The name of a top-level interface.

Example

get_interface_ports mm_slave

Related Information

• add_interface_port on page 471

• get_port_property on page 480

• set_port_property on page 484

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

476

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.7. get_interface_properties

Description
Returns the names of all the interface properties for the specified interface as a space
separated list

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_interface_properties <interface>

Returns
A list of properties for the interface.

Arguments

interface The name of an interface.

Example

get_interface_properties interface

Notes

The properties for each interface type are different. Refer to the Avalon Interface
Specifications for more information about interface properties.

Related Information

• get_interface_property on page 478

• set_interface_property on page 483

• Avalon Interface Specifications

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

477

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.8. get_interface_property

Description
Returns the value of a single interface property from the specified interface.

Availability
Discovery, Main Program, Elaboration, Composition, Fileset Generation

Usage
get_interface_property <interface> <property>

Returns

Arguments

interface The name of an interface.

property The name of the property whose value you want to retrieve. Refer to
Interface Properties.

Example

get_interface_property mm_slave linewrapBursts

Notes

The properties for each interface type are different. Refer to the Avalon Interface
Specifications for more information about interface properties.

Related Information

• get_interface_properties on page 477

• set_interface_property on page 483

• Avalon Interface Specifications

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

478

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.9. get_port_properties

Description
Returns a list of port properties.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_port_properties

Returns
A list of port properties. Refer to Port Properties.

Arguments
No arguments.

Example

get_port_properties

Related Information

• add_interface_port on page 471

• get_port_property on page 480

• set_port_property on page 484

• Port Properties on page 572

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

479

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.10. get_port_property

Description
Returns the value of a property for the specified port.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_port_property <port> <property>

Returns
The value of the property.

Arguments

port The name of the port.

property The name of a port property. Refer to Port Properties.

Example

get_port_property rdata WIDTH_VALUE

Related Information

• add_interface_port on page 471

• get_port_properties on page 479

• set_port_property on page 484

• Port Properties on page 572

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

480

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.11. set_interface_assignment

Description
Sets the value of the specified assignment for the specified interface.

Availability
Main Program, Elaboration, Validation, Composition

Usage
set_interface_assignment <interface> <assignment> [<value>]

Returns
No return value.

Arguments

interface The name of the top-level interface whose assignment is being set.

assignment The assignment whose value is being set.

value (optional) The new assignment value.

Example

set_interface_assignment s1 embeddedsw.configuration.isFlash 1

Notes

Assignments for Nios II Software Build Tools

Interface assignments provide extra data for the Nios II Software Build Tools working
with the generated system.

Assignments for Platform Designer Tools

There are several assignments that guide behavior in the Platform Designer tools.

qsys.ui.export_name: If present, this interface should always be
exported when an instance is added to a
Platform Designer system. The value is the
requested name of the exported interface in
the parent system.

qsys.ui.connect: If present, this interface should be auto-
connected when an instance is added to a
Platform Designer system. The value is a
comma-separated list of other interfaces on
the same instance that should be connected
with this interface.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

481

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ui.blockdiagram.direction: If present, the direction of this interface in
the block diagram is set by the user. The
value is either "output" or "input".

Related Information

• add_interface on page 469

• get_interface_assignment on page 474

• get_interface_assignments on page 475

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

482

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.12. set_interface_property

Description
Sets the value of a property on an exported top-level interface. You can use this
command to set the EXPORT_OF property to specify which interface of a child instance
is exported via this top-level interface.

Availability
Main Program, Elaboration, Composition

Usage
set_interface_property <interface> <property> <value>

Returns
No return value.

Arguments

interface The name of an exported top-level interface.

property The name of the property Refer to Interface Properties.

value The new property value.

Example

set_interface_property clk_out EXPORT_OF clk.clk_out
set_interface_property mm_slave linewrapBursts false

Notes
The properties for each interface type are different. Refer to the Avalon Interface
Specifications for more information about interface properties.

Related Information

• get_interface_properties on page 477

• get_interface_property on page 478

• Avalon Interface Specifications

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

483

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.13. set_port_property

Description
Sets a port property.

Availability
Elaboration

Usage
set_port_property <port> <property> [<value>]

Returns
The new value.

Arguments

port The name of the port.

property One of the supported properties. Refer to Port Properties.

value (optional) The value to set.

Example

set_port_property rdata WIDTH 32

Related Information

• add_interface_port on page 471

• get_port_properties on page 479

• set_port_property on page 484

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

484

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.14. set_interface_upgrade_map

Description
Maps the interface name of an older version of an IP core to the interface name of the
current IP core. The interface type must be the same between the older and newer
versions of the IP cores. This allows system connections and properties to maintain
proper functionality. By default, if the older and newer versions of IP core have the
same name and type, then Platform Designer maintains all properties and connections
automatically.

Availability
Parameter Upgrade

Usage

set_interface_upgrade_map { <old_interface_name> <new_interface_name>
<old_interface_name_2> <new_interface_name_2> … }

Returns
No return value.

Arguments

{ <old_interface_name>
<new_interface_name>}

List of mappings between names of older
and newer interfaces.

Example

set_interface_upgrade_map { avalon_master_interface new_avalon_master_interface }

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

485

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2. Parameters

add_parameter on page 487

get_parameters on page 488

get_parameter_properties on page 489

get_parameter_property on page 490

get_parameter_value on page 491

get_string on page 492

load_strings on page 493

set_parameter_property on page 494

set_parameter_value on page 495

decode_address_map on page 496

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

486

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.1. add_parameter

Description
Adds a parameter to your IP component.

Availability
Main Program

Usage
add_parameter <name> <type> [<default_value> <description>]

Returns

Arguments

name The name of the parameter.

type The data type of the parameter Refer to Parameter Type Properties.

default_value (optional) The initial value of the parameter in a new instance of
the IP component.

description (optional) Explains the use of the parameter.

Example

add_parameter seed INTEGER 17 "The seed to use for data generation."

Notes

Most parameter types have a single GUI element for editing the parameter value.
string_list and integer_list parameters are different, because they are edited
as tables. A multi-column table can be created by grouping multiple into a single
table. To edit multiple list parameters in a single table, the display items for the
parameters must be added to a group with a TABLE hint:
add_parameter coefficients INTEGER_LIST add_parameter positions
INTEGER_LIST add_display_item "" "Table Group" GROUP TABLE
add_display_item "Table Group" coefficients PARAMETER
add_display_item "Table Group" positions PARAMETER

Related Information

• get_parameter_properties on page 489

• get_parameter_property on page 490

• get_parameter_value on page 491

• set_parameter_property on page 494

• set_parameter_value on page 495

• Parameter Type Properties on page 570

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

487

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.2. get_parameters

Description
Returns the names of all the parameters in the IP component.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_parameters

Returns
A list of parameter names

Arguments
No arguments.

Example

get_parameters

Related Information

• add_parameter on page 487

• get_parameter_property on page 490

• get_parameter_value on page 491

• get_parameters on page 488

• set_parameter_property on page 494

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

488

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.3. get_parameter_properties

Description
Returns a list of all the parameter properties as a list of strings. The
get_parameter_property and set_parameter_property commands are used to
get and set the values of these properties, respectively.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_parameter_properties

Returns
A list of parameter property names. Refer to Parameter Properties.

Arguments
No arguments.

Example

set property_summary [get_parameter_properties]

Related Information

• add_parameter on page 487

• get_parameter_property on page 490

• get_parameter_value on page 491

• get_parameters on page 488

• set_parameter_property on page 494

• Parameter Properties on page 568

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

489

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.4. get_parameter_property

Description
Returns the value of a property of a parameter.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_parameter_property <parameter> <property>

Returns
The value of the property.

Arguments

parameter The name of the parameter whose property value is being retrieved.

property The name of the property. Refer to Parameter Properties.

Example

set enabled [get_parameter_property parameter1 ENABLED]

Related Information

• add_parameter on page 487

• get_parameter_properties on page 489

• get_parameter_value on page 491

• get_parameters on page 488

• set_parameter_property on page 494

• set_parameter_value on page 495

• Parameter Properties on page 568

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

490

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.5. get_parameter_value

Description
Returns the current value of a parameter defined previously with the add_parameter
command.

Availability
Discovery, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage
get_parameter_value <parameter>

Returns
The value of the parameter.

Arguments

parameter The name of the parameter whose value is being retrieved.

Example

set width [get_parameter_value fifo_width]

Notes

If AFFECTS_ELABORATION is false for a given parameter, get_parameter_value
is not available for that parameter from the elaboration callback. If
AFFECTS_GENERATION is false then it is not available from the generation callback.

Related Information

• add_parameter on page 487

• get_parameter_property on page 490

• get_parameters on page 488

• set_parameter_property on page 494

• set_parameter_value on page 495

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

491

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.6. get_string

Description
Returns the value of an externalized string previously loaded by the load_strings
command.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_string <identifier>

Returns
The externalized string.

Arguments

identifier The string identifier.

Example

hw.tcl:
load_strings test.properties
set_module_property NAME test
set_module_property VERSION [get_string VERSION]
set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]
add_parameter firepower INTEGER 0 ""
set_parameter_property firepower DISPLAY_NAME [get_string PARAM_DISPLAY_NAME]
set_parameter_property firepower TYPE INTEGER
set_parameter_property firepower DESCRIPTION [get_string PARAM_DESCRIPTION]

test.properties:
DISPLAY_NAME = Trogdor!
VERSION = 1.0
PARAM_DISPLAY_NAME = Firepower
PARAM_DESCRIPTION = The amount of force to use when breathing fire.

Notes

Use uppercase words separated with underscores to name string identifiers. If you are
externalizing module properties, use the module property name for the string
identifier:

set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]

If you are externalizing a parameter property, qualify the parameter property with the
parameter name, with uppercase format, if needed:

set_parameter_property my_param DISPLAY_NAME [get_string MY_PARAM_DISPLAY_NAME]

If you use a string to describe a string format, end the identifier with _FORMAT.

set formatted_string [format [get_string TWO_ARGUMENT_MESSAGE_FORMAT] "arg1"
"arg2"]

Related Information

load_strings on page 493

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

492

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.7. load_strings

Description
Loads strings from an external .properties file.

Availability
Discovery, Main Program

Usage
load_strings <path>

Returns
No return value.

Arguments

path The path to the properties file.

Example

hw.tcl:
load_strings test.properties
set_module_property NAME test
set_module_property VERSION [get_string VERSION]
set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]
add_parameter firepower INTEGER 0 ""
set_parameter_property firepower DISPLAY_NAME [get_string PARAM_DISPLAY_NAME]
set_parameter_property firepower TYPE INTEGER
set_parameter_property firepower DESCRIPTION [get_string PARAM_DESCRIPTION]

test.properties:
DISPLAY_NAME = Trogdor!
VERSION = 1.0
PARAM_DISPLAY_NAME = Firepower
PARAM_DESCRIPTION = The amount of force to use when breathing fire.

Notes

Refer to the Java Properties File for properties file format. A .properties file is a
text file with KEY=value pairs. For externalized strings, the KEY is a string identifier
and the value is the externalized string.
For example:

TROGDOR = A dragon with a big beefy arm

Related Information

• get_string on page 492

• Java Properties File

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

493

http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.8. set_parameter_property

Description
Sets a single parameter property.

Availability
Main Program, Edit, Elaboration, Validation, Composition

Usage
set_parameter_property <parameter> <property> <value>

Returns

Arguments

parameter The name of the parameter that is being set.

property The name of the property. Refer to Parameter Properties.

value The new value for the property.

Example

set_parameter_property BAUD_RATE ALLOWED_RANGES {9600 19200 38400}

Related Information

• add_parameter on page 487

• get_parameter_properties on page 489

• set_parameter_property on page 494

• Parameter Properties on page 568

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

494

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.9. set_parameter_value

Description
Sets a parameter value. The value of a derived parameter can be updated by the IP
component in the elaboration callback or the edit callback. Any changes to the value of
a derived parameter in the edit callback is not preserved.

Availability
Edit, Elaboration, Validation, Composition, Parameter Upgrade

Usage
set_parameter_value <parameter> <value>

Returns
No return value.

Arguments

parameter The name of the parameter that is being set.

value Specifies the new parameter value.

Example

set_parameter_value half_clock_rate [expr { [get_parameter_value
clock_rate] / 2 }]

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

495

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.10. decode_address_map

Description
Converts an XML–formatted address map into a list of Tcl lists. Each inner list is in the
correct format for conversion to an array. The XML code that describes each slave
includes: its name, start address, and end address.

Availability
Elaboration, Generation, Composition

Usage
decode_address_map <address_map_XML_string>

Returns
No return value.

Arguments

address_mapXML_string An XML string that describes the address map of a
master.

Example

In this example, the code describes the address map for the master that accesses the
ext_ssram, sys_clk_timer and sysid slaves. The format of the string may differ
from the example below; it may have different white space between the elements and
include additional attributes or elements. Use the decode_address_map command to
decode the code that represents a master’s address map to ensure that your code
works with future versions of the address map.

<address-map>
 <slave name='ext_ssram' start='0x01000000' end='0x01200000' />
 <slave name='sys_clk_timer' start='0x02120800' end='0x02120820' />
 <slave name='sysid' start='0x021208B8' end='0x021208C0' />
</address-map>

Note: Intel recommends that you use the code provided below to enumerate over the IP
components within an address map, rather than writing your own parser.

set address_map_xml [get_parameter_value my_map_param]
set address_map_dec [decode_address_map $address_map_xml]
foreach i $address_map_dec {
 array set info $i
 send_message info "Connected to slave $info(name)"
}

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

496

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.3. Display Items

add_display_item on page 498

get_display_items on page 500

get_display_item_properties on page 501

get_display_item_property on page 502

set_display_item_property on page 503

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

497

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.3.1. add_display_item

Description
Specifies the following aspects of the IP component display:

• Creates logical groups for an IP component's parameters. For example, to create
separate groups for the IP component's timing, size, and simulation parameters.
An IP component displays the groups and parameters in the order that you specify
the display items in the _hw.tcl file.

• Groups a list of parameters to create multi-column tables.

• Specifies an image to provide representation of a parameter or parameter group.

• Creates a button by adding a display item of type action. The display item
includes the name of the callback to run.

Availability
Main Program

Usage
add_display_item <parent_group> <id> <type> [<args>]

Returns

Arguments

parent_group Specifies the group to which a display item belongs

id The identifier for the display item. If the item being added is a parameter,
this is the parameter name. If the item is a group, this is the group name.

type The type of the display item. Refer to Display Item Kind Properties.

args (optional) Provides extra information required for display items.

Example

add_display_item "Timing" read_latency PARAMETER
add_display_item "Sounds" speaker_image_id ICON speaker.jpg

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

498

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Notes

The following examples illustrate further illustrate the use of arguments:

• add_display_item groupName id icon path-to-image-file

• add_display_item groupName parameterName parameter

• add_display_item groupName id text "your-text"

The your-text argument is a block of text that is displayed in the GUI. Some
simple HTML formatting is allowed, such as and <i>, if the text starts with
<html>.

• add_display_item parentGroupName childGroupName group [tab]

The tab is an optional parameter. If present, the group appears in separate tab in
the GUI for the instance.

• add_display_item parentGroupName actionName action
buttonClickCallbackProc

Related Information

• get_display_item_properties on page 501

• get_display_item_property on page 502

• get_display_items on page 500

• set_display_item_property on page 503

• Display Item Kind Properties on page 576

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

499

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.3.2. get_display_items

Description
Returns a list of all items to be displayed as part of the parameterization GUI.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_display_items

Returns
List of display item IDs.

Arguments
No arguments.

Example

get_display_items

Related Information

• add_display_item on page 498

• get_display_item_properties on page 501

• get_display_item_property on page 502

• set_display_item_property on page 503

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

500

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.3.3. get_display_item_properties

Description
Returns a list of names of the properties of display items that are part of the
parameterization GUI.

Availability
Main Program

Usage
get_display_item_properties

Returns
A list of display item property names. Refer to Display Item Properties.

Arguments
No arguments.

Example

get_display_item_properties

Related Information

• add_display_item on page 498

• get_display_item_property on page 502

• set_display_item_property on page 503

• Display Item Properties on page 575

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

501

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.3.4. get_display_item_property

Description
Returns the value of a specific property of a display item that is part of the
parameterization GUI.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_display_item_property <display_item> <property>

Returns
The value of a display item property.

Arguments

display_item The id of the display item.

property The name of the property. Refer to Display Item Properties.

Example

set my_label [get_display_item_property my_action DISPLAY_NAME]

Related Information

• add_display_item on page 498

• get_display_item_properties on page 501

• get_display_items on page 500

• set_display_item_property on page 503

• Display Item Properties on page 575

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

502

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.3.5. set_display_item_property

Description
Sets the value of specific property of a display item that is part of the
parameterization GUI.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition

Usage
set_display_item_property <display_item> <property> <value>

Returns
No return value.

Arguments

display_item The name of the display item whose property value is being set.

property The property that is being set. Refer to Display Item Properties.

value The value to set.

Example

set_display_item_property my_action DISPLAY_NAME "Click Me"
set_display_item_property my_action DESCRIPTION "clicking this button runs the
click_me_callback proc in the hw.tcl file"

Related Information

• add_display_item on page 498

• get_display_item_properties on page 501

• get_display_item_property on page 502

• Display Item Properties on page 575

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

503

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4. Module Definition

add_documentation_link on page 505

get_module_assignment on page 506

get_module_assignments on page 507

get_module_ports on page 508

get_module_properties on page 509

get_module_property on page 510

send_message on page 511

set_module_assignment on page 512

set_module_property on page 513

add_hdl_instance on page 514

package on page 515

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

504

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.1. add_documentation_link

Description
Allows you to link to documentation for your IP component.

Availability
Discovery, Main Program

Usage
add_documentation_link <title> <path>

Returns
No return value.

Arguments

title The title of the document for use on menus and buttons.

path A path to the IP component documentation, using a syntax that provides
the entire URL, not a relative path. For example: http://
www.mydomain.com/my_memory_controller.html or file:///
datasheet.txt

Example

add_documentation_link "Avalon Verification IP Suite User Guide" http://
www.altera.com/literature/ug/ug_avalon_verification_ip.pdf

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

505

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.2. get_module_assignment

Description
This command returns the value of an assignment. You can use the
get_module_assignment and set_module_assignment and the
get_interface_assignment and set_interface_assignment commands to
provide information about the IP component to embedded software tools and
applications.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_module_assignment <assignment>

Returns
The value of the assignment

Arguments

assignment The name of the assignment whose value is being retrieved

Example

get_module_assignment embeddedsw.CMacro.colorSpace

Related Information

• get_module_assignments on page 507

• set_module_assignment on page 512

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

506

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.3. get_module_assignments

Description
Returns the names of the module assignments.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_module_assignments

Returns
A list of assignment names.

Arguments
No arguments.

Example

get_module_assignments

Related Information

• get_module_assignment on page 506

• set_module_assignment on page 512

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

507

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.4. get_module_ports

Description
Returns a list of the names of all the ports which are currently defined.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_module_ports

Returns
A list of port names.

Arguments
No arguments.

Example

get_module_ports

Related Information

• add_interface on page 469

• add_interface_port on page 471

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

508

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.5. get_module_properties

Description
Returns the names of all the module properties as a list of strings. You can use the
get_module_property and set_module_property commands to get and set
values of individual properties. The value returned by this command is always the
same for a particular version of Platform Designer

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_module_properties

Returns
List of strings. Refer to Module Properties.

Arguments
No arguments.

Example

get_module_properties

Related Information

• get_module_property on page 510

• set_module_property on page 513

• Module Properties on page 578

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

509

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.6. get_module_property

Description
Returns the value of a single module property.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_module_property <property>

Returns
Various.

Arguments

property The name of the property, Refer to Module Properties.

Example

set my_name [get_module_property NAME]

Related Information

• get_module_properties on page 509

• set_module_property on page 513

• Module Properties on page 578

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

510

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.7. send_message

Description
Sends a message to the user of the IP component. The message text is normally
interpreted as HTML. You can use the element to provide emphasis. If you do not
want the message text to be interpreted as HTML, then pass a list as the message
level, for example, { Info Text }.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
send_message <level> <message>

Returns
No return value .

Arguments

level The following message levels are supported:

• ERROR--Provides an error message. The Platform Designer system
cannot be generated with existing error messages.

• WARNING--Provides a warning message.

• INFO--Provides an informational message. The INFO level is not
available in the Main Program.

• PROGRESS--Reports progress during generation.

• DEBUG--Provides a debug message when debug mode is enabled.

message The text of the message.

Example

send_message ERROR "The system is down!"
send_message { Info Text } "The system is up!"

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

511

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.8. set_module_assignment

Description
Sets the value of the specified assignment.

Availability
Main Program, Elaboration, Validation, Composition

Usage
set_module_assignment <assignment> [<value>]

Returns
No return value.

Arguments

assignment The assignment whose value is being set

value (optional) The value of the assignment

Example

set_module_assignment embeddedsw.CMacro.colorSpace CMYK

Related Information

• get_module_assignment on page 506

• get_module_assignments on page 507

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

512

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.9. set_module_property

Description
Allows you to set the values for module properties.

Availability
Discovery, Main Program

Usage
set_module_property <property> <value>

Returns
No return value.

Arguments

property The name of the property. Refer to Module Properties.

value The new value of the property.

Example

set_module_property VERSION 10.0

Related Information

• get_module_properties on page 509

• get_module_property on page 510

• Module Properties on page 578

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

513

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.10. add_hdl_instance

Description
Adds an instance of a predefined module, referred to as a child or child instance. The
HDL entity generated from this instance can be instantiated and connected within this
IP component's HDL.

Availability
Main Program, Elaboration, Composition

Usage
add_hdl_instance <entity_name> <ip_core_type> [<version>]

Returns
The entity name of the added instance.

Arguments

entity_name Specifies a unique local name that you can use to manipulate the
instance. This name is used in the generated HDL to identify the
instance.

ip_core_type The type refers to a kind of instance available in the IP Catalog,
for example altera_avalon_uart.

version (optional) The required version of the specified instance type. If no
version is specified, the latest version is used.

Example

add_hdl_instance my_uart altera_avalon_uart

Related Information

• get_instance_parameter_value on page 532

• get_instance_parameters on page 530

• get_instances on page 522

• set_instance_parameter_value on page 535

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

514

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.11. package

Description
Allows you to specify a particular version of the Platform Designer software to avoid
software compatibility issues, and to determine which version of the _hw.tcl API to
use for the IP component. You must use the package command at the beginning of
your _hw.tcl file.

Availability
Main Program

Usage
package require -exact qsys <version>

Returns
No return value

Arguments

version The version of Platform Designer that you require, such as 14.1.

Example

package require -exact qsys 14.1

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

515

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5. Composition

add_instance on page 517

add_connection on page 518

get_connections on page 519

get_connection_parameters on page 520

get_connection_parameter_value on page 521

get_instances on page 522

get_instance_interfaces on page 523

get_instance_interface_ports on page 524

get_instance_interface_properties on page 525

get_instance_property on page 526

set_instance_property on page 527

get_instance_properties on page 528

get_instance_interface_property on page 529

get_instance_parameters on page 530

get_instance_parameter_property on page 531

get_instance_parameter_value on page 532

get_instance_port_property on page 533

set_connection_parameter_value on page 534

set_instance_parameter_value on page 535

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

516

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.1. add_instance

Description
Adds an instance of an IP component, referred to as a child or child instance to the
subsystem. You can use this command to create IP components that are composed of
other IP component instances. The HDL for this subsystem generates; There is no
need to write custom HDL for the IP component.

Availability
Main Program, Composition

Usage
add_instance <name> <type> [<version>]

Returns
No return value.

Arguments

name Specifies a unique local name that you can use to manipulate the
instance. This name is used in the generated HDL to identify the instance.

type The type refers to a type available in the IP Catalog, for example
altera_avalon_uart.

version (optional) The required version of the specified type. If no version is
specified, the highest available version is used.

Example

add_instance my_uart altera_avalon_uart
add_instance my_uart altera_avalon_uart 14.1

Related Information

• add_connection on page 518

• get_instance_interface_property on page 529

• get_instance_parameter_value on page 532

• get_instance_parameters on page 530

• get_instance_property on page 526

• get_instances on page 522

• set_instance_parameter_value on page 535

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

517

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.2. add_connection

Description
Connects the named interfaces on child instances together using an appropriate
connection type. Both interface names consist of a child instance name, followed by
the name of an interface provided by that module. For example, mux0.out is the
interface named out on the instance named mux0. Be careful to connect the start to
the end, and not the other way around.

Availability
Main Program, Composition

Usage
add_connection <start> [<end> <kind> <name>]

Returns
The name of the newly added connection in start.point/end.point format.

Arguments

start The start interface to be connected, in
<instance_name>.<interface_name> format.

end (optional) The end interface to be connected,
<instance_name>.<interface_name>.

kind (optional) The type of connection, such as avalon or clock.

name
(optional)

A custom name for the connection. If unspecified, the name will be
<start_instance>.<interface>.<end_instance><interface>

Example

add_connection dma.read_master sdram.s1 avalon

Related Information

• add_instance on page 517

• get_instance_interfaces on page 523

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

518

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.3. get_connections

Description
Returns a list of all connections in the composed subsystem.

Availability
Main Program, Composition

Usage
get_connections

Returns
A list of connections.

Arguments
No arguments.

Example

set all_connections [get_connections]

Related Information

add_connection on page 518

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

519

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.4. get_connection_parameters

Description
Returns a list of parameters found on a connection.

Availability
Main Program, Composition

Usage
get_connection_parameters <connection>

Returns
A list of parameter names

Arguments

connection The connection to query.

Example

get_connection_parameters cpu.data_master/dma0.csr

Related Information

• add_connection on page 518

• get_connection_parameter_value on page 521

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

520

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.5. get_connection_parameter_value

Description
Returns the value of a parameter on the connection. Parameters represent aspects of
the connection that can be modified once the connection is created, such as the base
address for an Avalon Memory Mapped connection.

Availability
Composition

Usage
get_connection_parameter_value <connection> <parameter>

Returns
The value of the parameter.

Arguments

connection The connection to query.

parameter The name of the parameter.

Example

get_connection_parameter_value cpu.data_master/dma0.csr baseAddress

Related Information

• add_connection on page 518

• get_connection_parameters on page 520

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

521

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.6. get_instances

Description
Returns a list of the instance names for all child instances in the system.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_instances

Returns
A list of child instance names.

Arguments
No arguments.

Example

get_instances

Notes

This command can be used with instances created by either add_instance or
add_hdl_instance.

Related Information

• add_hdl_instance on page 514

• add_instance on page 517

• get_instance_parameter_value on page 532

• get_instance_parameters on page 530

• set_instance_parameter_value on page 535

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

522

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.7. get_instance_interfaces

Description
Returns a list of interfaces found in a child instance. The list of interfaces can change if
the parameterization of the instance changes.

Availability
Validation, Composition

Usage
get_instance_interfaces <instance>

Returns
A list of interface names.

Arguments

instance The name of the child instance.

Example

get_instance_interfaces pixel_converter

Related Information

• add_instance on page 517

• get_instance_interface_ports on page 524

• get_instance_interfaces on page 523

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

523

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.8. get_instance_interface_ports

Description
Returns a list of ports found in an interface of a child instance.

Availability
Validation, Composition, Fileset Generation

Usage
get_instance_interface_ports <instance> <interface>

Returns
A list of port names found in the interface.

Arguments

instance The name of the child instance.

interface The name of an interface on the child instance.

Example

set port_names [get_instance_interface_ports cpu data_master]

Related Information

• add_instance on page 517

• get_instance_interfaces on page 523

• get_instance_port_property on page 533

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

524

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.9. get_instance_interface_properties

Description
Returns the names of all of the properties of the specified interface

Availability
Validation, Composition

Usage
get_instance_interface_properties <instance> <interface>

Returns
List of property names.

Arguments

instance The name of the child instance.

interface The name of an interface on the instance.

Example

set properties [get_instance_interface_properties cpu data_master]

Related Information

• add_instance on page 517

• get_instance_interface_property on page 529

• get_instance_interfaces on page 523

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

525

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.10. get_instance_property

Description
Returns the value of a single instance property.

Availability
Main Program, Elaboration, Validation, Composition, Fileset Generation

Usage
get_instance_property <instance> <property>

Returns
Various.

Arguments

instance The name of the instance.

property The name of the property. Refer to Instance Properties.

Example

set my_name [get_instance_property myinstance NAME]

Related Information

• add_instance on page 517

• get_instance_properties on page 528

• set_instance_property on page 527

• Instance Properties on page 567

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

526

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.11. set_instance_property

Description
Allows a user to set the properties of a child instance.

Availability
Main Program, Elaboration, Validation, Composition

Usage
set_instance_property <instance> <property> <value>

Returns

Arguments

instance The name of the instance.

property The name of the property to set. Refer to Instance Properties.

value The new property value.

Example

set_instance_property myinstance SUPRESS_ALL_WARNINGS true

Related Information

• add_instance on page 517

• get_instance_properties on page 528

• get_instance_property on page 526

• Instance Properties on page 567

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

527

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.12. get_instance_properties

Description
Returns the names of all the instance properties as a list of strings. You can use the
get_instance_property and set_instance_property commands to get and set
values of individual properties. The value returned by this command is always the
same for a particular version of Platform Designer

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_instance_properties

Returns
List of strings. Refer to Instance Properties.

Arguments
No arguments.

Example

get_instance_properties

Related Information

• add_instance on page 517

• get_instance_property on page 526

• set_instance_property on page 527

• Instance Properties on page 567

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

528

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.13. get_instance_interface_property

Description
Returns the value of a property for an interface in a child instance.

Availability
Validation, Composition

Usage
get_instance_interface_property <instance> <interface> <property>

Returns
The value of the property.

Arguments

instance The name of the child instance.

interface The name of an interface on the child instance.

property The name of the property of the interface.

Example

set value [get_instance_interface_property cpu data_master setupTime]

Related Information

• add_instance on page 517

• get_instance_interfaces on page 523

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

529

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.14. get_instance_parameters

Description
Returns a list of names of the parameters on a child instance that can be set using
set_instance_parameter_value. It omits parameters that are derived and those
that have the SYSTEM_INFO parameter property set.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_instance_parameters <instance>

Returns
A list of parameters in the instance.

Arguments

instance The name of the child instance.

Example

set parameters [get_instance_parameters instance]

Notes

You can use this command with instances created by either add_instance or
add_hdl_instance.

Related Information

• add_hdl_instance on page 514

• add_instance on page 517

• get_instance_parameter_value on page 532

• get_instances on page 522

• set_instance_parameter_value on page 535

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

530

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.15. get_instance_parameter_property

Description
Returns the value of a property on a parameter in a child instance. Parameter
properties are metadata that describe how the Platform Designer tools use the
parameter.

Availability
Validation, Composition

Usage
get_instance_parameter_property <instance> <parameter> <property>

Returns
The value of the parameter property.

Arguments

instance The name of the child instance.

parameter The name of the parameter in the instance.

property The name of the property of the parameter. Refer to Parameter
Properties.

Example

get_instance_parameter_property instance parameter property

Related Information

• add_instance on page 517

• Parameter Properties on page 568

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

531

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.16. get_instance_parameter_value

Description
Returns the value of a parameter in a child instance. You cannot use this command to
get the value of parameters whose values are derived or those that are defined using
the SYSTEM_INFO parameter property.

Availability
Elaboration, Validation, Composition

Usage
get_instance_parameter_value <instance> <parameter>

Returns
The value of the parameter.

Arguments

instance The name of the child instance.

parameter Specifies the parameter whose value is being retrieved.

Example

set dpi [get_instance_parameter_value pixel_converter input_DPI]

Notes

You can use this command with instances created by either add_instance or
add_hdl_instance.

Related Information

• add_hdl_instance on page 514

• add_instance on page 517

• get_instance_parameters on page 530

• get_instances on page 522

• set_instance_parameter_value on page 535

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

532

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.17. get_instance_port_property

Description
Returns the value of a property of a port contained by an interface in a child instance.

Availability
Validation, Composition, Fileset Generation

Usage
get_instance_port_property <instance> <port> <property>

Returns
The value of the property for the port.

Arguments

instance The name of the child instance.

port The name of a port in one of the interfaces on the child instance.

property The property whose value is being retrieved. Only the following port
properties can be queried on ports of child instances: ROLE,
DIRECTION, WIDTH, WIDTH_EXPR and VHDL_TYPE. Refer to Port
Properties.

Example

get_instance_port_property instance port property

Related Information

• add_instance on page 517

• get_instance_interface_ports on page 524

• Port Properties on page 572

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

533

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.18. set_connection_parameter_value

Description
Sets the value of a parameter of the connection. The start and end are each interface
names of the format <instance>.<interface>. Connection parameters depend on
the type of connection, for Avalon-MM they include base addresses and arbitration
priorities.

Availability
Main Program, Composition

Usage
set_connection_parameter_value <connection> <parameter> <value>

Returns
No return value.

Arguments

connection Specifies the name of the connection as returned by the
add_conection command. It is of the form start.point/
end.point.

parameter The name of the parameter.

value The new parameter value.

Example

set_connection_parameter_value cpu.data_master/dma0.csr baseAddress "0x000a0000"

Related Information

• add_connection on page 518

• get_connection_parameter_value on page 521

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

534

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.19. set_instance_parameter_value

Description
Sets the value of a parameter for a child instance. Derived parameters and
SYSTEM_INFO parameters for the child instance cannot be set with this command.

Availability
Main Program, Elaboration, Composition

Usage
set_instance_parameter_value <instance> <parameter> <value>

Returns
Vo return value.

Arguments

instance Specifies the name of the child instance.

parameter Specifies the parameter that is being set.

value Specifies the new parameter value.

Example

set_instance_parameter_value uart_0 baudRate 9600

Notes

You can use this command with instances created by either add_instance or
add_hdl_instance.

Related Information

• add_hdl_instance on page 514

• add_instance on page 517

• get_instance_parameter_value on page 532

• get_instances on page 522

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

535

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6. Fileset Generation

add_fileset on page 537

add_fileset_file on page 538

set_fileset_property on page 539

get_fileset_file_attribute on page 540

set_fileset_file_attribute on page 541

get_fileset_properties on page 542

get_fileset_property on page 543

get_fileset_sim_properties on page 544

set_fileset_sim_properties on page 545

create_temp_file on page 546

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

536

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.1. add_fileset

Description
Adds a generation fileset for a particular target as specified by the kind. Platform
Designer calls the target (SIM_VHDL, SIM_VERILOG, QUARTUS_SYNTH, or
EXAMPLE_DESIGN) when the specified generation target is requested. You can define
multiple filesets for each kind of fileset. Platform Designer passes a single argument to
the specified callback procedure. The value of the argument is a generated name,
which you must use in the top-level module or entity declaration of your IP
component. To override this generated name, you can set the fileset property
TOP_LEVEL.

Availability
Main Program

Usage
add_fileset <name> <kind> [<callback_proc> <display_name>]

Returns
No return value.

Arguments

name The name of the fileset.

kind The kind of fileset. Refer to Fileset Properties.

callback_proc
(optional)

A string identifying the name of the callback procedure. If
you add files in the global section, you can then specify a
blank callback procedure.

display_name (optional) A display string to identify the fileset.

Example

add_fileset my_synthesis_fileset QUARTUS_SYNTH mySynthCallbackProc "My Synthesis"
proc mySynthCallbackProc { topLevelName } { ... }

Notes

If using the TOP_LEVEL fileset property, all parameterizations of the component must
use identical HDL.

Related Information

• add_fileset_file on page 538

• get_fileset_property on page 543

• Fileset Properties on page 580

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

537

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.2. add_fileset_file

Description
Adds a file to the generation directory. You can specify source file locations with either
an absolute path, or a path relative to the IP component's _hw.tcl file. When you
use the add_fileset_file command in a fileset callback, the Intel Quartus Prime
software compiles the files in the order that they are added.

Availability
Main Program, Fileset Generation

Usage
add_fileset_file <output_file> <file_type> <file_source> <path_or_contents>
[<attributes>]

Returns
No return value.

Arguments

output_file Specifies the location to store the file after Platform Designer
generation

file_type The kind of file. Refer to File Kind Properties.

file_source Specifies whether the file is being added by path, or by file contents.
Refer to File Source Properties.

path_or_contents When the file_source is PATH, specifies the file to be
copied to output_file. When the file_source is TEXT,
specifies the text contents to be stored in the file.

attributes
(optional)

An optional list of file attributes. Typically used to specify that
a file is intended for use only in a particular simulator. Refer
to File Attribute Properties.

Example

add_fileset_file "./implementation/rx_pma.sv" SYSTEM_VERILOG PATH synth_rx_pma.sv
add_fileset_file gui.sv SYSTEM_VERILOG TEXT "Customize your IP core"

Related Information

• add_fileset on page 537

• get_fileset_file_attribute on page 540

• File Kind Properties on page 584

• File Source Properties on page 585

• File Attribute Properties on page 583

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

538

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.3. set_fileset_property

Description
Allows you to set the properties of a fileset.

Availability
Main Program, Elaboration, Fileset Generation

Usage
set_fileset_property <fileset> <property> <value>

Returns
No return value.

Arguments

fileset The name of the fileset.

property The name of the property to set. Refer to Fileset Properties.

value The new property value.

Example

set_fileset_property mySynthFileset TOP_LEVEL simple_uart

Notes

When a fileset callback is called, the callback procedure is passed a single argument.
The value of this argument is a generated name which must be used in the top-level
module or entity declaration of your IP component. If set, the TOP_LEVEL specifies a
fixed name for the top-level name of your IP component.

The TOP_LEVEL property must be set in the global section. It cannot be set in a
fileset callback.

If using the TOP_LEVEL fileset property, all parameterizations of the IP component
must use identical HDL.

Related Information

• add_fileset on page 537

• Fileset Properties on page 580

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

539

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.4. get_fileset_file_attribute

Description
Returns the attribute of a fileset file.

Availability
Main Program, Fileset Generation

Usage
get_fileset_file_attribute <output_file> <attribute>

Returns
Value of the fileset File attribute.

Arguments

output_file Location of the output file.

attribute Specifies the name of the attribute Refer to File Attribute Properties.

Example

get_fileset_file_attribute my_file.sv ALDEC_SPECIFIC

Related Information

• add_fileset on page 537

• add_fileset_file on page 538

• get_fileset_file_attribute on page 540

• File Attribute Properties on page 583

• add_fileset on page 537

• add_fileset_file on page 538

• get_fileset_file_attribute on page 540

• File Attribute Properties on page 583

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

540

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.5. set_fileset_file_attribute

Description
Sets the attribute of a fileset file.

Availability
Main Program, Fileset Generation

Usage
set_fileset_file_attribute <output_file> <attribute> <value>

Returns
The attribute value if it was set.

Arguments

output_file Location of the output file.

attribute Specifies the name of the attribute Refer to File Attribute Properties.

value Value to set the attribute to.

Example

set_fileset_file_attribute my_file_pkg.sv COMMON_SYSTEMVERILOG_PACKAGE
my_file_package

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

541

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.6. get_fileset_properties

Description
Returns a list of properties that can be set on a fileset.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_fileset_properties

Returns
A list of property names. Refer to Fileset Properties.

Arguments
No arguments.

Example

get_fileset_properties

Related Information

• add_fileset on page 537

• get_fileset_properties on page 542

• set_fileset_property on page 539

• Fileset Properties on page 580

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

542

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.7. get_fileset_property

Description
Returns the value of a fileset property for a fileset.

Availability
Main Program, Elaboration, Fileset Generation

Usage
get_fileset_property <fileset> <property>

Returns
The value of the property.

Arguments

fileset The name of the fileset.

property The name of the property to query. Refer to Fileset Properties.

Example

get_fileset_property fileset property

Related Information

Fileset Properties on page 580

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

543

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.8. get_fileset_sim_properties

Description
Returns simulator properties for a fileset.

Availability
Main Program, Fileset Generation

Usage
get_fileset_sim_properties <fileset> <platform> <property>

Returns
The fileset simulator properties.

Arguments

fileset The name of the fileset.

platform The operating system that applies to the property. Refer to Operating
System Properties.

property Specifies the name of the property to set. Refer to Simulator
Properties.

Example

get_fileset_sim_properties my_fileset LINUX64 OPT_CADENCE_64BIT

Related Information

• add_fileset on page 537

• set_fileset_sim_properties on page 545

• Operating System Properties on page 592

• Simulator Properties on page 586

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

544

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.9. set_fileset_sim_properties

Description
Sets simulator properties for a given fileset

Availability
Main Program, Fileset Generation

Usage
set_fileset_sim_properties <fileset> <platform> <property> <value>

Returns
The fileset simulator properties if they were set.

Arguments

fileset The name of the fileset.

platform The operating system that applies to the property. Refer to Operating
System Properties.

property Specifies the name of the property to set. Refer to Simulator
Properties.

value Specifies the value of the property.

Example

set_fileset_sim_properties my_fileset LINUX64 OPT_MENTOR_PLI "{libA} {libB}"

Related Information

• get_fileset_sim_properties on page 544

• Operating System Properties on page 592

• Simulator Properties on page 586

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

545

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.10. create_temp_file

Description
Creates a temporary file, which you can use inside the fileset callbacks of a _hw.tcl
file. This temporary file is included in the generation output if it is added using the
add_fileset_file command.

Availability
Fileset Generation

Usage
create_temp_file <path>

Returns
The path to the temporary file.

Arguments

path The name of the temporary file.

Example

set filelocation [create_temp_file "./hdl/compute_frequency.v"]
add_fileset_file compute_frequency.v VERILOG PATH ${filelocation}

Related Information

• add_fileset on page 537

• add_fileset_file on page 538

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

546

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7. Miscellaneous

check_device_family_equivalence on page 548

get_device_family_displayname on page 549

get_qip_strings on page 550

set_qip_strings on page 551

set_interconnect_requirement on page 552

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

547

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7.1. check_device_family_equivalence

Description
Returns 1 if the device family is equivalent to one of the families in the device families
list. Returns 0 if the device family is not equivalent to any families. This command
ignores differences in capitalization and spaces.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Fileset
Generation, Parameter Upgrade

Usage
check_device_family_equivalence <device_family> <device_family_list>

Returns
1 if equivalent, 0 if not equivalent.

Arguments

device_family The device family name that is being checked.

device_family_list The list of device family names to check against.

Example

check_device_family_equivalence "CYLCONE III LS" { "stratixv" "Cyclone IV"
"cycloneiiils" }

Related Information

get_device_family_displayname on page 549

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

548

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7.2. get_device_family_displayname

Description
Returns the display name of a given device family.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Fileset
Generation, Parameter Upgrade

Usage
get_device_family_displayname <device_family>

Returns
The preferred display name for the device family.

Arguments

device_family A device family name.

Example

get_device_family_displayname cycloneiiils (returns: "Cyclone IV LS")

Related Information

check_device_family_equivalence on page 548

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

549

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7.3. get_qip_strings

Description
Returns a Tcl list of QIP strings for the IP component.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Parameter
Upgrade

Usage
get_qip_strings

Returns
A Tcl list of qip strings set by this IP component.

Arguments
No arguments.

Example

set strings [get_qip_strings]

Related Information

set_qip_strings on page 551

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

550

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7.4. set_qip_strings

Description
Places strings in the Intel Quartus Prime IP File (.qip) file, which Platform Designer
passes to the command as a Tcl list. You add the .qip file to your Intel Quartus Prime
project on the Files page, in the Settings dialog box. Successive calls to
set_qip_strings are not additive and replace the previously declared value.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Parameter
Upgrade

Usage
set_qip_strings <qip_strings>

Returns
The Tcl list which was set.

Arguments

qip_strings A space-delimited Tcl list.

Example

set_qip_strings {"QIP Entry 1" "QIP Entry 2"}

Notes
You can use the following macros in your QIP strings entry:

%entityName% The generated name of the entity replaces this macro when
the string is written to the .qip file.

%libraryName% The compilation library this IP component was compiled into
is inserted in place of this macro inside the .qip file.

%instanceName% The name of the instance is inserted in place of this macro
inside the .qip file.

Related Information

get_qip_strings on page 550

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

551

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7.5. set_interconnect_requirement

Description
Sets the value of an interconnect requirement for a system or an interface on a child
instance.

Availability
Composition

Usage
set_interconnect_requirement <element_id> <name> <value>

Returns
No return value

Arguments

element_id {$system} for system requirements, or qualified name of the
interface of an instance, in <instance>.<interface> format.
Note that the system identifier has to be escaped in TCL.

name The name of the requirement.

value The new requirement value.

Example

set_interconnect_requirement {$system} qsys_mm.maxAdditionalLatency 2

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

552

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.8. SystemVerilog Interface Commands

add_sv_interface on page 554

get_sv_interfaces on page 555

get_sv_interface_property on page 556

get_sv_interface_properties on page 557

set_sv_interface_property on page 558

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

553

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.8.1. add_sv_interface

Description
Adds a SystemVerilog interface to the IP component.

Availability
Elaboration, Global

Usage
add_sv_interface <sv_interface_name> <sv_interface_type>

Returns
No return value.

Arguments

sv_interface_name The name of the SystemVerilog interface in the IP
component.

sv_interface_type The type of the SystemVerilog interface used by the IP
component.

Example

add_sv_interface my_sv_interface my_sv_interface_type

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

554

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.8.2. get_sv_interfaces

Description
Returns the list of SystemVerilog interfaces in the IP component.

Availability
Elaboration, Global

Usage
get_sv_interfaces

Returns

String[] Returns the list of SystemVerilog interfaces defined in the IP
component.

Arguments
No arguments.

Example

get_sv_interfaces

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

555

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.8.3. get_sv_interface_property

Description
Returns the value of a single SystemVerilog interface property from the specified
interface.

Availability
Elaboration, Global

Usage
get_sv_interface_property <sv_interface_name> <sv_interface_property>

Returns

various The property value.

Arguments

sv_interface_name The name of a SystemVerilog interface of the system.

sv_interface_property The name of the property. Refer to System Verilog
Interface Properties.

Example

get_sv_interface_property my_sv_interface USE_ALL_PORTS

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

556

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.8.4. get_sv_interface_properties

Description
Returns the names of all the available SystemVerilog interface properties common to
all interface types.

Availability
Elaboration, Global

Usage
get_sv_interface_properties

Returns

String[] The list of SystemVerilog interface properties.

Arguments
No arguments.

Example

get_sv_interface_properties

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

557

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.8.5. set_sv_interface_property

Description
Sets the value of a property on a SystemVerilog interface.

Availability
Elaboration, Global

Usage
set_sv_interface_property <sv_interface_name> <sv_interface_property>
<value>

Returns
No return value.

Arguments

interface The name of a SystemVerilog interface.

sv_interface_property The name of the property. Refer to SystemVerilog
Interface Properties.

value The property value.

Example

set_sv_interface_property my_sv_interface USE_ALL_PORTS True

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

558

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.9. Wire-Level Expression Commands

set_wirelevel_expression on page 435

get_wirelevel_expressions on page 436

remove_wirelevel_expressions on page 437

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

559

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.9.1. set_wirelevel_expression

Description
Applies a wire-level expression to an optional input port or instance in the system.

Usage
set_wirelevel_expression <instance_or_port_bitselection> <expression>

Returns
No return value.

Arguments

instance_or_port_bitselection Specify the instance or port to which the wire-
level expression using the
<instance_name>.<port_name>[<bit_selection>]
format. The bit selection can be a bit-select, for
example [0], or a partial range defined in
descending order, for example [7:0]. If no bit
selection is specified, the full range of the port is
selected.

expression The expression to be applied to an optional input
port.

Examples

set_wirelevel_expression {module0.portA[7:0]} "8'b0"
set_wirelevel_expression module0.portA "8'b0"
set_wirelevel_expression {module0.portA[0]} "1'b0"

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

560

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.9.2. get_wirelevel_expressions

Description
Retrieve a list of wire-level expressions from an optional input port, instance, or all
expressions in the current level of system hierarchy. If the port bit selection is
specified as an argument, the range must be identical to what was used in the
set_wirelevel_expression statement.

Usage
get_wirelevel_expressions <instance_or_port_bitselection>

Returns

String[] A flattened list of wire-level expressions. Every item in the list consists
of right- and left-hand clauses of a wire-level expression. You can loop
over the returned list using foreach{port expr}
$return_list{}.

Arguments

instance_or_port_bitselection Specifies which instance or port from which a list
of wire-level expressions are retrieved using the
<instance_name>.<port_name>[<bit_selection>]
format.

• If no <port_name>[<bit_selection>] is
specified, the command causes the return of
all expressions from the specified instance.

• If no argument is present, the command
causes the return of all expressions from the
current level of system hierarchy.

The bit selection can be a bit-select, for example
[0], or a partial range defined in descending order,
for example [7:0]. If no bit selection is specified,
the full range of the port is selected.

Example

get_wirelevel_expressions
get_wirelevel_expressions module0
get_wirelevel_expressions {module0.portA[7:0]}

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

561

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.9.3. remove_wirelevel_expressions

Description
Remove a list of wire-level expressions from an optional input port, instance, or all
expressions in the current level of system hierarchy. If the port bit selection is
specified as an argument, the range must be identical to what was used in the
set_wirelevel_expressions statement.

Usage
remove_wirelevel_expressions <instance_or_port_bitselection>

Returns
No return value.

Arguments

instance_or_port_bitselection Specifies which instance or port from which a list
of wire-level expressions are removed using the
<instance_name>.<port_name>[<bit_selection>]
format.

• If no <port_name>[<bit_selection>] is
specified, the command causes the removal of
all expressions from the specified instance.

• If no argument is present, the command
causes the return of all expressions from the
current level of system hierarchy.

The bit selection can be a bit-select, for example
[0], or a partial range defined in descending order,
for example [7:0]. If no bit selection is specified,
the full range of the port is selected.

Examples

remove_wirelevel_expressions
remove_wirelevel_expressions module0
remove_wirelevel_expressions {module0.portA[7:0]}

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

562

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2. Platform Designer _hw.tcl Property Reference

Script Language Properties on page 564

Interface Properties on page 565

SystemVerilog Interface Properties on page 565

Instance Properties on page 567

Parameter Properties on page 568

Parameter Type Properties on page 570

Parameter Status Properties on page 571

Port Properties on page 572

Direction Properties on page 574

Display Item Properties on page 575

Display Item Kind Properties on page 576

Display Hint Properties on page 577

Module Properties on page 578

Fileset Properties on page 580

Fileset Kind Properties on page 581

Callback Properties on page 582

File Attribute Properties on page 583

File Kind Properties on page 584

File Source Properties on page 585

Simulator Properties on page 586

Port VHDL Type Properties on page 587

System Info Type Properties on page 588

Design Environment Type Properties on page 590

Units Properties on page 591

Operating System Properties on page 592

Quartus.ini Type Properties on page 593

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

563

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.1. Script Language Properties

Name Description

TCL Implements the script in Tcl.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

564

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.2. Interface Properties

Name Description

CMSIS_SVD_FILE Specifies the connection point's associated CMSIS file.

CMSIS_SVD_VARIABLES Defines the variables inside a .svd file.

ENABLED Specifies whether or not interface is enabled.

EXPORT_OF For composed _hwl.tcl files, the EXPORT_OF property indicates
which interface of a child instance is to be exported through this
interface. Before using this command, you must have created the
border interface using add_interface. The interface to be
exported is of the form <instanceName.interfaceName>.
Example:

set_interface_property CSC_input
 EXPORT_OF my_colorSpaceConverter.input_port

PORT_NAME_MAP A map of external port names to internal port names, formatted as
a Tcl list. Example:

set_interface_property <interface name> PORT_NAME_MAP
 "<new port name> <old port name> <new port name 2> <old
port name 2>"

SVD_ADDRESS_GROUP Generates a CMSIS SVD file. Masters in the same SVD address
group write register data of their connected slaves into the same
SVD file

SVD_ADDRESS_OFFSET Generates a CMSIS SVD file. Slaves connected to this master have
their base address offset by this amount in the SVD file.

SV_INTERFACE When SV_INTERFACE is set, all the ports in the given interface are
part of the SystemVerilog interface.
Example:

set_interface_property my_qsys_interface SV_INTERFACE
 my_sv_interface

IPXACT_REGISTER_MAP Specifies the connection point's associated IP-XACT register map
file. Platform Designer supports register map files in IP-XACT 2009
or 2014 format.
Example:

set_interface_property my_qsys_interface
 IPXACT_REGISTER_MAP <path_to_ipxact_reg_file>

IPXACT_REGISTER_MAP_VARIABLES For macro substitution inside the IP-XACT register map file.
Specifies a list of key value pairs, where key is the macro name and
value is the replacement text that substitutes the macros in the IP-
XACT register map.

Related Information

Interfaces and Ports on page 468

7.2.3. SystemVerilog Interface Properties

Name Description

SV_INTERFACE_TYPE Set the interface type of the SystemVerilog interface.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

565

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Description

USE_ALL_PORTS When USE_ALL_PORTS is set to true, all the ports defined in the Module, are
declared in this SystemVerilog interface.
USE_ALL_PORTS must be set to true only if the module has one SystemVerilog
interface and the SystemVerilog interface signal names match with the port names
declared for Platform Designer interface.
When USE_ALL_PORTS is true, SV_INTERFACE_PORT or SV_INTERFACE_SIGNAL
port properties should not be set.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

566

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.4. Instance Properties

Name Description

HDLINSTANCE_GET_GENERATED_NAME Platform Designer uses this property to get the auto-generated
fixed name when the instance property
HDLINSTANCE_USE_GENERATED_NAME is set to true, and only
applies to fileSet callbacks.

HDLINSTANCE_USE_GENERATED_NAME If true, instances added with the add_hdl_instance command
are instructed to use unique auto-generated fixed names based on
the parameterization.

SUPPRESS_ALL_INFO_MESSAGES If true, allows you to suppress all Info messages that originate
from a child instance.

SUPPRESS_ALL_WARNINGS If true, allows you to suppress alL warnings that originate from a
child instance

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

567

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.5. Parameter Properties

Type Name Description

Boolean AFFECTS_ELABORATION Set AFFECTS_ELABORATION to false for parameters that do not
affect the external interface of the module. An example of a
parameter that does not affect the external interface is
isNonVolatileStorage. An example of a parameter that does
affect the external interface is width. When the value of a
parameter changes, if that parameter has set
AFFECTS_ELABORATION=false, the elaboration phase (calling
the callback or hardware analysis) is not repeated, improving
performance. Because the default value of
AFFECTS_ELABORATION is true, the provided HDL file is
normally re-analyzed to determine the new port widths and
configuration every time a parameter changes.

Boolean AFFECTS_GENERATION The default value of AFFECTS_GENERATION is false if you
provide a top-level HDL module; it is true if you provide a fileset
callback. Set AFFECTS_GENERATION to false if the value of a
parameter does not change the results of fileset generation.

Boolean AFFECTS_VALIDATION The AFFECTS_VALIDATION property marks whether a
parameter's value is used to set derived parameters, and whether
the value affects validation messages. When set to false, this
may improve response time in the parameter editor UI when the
value is changed.

String[] ALLOWED_RANGES Indicates the range or ranges that the parameter value can have.
For integers, The ALLOWED_RANGES property is a list of ranges
that the parameter can take on, where each range is a single
value, or a range of values defined by a start and end value
separated by a colon, such as 11:15. This property can also
specify legal values and display strings for integers, such as
{0:None 1:Monophonic 2:Stereo 4:Quadrophonic}
meaning 0, 1, 2, and 4 are the legal values. You can also assign
display strings to be displayed in the parameter editor for string
variables. For example, ALLOWED_RANGES {"dev1:Cyclone IV
GX""dev2:Stratix V GT"}.

String DEFAULT_VALUE The default value.

Boolean DERIVED When true, indicates that the parameter value can only be set by
the IP component, and cannot be set by the user. Derived
parameters are not saved as part of an instance's parameter
values. The default value is false.

String DESCRIPTION A short user-visible description of the parameter, suitable for a
tooltip description in the parameter editor.

String[] DISPLAY_HINT Provides a hint about how to display a property. The following
values are possible:
• boolean--for integer parameters whose value can be 0 or

1. The parameter displays as an option that you can turn on or
off.

• radio--displays a parameter with a list of values as radio
buttons instead of a drop-down list.

• hexadecimal--for integer parameters, display and
interpret the value as a hexadecimal number, for example:
0x00000010 instead of 16.

• fixed_size--for string_list and integer_list
parameters, the fixed_size DISPLAY_HINT eliminates the
add and remove buttons from tables.

String DISPLAY_NAME This is the GUI label that appears to the left of this parameter.

String DISPLAY_UNITS This is the GUI label that appears to the right of the parameter.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

568

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

Boolean ENABLED When false, the parameter is disabled, meaning that it is
displayed, but greyed out, indicating that it is not editable on the
parameter editor.

String GROUP Controls the layout of parameters in GUI

Boolean HDL_PARAMETER When true, the parameter must be passed to the HDL IP
component description. The default value is false.

String LONG_DESCRIPTION A user-visible description of the parameter. Similar to
DESCRIPTION, but allows for a more detailed explanation.

String NEW_INSTANCE_VALUE This property allows you to change the default value of a
parameter without affecting older IP components that have did
not explicitly set a parameter value, and use the DEFAULT_VALUE
property. The practical result is that older instances continue to
use DEFAULT_VALUE for the parameter and new instances use
the value that NEW_INSTANCE_VALUE assigns.

String SV_INTERFACE_PARAMETER This parameter is used in the SystemVerilog interface
instantiation.
Example:

set_parameter_property my_parameter SV_INTERFACE_PARAMETER
my_sv_interface

String[] SYSTEM_INFO Allows you to assign information about the instantiating system to
a parameter that you define. SYSTEM_INFO requires an argument
specifying the type of information requested, <info-type>.

String SYSTEM_INFO_ARG Defines an argument to be passed to a particular SYSTEM_INFO
function, such as the name of a reset interface.

(various) SYSTEM_INFO_TYPE Specifies one of the types of system information that can be
queried. Refer to System Info Type Properties.

(various) TYPE Specifies the type of the parameter. Refer to Parameter Type
Properties.

(various) UNITS Sets the units of the parameter. Refer to Units Properties.

Boolean VISIBLE Indicates whether or not to display the parameter in the
parameterization GUI.

String WIDTH For a STD_LOGIC_VECTOR parameter, this indicates the width of
the logic vector.

Related Information

• System Info Type Properties on page 588

• Parameter Type Properties on page 570

• Units Properties on page 591

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

569

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.6. Parameter Type Properties

Name Description

BOOLEAN A boolean parameter whose value is true or false.

FLOAT A signed 32-bit floating point parameter. Not supported for HDL parameters.

INTEGER A signed 32-bit integer parameter.

INTEGER_LIST A parameter that contains a list of 32-bit integers. Not supported for HDL
parameters.

LONG A signed 64-bit integer parameter. Not supported for HDL parameters.

NATURAL A 32-bit number that contain values 0 to 2147483647 (0x7fffffff).

POSITIVE A 32-bit number that contains values 1 to 2147483647 (0x7fffffff).

STD_LOGIC A single bit parameter whose value can be 1 or 0;

STD_LOGIC_VECTOR An arbitrary-width number. The parameter property WIDTH determines the size of the
logic vector.

STRING A string parameter.

STRING_LIST A parameter that contains a list of strings. Not supported for HDL parameters.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

570

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.7. Parameter Status Properties

Type Name Description

Boolean ACTIVE Indicates the parameter is a regular parameter.

Boolean DEPRECATED Indicates the parameter exists only for backwards compatibility, and may not
have any effect.

Boolean EXPERIMENTAL Indicates the parameter is experimental, and not exposed in the design flow.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

571

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.8. Port Properties

Type Name Description

(various) DIRECTION The direction of the port from the IP component's perspective.
Refer to Direction Properties.

String DRIVEN_BY Indicates that this output port is always driven to a constant
value or by an input port. If all outputs on an IP component
specify a driven_by property, the HDL for the IP component
is generated automatically.

String[] FRAGMENT_LIST This property can be used in 2 ways: First you can take a
single RTL signal and split it into multiple Platform Designer
signals add_interface_port <interface> foo <role>
<direction> <width> add_interface_port
<interface> bar <role> <direction> <width>
set_port_property foo fragment_list
"my_rtl_signal(3:0)" set_port_property bar
fragment_list "my_rtl_signal(6:4)" Second you can
take multiple RTL signals and combine them into a single
Platform Designer signal add_interface_port
<interface> baz <role> <direction> <width>
set_port_property baz fragment_list
"rtl_signal_1(3:0) rtl_signal_2(3:0)" Note: The
listed bits in a port fragment must match the declared width
of the Platform Designer signal.

String ROLE Specifies an Avalon signal type such as waitrequest,
readdata, or read. For a complete list of signal types, refer
to the Avalon Interface Specifications.

String SV_INTERFACE_PORT This port from the module is used as I/O in the SystemVerilog
interface instantiation. The top-level wrapper of the module
which contains this port is from the SystemVerilog interface.
Example:

set_port_property port_x SV_INTERFACE_PORT my_sv_interface

String SV_INTERFACE_PORT_NAME This property is used only when the Platform Designer port
name defined for the module is different from the port name
in the SystemVerilog interface.
Example:

set_port_property port_x SV_INTERFACE_PORT_NAME port_a

When writing the RTL, the Platform Designer port name
port_x is mapped to RTL name port_a in the SystemVerilog
interface

String SV_INTERFACE_SIGNAL This port from the module is assumed to be inside the
SystemVerilog interface or the modport used by the module.
The top-level wrapper of the module containing this port is
unwrapped from SystemVerilog interface.
Example:

set_port_property port_y SV_INTERFACE_SIGNAL
my_sv_interface

String SV_INTERFACE_SIGNAL_NAME This property is only used when the Platform Designer port
name defined for the module is different from the port name
in the SystemVerilog interface.
Example:

set_port_property port_y SV_INTERFACE_SIGNAL_NAME port_b

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

572

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

Boolean TERMINATION When true, instead of connecting the port to the Platform
Designer system, it is left unconnected for output and
bidir or set to a fixed value for input. Has no effect for IP
components that implement a generation callback instead of
using the default wrapper generation.

BigInteger TERMINATION_VALUE The constant value to drive an input port.

(various) VHDL_TYPE Indicates the type of a VHDL port. The default value, auto,
selects std_logic if the width is fixed at 1, and
std_logic_vector otherwise. Refer to Port VHDL Type
Properties.

String WIDTH The width of the port in bits. Cannot be set directly. Any
changes must be set through the WIDTH_EXPR property.

String WIDTH_EXPR The width expression of a port. The width_value_expr
property can be set directly to a numeric value if desired.
When get_port_property is used width always returns the
current integer width of the port while width_expr always
returns the unevaluated width expression.

Integer WIDTH_VALUE The width of the port in bits. Cannot be set directly. Any
changes must be set through the WIDTH_EXPR property.

Related Information

• Direction Properties on page 574

• Port VHDL Type Properties on page 587

• Avalon Interface Specifications

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

573

https://www.intel.com/content/www/us/en/docs/programmable/683091/current/introduction-to-the-interface-specifications.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.9. Direction Properties

Name Description

Bidir Direction for a bidirectional signal.

Input Direction for an input signal.

Output Direction for an output signal.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

574

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.10. Display Item Properties

Type Name Description

String DESCRIPTION A description of the display item, which you can use as a tooltip.

String[] DISPLAY_HINT A hint that affects how the display item displays in the parameter editor.

String DISPLAY_NAME The label for the display item in a the parameter editor.

Boolean ENABLED Indicates whether the display item is enabled or disabled.

String PATH The path to a file. Only applies to display items of type ICON.

String TEXT Text associated with a display item. Only applies to display items of type TEXT.

Boolean VISIBLE Indicates whether this display item is visible or not.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

575

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.11. Display Item Kind Properties

Name Description

ACTION An action displays as a button in the GUI. When the button is clicked, it calls the callback
procedure. The button label is the display item id.

GROUP A group that is a child of the parent_group group. If the parent_group is an empty string,
this is a top-level group.

ICON A .gif, .jpg, or .png file.

PARAMETER A parameter in the instance.

TEXT A block of text.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

576

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.12. Display Hint Properties

Name Description

BIT_WIDTH Bit width of a number

BOOLEAN Integer value either 0 or 1.

COLLAPSED Indicates whether a group is collapsed when initially displayed.

COLUMNS Number of columns in text field, for example, "columns:N".

EDITABLE Indicates whether a list of strings allows free-form text entry (editable combo box).

FILE Indicates that the string is an optional file path, for example, "file:jpg,png,gif".

FIXED_SIZE Indicates a fixed size for a table or list.

GROW if set, the widget can grow when the IP component is resized.

HEXADECIMAL Indicates that the long integer is hexadecimal.

RADIO Indicates that the range displays as radio buttons.

ROWS Number of rows in text field, or visible rows in a table, for example, "rows:N".

SLIDER Range displays as slider.

TAB if present for a group, the group displays in a tab

TABLE if present for a group, the group must contain all list-type parameters, which display
collectively in a single table.

TEXT String is a text field with a limited character set, for example, "text:A-Za-z0-9_".

WIDTH width of a table column

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

577

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.13. Module Properties

Name Description

ANALYZE_HDL When set to false, prevents a call to the Intel Quartus Prime
mapper to verify port widths and directions, speeding up
generation time at the expense of fewer validation checks. If this
property is set to false, invalid port widths and directions are
discovered during the Intel Quartus Prime software compilation.
This does not affect IP components using filesets to manage
synthesis files.

AUTHOR The IP component author.

COMPOSITION_CALLBACK The name of the composition callback. If you define a
composition callback, you cannot not define the generation or
elaboration callbacks.

DATASHEET_URL Deprecated. Use add_documentation_link to provide
documentation links.

DESCRIPTION The description of the IP component, such as "This IP component
implements a half-rate bridge."

DISPLAY_NAME The name to display when referencing the IP component, such as
"My Platform Designer IP Component".

EDITABLE Indicates whether you can edit the IP component in the
Component Editor.

ELABORATION_CALLBACK The name of the elaboration callback. When set, the IP
component's elaboration callback is called to validate and
elaborate interfaces for instances of the IP component.

GENERATION_CALLBACK The name for a custom generation callback.

GROUP The group in the IP Catalog that includes this IP component.

ICON_PATH A path to an icon to display in the IP component's parameter
editor.

INSTANTIATE_IN_SYSTEM_MODULE If true, this IP component is implemented by HDL provided by the
IP component. If false, the IP component creates exported
interfaces allowing the implementation to be connected in the
parent.

INTERNAL An IP component which is marked as internal does not appear in
the IP Catalog. This feature allows you to hide the sub-IP-
components of a larger composed IP component.

MODULE_DIRECTORY The directory in which the hw.tcl file exists.

MODULE_TCL_FILE The path to the hw.tcl file.

NAME The name of the IP component, such as my_qsys_component.

OPAQUE_ADDRESS_MAP For composed IP components created using a _hw.tcl file that
include children that are memory-mapped slaves, specifies
whether the children's addresses are visible to downstream
software tools. When true, the children's address are not visible.
When false, the children's addresses are visible.

PREFERRED_SIMULATION_LANGUAGE The preferred language to use for selecting the fileset for
simulation model generation.

REPORT_HIERARCHY null

STATIC_TOP_LEVEL_MODULE_NAME Deprecated.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

578

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Description

STRUCTURAL_COMPOSITION_CALLBACK The name of the structural composition callback. This callback is
used to represent the structural hierarchical model of the IP
component and the RTL can be generated either with module
property COMPOSITION_CALLBACK or by ADD_FILESET with
target QUARTUS_SYNTH

SUPPORTED_DEVICE_FAMILIES A list of device family supported by this IP component.

TOP_LEVEL_HDL_FILE Deprecated.

TOP_LEVEL_HDL_MODULE Deprecated.

UPGRADEABLE_FROM null

VALIDATION_CALLBACK The name of the validation callback procedure.

VERSION The IP component's version, such as 10.0.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

579

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.14. Fileset Properties

Name Description

ENABLE_FILE_OVERWRITE_MODE null

ENABLE_RELATIVE_INCLUDE_PATHS If true, HDL files can include other files using relative paths in the
fileset.

TOP_LEVEL The name of the top-level HDL module that the fileset generates. If
set, the HDL top level must match the TOP_LEVEL name, and the
HDL must not be parameterized. Platform Designer runs the
generate callback one time, regardless of the number of instances in
the system.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

580

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.15. Fileset Kind Properties

Name Description

EXAMPLE_DESIGN Contains example design files.

QUARTUS_SYNTH Contains files that Platform Designer uses for the Intel Quartus Prime
software synthesis.

SIM_VERILOG Contains files that Platform Designer uses for Verilog HDL simulation.

SIM_VHDL Contains files that Platform Designer uses for VHDL simulation.

SYSTEMVERILOG_INTERFACE This file is treated as SystemVerilog interface file by the Platform Designer.
Example:

add_fileset_file mem_ifc.sv SYTEM_VERILOG PATH “.ifc/mem_ifc.sv”
SYSTEMVERILOG_INTERFACE

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

581

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.16. Callback Properties

Description
This list describes each type of callback. Each command may only be available in some
callback contexts.

Name Description

ACTION Called when an ACTION display item's action is performed.

COMPOSITION Called during instance elaboration when the IP component contains a
subsystem.

EDITOR Called when the IP component is controlling the parameterization
editor.

ELABORATION Called to elaborate interfaces and signals after a parameter change. In
API 9.1 and later, validation is called before elaboration. In API 9.0 and
earlier, elaboration is called before validation.

GENERATE_VERILOG_SIMULATION Called when the IP component uses a custom generator to generates
the Verilog simulation model for an instance.

GENERATE_VHDL_SIMULATION Called when the IP component uses a custom generator to generates
the VHDL simulation model for an instance.

GENERATION Called when the IP component uses a custom generator to generates
the synthesis HDL for an instance.

PARAMETER_UPGRADE Called when attempting to instantiate an IP component with a newer
version than the saved version. This allows the IP component to
upgrade parameters between released versions of the component.

STRUCTURAL_COMPOSITION Called during instance elaboration when an IP component is
represented by a structural hierarchical model which may be different
from the generated RTL.

VALIDATION Called to validate parameter ranges and report problems with the
parameter values. In API 9.1 and later, validation is called before
elaboration. In API 9.0 and earlier, elaboration is called before
validation.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

582

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.17. File Attribute Properties

Name Description

ALDEC_SPECIFIC Applies to Aldec simulation tools and for simulation filesets only.

CADENCE_SPECIFIC Applies to Cadence simulation tools and for simulation filesets only.

COMMON_SYSTEMVERILOG_PACKAGE The name of the common SystemVerilog package. Applies to
simulation filesets only.

MENTOR_SPECIFIC Applies to Mentor simulation tools and for simulation filesets only.

SYNOPSYS_SPECIFIC Applies to Synopsys simulation tools and for simulation filesets only.

TOP_LEVEL_FILE Contains the top-level module for the fileset and applies to synthesis
filesets only.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

583

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.18. File Kind Properties

Name Description

DAT DAT Data

FLI_LIBRARY FLI Library

HEX HEX Data

MIF MIF Data

OTHER Other

PLI_LIBRARY PLI Library

QXP QXP File

SDC Timing Constraints

SYSTEM_VERILOG SystemVerilog HDL

SYSTEM_VERILOG_ENCRYPT Encrypted SystemVerilog HDL

SYSTEM_VERILOG_INCLUDE SystemVerilog Include

VERILOG Verilog HDL

VERILOG_ENCRYPT Encrypted Verilog HDL

VERILOG_INCLUDE Verilog Include

VHDL VHDL

VHDL_ENCRYPT Encrypted VHDL

VPI_LIBRARY VPI Library

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

584

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.19. File Source Properties

Name Description

PATH Specifies the original source file and copies to output_file.

TEXT Specifies an arbitrary text string for the contents of output_file.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

585

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.20. Simulator Properties

Name Description

ENV_ALDEC_LD_LIBRARY_PATH LD_LIBRARY_PATH when running riviera-pro

ENV_CADENCE_LD_LIBRARY_PATH LD_LIBRARY_PATH when running ncsim

ENV_MENTOR_LD_LIBRARY_PATH LD_LIBRARY_PATH when running modelsim

ENV_SYNOPSYS_LD_LIBRARY_PATH LD_LIBRARY_PATH when running vcs

OPT_ALDEC_PLI -pli option for riviera-pro

OPT_CADENCE_64BIT -64bit option for ncsim

OPT_CADENCE_PLI -loadpli1 option for ncsim

OPT_CADENCE_SVLIB -sv_lib option for ncsim

OPT_CADENCE_SVROOT -sv_root option for ncsim

OPT_MENTOR_64 -64 option for modelsim

OPT_MENTOR_CPPPATH -cpppath option for modelsim

OPT_MENTOR_LDFLAGS -ldflags option for modelsim

OPT_MENTOR_PLI -pli option for modelsim

OPT_SYNOPSYS_ACC +acc option for vcs

OPT_SYNOPSYS_CPP -cpp option for vcs

OPT_SYNOPSYS_FULL64 -full64 option for vcs

OPT_SYNOPSYS_LDFLAGS -LDFLAGS option for vcs

OPT_SYNOPSYS_LLIB -l option for vcs

OPT_SYNOPSYS_VPI +vpi option for vcs

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

586

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.21. Port VHDL Type Properties

Name Description

AUTO The VHDL type of this signal is automatically determined. Single-bit signals are
STD_LOGIC; signals wider than one bit are STD_LOGIC_VECTOR.

STD_LOGIC Indicates that the signal is not rendered in VHDL as a STD_LOGIC signal.

STD_LOGIC_VECTOR Indicates that the signal is rendered in VHDL as a STD_LOGIC_VECTOR signal.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

587

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.22. System Info Type Properties

Type Name Description

String ADDRESS_MAP An XML-formatted string describing the address map for
the interface specified in the system info argument.

Integer ADDRESS_WIDTH The number of address bits required to address all
memory-mapped slaves connected to the specified
memory-mapped master in this instance, using byte
addresses.

String AVALON_SPEC The version of the interconnect. SOPC Builder
interconnect uses Avalon Specification 1.0. Platform
Designer interconnect uses Avalon Specification 2.0.

Integer CLOCK_DOMAIN An integer that represents the clock domain for the
interface specified in the system info argument. If this
instance has interfaces on multiple clock domains, this
can be used to determine which interfaces are on each
clock domain. The absolute value of the integer is
arbitrary.

Long, Integer CLOCK_RATE The rate of the clock connected to the clock input
specified in the system info argument. If 0, the clock
rate is currently unknown.

String CLOCK_RESET_INFO The name of this instance's primary clock or reset sink
interface. This is used to determine the reset sink to use
for global reset when using SOPC interconnect.

String CUSTOM_INSTRUCTION_SLAVES Provides custom instruction slave information, including
the name, base address, address span, and clock cycle
type.

(various) DESIGN_ENVIRONMENT A string that identifies the current design environment.
Refer to Design Environment Type Properties.

String DEVICE The device part number of the currently selected device.

String DEVICE_FAMILY The family name of the currently selected device.

String DEVICE_FEATURES A list of key/value pairs delineated by spaces indicating
whether a particular device feature is available in the
currently selected device family. The format of the list is
suitable for passing to the Tcl array set command. The
keys are device features; the values are 1 if the feature
is present, and 0 if the feature is absent.

String DEVICE_SPEEDGRADE The speed grade of the currently selected device.

Integer GENERATION_ID A integer that stores a hash of the generation time to be
used as a unique ID for a generation run.

BigInteger,
Long

INTERRUPTS_USED A mask indicating which bits of an interrupt receiver are
connected to interrupt senders. The interrupt receiver is
specified in the system info argument.

Integer MAX_SLAVE_DATA_WIDTH The data width of the widest slave connected to the
specified memory-mapped master.

String,
Boolean,
Integer

QUARTUS_INI The value of the quartus.ini setting specified in the
system info argument.

Integer RESET_DOMAIN An integer that represents the reset domain for the
interface specified in the system info argument. If this
instance has interfaces on multiple reset domains, this
can be used to determine which interfaces are on each
reset domain. The absolute value of the integer is
arbitrary.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

588

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

String TRISTATECONDUIT_INFO An XML description of the Avalon Tri-state Conduit
masters connected to an Avalon Tri-state Conduit slave.
The slave is specified as the system info argument. The
value contains information about the slave, the
connected master instance and interface names, and
signal names, directions and widths.

String TRISTATECONDUIT_MASTERS The names of the instance's interfaces that are tri-state
conduit slaves.

String UNIQUE_ID A string guaranteed to be unique to this instance.

Related Information

Design Environment Type Properties on page 590

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

589

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.23. Design Environment Type Properties

Description
A design environment is used by IP to tell what sort of interfaces are most appropriate
to connect in the parent system.

Name Description

NATIVE Design environment prefers native IP interfaces.

QSYS Design environment prefers standard Platform Designer interfaces.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

590

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.24. Units Properties

Name Description

Address A memory-mapped address.

Bits Memory size, in bits.

BitsPerSecond Rate, in bits per second.

Bytes Memory size, in bytes.

Cycles A latency or count, in clock cycles.

GigabitsPerSecond Rate, in gigabits per second.

Gigabytes Memory size, in gigabytes.

Gigahertz Frequency, in GHz.

Hertz Frequency, in Hz.

KilobitsPerSecond Rate, in kilobits per second.

Kilobytes Memory size, in kilobytes.

Kilohertz Frequency, in kHz.

MegabitsPerSecond Rate, in megabits per second.

Megabytes Memory size, in megabytes.

Megahertz Frequency, in MHz.

Microseconds Time, in micros.

Milliseconds Time, in ms.

Nanoseconds Time, in ns.

None Unspecified units.

Percent A percentage.

Picoseconds Time, in ps.

Seconds Time, in s.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

591

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.25. Operating System Properties

Name Description

ALL All operating systems

LINUX32 Linux 32-bit

LINUX64 Linux 64-bit

WINDOWS32 Windows 32-bit

WINDOWS64 Windows 64-bit

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

592

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.26. Quartus.ini Type Properties

Name Description

ENABLED Returns 1 if the setting is turned on, otherwise returns 0.

STRING Returns the string value of the .ini setting.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Send Feedback Intel Quartus Prime Standard Edition User Guide: Platform Designer

593

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.3. Component Interface Tcl Reference Revision History

The table below indicates edits made to the Component Interface Tcl Reference
content since its creation:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.

2017.11.06 17.1.0 • Changed instances of Qsys to Platform Designer (Standard)
• Added statement clarifying use of brackets.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Edit to add_fileset_file command.

December 2014 14.1.0 • set_interface_upgrade_map
• Moved Port Roles (Interface Signal Types) section to Qsys

Interconnect.

November 2013 13.1.0 • add_hdl_instance

May 2013 13.0.0 • Consolidated content from other Qsys chapters.
• Added AMBA APB support.

November 2012 12.1.0 • Added the demo_axi_memory example with screen shots and
example _hw.tcl code.

June 2012 12.0.0 • Added AXI 3 support.
• Added: set_display_item_property,

set_parameter_property,LONG_DESCRIPTION, and static filesets.

November 2011 11.1.0 • Template update.
• Added: set_qip_strings, get_qip_strings,

get_device_family_displayname,
check_device_family_equivalence.

May 2011 11.0.0 • Revised section describing HDL and composed component
implementations.

• Separated reset and clock interfaces in example.
• Added: TRISTATECONDUIT_INFO, GENERATION_ID, UNIQUE_ID

SYSTEM_INFO.
• Added: WIDTH and SYSTEM_INFO_ARG parameter properties.
• Removed the doc_type argument from the

add_documentation_link command.
• Removed: get_instance_parameter_properties
• Added: add_fileset, add_fileset_file, create_temp_file.
• Updated Tcl examples to show separate clock and reset interfaces.

December 2010 10.1.0 • Initial release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

7. Component Interface Tcl Reference

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

594

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683364 | 2018.12.15

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics*, and Synopsys. Includes design flow steps,
generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor
Graphics* and Cadence*. Also includes information about signal integrity
analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

A. Intel Quartus Prime Standard Edition User Guides

683364 | 2018.12.15

Intel Quartus Prime Standard Edition User Guide: Platform Designer Send Feedback

596

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Platform%20Designer%20(683364%202018.12.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Standard
Edition User Guide
Design Recommendations

Updated for Intel® Quartus® Prime Design Suite: 18.1

This document is part of a collection - Intel® Quartus® Prime Standard Edition User Guides -
Combined PDF link

Online Version

Send Feedback UG-20175

683323

2018.09.24

https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683323.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Recommended Design Practices... 4
1.1. Following Synchronous FPGA Design Practices... 4

1.1.1. Implementing Synchronous Designs...4
1.1.2. Asynchronous Design Hazards... 5

1.2. HDL Design Guidelines... 6
1.2.1. Optimizing Combinational Logic... 6
1.2.2. Optimizing Clocking Schemes..9
1.2.3. Optimizing Physical Implementation and Timing Closure................................14
1.2.4. Optimizing Power Consumption..17
1.2.5. Managing Design Metastability...17

1.3. Checking Design Violations..17
1.3.1. Validating Against Design Rules... 17
1.3.2. Creating Custom Design Rules... 20

1.4. Use Clock and Register-Control Architectural Features...24
1.4.1. Use Global Reset Resources...24
1.4.2. Use Global Clock Network Resources.. 33
1.4.3. Use Clock Region Assignments to Optimize Clock Constraints.........................34
1.4.4. Avoid Asynchronous Register Control Signals... 35

1.5. Implementing Embedded RAM... 35
1.6. Recommended Design Practices Revision History..36

2. Recommended HDL Coding Styles .. 38
2.1. Using Provided HDL Templates...38

2.1.1. Inserting HDL Code from a Provided Template... 38
2.2. Instantiating IP Cores in HDL...39
2.3. Inferring Multipliers and DSP Functions...40

2.3.1. Inferring Multipliers..40
2.3.2. Inferring Multiply-Accumulator and Multiply-Adder Functions..........................41

2.4. Inferring Memory Functions from HDL Code ..44
2.4.1. Inferring RAM functions from HDL Code.. 45
2.4.2. Inferring ROM Functions from HDL Code... 62
2.4.3. Inferring Shift Registers in HDL Code..64

2.5. Register and Latch Coding Guidelines... 67
2.5.1. Register Power-Up Values..67
2.5.2. Secondary Register Control Signals Such as Clear and Clock Enable................69
2.5.3. Latches ..71

2.6. General Coding Guidelines.. 75
2.6.1. Tri-State Signals ... 75
2.6.2. Clock Multiplexing.. 75
2.6.3. Adder Trees ..77
2.6.4. State Machine HDL Guidelines... 79
2.6.5. Multiplexer HDL Guidelines ...85
2.6.6. Cyclic Redundancy Check Functions ...88
2.6.7. Comparator HDL Guidelines...90
2.6.8. Counter HDL Guidelines.. 91

2.7. Designing with Low-Level Primitives... 91
2.8. Recommended HDL Coding Styles Revision History...92

Contents

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Managing Metastability with the Intel Quartus Prime Software.................................... 94
3.1. Metastability Analysis in the Intel Quartus Prime Software...95

3.1.1. Synchronization Register Chains.. 95
3.1.2. Identify Synchronizers for Metastability Analysis.. 96
3.1.3. How Timing Constraints Affect Synchronizer Identification and

Metastability Analysis... 96
3.2. Metastability and MTBF Reporting...97

3.2.1. Metastability Reports..98
3.2.2. Synchronizer Data Toggle Rate in MTBF Calculation.....................................100

3.3. MTBF Optimization... 100
3.3.1. Synchronization Register Chain Length..101

3.4. Reducing Metastability Effects..102
3.4.1. Apply Complete System-Centric Timing Constraints for the Timing Analyzer... 102
3.4.2. Force the Identification of Synchronization Registers................................... 102
3.4.3. Set the Synchronizer Data Toggle Rate..103
3.4.4. Optimize Metastability During Fitting...103
3.4.5. Increase the Length of Synchronizers to Protect and Optimize......................103
3.4.6. Set Fitter Effort to Standard Fit instead of Auto Fit......................................103
3.4.7. Increase the Number of Stages Used in Synchronizers................................ 104
3.4.8. Select a Faster Speed Grade Device..104

3.5. Scripting Support...104
3.5.1. Identifying Synchronizers for Metastability Analysis.................................... 105
3.5.2. Synchronizer Data Toggle Rate in MTBF Calculation.....................................105
3.5.3. report_metastability and Tcl Command..105
3.5.4. MTBF Optimization... 106
3.5.5. Synchronization Register Chain Length..106

3.6. Managing Metastability... 106
3.7. Managing Metastability with the Intel Quartus Prime Software Revision History...........106

A. Intel Quartus Prime Standard Edition User Guides..108

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Recommended Design Practices
This chapter provides design recommendations for Intel® FPGA devices. This chapter
also describes the Intel Quartus® Prime Design Assistant. The Design Assistant checks
your design for violations of Intel’s design recommendations

Current FPGA applications have reached the complexity and performance
requirements of ASICs. In the development of complex system designs, design
practices have an enormous impact on the timing performance, logic utilization, and
system reliability of a device. Well-coded designs behave in a predictable and reliable
manner even when retargeted to different families or speed grades. Good design
practices also aid in successful design migration between FPGA and ASIC
implementations for prototyping and production.

For optimal performance, reliability, and faster time-to-market when designing with
Intel FPGA devices, you should adhere to the following guidelines:

• Understand the impact of synchronous design practices

• Follow recommended design techniques, including hierarchical design partitioning,
and timing closure guidelines

• Take advantage of the architectural features in the targeted device

1.1. Following Synchronous FPGA Design Practices

The first step in good design methodology is to understand the implications of your
design practices and techniques. This section outlines the benefits of optimal
synchronous design practices and the hazards involved in other approaches.

Good synchronous design practices can help you meet your design goals consistently.
Problems with other design techniques can include reliance on propagation delays in a
device, which can lead to race conditions, incomplete timing analysis, and possible
glitches.

In a synchronous design, a clock signal triggers every event. If you ensure that all the
timing requirements of the registers are met, a synchronous design behaves in a
predictable and reliable manner for all process, voltage, and temperature (PVT)
conditions. You can easily migrate synchronous designs to different device families or
speed grades.

1.1.1. Implementing Synchronous Designs

In a synchronous design, the clock signal controls the activities of all inputs and
outputs.

On every active edge of the clock (usually the rising edge), the data inputs of registers
are sampled and transferred to outputs. Following an active clock edge, the outputs of
combinational logic feeding the data inputs of registers change values. This change

683323 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

triggers a period of instability due to propagation delays through the logic as the
signals go through several transitions and finally settle to new values. Changes that
occur on data inputs of registers do not affect the values of their outputs until after
the next active clock edge.

Because the internal circuitry of registers isolates data outputs from inputs, instability
in the combinational logic does not affect the operation of the design if you meet the
following timing requirements:

• Before an active clock edge, you must ensure that the data input has been stable
for at least the setup time of the register.

• After an active clock edge, you must ensure that the data input remains stable for
at least the hold time of the register.

When you specify all your clock frequencies and other timing requirements, the
Intel Quartus Prime Timing Analyzer reports actual hardware requirements for the
setup times (tSU) and hold times (tH) for every pin in your design. By meeting
these external pin requirements and following synchronous design techniques, you
ensure that you satisfy the setup and hold times for all registers in your device.

Tip: To meet setup and hold time requirements on all input pins, any inputs to
combinational logic that feed a register should have a synchronous
relationship with the clock of the register. If signals are asynchronous, you
can register the signals at the inputs of the device to help prevent a violation
of the required setup and hold times.

When you violate the setup or hold time of a register, you might oscillate the
output, or set the output to an intermediate voltage level between the high
and low levels called a metastable state. In this unstable state, small
perturbations such as noise in power rails can cause the register to assume
either the high or low voltage level, resulting in an unpredictable valid state.
Various undesirable effects can occur, including increased propagation delays
and incorrect output states. In some cases, the output can even oscillate
between the two valid states for a relatively long period of time.

1.1.2. Asynchronous Design Hazards

Asynchronous design techniques, such as ripple counters or pulse generators, can
work as “short cuts” to save device resources. However, asynchronous techniques
have inherent problems. For example, relying on propagation delays can result in
incomplete timing constraints and possible glitches and spikes, because propagation
delay varies with temperature and voltage fluctuations.

Asynchronous design structures that depend on the relative propagation delays can
present race conditions. Race conditions arise when the order of signal changes affect
the output of the logic. The same logic design can have varying timing delays with
each compilation, depending on placement and routing. The number of possible
variations make it impossible to determine the timing delay associated with a
particular block of logic. As devices become faster due to process improvements,
delays in asynchronous designs may decrease, resulting in designs that do not
function as expected. Relying on a particular delay also makes asynchronous designs
difficult to migrate to other architectures, devices, or speed grades.

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The timing of asynchronous design structures is often difficult or impossible to model
with timing assignments and constraints. If you do not have complete or accurate
timing constraints, the timing-driven algorithms that synthesis and place-and-route
tools use may not be able to perform the best optimizations, and the reported results
may be incomplete.

Additionally, asynchronous design structures can generate glitches, which are pulses
that are very short compared to clock periods. Combinational logic is the main cause
of glitches. When the inputs to the combinational logic change, the outputs exhibit
several glitches before settling to their new values. Glitches can propagate through
combinational logic, leading to incorrect values on the outputs in asynchronous
designs. In synchronous designs, glitches on register's data inputs have no negative
consequences, because data processing waits until the next clock edge.

1.2. HDL Design Guidelines

When designing with HDL code, consider how synthesis tools interpret different HDL
design techniques and what results to expect.

Design style can affect logic utilization and timing performance, as well as the design’s
reliability. This section describes basic design techniques that ensure optimal synthesis
results for designs that target Intel FPGA devices while avoiding common causes of
unreliability and instability. As a best practice, consider potential problems when
designing combinational logic, and pay attention to clocking schemes so that the
design maintains synchronous functionality and avoids timing issues.

1.2.1. Optimizing Combinational Logic

Combinational logic structures consist of logic functions that depend only on the
current state of the inputs. In Intel FPGAs, these functions are implemented in the
look-up tables (LUTs) with either logic elements (LEs) or adaptive logic modules
(ALMs).

For cases where combinational logic feeds registers, the register control signals can
implement part of the logic function to save LUT resources. By following the
recommendations in this section, you can improve the reliability of your combinational
design.

1.2.1.1. Avoid Combinational Loops

Combinational loops are among the most common causes of instability and
unreliability in digital designs. Combinational loops generally violate synchronous
design principles by establishing a direct feedback loop that contains no registers.

Avoid combinational loops whenever possible. In a synchronous design, feedback
loops should include registers. For example, a combinational loop occurs when the
left-hand side of an arithmetic expression also appears on the right-hand side in HDL
code. A combinational loop also occurs when you feed back the output of a register to
an asynchronous pin of the same register through combinational logic.

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1. Combinational Loop Through Asynchronous Control Pin

Logic

D Q

Tip: Use recovery and removal analysis to perform timing analysis on asynchronous ports,
such as clear or reset in the Intel Quartus Prime software.

Combinational loops are inherently high-risk design structures for the following
reasons:

• Combinational loop behavior generally depends on relative propagation delays
through the logic involved in the loop. As discussed, propagation delays can
change, which means the behavior of the loop is unpredictable.

• In many design tools, combinational loops can cause endless computation loops .
Most tools break open combinational loops to process the design. The various tools
used in the design flow may open a given loop differently, and process it in a way
inconsistent with the original design intent.

1.2.1.2. Avoid Unintended Latch Inference

Avoid using latches to ensure that you can completely analyze the timing performance
and reliability of your design. A latch is a small circuit with combinational feedback
that holds a value until a new value is assigned. You can implement latches with the
Intel Quartus Prime Text Editor or Block Editor.

A common mistake in HDL code is unintended latch inference; Intel Quartus Prime
Synthesis issues a warning message if this occurs. Unlike other technologies, a latch in
FPGA architecture is not significantly smaller than a register. However, the architecture
is not optimized for latch implementation and latches generally have slower timing
performance compared to equivalent registered circuitry.

Latches have a transparent mode in which data flows continuously from input to
output. A positive latch is in transparent mode when the enable signal is high (low for
a negative latch). In transparent mode, glitches on the input can pass through to the
output because of the direct path created. This presents significant complexity for
timing analysis. Typical latch schemes use multiple enable phases to prevent long
transparent paths from occurring. However, timing analysis cannot identify these safe
applications.

The Timing Analyzer analyzes latches as synchronous elements clocked on the falling
edge of the positive latch signal by default. It allows you to treat latches as having
nontransparent start and end points. Be aware that even an instantaneous transition
through transparent mode can lead to glitch propagation. The Timing Analyzer cannot
perform cycle-borrowing analysis.

Due to various timing complexities, latches have limited support in formal verification
tools. Therefore, you should not rely on formal verification for a design that includes
latches.

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Avoid Unintentional Latch Generation on page 71

1.2.1.3. Avoid Delay Chains in Clock Paths

Delays in PLD designs can change with each placement and routing cycle. Effects such
as rise and fall time differences and on-chip variation mean that delay chains,
especially those placed on clock paths, can cause significant problems in your design.
Avoid using delay chains to prevent these kinds of problems.

You require delay chains when you use two or more consecutive nodes with a single
fan-in and a single fan-out to cause delay. Inverters are often chained together to add
delay. Delay chains are sometimes used to resolve race conditions created by other
asynchronous design practices.

In some ASIC designs, delays are used for buffering signals as they are routed around
the device. This functionality is not required in FPGA devices because the routing
structure provides buffers throughout the device.

1.2.1.4. Use Synchronous Pulse Generators

Use synchronous techniques to design pulse generators.

Figure 2. Asynchronous Pulse Generators
The figure shows two methods for asynchronous pulse generation. The first method uses a delay chain to
generate a single pulse (pulse generator). The second method generates a series of pulses (multivibrators).

Trigger

Pulse Trigger
Pulse

Clock

Using an AND Gate Using a Register

In the first method, a trigger signal feeds both inputs of a 2-input AND gate, and the
design adds inverters to one of the inputs to create a delay chain. The width of the
pulse depends on the time differences between the path that feeds the gate directly
and the path that goes through the delay chain. This is the same mechanism
responsible for the generation of glitches in combinational logic following a change of
input values. This technique artificially increases the width of the glitch.

In the second method, a register’s output drives its asynchronous reset signal through
a delay chain. The register resets itself asynchronously after a certain delay. The
Compiler can determine the pulse width only after placement and routing, when
routing and propagation delays are known. You cannot reliably create a specific pulse
width when creating HDL code, and it cannot be set by EDA tools. The pulse may not
be wide enough for the application under all PVT conditions. Also, the pulse width
changes if you change to a different device. Additionally, verification is difficult
because static timing analysis cannot verify the pulse width.

Multivibrators use a glitch generator to create pulses, together with a combinational
loop that turns the circuit into an oscillator. This method creates additional problems
because of the number of pulses involved. Additionally, when the structures generate
multiple pulses, they also create a new artificial clock in the design that must be
analyzed by design tools.

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3. Recommended Synchronous Pulse-Generation Technique

Trigger Signal

Clock

Pulse

The pulse width is always equal to the clock period. This pulse generator is
predictable, can be verified with timing analysis, and is easily moved to other
architectures, devices, or speed grades.

1.2.2. Optimizing Clocking Schemes

Like combinational logic, clocking schemes have a large effect on the performance and
reliability of a design.

Avoid using internally generated clocks (other than PLLs) wherever possible because
they can cause functional and timing problems in the design. Clocks generated with
combinational logic can introduce glitches that create functional problems, and the
delay inherent in combinational logic can lead to timing problems.

Tip: Specify all clock relationships in the Intel Quartus Prime software to allow for the best
timing-driven optimizations during fitting and to allow correct timing analysis. Use
clock setting assignments on any derived or internal clocks to specify their relationship
to the base clock.

Use global device-wide, low-skew dedicated routing for all internally-generated clocks,
instead of routing clocks on regular routing lines.

Avoid data transfers between different clocks wherever possible. If you require a data
transfer between different clocks, use FIFO circuitry. You can use the clock uncertainty
features in the Intel Quartus Prime software to compensate for the variable delays
between clock domains. Consider setting a clock setup uncertainty and clock hold
uncertainty value of 10% to 15% of the clock delay.

The following sections provide specific examples and recommendations for avoiding
clocking scheme problems.

1.2.2.1. Register Combinational Logic Outputs

If you use the output from combinational logic as a clock signal or as an asynchronous
reset signal, you can expect to see glitches in your design. In a synchronous design,
glitches on data inputs of registers are normal events that have no consequences.
However, a glitch or a spike on the clock input (or an asynchronous input) to a register
can have significant consequences.

Narrow glitches can violate the register’s minimum pulse width requirements. Setup
and hold requirements might also be violated if the data input of the register changes
when a glitch reaches the clock input. Even if the design does not violate timing
requirements, the register output can change value unexpectedly and cause functional
hazards elsewhere in the design.

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To avoid these problems, you should always register the output of combinational logic
before you use it as a clock signal.

Figure 4. Recommended Clock-Generation Technique

D Q
Internally Generated Clock

Routed on Global Clock Resource

D Q D Q

D Q
Clock

Generation
Logic

Registering the output of combinational logic ensures that glitches generated by the
combinational logic are blocked at the data input of the register.

1.2.2.2. Avoid Asynchronous Clock Division

Designs often require clocks that you create by dividing a master clock. Most Intel
FPGAs provide dedicated phase-locked loop (PLL) circuitry for clock division. Using
dedicated PLL circuitry can help you avoid many of the problems that can be
introduced by asynchronous clock division logic.

When you must use logic to divide a master clock, always use synchronous counters
or state machines. Additionally, create your design so that registers always directly
generate divided clock signals, and route the clock on global clock resources. To avoid
glitches, do not decode the outputs of a counter or a state machine to generate clock
signals.

1.2.2.3. Avoid Ripple Counters

To simplify verification, avoid ripple counters in your design. In the past, FPGA
designers implemented ripple counters to divide clocks by a power of two because the
counters are easy to design and may use fewer gates than their synchronous
counterparts.

Ripple counters use cascaded registers, in which the output pin of one register feeds
the clock pin of the register in the next stage. This cascading can cause problems
because the counter creates a ripple clock at each stage. These ripple clocks must be
handled properly during timing analysis, which can be difficult and may require you to
make complicated timing assignments in your synthesis and placement and routing
tools.

You can often use ripple clock structures to make ripple counters out of the smallest
amount of logic possible. However, in all Intel devices supported by the Intel Quartus
Prime software, using a ripple clock structure to reduce the amount of logic used for a
counter is unnecessary because the device allows you to construct a counter using one
logic element per counter bit. You should avoid using ripple counters completely.

1.2.2.4. Use Multiplexed Clocks

Use clock multiplexing to operate the same logic function with different clock sources.
In these designs, multiplexing selects a clock source.

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, telecommunications applications that deal with multiple frequency
standards often use multiplexed clocks.

Figure 5. Multiplexing Logic and Clock Sources

Clock 1
Multiplexed Clock Routed
on Global Clock Resource

Clock 2

Select Signal

D Q

D Q

D Q

Adding multiplexing logic to the clock signal can create the problems addressed in the
previous sections, but requirements for multiplexed clocks vary widely, depending on
the application. Clock multiplexing is acceptable when the clock signal uses global
clock routing resources and if the following criteria are met:

• The clock multiplexing logic does not change after initial configuration

• The design uses multiplexing logic to select a clock for testing purposes

• Registers are always reset when the clock switches

• A temporarily incorrect response following clock switching has no negative
consequences

If the design switches clocks in real time with no reset signal, and your design cannot
tolerate a temporarily incorrect response, you must use a synchronous design so that
there are no timing violations on the registers, no glitches on clock signals, and no
race conditions or other logical problems. By default, the Intel Quartus Prime software
optimizes and analyzes all possible paths through the multiplexer and between both
internal clocks that may come from the multiplexer. This may lead to more restrictive
analysis than required if the multiplexer is always selecting one particular clock. If you
do not require the more complete analysis, you can assign the output of the
multiplexer as a base clock in the Intel Quartus Prime software, so that all register-to-
register paths are analyzed using that clock.

Tip: Use dedicated hardware to perform clock multiplexing when it is available, instead of
using multiplexing logic. For example, you can use the clock-switchover feature or
clock control block available in certain Intel FPGA devices. These dedicated hardware
blocks ensure that you use global low-skew routing lines and avoid any possible hold
time problems on the device due to logic delay on the clock line.

Note: For device-specific information about clocking structures, refer to the appropriate
device data sheet or handbook on the Literature page of the Altera website.

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.2.5. Use Gated Clocks

Gated clocks turn a clock signal on and off using an enable signal that controls gating
circuitry. When a clock is turned off, the corresponding clock domain is shut down and
becomes functionally inactive.

Figure 6. Gated Clock

Clock

Gated Clock

D Q D Q

Gating Signal

You can use gated clocks to reduce power consumption in some device architectures
by effectively shutting down portions of a digital circuit when they are not in use.
When a clock is gated, both the clock network and the registers driven by it stop
toggling, thereby eliminating their contributions to power consumption. However,
gated clocks are not part of a synchronous scheme and therefore can significantly
increase the effort required for design implementation and verification. Gated clocks
contribute to clock skew and make device migration difficult. These clocks are also
sensitive to glitches, which can cause design failure.

Use dedicated hardware to perform clock gating rather than an AND or OR gate. For
example, you can use the clock control block in newer Intel FPGA devices to shut
down an entire clock network. Dedicated hardware blocks ensure that you use global
routing with low skew, and avoid any possible hold time problems on the device due to
logic delay on the clock line.

From a functional point of view, you can shut down a clock domain in a purely
synchronous manner using a synchronous clock enable signal. However, when using a
synchronous clock enable scheme, the clock network continues toggling. This practice
does not reduce power consumption as much as gating the clock at the source does.
In most cases, use a synchronous scheme.

1.2.2.5.1. Recommended Clock-Gating Methods

Use gated clocks only when your target application requires power reduction and
gated clocks provide the required reduction in your device architecture. If you must
use clocks gated by logic, follow a robust clock-gating methodology and ensure the
gated clock signal uses dedicated global clock routing.

You can gate a clock signal at the source of the clock network, at each register, or
somewhere in between. Since the clock network contributes to switching power
consumption, gate the clock at the source whenever possible to shut down the entire
clock network instead of further along.

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7. Recommended Clock-Gating Technique for Clock Active on Rising Edge

D Q

Clock

Enable Gated Clock Routed on
Global Clock Resources

D Q D Q

Gating Signal

To generate a gated clock with the recommended technique, use a register that
triggers on the inactive edge of the clock. With this configuration, only one input of
the gate changes at a time, preventing glitches or spikes on the output. If the clock is
active on the rising edge, use an AND gate. Conversely, for a clock that is active on
the falling edge, use an OR gate to gate the clock and register

Pay attention to the delay through the logic generating the enable signal, because the
enable command must be ready in less than one-half the clock cycle. This might cause
problems if the logic that generates the enable command is particularly complex, or if
the duty cycle of the clock is severely unbalanced. However, careful management of
the duty cycle and logic delay may be an acceptable solution when compared with
problems created by other methods of gating clocks.

In the Timing Analyzer, ensure to apply a clock setting to the output of the AND gate.
Otherwise, the timing analyzer might analyze the circuit using the clock path through
the register as the longest clock path and the path that skips the register as the
shortest clock path, resulting in artificial clock skew.

In certain cases, converting the gated clocks to clock enable pins may help reduce
glitch and clock skew, and eventually produce a more accurate timing analysis. You
can set the Intel Quartus Prime software to automatically convert gated clocks to clock
enable pins by turning on the Auto Gated Clock Conversion option. The conversion
applies to two types of gated clocking schemes: single-gated clock and cascaded-
gated clock.

Related Information

Auto Gated Clock Conversion logic option
In Intel Quartus Prime Help

1.2.2.6. Use Synchronous Clock Enables

To turn off a clock domain in a synchronous manner, use a synchronous clock enable
signal. FPGAs efficiently support clock enable signals because there is a dedicated
clock enable signal available on all device registers.

This scheme does not reduce power consumption as much as gating the clock at the
source because the clock network keeps toggling, and performs the same function as
a gated clock by disabling a set of registers. Insert a multiplexer in front of the data
input of every register to either load new data, or copy the output of the register.

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

13

http://quartushelp.altera.com/current/#logicops/logicops/def_synth_gated_clock_conversion.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8. Synchronous Clock Enable

D Q

Enable

Data

1.2.3. Optimizing Physical Implementation and Timing Closure

This section provides design and timing closure techniques for high speed or complex
core logic designs with challenging timing requirements. These techniques may also
be helpful for low or medium speed designs.

1.2.3.1. Planning Physical Implementation

When planning a design, consider the following elements of physical implementation:

• The number of unique clock domains and their relationships

• The amount of logic in each functional block

• The location and direction of data flow between blocks

• How data routes to the functional blocks between I/O interfaces

Interface-wide control or status signals may have competing or opposing constraints.
For example, when a functional block's control or status signals interface with physical
channels from both sides of the device. In such cases you must provide enough
pipeline register stages to allow these signals to traverse the width of the device. In
addition, you can structure the hierarchy of the design into separate logic modules for
each side of the device. The side modules can generate and use registered control
signals per side. This simplifies floorplanning, particularly in designs with transceivers,
by placing per-side logic near the transceivers.

When adding register stages to pipeline control signals, turn off Auto Shift Register
Replacement in the Assignment Editor (Assignments ➤ Assignment Editor) for
each register as needed. By default, chains of registers can be converted to a RAM-
based implementation based on performance and resource estimates. Since pipelining
helps meet timing requirements over long distance, this assignment ensures that
control signals are not converted.

1.2.3.2. Planning FPGA Resources

Your design requirements impact the use of FPGA resources. Plan functional blocks
with appropriate global, regional, and dual-regional network signals in mind.

In general, after allocating the clocks in a design, use global networks for the highest
fan-out control signals. When a global network signal distributes a high fan-out control
signal, the global signal can drive logic anywhere in the device. Similarly, when using
a regional network signal, the driven logic must be in one quadrant of the device, or
half the device for a dual-regional network signal. Depending on data flow and
physical locations of the data entry and exit between the I/Os and the device,
restricting a functional block to a quadrant or half the device may not be practical for
performance or resource requirements.

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When floorplanning a design, consider the balance of different types of device
resources, such as memory, logic, and DSP blocks in the main functional blocks. For
example, if a design is memory intensive with a small amount of logic, it may be
difficult to develop an effective floorplan. Logic that interfaces with the memory would
have to spread across the chip to access the memory. In this case, it is important to
use enough register stages in the data and control paths to allow signals to traverse
the chip to access the physically disparate resources needed.

1.2.3.3. Optimizing for Timing Closure

To achieve timing closure for your design, you can enable compilation settings in the
Intel Quartus Prime software, or you can directly modify your timing constraints.

Compilation Settings for Timing Closure

Note: Changes in project settings can significantly increase compilation time. You can view
the performance gain versus runtime cost by reviewing the Fitter messages after
design processing.

Table 1. Compilation Settings that Impact Timing Closure

Setting Location Effect on Timing Closure

Perform Physical Synthesis
for Combinational logic for
Performance

Assignments ➤ Settings ➤
Compiler Settings ➤
Advanced Settings (Fitter)

If enabled, the Netlist Optimization report panel
identifies logic that physical synthesis can modify. You
can use this information to modify the design so that
the associated optimization can be turned off to save
compile time.

Allow Register Duplication Assignments ➤ Settings ➤
Compiler Settings ➤
Advanced Settings (Fitter)

This technique is most useful where registers have
high fan-out, or where the fan-out is in physically
distant areas of the device.
Review the netlist optimizations report and consider
manually duplicating registers automatically added by
physical synthesis. You can also locate the original and
duplicate registers in the Chip Planner. Compare their
locations, and if the fan-out is improved, modify the
code and turn off register duplication to save compile
time.

Prevent Register Retiming Assignments ➤ Settings ➤
Compiler Settings

Useful if some combinatorial paths between registers
exceed the timing goal while other paths fall short.
If a design is already heavily pipelined, register
retiming is less likely to provide significant
performance gains, since there should not be
significantly unbalanced levels of logic across pipeline
stages.

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Guidelines for Optimizing Timing Closure using Timing Constraints

Appropriate timing constraints are essential to achieving timing closure. Use the
following general guidelines in applying timing constraints:

• Apply multicycle constraints in your design wherever single-cycle timing analysis is
not necessary.

• Apply False Path constraints to all asynchronous clock domain crossings or resets
in the design. This technique prevents overconstraining and the Fitter focuses only
on critical paths to reduce compile time. However, overconstraining timing critical
clock domains can sometimes provide better timing results and lower compile
times than physical synthesis.

• Overconstrain rather than using physical synthesis when the slack improvement
from physical synthesis is near zero. Overconstrain the frequency requirement on
timing critical clock domains by using setup uncertainty.

• When evaluating the effect of constraint changes on performance and runtime,
compile the design with at least three different seeds to determine the average
performance and runtime effects. Different constraint combinations produce
various results. Three samples or more establish a performance trend. Modify your
constraints based on performance improvement or decline.

• Leave settings at the default value whenever possible. Increasing performance
constraints can increase the compile time significantly. While those increases may
be necessary to close timing on a design, using the default settings whenever
possible minimizes compile time.

Related Information

Design Evaluation for Timing Closure
In Intel Quartus Prime Standard Edition Handbook Volume 2

1.2.3.4. Optimizing Critical Timing Paths

To close timing in high speed designs, review paths with the largest timing failures.
Correcting a single, large timing failure can result in a very significant timing
improvement.

Review the register placement and routing paths by clicking Tools ➤ Chip Planner.
Large timing failures on high fan-out control signals can be caused by any of the
following conditions:

• Sub-optimal use of global networks

• Signals that traverse the chip on local routing without pipelining

• Failure to correct high fan-out by register duplication

For high-speed and high-bandwidth designs, optimize speed by reducing bus width
and wire usage. To reduce wire usage, move the data as little as possible. For
example, if a block of logic functions on a few bits of a word, store inactive bits in a
FIFO or memory. Memory is cheaper and denser than registers, and reduces wire
usage.

Related Information

Exploring Paths in the Chip Planner
In Intel Quartus Prime Standard Edition Handbook Volume 2

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

16

https://www.intel.com/content/www/us/en/docs/programmable/683774.html
https://www.intel.com/content/www/us/en/docs/programmable/683774.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.4. Optimizing Power Consumption

The total FPGA power consumption is comprised of I/O power, core static power, and
core dynamic power. Knowledge of the relationship between these components is
fundamental in calculating the overall total power consumption.

You can use various optimization techniques and tools to minimize power consumption
when applied during FPGA design implementation. The Intel Quartus Prime software
offers power-driven compilation features to fully optimize device power consumption.
Power-driven compilation focuses on reducing your design’s total power consumption
using power-driven synthesis and power-driven placement and routing.

Related Information

Power Optimization
In Intel Quartus Prime Standard Edition Handbook Volume 2

1.2.5. Managing Design Metastability

In FPGA designs, synchronization of asynchronous signals can cause metastability. You
can use the Intel Quartus Prime software to analyze the mean time between failures
(MTBF) due to metastability. A high metastability MTBF indicates a more robust
design.

Related Information

• Managing Metastability with the Intel Quartus Prime Software on page 94

• Metastability Analysis and Optimization Techniques
In Intel Quartus Prime Standard Edition Handbook Volume 2

1.3. Checking Design Violations

To improve the reliability, timing performance, and logic utilization of your design,
avoid design rule violations. The Intel Quartus Prime software provides the Design
Assistant tool that automatically checks for design rule violations and reports their
location. The Design Assistant is supported only in the Quartus Prime Standard Edition
software. The Design Assistant does not support Intel Arria® 10 or MAX 10 devices.

The Design Assistant is a design rule checking tool that allows you to check for design
issues early in the design flow. The Design Assistant checks your design for adherence
to Intel-recommended design guidelines. You can specify which rules you want the
Design Assistant to apply to your design. This is useful if you know that your design
violates particular rules that are not critical and you can allow these rule violations.
The Design Assistant generates design violation reports with details about each
violation based on the settings that you specified.

This section provides an introduction to the Intel Quartus Prime design flow with the
Design Assistant, message severity levels, and an explanation about how to set up the
Design Assistant. The last parts of the section describe the design rules and the
reports generated by the Design Assistant.

1.3.1. Validating Against Design Rules

You can run the Design Assistant following design synthesis or compilation. The
Design Assistant performs a post-fit netlist analysis of your design.

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

17

https://www.intel.com/content/www/us/en/docs/programmable/683774.html
https://www.intel.com/content/www/us/en/docs/programmable/683774.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The default is to apply all the rules to your project. If there are some rules that are
unimportant to your design, you can turn off the rules that you do not want the
Design Assistant to use.

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9. Intel Quartus Prime Design Flow with the Design Assistant

Design Files

Analysis & Elaboration

Synthesis
(Logic Synthesis &

Technology Mapping)

Fitter

Timing Analysis

Design Assistant

Pre-Synthesis
Netlist

Design Assistant
Golden Rules (1)

Rule Violation
Report

Custom
Rules (2)

Post-Fitting
Netlist

Post-Synthesis
Netlist

1. Database of the default rules for the Design Assistant.

2. A file that contains the .xml codes of the custom rules for the Design Assistant.
For more details about how to create this file .

The Design Assistant analyzes your design netlist at different stages of the
compilation flow and may yield different warnings or errors, even though the
netlists are functionally the same. Your pre-synthesis, post-synthesis, and post-
fitting netlists might be different due to optimizations performed by the Intel
Quartus Prime software. For example, a warning message in a pre-synthesis
netlist may be removed after the netlist has been synthesized into a post-
synthesis or post-fitting netlist.

The exact operation of the Design Assistant depends on when you run it:

• When you run the Design Assistant after running a full compilation or fitting, the
Design Assistant performs a post-fitting analysis on the design.

• When you run the Design Assistant after performing Analysis and Synthesis, the
Design Assistant performs post-synthesis analysis on the design.

• When you start the Design Assistant after performing Analysis and Elaboration,
the Design Assistant performs a pre-synthesis analysis on the design. You can also
perform pre-synthesis analysis with the Design Assistant using the command-line.
You can use the -rtl option with the quartus_drc executable, as shown in the
following example:

quartus_drc <project_name> --rtl=on

If your design violates a design rule, the Design Assistant generates warning
messages and information messages about the violated rule. The Design Assistant
displays these messages in the Messages window, in the Design Assistant
Messages report, and in the Design Assistant report files. You can find the Design
Assistant report files called <project_name>.drc.rpt in the <project_name>
subdirectory of the project directory.

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.2. Creating Custom Design Rules

You can define and validate your design against your own custom set of design rules.
You can save these rules in a text file (with any file extension) with the XML format.

You then specify the path to that file in the Design Assistant settings page and run the
Design Assistant for violation checking.

Refer to the following location to locate the file that contains the default rules for the
Design Assistant:

<Intel Quartus Prime install path>\quartus\libraries\design-assistant
\da_golden_rule.xml

1.3.2.1. Custom Design Rule Examples

The following examples of custom rules show how to check node relationships and
clock relationships in a design.

This example shows the XML codes for checking SR latch structures in a design.

Example 1. Detecting SR Latches in a Design

<DA_RULE ID="EX01" SEVERITY="CRITICAL" NAME="Checking Design for SR Latch"
DEFAULT_RUN="YES">
<RULE_DEFINITION>
 <FORBID>
 <OR>
 <NODE NAME="NODE_1" TYPE="SRLATCH" />
 <HAS_NODE NODE_LIST="NODE_1" />
 <NODE NAME="NODE_1" TOTAL_FANIN="EQ2" />
 <NODE NAME="NODE_2" TOTAL_FANIN="EQ2" />
 <AND>
 <NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NAND" TO_NAME="NODE_2"
TO_TYPE="NAND" />
 <NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NAND" TO_NAME="NODE_1"
TO_TYPE="NAND" />
 </AND>
 <AND>
 <NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NOR" TO_NAME="NODE_2"
TO_TYPE="NOR" />
 <NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NOR" TO_NAME="NODE_1"
TO_TYPE="NOR" />
 </AND>
 </OR>
 </FORBID>
</RULE_DEFINITION>

<REPORTING_ROOT>
 <MESSAGE NAME="Rule %ARG1%: Found %ARG2% node(s) related to this rule.">
 <MESSAGE_ARGUMENT NAME="ARG1" TYPE="ATTRIBUTE" VALUE="ID" />
 <MESSAGE_ARGUMENT NAME="ARG2" TYPE="TOTAL_NODE" VALUE="NODE_1" />
 </MESSAGE>
</REPORTING_ROOT>
</DA_RULE>

The possible SR latch structures are specified in the rule definition section. Codes
defined in the <AND></AND> block are tied together, meaning that each statement in
the block must be true for the block to be fulfilled (AND gate similarity). In the

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

<OR></OR> block, as long as one statement in the block is true, the block is fulfilled
(OR gate similarity). If no <AND></AND> or <OR></OR> blocks are specified, the
default is <AND></AND>.

The <FORBID></FORBID> section contains the undesirable condition for the design,
which in this case is the SR latch structures. If the condition is fulfilled, the Design
Assistant highlights a rule violation.

Example 2. Detecting SR Latches in a Design

<AND>
 <NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NAND" TO_NAME="NODE_2"
 TO_TYPE="NAND" />
 <NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NAND" TO_NAME="NODE_1"
 TO_TYPE="NAND" />
</AND>

Figure 10. Undesired Condition 1

NAND2

NODE_1

NAND2

NODE_2

<AND>
 <NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NOR" TO_NAME="NODE_2"
TO_TYPE="NOR" />
 <NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NOR" TO_NAME="NODE_1"
TO_TYPE="NOR" />
</AND>

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11. Undesired Condition 2

NOR2

NOR2

NODE_1

NODE_2

This example shows how to use the CLOCK_RELATIONSHIP attribute to relate nodes
to clock domains. This example checks for correct synchronization in data transfer
between asynchronous clock domains. Synchronization is done with cascaded
registers, also called synchronizers, at the receiving clock domain. The code in This
example checks for the synchronizer configuration based on the following guidelines:

• The cascading registers need to be triggered on the same clock edge

• There is no logic between the register output of the transmitting clock domain and
the cascaded registers in the receiving asynchronous clock domain.

Example 3. Detecting Incorrect Synchronizer Configuration

<DA_RULE ID="EX02" SEVERITY="HIGH" NAME="Data Transfer Not Synch Correctly"
DEFAULT_RUN="YES">

<RULE_DEFINITION>
<DECLARE>
 <NODE NAME="NODE_1" TYPE="REG" />
 <NODE NAME="NODE_2" TYPE="REG" />
 <NODE NAME="NODE_3" TYPE="REG" />
</DECLARE>
<FORBID>
 <NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />
 <NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />
 <OR>
 <NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
REQUIRED_THROUGH="YES" THROUGH_TYPE="COMB" CLOCK_RELATIONSHIP="ASYN" />
 <CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />
 </OR>
</FORBID>
</RULE_DEFINITION>

<REPORTING_ROOT>
<MESSAGE NAME="Rule %ARG1%: Found %ARG2% node(s) related to this rule.">
 <MESSAGE_ARGUMENT NAME="ARG1" TYPE="ATTRIBUTE" VALUE="ID" />
 <MESSAGE_ARGUMENT NAME="ARG2" TYPE="TOTAL_NODE" VALUE="NODE_1" />
 <MESSAGE NAME="Source node(s): %ARG3%, Destination node(s): %ARG4%">
 <MESSAGE_ARGUMENT NAME="ARG3" TYPE="NODE" VALUE="NODE_1" />
 <MESSAGE_ARGUMENT NAME="ARG4" TYPE="NODE" VALUE="NODE_2" />
 </MESSAGE>
</MESSAGE>
</REPORTING_ROOT>
</DA_RULE>

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The codes differentiate the clock domains. ASYN means asynchronous, and !ASYN
means non-asynchronous. This notation is useful for describing nodes that are in
different clock domains. The following lines from the example state that NODE_2 and
NODE_3 are in the same clock domain, but NODE_1 is not.

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

The next line of code states that NODE_2 and NODE_3 have a clock relationship of
either sequential edge or asynchronous.

<CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

The <FORBID></FORBID> section contains the undesirable condition for the design,
which in this case is the undesired configuration of the synchronizer. If the condition is
fulfilled, the Design Assistant highlights a rule violation.

The possible SR latch structures are specified in the rule definition section. Codes
defined in the <AND></AND> block are tied together, meaning that each statement in
the block must be true for the block to be fulfilled (AND gate similarity). In the
<OR></OR> block, as long as one statement in the block is true, the block is fulfilled
(OR gate similarity). If no <AND></AND> or <OR></OR> blocks are specified, the
default is <AND></AND>.

The <FORBID></FORBID> section contains the undesirable condition for the design,
which in this case is the SR latch structures. If the condition is fulfilled, the Design
Assistant highlights a rule violation.

The following examples show the undesired conditions from with their equivalent block
diagrams:

Example 4. Undesired Condition 3

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
REQUIRED_THROUGH="YES"
 THROUGH_TYPE="COMB" CLOCK_RELATIONSHIP="ASYN" />

Figure 12. Undesired Condition 3

Logic

NODE_1 NODE_2 NODE_3

D
CLOCK_1

CLOCK_2

Q

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 5. Undesired Condition 4

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

Figure 13. Undesired Condition 4

NODE_1 NODE_2 NODE_3

D
CLOCK_1

CLOCK_2

Q

1.4. Use Clock and Register-Control Architectural Features

In addition to following general design guidelines, you must code your design with the
device architecture in mind. FPGAs provide device-wide clocks and register control
signals that can improve performance.

1.4.1. Use Global Reset Resources

ASIC designs may use local resets to avoid long routing delays. Take advantage of the
device-wide asynchronous reset pin available on most FPGAs to eliminate these
problems. This reset signal provides low-skew routing across the device.

The following are three types of resets used in synchronous circuits:

• Synchronous Reset

• Asynchronous Reset

• Synchronized Asynchronous Reset—preferred when designing an FPGA circuit

1.4.1.1. Use Synchronous Resets

The synchronous reset ensures that the circuit is fully synchronous. You can easily
time the circuit with the Intel Quartus Prime Timing Analyzer.

Because clocks that are synchronous to each other launch and latch the reset signal,
the data arrival and data required times are easily determined for proper slack
analysis. The synchronous reset is easier to use with cycle-based simulators.

There are two methods by which a reset signal can reach a register; either by being
gated in with the data input, or by using an LAB-wide control signal (synclr). If you
use the first method, you risk adding an additional gate delay to the circuit to
accommodate the reset signal, which causes increased data arrival times and
negatively impacts setup slack. The second method relies on dedicated routing in the
LAB to each register, but this is slower than an asynchronous reset to the same
register.

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14. Synchronous Reset

DFF
AND2

inst1

Figure 15. LAB-Wide Control Signals

Dedicated Row LAB Clocks

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

There are two unique
clock signals per LAB

6

6

6

labclk0

labclkena0

labclk1 labclk2 syncload labclr1

labclkena1 labclkena2 labclr0 synclr

Consider two types of synchronous resets when you examine the timing analysis of
synchronous resets—externally synchronized resets and internally synchronized
resets. Externally synchronized resets are synchronized to the clock domain outside
the FPGA, and are not very common. A power-on asynchronous reset is dual-rank
synchronized externally to the system clock and then brought into the FPGA. Inside
the FPGA, gate this reset with the data input to the registers to implement a
synchronous reset.

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 16. Externally Synchronized Reset

por_n

clock
reset_n

data_a

INPUT
VCC

VCC
INPUT

VCC
INPUT

clock

VCC
INPUTdata_b

AND2

lc 1

AND2

lc 2

OUTPUT out_a

out_bOUTPUT

FPGA

The following example shows the Verilog HDL equivalent of the schematic. When you
use synchronous resets, the reset signal is not put in the sensitivity list.

The following example shows the necessary modifications that you should make to the
internally synchronized reset.

Example 6. Verilog HDL Code for Externally Synchronized Reset

module sync_reset_ext (
 input clock,
 input reset_n,
 input data_a,
 input data_b,
 output out_a,
 output out_b
);
reg reg1, reg2
assign out_a = reg1;
assign out_b = reg2;
always @ (posedge clock)
begin
 if (!reset_n)
 begin
 reg1 <= 1’b0;
 reg2 <= 1’b0;
 end
 else
 begin
 reg1 <= data_a;
 reg2 <= data_b;
 end
end
endmodule // sync_reset_ext

The following example shows the constraints for the externally synchronous reset.
Because the external reset is synchronous, you only need to constrain the reset_n
signal as a normal input signal with set_input_delay constraint for -max and -
min.

Example 7. SDC Constraints for Externally Synchronized Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \
 -name {clock} \
 -period 10.0 \

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 -waveform {0.0 5.0}
Input constraints on low-active reset
and data
set_input_delay 7.0 \
 -max \
 -clock [get_clocks {clock}] \
 [get_ports {reset_n data_a data_b}]
set_input_delay 1.0 \
 -min \
 -clock [get_clocks {clock}] \
 [get_ports {reset_n data_a data_b}]

More often, resets coming into the device are asynchronous, and must be
synchronized internally before being sent to the registers.

Figure 17. Internally Synchronized Reset

INPUT
VCC

INPUT
VCC

INPUT
VCC

INPUT
VCC

AND2

lc 1

AND2

lc 2

OUTPUT

OUTPUT

The following example shows the Verilog HDL equivalent of the schematic. Only the
clock edge is in the sensitivity list for a synchronous reset.

Example 8. Verilog HDL Code for Internally Synchronized Reset

module sync_reset (
 input clock,
 input reset_n,
 input data_a,
 input data_b,
 output out_a,
 output out_b
);
reg reg1, reg2
reg reg3, reg4

assign out_a = reg1;
assign out_b = reg2;
assign rst_n = reg4;

always @ (posedge clock)
begin
 if (!rst_n)
 begin
 reg1 <= 1’bo;
 reg2 <= 1’b0;
 end
 else
 begin

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 reg1 <= data_a;
 reg2 <= data_b;
 end
end

always @ (posedge clock)
begin
 reg3 <= reset_n;
 reg4 <= reg3;
end
endmodule // sync_reset

The SDC constraints are similar to the external synchronous reset, except that the
input reset cannot be constrained because it is asynchronous. Cut the input path with
a set_false_path statement to avoid these being considered as unconstrained
paths.

Example 9. SDC Constraints for Internally Synchronized Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \
 -name {clock} \
 -period 10.0 \
 -waveform {0.0 5.0}
Input constraints on data
set_input_delay 7.0 \
 -max \
 -clock [get_clocks {clock}] \
 [get_ports {data_a data_b}]
set_input_delay 1.0 \
 -min \
 -clock [get_clocks {clock}] \
 [get_ports {data_a data_b}]
Cut the asynchronous reset input
set_false_path \
 -from [get_ports {reset_n}] \
 -to [all_registers]

An issue with synchronous resets is their behavior with respect to short pulses (less
than a period) on the asynchronous input to the synchronizer flipflops. This can be a
disadvantage because the asynchronous reset requires a pulse width of at least one
period wide to guarantee that it is captured by the first flipflop. However, this can also
be viewed as an advantage in that this circuit increases noise immunity. Spurious
pulses on the asynchronous input have a lower chance of being captured by the first
flipflop, so the pulses do not trigger a synchronous reset. In some cases, you might
want to increase the noise immunity further and reject any asynchronous input reset
that is less than n periods wide to debounce an asynchronous input reset.

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Internally Synchronized Reset with Pulse Extender

INPUT
VCC

INPUT
VCC

INPUT
VCC

INPUT
VCC

AND2

lc 1

AND2

lc 2

OUTPUT

OUTPUT

BNAND2

Synchronizer Flipflops n Pulse Extender Flipflops

lc 3

Junction dots indicate the number of stages. You can have more flipflops to get a
wider pulse that spans more clock cycles.

Many designs have more than one clock signal. In these cases, use a separate reset
synchronization circuit for each clock domain in the design. When you create
synchronizers for PLL output clocks, these clock domains are not reset until you lock
the PLL and the PLL output clocks are stable. If you use the reset to the PLL, this reset
does not have to be synchronous with the input clock of the PLL. You can use an
asynchronous reset for this. Using a reset to the PLL further delays the assertion of a
synchronous reset to the PLL output clock domains when using internally synchronized
resets.

1.4.1.2. Using Asynchronous Resets

Asynchronous resets are the most common form of reset in circuit designs, as well as
the easiest to implement. Typically, you can insert the asynchronous reset into the
device, turn on the global buffer, and connect to the asynchronous reset pin of every
register in the device.

This method is only advantageous under certain circumstances—you do not need to
always reset the register. Unlike the synchronous reset, the asynchronous reset is not
inserted in the datapath, and does not negatively impact the data arrival times
between registers. Reset takes effect immediately, and as soon as the registers
receive the reset pulse, the registers are reset. The asynchronous reset is not
dependent on the clock.

However, when the reset is deasserted and does not pass the recovery (µtSU) or
removal (µtH) time check (the Timing Analyzer recovery and removal analysis checks
both times), the edge is said to have fallen into the metastability zone. Additional time
is required to determine the correct state, and the delay can cause the setup time to
fail to register downstream, leading to system failure. To avoid this, add a few follower
registers after the register with the asynchronous reset and use the output of these
registers in the design. Use the follower registers to synchronize the data to the clock
to remove the metastability issues. You should place these registers close to each
other in the device to keep the routing delays to a minimum, which decreases data
arrival times and increases MTBF. Ensure that these follower registers themselves are
not reset, but are initialized over a period of several clock cycles by “flushing out” their
current or initial state.

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 19. Asynchronous Reset with Follower Registers

DFF DFF DFF

INPUT
VCC

INPUT
VCC

INPUT
VCC

out_aOUTPUT

The following example shows the equivalent Verilog HDL code. The active edge of the
reset is now in the sensitivity list for the procedural block, which infers a clock enable
on the follower registers with the inverse of the reset signal tied to the clock enable.
The follower registers should be in a separate procedural block as shown using non-
blocking assignments.

Example 10. Verilog HDL Code of Asynchronous Reset with Follower Registers

module async_reset (
 input clock,
 input reset_n,
 input data_a,
 output out_a,
);
reg reg1, reg2, reg3;
assign out_a = reg3;
always @ (posedge clock, negedge reset_n)
begin
 if (!reset_n)
 reg1 <= 1’b0;
 else
 reg1 <= data_a;
end
always @ (posedge clock)
begin
 reg2 <= reg1;
 reg3 <= reg2;
end
endmodule // async_reset

You can easily constrain an asynchronous reset. By definition, asynchronous resets
have a non-deterministic relationship to the clock domains of the registers they are
resetting. Therefore, static timing analysis of these resets is not possible and you can
use the set_false_path command to exclude the path from timing analysis.
Because the relationship of the reset to the clock at the register is not known, you
cannot run recovery and removal analysis in the Timing Analyzer for this path.
Attempting to do so even without the false path statement results in no paths
reported for recovery and removal.

Example 11. SDC Constraints for Asynchronous Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \
 -name {clock} \
 -period 10.0 \
 -waveform {0.0 5.0}

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Input constraints on data
set_input_delay 7.0 \
 -max \
 -clock [get_clocks {clock}]\
 [get_ports {data_a}]
set_input_delay 1.0 \
 -min \
 -clock [get_clocks {clock}] \
 [get_ports {data_a}]
Cut the asynchronous reset input
set_false_path \
 -from [get_ports {reset_n}] \
 -to [all_registers]

The asynchronous reset is susceptible to noise, and a noisy asynchronous reset can
cause a spurious reset. You must ensure that the asynchronous reset is debounced
and filtered. You can easily enter into a reset asynchronously, but releasing a reset
asynchronously can lead to potential problems (also referred to as “reset removal”)
with metastability, including the hazards of unwanted situations with synchronous
circuits involving feedback.

1.4.1.3. Use Synchronized Asynchronous Reset

To avoid potential problems associated with purely synchronous resets and purely
asynchronous resets, you can use synchronized asynchronous resets. Synchronized
asynchronous resets combine the advantages of synchronous and asynchronous
resets.

These resets are asynchronously asserted and synchronously deasserted. This takes
effect almost instantaneously, and ensures that no datapath for speed is involved.
Also, the circuit is synchronous for timing analysis and is resistant to noise.

The following example shows a method for implementing the synchronized
asynchronous reset. You should use synchronizer registers in a similar manner as
synchronous resets. However, the asynchronous reset input is gated directly to the
CLRN pin of the synchronizer registers and immediately asserts the resulting reset.
When the reset is deasserted, logic “1” is clocked through the synchronizers to
synchronously deassert the resulting reset.

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. Schematic of Synchronized Asynchronous Reset

DFF

reg3

VCC
DFF

reg4
DFF

reg1

DFF

reg2

data_a

clock

INPUT
VCC

INPUT
VCC

INPUT
VCC

INPUT
VCC

reset_n

data_b

out_aOUTPUT

out_bOUTPUT

The following example shows the equivalent Verilog HDL code. Use the active edge of
the reset in the sensitivity list for the blocks.

Example 12. Verilog HDL Code for Synchronized Asynchronous Reset

module sync_async_reset (
 input clock,
 input reset_n,
 input data_a,
 input data_b,
 output out_a,
 output out_b
);
reg reg1, reg2;
reg reg3, reg4;
assign out_a = reg1;
assign out_b = reg2;
assign rst_n = reg4;
always @ (posedge clock, negedge reset_n)
begin
 if (!reset_n)
 begin
 reg3 <= 1’b0;
 reg4 <= 1’b0;
 end
 else
 begin
 reg3 <= 1’b1;
 reg4 <= reg3;
 end
end
always @ (posedge clock, negedge rst_n)
begin
 if (!rst_n)
 begin
 reg1 <= 1’b0;
 reg2 <= 1;b0;

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 end
 else
 begin
 reg1 <= data_a;
 reg2 <= data_b;
 end
end
endmodule // sync_async_reset

To minimize the metastability effect between the two synchronization registers, and to
increase the MTBF, the registers should be located as close as possible in the device to
minimize routing delay. If possible, locate the registers in the same logic array block
(LAB). The input reset signal (reset_n) must be excluded with a set_false_path
command:
set_false_path -from [get_ports {reset_n}] -to [all_registers]

The set_false_path command used with the specified constraint excludes
unnecessary input timing reports that would otherwise result from specifying an input
delay on the reset pin.

The instantaneous assertion of synchronized asynchronous resets is susceptible to
noise and runt pulses. If possible, you should debounce the asynchronous reset and
filter the reset before it enters the device. The circuit ensures that the synchronized
asynchronous reset is at least one full clock period in length. To extend this time to n
clock periods, you must increase the number of synchronizer registers to n + 1. You
must connect the asynchronous input reset (reset_n) to the CLRN pin of all the
synchronizer registers to maintain the asynchronous assertion of the synchronized
asynchronous reset.

1.4.2. Use Global Clock Network Resources

Intel FPGAs provide device-wide global clock routing resources and dedicated inputs.
Use the FPGA’s low-skew, high fan-out dedicated routing where available.

By assigning a clock input to one of these dedicated clock pins or with an Intel
Quartus Prime assignment to assign global routing, you can take advantage of the
dedicated routing available for clock signals.

In an ASIC design, you must balance the clock delay distributed across the device.
Because Intel FPGAs provide device-wide global clock routing resources and dedicated
inputs, there is no need to manually balance delays on the clock network.

Limit the number of clocks in the design to the number of dedicated global clock
resources available in the FPGA. Clocks feeding multiple locations that do not use
global routing may exhibit clock skew across the device leading to timing problems. In
addition, generating internal clocks with combinational logic adds delays on the clock
path. Delay on a clock line can result in a clock skew greater than the data path length
between two registers. If the clock skew is greater than the data delay, you violate the
timing parameters of the register (such as hold time requirements) and the design
does not function correctly.

FPGAs offer low-skew global routing resources to distribute high fan-out signals. These
resources help with the implementation of large designs with multiple clock domains.
Many large FPGA devices provide dedicated global clock networks, regional clock
networks, and dedicated fast regional clock networks. These clocks are organized into
a hierarchical clock structure that allows multiple clocks in each device region with low

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

skew and delay. There are typically several dedicated clock pins to drive either global
or regional clock networks, and both PLL outputs and internal clocks can drive various
clock networks.

To reduce clock skew in a given clock domain and ensure that hold times are met in
that clock domain, assign each clock signal to one of the global high fan-out, low-skew
clock networks in the FPGA device. The Intel Quartus Prime software automatically
assigns global routing resources for high fan-out control signals, PLL outputs, and
signals feeding the global clock pins on the device. To direct the software to assign
global routing for a signal, turn on the Global Signal option in the Assignment Editor.

Note: Global Signal assignments only controls whether a signal is promoted using the
specified dedicated resources or not, but does not control which or how many
resources are used.

To take full advantage of the routing resources in a design, make sure that the
sources of clock signals (input clock pins or internally-generated clocks) drive only the
clock input ports of registers. In older Intel device families, if a clock signal feeds the
data ports of a register, the signal may not be able to use dedicated routing, which
can lead to decreased performance and clock skew problems. In general, allowing
clock signals to drive the data ports of registers is not considered synchronous design
and can complicate timing closure.

1.4.3. Use Clock Region Assignments to Optimize Clock Constraints

The Intel Quartus Prime software determines how clock regions are assigned. You can
override these assignments with Clock Region assignments to specify that a signal
routed with global routing paths must use the specified clock region.

Clock Region assignments allow you to control the placement of the clock region for
floorplanning reasons. For example, use a Clock Region assignment to ensure that a
certain area of the device has access to a global signal, throughout your design
iterations. A Clock Region assignment can also be used in cases of congestion
involving global signal resources. By specifying a smaller clock region size, the
assignment prevents a signal using spine clock resources in the excluded sectors that
may be encountering clock-related congestion.

You can specify Clock Region assignments in the assignment editor.

1.4.3.1. Clock Region Assignments in Intel Arria 10 and Older Device Families

In device families with dedicated clock network resources and predefined clock
regions, this assignment takes as its value the names of those Global, Regional,
Periphery or Spine Clock regions. These region names are visible in Chip Planner by
enabling the appropriate Clock Region layer in the Layers Settings dialog box.
Examples of valid values include Regional Clock Region 1 or Periphery Clock
Region 1.

When constraining a global signal to a smaller than normal region, for example, to
avoid clock congestion, you may specify a clock region of a different type than the
global resources being used. For example, a signal with a Global Signal assignment of
Global Clock, but a Clock Region assignment of Regional Clock Region 0,
constrains the clock to use global network routing resources, but only to the region
covered by Regional Clock Region 0. To provide a finer level of control, you can

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

also list multiple smaller clock regions, separated by commas. For example:
Periphery Clock Region 0, Periphery Clock Region 1 constrains a signal
to only the area reachable by those two periphery clock networks.

1.4.4. Avoid Asynchronous Register Control Signals

Avoid using an asynchronous load signal if the design target device architecture does
not include registers with dedicated circuitry for asynchronous loads. Also, avoid using
both asynchronous clear and preset if the architecture provides only one of these
control signals.

Some Intel devices directly support an asynchronous clear function, but not a preset
or load function. When the target device does not directly support the signals, the
synthesis or placement and routing software must use combinational logic to
implement the same functionality. In addition, if you use signals in a priority other
than the inherent priority in the device architecture, combinational logic may be
required to implement the necessary control signals. Combinational logic is less
efficient and can cause glitches and other problems; it is best to avoid these
implementations.

1.5. Implementing Embedded RAM

Intel’s dedicated memory architecture offers many advanced features that you can
enable with Intel-provided IP cores. Use synchronous memory blocks for your design,
so that the blocks can be mapped directly into the device dedicated memory blocks.

You can use single-port, dual-port, or three-port RAM with a single- or dual-clocking
method. You should not infer the asynchronous memory logic as a memory block or
place the asynchronous memory logic in the dedicated memory block, but implement
the asynchronous memory logic in regular logic cells.

Intel memory blocks have different read-during-write behaviors, depending on the
targeted device family, memory mode, and block type. Read-during-write behavior
refers to read and write from the same memory address in the same clock cycle; for
example, you read from the same address to which you write in the same clock cycle.

You should check how you specify the memory in your HDL code when you use read-
during-write behavior. The HDL code that describes the read returns either the old
data stored at the memory location, or the new data being written to the memory
location.

In some cases, when the device architecture cannot implement the memory behavior
described in your HDL code, the memory block is not mapped to the dedicated RAM
blocks, or the memory block is implemented using extra logic in addition to the
dedicated RAM block. Implement the read-during-write behavior using single-port RAM
in Arria GX devices and the Cyclone and Stratix series of devices to avoid this extra
logic implementation.

In many synthesis tools, you can specify that the read-during-write behavior is not
important to your design; if, for example, you never read and write from the same
address in the same clock cycle. For Intel Quartus Prime integrated synthesis, add the
synthesis attribute ramstyle=”no_rw_check” to allow the software to choose the
read-during-write behavior of a RAM, rather than using the read-during-write behavior

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

specified in your HDL code. Using this type of attribute prevents the synthesis tool
from using extra logic to implement the memory block and, in some cases, can allow
memory inference when it would otherwise be impossible.

Related Information

Inferring RAM functions from HDL Code on page 45

1.6. Recommended Design Practices Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.
• Created subtopic: Clock Region Assignments in Intel Arria 10 and Older

Device Families from content in topic: Use Clock Region Assignments to
Optimize Clock Constraints.

2017.11.06 17.1.0 • Updated topic: Optimizing Timing Closure.

2016.05.03 16.0.0 • Replaced Internally Synchronized Reset code sample with corrected
version.

• Stated limitations about deprecated physical synthesis options.
• Clarified limitations of support for Design Assistant.

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Optimization Settings to Compiler Settings.

June 2014 14.0.0 Removed references to obsolete MegaWizard Plug-In Manager.

November 2013 13.1.0 Removed HardCopy device information.

May 2013 13.0.0 Removed PrimeTime support.

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Added information to Reset Resources .

December 2010 10.1.0 • Title changed from Design Recommendations for Altera Devices and the
Quartus II Design Assistant.

• Updated to new template.
• Added references to Quartus II Help for “Metastability” on page 9–13

and “Incremental Compilation” on page 9–13.
• Removed duplicated content and added references to Help for “Custom

Rules” on page 9–15.

July 2010 10.0.0 • Removed duplicated content and added references to Quartus II Help
for Design Assistant settings, Design Assistant rules, Enabling and
Disabling Design Assistant Rules, and Viewing Design Assistant reports.

• Removed information from “Combinational Logic Structures” on page
5–4

• Changed heading from “Design Techniques to Save Power” to “Power
Optimization” on page 5–12

• Added new “Metastability” section
• Added new “Incremental Compilation” section
• Added information to “Reset Resources” on page 5–23
• Removed “Referenced Documents” section

November 2009 9.1.0 • Removed documentation of obsolete rules.

continued...

1. Recommended Design Practices

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

March 2009 9.0.0 • No change to content.

November 2008 8.1.0 • Changed to 8-1/2 x 11 page size
• Added new section “Custom Rules Coding Examples” on page 5–18
• Added paragraph to “Recommended Clock-Gating Methods” on page 5–

11
• Added new section: “Design Techniques to Save Power” on page 5–12

May 2008 8.0.0 • Updated Figure 5–9 on page 5–13; added custom rules file to the flow
• Added notes to Figure 5–9 on page 5–13
• Added new section: “Custom Rules Report” on page 5–34
• Added new section: “Custom Rules” on page 5–34
• Added new section: “Targeting Embedded RAM Architectural Features”

on page 5–38
• Minor editorial updates throughout the chapter
• Added hyperlinks to referenced documents throughout the chapter

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

1. Recommended Design Practices

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

37

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Recommended HDL Coding Styles
This chapter provides Hardware Description Language (HDL) coding style
recommendations to ensure optimal synthesis results when targeting Intel FPGA
devices.

HDL coding styles have a significant effect on the quality of results for programmable
logic designs. Synthesis tools optimize HDL code for both logic utilization and
performance; however, synthesis tools cannot interpret the intent of your design.
Therefore, the most effective optimizations require conformance to recommended
coding styles.

Note: For style recommendations, options, or HDL attributes specific to your synthesis tool
(including other Quartus software products and other EDA tools), refer to the
synthesis tool vendor’s documentation.

Related Information

• Recommended Design Practices on page 4

• Advanced Synthesis Cookbook

• Design Examples

• Reference Designs

2.1. Using Provided HDL Templates

The Intel Quartus Prime software provides templates for Verilog HDL, SystemVerilog,
and VHDL templates to start your HDL designs. Many of the HDL examples in this
document correspond with the Full Designs examples in the Intel Quartus Prime
Templates. You can insert HDL code into your own design using the templates or
examples.

2.1.1. Inserting HDL Code from a Provided Template

1. Click File ➤ New.

2. In the New dialog box, select the HDL language for the design files:
SystemVerilog HDL File, VHDL File, or Verilog HDL File; and click OK.
A text editor tab with a blank file opens.

3. Right-click the blank file and click Insert Template.

4. In the Insert Template dialog box, expand the section corresponding to the
appropriate HDL, then expand the Full Designs section.

5. Select a template.

683323 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/support/examples/exm-index.html
https://www.altera.com/products/reference-designs/all-reference-designs.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The template now appears in the Preview pane.

6. To paste the HDL design into the blank Verilog or VHDL file you created, click
Insert.

7. Click Close to close the Insert Template dialog box.

Figure 21. Inserting a RAM Template

Note: Use the Intel Quartus Prime Text Editor to modify the HDL design or save the template
as an HDL file to edit in your preferred text editor.

2.2. Instantiating IP Cores in HDL

Intel provides parameterizable IP cores that are optimized for Intel FPGA device
architectures. Using IP cores instead of coding your own logic saves valuable design
time.

Additionally, the Intel-provided IP cores offer more efficient logic synthesis and device
implementation. Scale the IP core’s size and specify various options by setting
parameters. To instantiate the IP core directly in your HDL file code, invoke the IP core
name and define its parameters as you would do for any other module, component, or
sub design. Alternatively, you can use the IP Catalog (Tools ➤ IP Catalog) and
parameter editor GUI to simplify customization of your IP core variation. You can infer
or instantiate IP cores that optimize device architecture features, for example:

• Transceivers

• LVDS drivers

• Memory and DSP blocks

• Phase-locked loops (PLLs)

• Double-data rate input/output (DDIO) circuitry

For some types of logic functions, such as memories and DSP functions, you can infer
device-specific dedicated architecture blocks instead of instantiating an IP core. Intel
Quartus Prime synthesis recognizes certain HDL code structures and automatically
infers the appropriate IP core or map directly to device atoms.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Intel FPGA IP Core Literature

2.3. Inferring Multipliers and DSP Functions

The following sections describe how to infer multiplier and DSP functions from generic
HDL code, and, if applicable, how to target the dedicated DSP block architecture in
Intel FPGA devices.

Related Information

DSP Solutions Center

2.3.1. Inferring Multipliers

To infer multiplier functions, synthesis tools detect multiplier logic and implement this
in Intel FPGA IP cores, or map the logic directly to device atoms.

For devices with DSP blocks, Intel Quartus Prime synthesis can implement the function
in a DSP block instead of logic, depending on device utilization. The Intel Quartus
Prime fitter can also place input and output registers in DSP blocks (that is, perform
register packing) to improve performance and area utilization.

The following Verilog HDL and VHDL code examples show that synthesis tools can infer
signed and unsigned multipliers as IP cores or DSP block atoms. Each example fits
into one DSP block element. In addition, when register packing occurs, no extra logic
cells for registers are required.

Example 13. Verilog HDL Unsigned Multiplier

module unsigned_mult (out, a, b);
 output [15:0] out;
 input [7:0] a;
 input [7:0] b;
 assign out = a * b;
endmodule

Note: The signed declaration in Verilog HDL is a feature of the Verilog 2001 Standard.

Example 14. Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining =
2)

module signed_mult (out, clk, a, b);
 output [15:0] out;
 input clk;
 input signed [7:0] a;
 input signed [7:0] b;

 reg signed [7:0] a_reg;
 reg signed [7:0] b_reg;
 reg signed [15:0] out;
 wire signed [15:0] mult_out;

 assign mult_out = a_reg * b_reg;

 always @ (posedge clk)
 begin
 a_reg <= a;
 b_reg <= b;

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

40

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/technology/dsp/dsp-index.jsp
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 out <= mult_out;
 end
endmodule

Example 15. VHDL Unsigned Multiplier with Input and Output Registers (Pipelining = 2)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsigned_mult IS
 PORT (
 a: IN UNSIGNED (7 DOWNTO 0);
 b: IN UNSIGNED (7 DOWNTO 0);
 clk: IN STD_LOGIC;
 aclr: IN STD_LOGIC;
 result: OUT UNSIGNED (15 DOWNTO 0)
);
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
 SIGNAL a_reg, b_reg: UNSIGNED (7 DOWNTO 0);
BEGIN
 PROCESS (clk, aclr)
 BEGIN
 IF (aclr ='1') THEN
 a_reg <= (OTHERS => '0');
 b_reg <= (OTHERS => '0');
 result <= (OTHERS => '0');
 ELSIF (rising_edge(clk)) THEN
 a_reg <= a;
 b_reg <= b;
 result <= a_reg * b_reg;
 END IF;
 END PROCESS;
END rtl;

Example 16. VHDL Signed Multiplier

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY signed_mult IS
 PORT (
 a: IN SIGNED (7 DOWNTO 0);
 b: IN SIGNED (7 DOWNTO 0);
 result: OUT SIGNED (15 DOWNTO 0)
);
END signed_mult;

ARCHITECTURE rtl OF signed_mult IS
BEGIN
 result <= a * b;
END rtl;

2.3.2. Inferring Multiply-Accumulator and Multiply-Adder Functions

Synthesis tools detect multiply-accumulator or multiply-adder functions, and either
implement them as Intel FPGA IP cores or map them directly to device atoms. During
placement and routing, the Intel Quartus Prime software places multiply-accumulator
and multiply-adder functions in DSP blocks.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Synthesis tools infer multiply-accumulator and multiply-adder functions only if the
Intel device family has dedicated DSP blocks that support these functions.

A simple multiply-accumulator consists of a multiplier feeding an addition operator.
The addition operator feeds a set of registers that then feeds the second input to the
addition operator. A simple multiply-adder consists of two to four multipliers feeding
one or two levels of addition, subtraction, or addition/subtraction operators. Addition
is always the second-level operator, if it is used. In addition to the multiply-
accumulator and multiply-adder, the Intel Quartus Prime Fitter also places input and
output registers into the DSP blocks to pack registers and improve performance and
area utilization.

Some device families offer additional advanced multiply-adder and accumulator
functions, such as complex multiplication, input shift register, or larger multiplications.

The Verilog HDL and VHDL code samples infer multiply-accumulator and multiply-
adder functions with input, output, and pipeline registers, as well as an optional
asynchronous clear signal. Using the three sets of registers provides the best
performance through the function, with a latency of three. To reduce latency, remove
the registers in your design.

Note: To obtain high performance in DSP designs, use register pipelining and avoid
unregistered DSP functions.

Example 17. Verilog HDL Multiply-Accumulator

module sum_of_four_multiply_accumulate
 #(parameter INPUT_WIDTH=18, parameter OUTPUT_WIDTH=44)
 (
 input clk, ena,
 input [INPUT_WIDTH-1:0] dataa, datab, datac, datad,
 input [INPUT_WIDTH-1:0] datae, dataf, datag, datah,
 output reg [OUTPUT_WIDTH-1:0] dataout
);
 // Each product can be up to 2*INPUT_WIDTH bits wide.
 // The sum of four of these products can be up to 2 bits wider.
 wire [2*INPUT_WIDTH+1:0] mult_sum;

 // Store the results of the operations on the current inputs
 assign mult_sum = (dataa * datab + datac * datad) +
 (datae * dataf + datag * datah);

 // Store the value of the accumulation
 always @ (posedge clk)
 begin
 if (ena == 1)
 begin
 dataout <= dataout + mult_sum;
 end
 end
endmodule

Example 18. Verilog HDL Signed Multiply-Adder

module sig_altmult_add (dataa, datab, datac, datad, clock, aclr, result);
 input signed [15:0] dataa, datab, datac, datad;
 input clock, aclr;
 output reg signed [32:0] result;

 reg signed [15:0] dataa_reg, datab_reg, datac_reg, datad_reg;
 reg signed [31:0] mult0_result, mult1_result;

 always @ (posedge clock or posedge aclr) begin

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 if (aclr) begin
 dataa_reg <= 16'b0;
 datab_reg <= 16'b0;
 datac_reg <= 16'b0;
 datad_reg <= 16'b0;
 mult0_result <= 32'b0;
 mult1_result <= 32'b0;
 result <= 33'b0;
 end
 else begin
 dataa_reg <= dataa;
 datab_reg <= datab;
 datac_reg <= datac;
 datad_reg <= datad;
 mult0_result <= dataa_reg * datab_reg;
 mult1_result <= datac_reg * datad_reg;
 result <= mult0_result + mult1_result;
 end
 end
endmodule

Example 19. VHDL Signed Multiply-Accumulator

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY sig_altmult_accum IS
 PORT (
 a: IN SIGNED(7 DOWNTO 0);
 b: IN SIGNED (7 DOWNTO 0);
 clk: IN STD_LOGIC;
 aclr: IN STD_LOGIC;
 accum_out: OUT SIGNED (15 DOWNTO 0)
) ;
END sig_altmult_accum;

ARCHITECTURE rtl OF sig_altmult_accum IS
 SIGNAL a_reg, b_reg: SIGNED (7 DOWNTO 0);
 SIGNAL pdt_reg: SIGNED (15 DOWNTO 0);
 SIGNAL adder_out: SIGNED (15 DOWNTO 0);
BEGIN
 PROCESS (clk, aclr)
 BEGIN
 IF (aclr = '1') then
 a_reg <= (others => '0');
 b_reg <= (others => '0');
 pdt_reg <= (others => '0');
 adder_out <= (others => '0');
 ELSIF (rising_edge(clk)) THEN
 a_reg <= (a);
 b_reg <= (b);
 pdt_reg <= a_reg * b_reg;
 adder_out <= adder_out + pdt_reg;
 END IF;
 END process;
 accum_out <= adder_out;
END rtl;

Example 20. VHDL Unsigned Multiply-Adder

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsignedmult_add IS
 PORT (
 a: IN UNSIGNED (7 DOWNTO 0);
 b: IN UNSIGNED (7 DOWNTO 0);

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 c: IN UNSIGNED (7 DOWNTO 0);
 d: IN UNSIGNED (7 DOWNTO 0);
 clk: IN STD_LOGIC;
 aclr: IN STD_LOGIC;
 result: OUT UNSIGNED (15 DOWNTO 0)
);
END unsignedmult_add;

ARCHITECTURE rtl OF unsignedmult_add IS
 SIGNAL a_reg, b_reg, c_reg, d_reg: UNSIGNED (7 DOWNTO 0);
 SIGNAL pdt_reg, pdt2_reg: UNSIGNED (15 DOWNTO 0);
 SIGNAL result_reg: UNSIGNED (15 DOWNTO 0);
BEGIN
 PROCESS (clk, aclr)
 BEGIN
 IF (aclr = '1') THEN
 a_reg <= (OTHERS => '0');
 b_reg <= (OTHERS => '0');
 c_reg <= (OTHERS => '0');
 d_reg <= (OTHERS => '0');
 pdt_reg <= (OTHERS => '0');
 pdt2_reg <= (OTHERS => '0');
 result_reg <= (OTHERS => '0');

 ELSIF (rising_edge(clk)) THEN
 a_reg <= a;
 b_reg <= b;
 c_reg <= c;
 d_reg <= d;
 pdt_reg <= a_reg * b_reg;
 pdt2_reg <= c_reg * d_reg;
 result_reg <= pdt_reg + pdt2_reg;
 END IF;
 END PROCESS;
 result <= result_reg;
END rtl;

Related Information

• DSP Design Examples

• AN639: Inferring Stratix® V DSP Blocks for FIR Filtering

2.4. Inferring Memory Functions from HDL Code

The following coding recommendations provide portable examples of generic HDL code
targeting dedicated Intel FPGA memory IP cores. However, if you want to use some of
the advanced memory features in Intel FPGA devices, consider using the IP core
directly so that you can customize the ports and parameters easily.

You can also use the Intel Quartus Prime templates provided in the Intel Quartus
Prime software as a starting point. Most of these designs can also be found on the
Design Examples page on the Altera website.

Table 2. Intel Memory HDL Language Templates

Language Full Design Name

VHDL Single-Port RAM
Single-Port RAM with Initial Contents
Simple Dual-Port RAM (single clock)
Simple Dual-Port RAM (dual clock)
True Dual-Port RAM (single clock)
True Dual-Port RAM (dual clock)

continued...

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

44

http://www.altera.com/support/examples/exm-index.html
http://www.altera.com/literature/an/an639.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Language Full Design Name

Mixed-Width RAM
Mixed-Width True Dual-Port RAM
Byte-Enabled Simple Dual-Port RAM
Byte-Enabled True Dual-Port RAM
Single-Port ROM
Dual-Port ROM

Verilog HDL Single-Port RAM
Single-Port RAM with Initial Contents
Simple Dual-Port RAM (single clock)
Simple Dual-Port RAM (dual clock)
True Dual-Port RAM (single clock)
True Dual-Port RAM (dual clock)
Single-Port ROM
Dual-Port ROM

SystemVerilog Mixed-Width Port RAM
Mixed-Width True Dual-Port RAM
Mixed-Width True Dual-Port RAM (new data on same port read during write)
Byte-Enabled Simple Dual Port RAM
Byte-Enabled True Dual-Port RAM

Related Information

• Instantiating IP Cores in HDL
In Introduction to Intel FPGA IP Cores

• Design Examples

• Embedded Memory Blocks in Intel Arria 10 Devices
In Intel Arria 10 Core Fabric and General Purpose I/Os Handbook

2.4.1. Inferring RAM functions from HDL Code

To infer RAM functions, synthesis tools recognize certain types of HDL code and map
the detected code to technology-specific implementations. For device families that
have dedicated RAM blocks, the Intel Quartus Prime software uses an Intel FPGA IP
core to target the device memory architecture.

Synthesis tools typically consider all signals and variables that have a multi-
dimensional array type and then create a RAM block, if applicable. This is based on the
way the signals or variables are assigned or referenced in the HDL source description.

Standard synthesis tools recognize single-port and simple dual-port (one read port
and one write port) RAM blocks. Some synthesis tools (such as the Intel Quartus
Prime software) also recognize true dual-port (two read ports and two write ports)
RAM blocks that map to the memory blocks in certain Intel FPGA devices.

Some tools (such as the Intel Quartus Prime software) also infer memory blocks for
array variables and signals that are referenced (read/written) by two indexes, to
recognize mixed-width and byte-enabled RAMs for certain coding styles.

Note: If your design contains a RAM block that your synthesis tool does not recognize and
infer, the design might require a large amount of system memory that can potentially
cause compilation problems.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

45

https://www.intel.com/content/www/us/en/docs/programmable/683102/current/instantiating-ip-cores-in-hdl.html
http://www.altera.com/support/examples/exm-index.html
https://www.intel.com/content/www/us/en/docs/programmable/683461/current/embedded-memory-blocks-in-devices.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.1.1. Use Synchronous Memory Blocks

Memory blocks in Intel FPGA are synchronous. Therefore, RAM designs must be
synchronous to map directly into dedicated memory blocks. For these devices, Intel
Quartus Prime synthesis implements asynchronous memory logic in regular logic cells.

Synchronous memory offers several advantages over asynchronous memory, including
higher frequencies and thus higher memory bandwidth, increased reliability, and less
standby power. To convert asynchronous memory, move registers from the datapath
into the memory block.

A memory block is synchronous if it has one of the following read behaviors:

• Memory read occurs in a Verilog HDL always block with a clock signal or a VHDL
clocked process. The recommended coding style for synchronous memories is to
create your design with a registered read output.

• Memory read occurs outside a clocked block, but there is a synchronous read
address (that is, the address used in the read statement is registered). Synthesis
does not always infer this logic as a memory block, or may require external
bypass logic, depending on the target device architecture. Avoid this coding style
for synchronous memories.

Note: The synchronous memory structures in Intel FPGA devices can differ from the
structures in other vendors’ devices. For best results, match your design to the target
device architecture.

This chapter provides coding recommendations for various memory types. All the
examples in this document are synchronous to ensure that they can be directly
mapped into the dedicated memory architecture available in Intel FPGAs.

2.4.1.2. Avoid Unsupported Reset and Control Conditions

To ensure correct implementation of HDL code in the target device architecture, avoid
unsupported reset conditions or other control logic that does not exist in the device
architecture.

The RAM contents of Intel FPGA memory blocks cannot be cleared with a reset signal
during device operation. If your HDL code describes a RAM with a reset signal for the
RAM contents, the logic is implemented in regular logic cells instead of a memory
block. Do not place RAM read or write operations in an always block or process
block with a reset signal. To specify memory contents, initialize the memory or write
the data to the RAM during device operation.

In addition to reset signals, other control logic can prevent synthesis from inferring
memory logic as a memory block. For example, if you use a clock enable on the read
address registers, you can alter the output latch of the RAM, resulting in the
synthesized RAM result not matching the HDL description. Use the address stall
feature as a read address clock enable to avoid this limitation. Check the
documentation for your FPGA device to ensure that your code matches the hardware
available in the device.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 21. Verilog RAM with Reset Signal that Clears RAM Contents: Not Supported in
Device Architecture

module clear_ram
(
 input clock, reset, we,
 input [7:0] data_in,
 input [4:0] address,
 output reg [7:0] data_out
);

 reg [7:0] mem [0:31];
 integer i;

 always @ (posedge clock or posedge reset)
 begin
 if (reset == 1'b1)
 mem[address] <= 0;
 else if (we == 1'b1)
 mem[address] <= data_in;

 data_out <= mem[address];
 end
endmodule

Example 22. Verilog RAM with Reset Signal that Affects RAM: Not Supported in Device
Architecture

module bad_reset
(
 input clock,
 input reset,
 input we,
 input [7:0] data_in,
 input [4:0] address,
 output reg [7:0] data_out,
 input d,
 output reg q
);

 reg [7:0] mem [0:31];
 integer i;

 always @ (posedge clock or posedge reset)
 begin
 if (reset == 1'b1)
 q <= 0;
 else
 begin
 if (we == 1'b1)
 mem[address] <= data_in;

 data_out <= mem[address];
 q <= d;
 end
 end
endmodule

Related Information

Specifying Initial Memory Contents at Power-Up on page 60

2.4.1.3. Check Read-During-Write Behavior

Ensure the read-during-write behavior of the memory block described in your HDL
design is consistent with your target device architecture.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Your HDL source code specifies the memory behavior when you read and write from
the same memory address in the same clock cycle. The read returns either the old
data at the address, or the new data written to the address. This is referred to as the
read-during-write behavior of the memory block. Intel FPGA memory blocks have
different read-during-write behavior depending on the target device family, memory
mode, and block type.

Synthesis tools preserve the functionality described in your source code. Therefore, if
your source code specifies unsupported read-during-write behavior for the RAM
blocks, the Intel Quartus Prime software implements the logic in regular logic cells as
opposed to the dedicated RAM hardware.

Example 23. Continuous read in HDL code

One common problem occurs when there is a continuous read in the HDL code, as in
the following examples. Avoid using these coding styles:

//Verilog HDL concurrent signal assignment
assign q = ram[raddr_reg];

-- VHDL concurrent signal assignment
q <= ram(raddr_reg);

This type of HDL implies that when a write operation takes place, the read
immediately reflects the new data at the address independent of the read clock, which
is the behavior of asynchronous memory blocks. Synthesis cannot directly map this
behavior to a synchronous memory block. If the write clock and read clock are the
same, synthesis can infer memory blocks and add extra bypass logic so that the
device behavior matches the HDL behavior. If the write and read clocks are different,
synthesis cannot reliably add bypass logic, so it implements the logic in regular logic
cells instead of dedicated RAM blocks. The examples in the following sections discuss
some of these differences for read-during-write conditions.

In addition, the MLAB memories in certain device logic array blocks (LABs) does not
easily support old data or new data behavior for a read-during-write in the dedicated
device architecture. Implementing the extra logic to support this behavior significantly
reduces timing performance through the memory.

Note: For best performance in MLAB memories, ensure that your design does not depend on
the read data during a write operation.

In many synthesis tools, you can declare that the read-during-write behavior is not
important to your design (for example, if you never read from the same address to
which you write in the same clock cycle). In Intel Quartus Prime Standard Edition
integrated synthesis, set the synthesis attribute ramstyle to no_rw_check to allow
Intel Quartus Prime software to define the read-during-write behavior of a RAM, rather
than use the behavior specified by your HDL code. This attribute can prevent the
synthesis tool from using extra logic to implement the memory block, or can allow
memory inference when it would otherwise be impossible.

Synchronous RAM blocks require a synchronous read, so Intel Quartus Prime Standard
Edition integrated synthesis packs either data output registers or read address
registers into the RAM block. When the read address registers are packed into the
RAM block, the read address signals connected to the RAM block contain the next
value of the read address signals indexing the HDL variable, which impacts which

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

clock cycle the read and the write occur, and changes the read-during-write
conditions. Therefore, bypass logic may still be added to the design to preserve the
read-during-write behavior, even if the no_rw_check attribute is set.

2.4.1.4. Controlling RAM Inference and Implementation

Intel Quartus Prime synthesis provides options to control RAM inference and
implementation for Intel FPGA devices with synchronous memory blocks. Synthesis
tools usually do not infer small RAM blocks because implementing small RAM blocks is
more efficient if using the registers in regular logic.

2.4.1.5. Single-Clock Synchronous RAM with Old Data Read-During-Write
Behavior

The code examples in this section show Verilog HDL and VHDL code that infers simple
dual-port, single-clock synchronous RAM. Single-port RAM blocks use a similar coding
style.

The read-during-write behavior in these examples is to read the old data at the
memory address. For best performance in MLAB memories, use the appropriate
attribute so that your design does not depend on the read data during a write
operation. The simple dual-port RAM code samples map directly into Intel synchronous
memory.

Single-port versions of memory blocks (that is, using the same read address and write
address signals) allow better RAM utilization than dual-port memory blocks, depending
on the device family. Refer to the appropriate device handbook for recommendations
on your target device.

Example 24. Verilog HDL Single-Clock, Simple Dual-Port Synchronous RAM with Old Data
Read-During-Write Behavior

module single_clk_ram(
 output reg [7:0] q,
 input [7:0] d,
 input [4:0] write_address, read_address,
 input we, clk
);
 reg [7:0] mem [31:0];

 always @ (posedge clk) begin
 if (we)
 mem[write_address] <= d;
 q <= mem[read_address]; // q doesn't get d in this clock cycle
 end
endmodule

Example 25. VHDL Single-Clock, Simple Dual-Port Synchronous RAM with Old Data Read-
During-Write Behavior

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY single_clock_ram IS
 PORT (
 clock: IN STD_LOGIC;
 data: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 read_address: IN INTEGER RANGE 0 to 31;
 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END single_clock_ram;

ARCHITECTURE rtl OF single_clock_ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(7 DOWNTO 0);
 SIGNAL ram_block: MEM;
BEGIN
 PROCESS (clock)
 BEGIN
 IF (rising_edge(clock)) THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 q <= ram_block(read_address);
 -- VHDL semantics imply that q doesn't get data
 -- in this clock cycle
 END IF;
 END PROCESS;
END rtl;

2.4.1.6. Single-Clock Synchronous RAM with New Data Read-During-Write
Behavior

The examples in this section describe RAM blocks in which the read-during-write
behavior returns the new value being written at the memory address.

To implement this behavior in the target device, synthesis tools add bypass logic
around the RAM block. This bypass logic increases the area utilization of the design,
and decreases the performance if the RAM block is part of the design’s critical path. If
the device memory supports new data read-during-write behavior when in single-port
mode (same clock, same read address, and same write address), the Verilog memory
block doesn't require any bypass logic. Refer to the appropriate device handbook for
specifications on your target device.

For Intel Quartus Prime Standard Edition integrated synthesis, if you do not require
the read-through-write capability, add the synthesis attribute
ramstyle="no_rw_check" to allow the Intel Quartus Prime software to choose the
read-during-write behavior of a RAM, rather than using the behavior specified by your
HDL code. This attribute may prevent generation of extra bypass logic, but it is not
always possible to eliminate the requirement for bypass logic.

The following examples use a blocking assignment for the write so that the data is
assigned intermediately.

Example 26. Verilog HDL Single-Clock, Simple Dual-Port Synchronous RAM with New Data
Read-During-Write Behavior

module single_clock_wr_ram(
 output reg [7:0] q,
 input [7:0] d,
 input [6:0] write_address, read_address,
 input we, clk
);
 reg [7:0] mem [127:0];

 always @ (posedge clk) begin
 if (we)
 mem[write_address] = d;
 q = mem[read_address]; // q does get d in this clock

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 // cycle if we is high
 end
endmodule

Example 27. VHDL Single-Clock, Simple Dual-Port Synchronous RAM with New Data Read-
During-Write Behavior:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY single_clock_ram IS
 PORT (
 clock: IN STD_LOGIC;
 data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;
 read_address: IN INTEGER RANGE 0 to 31;
 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)
);
END single_clock_ram;

ARCHITECTURE rtl OF single_clock_ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);

BEGIN
 PROCESS (clock)
 VARIABLE ram_block: MEM;
 BEGIN
 IF (rising_edge(clock)) THEN
 IF (we = '1') THEN
 ram_block(write_address) := data;
 END IF;
 q <= ram_block(read_address);
 -- VHDL semantics imply that q doesn't get data
 -- in this clock cycle
 END IF;
 END PROCESS;
END rtl;

It is possible to create a single-clock RAM by using an assign statement to read the
address of mem and create the output q. By itself, the RTL describes new data read-
during-write behavior. However, if the RAM output feeds a register in another
hierarchy, a read-during-write results in the old data. Synthesis tools may not infer a
RAM block if the tool cannot determine which behavior is described, such as when the
memory feeds a hard hierarchical partition boundary. Avoid this type of RTL.

Example 28. Avoid Verilog Coding Style with Vague read-during-write Behavior

reg [7:0] mem [127:0];
reg [6:0] read_address_reg;

always @ (posedge clk) begin
 if (we)
 mem[write_address] <= d;
 read_address_reg <= read_address;
end
assign q = mem[read_address_reg];

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 29. Avoid VHDL Coding Style with Vague read-during-write Behavior

The following example uses a concurrent signal assignment to read from the RAM, and
presents a similar behavior.

ARCHITECTURE rtl OF single_clock_rw_ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
 SIGNAL ram_block: MEM;
 SIGNAL read_address_reg: INTEGER RANGE 0 to 31;
BEGIN
 PROCESS (clock)
 BEGIN
 IF (rising_edge(clock)) THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 read_address_reg <= read_address;
 END IF;
 END PROCESS;
 q <= ram_block(read_address_reg);
END rtl;

2.4.1.7. Simple Dual-Port, Dual-Clock Synchronous RAM

With dual-clock designs, synthesis tools cannot accurately infer the read-during-write
behavior because it depends on the timing of the two clocks within the target device.
Therefore, the read-during-write behavior of the synthesized design is undefined and
may differ from your original HDL code.

When Intel Quartus Prime integrated synthesis infers this type of RAM, it issues a
warning because of the undefined read-during-write behavior.

Example 30. Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM

module simple_dual_port_ram_dual_clock
#(parameter DATA_WIDTH=8, parameter ADDR_WIDTH=6)
(
 input [(DATA_WIDTH-1):0] data,
 input [(ADDR_WIDTH-1):0] read_addr, write_addr,
 input we, read_clock, write_clock,
 output reg [(DATA_WIDTH-1):0] q
);

 // Declare the RAM variable
 reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

 always @ (posedge write_clock)
 begin
 // Write
 if (we)
 ram[write_addr] <= data;
 end

 always @ (posedge read_clock)
 begin
 // Read
 q <= ram[read_addr];
 end

endmodule

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 31. VHDL Simple Dual-Port, Dual-Clock Synchronous RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY dual_clock_ram IS
 PORT (
 clock1, clock2: IN STD_LOGIC;
 data: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;
 read_address: IN INTEGER RANGE 0 to 31;
 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)
);
END dual_clock_ram;
ARCHITECTURE rtl OF dual_clock_ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(3 DOWNTO 0);
 SIGNAL ram_block: MEM;
 SIGNAL read_address_reg : INTEGER RANGE 0 to 31;
BEGIN
 PROCESS (clock1)
 BEGIN
 IF (rising_edge(clock1)) THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 END IF;
 END PROCESS;
 PROCESS (clock2)
 BEGIN
 IF (rising_edge(clock2)) THEN
 q <= ram_block(read_address_reg);
 read_address_reg <= read_address;
 END IF;
 END PROCESS;
END rtl;

Related Information

Check Read-During-Write Behavior on page 47

2.4.1.8. True Dual-Port Synchronous RAM

The code examples in this section show Verilog HDL and VHDL code that infers true
dual-port synchronous RAM. Different synthesis tools may differ in their support for
these types of memories.

Intel FPGA synchronous memory blocks have two independent address ports, allowing
for operations on two unique addresses simultaneously. A read operation and a write
operation can share the same port if they share the same address.

The Intel Quartus Prime software infers true dual-port RAMs in Verilog HDL and VHDL,
with the following characteristics:

• Any combination of independent read or write operations in the same clock cycle.

• At most two unique port addresses.

• In one clock cycle, with one or two unique addresses, they can perform:

— Two reads and one write

— Two writes and one read

— Two writes and two reads

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the synchronous RAM block architecture, there is no priority between the two ports.
Therefore, if you write to the same location on both ports at the same time, the result
is indeterminate in the device architecture. You must ensure your HDL code does not
imply priority for writes to the memory block, if you want the design to be
implemented in a dedicated hardware memory block. For example, if both ports are
defined in the same process block, the code is synthesized and simulated sequentially
so that there is a priority between the two ports. If your code does imply a priority,
the logic cannot be implemented in the device RAM blocks and is implemented in
regular logic cells. You must also consider the read-during-write behavior of the RAM
block to ensure that it can be mapped directly to the device RAM architecture.

When a read and write operation occurs on the same port for the same address, the
read operation may behave as follows:

• Read new data—This mode matches the behavior of synchronous memory
blocks.

• Read old data—This mode is supported only in device families that support
M144K and M9K memory blocks.

When a read and write operation occurs on different ports for the same address (also
known as mixed port), the read operation may behave as follows:

• Read new data—Intel Quartus Prime Standard Edition integrated synthesis
supports this mode by creating bypass logic around the synchronous memory
block.

• Read old data—Synchronous memory blocks support this behavior.

• Read don’t care—Synchronous memory blocks support this behavior in simple
dual-port mode.

The Verilog HDL single-clock code sample maps directly into synchronous Intel
memory . When a read and write operation occurs on the same port for the same
address, the new data being written to the memory is read. When a read and write
operation occurs on different ports for the same address, the old data in the memory
is read. Simultaneous writes to the same location on both ports results in
indeterminate behavior.

If you generate a dual-clock version of this design describing the same behavior, the
inferred memory in the target device presents undefined mixed port read-during-write
behavior, because it depends on the relationship between the clocks.

Example 32. Verilog HDL True Dual-Port RAM with Single Clock

module true_dual_port_ram_single_clock
#(parameter DATA_WIDTH = 8, ADDR_WIDTH = 6)
(
 input [(DATA_WIDTH-1):0] data_a, data_b,
 input [(ADDR_WIDTH-1):0] addr_a, addr_b,
 input we_a, we_b, clk,
 output reg [(DATA_WIDTH-1):0] q_a, q_b
);

 // Declare the RAM variable
 reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

 always @ (posedge clk)
 begin // Port a
 if (we_a)
 begin
 ram[addr_a] <= data_a;

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 q_a <= data_a;
 end
 else
 q_a <= ram[addr_a];
 end
 always @ (posedge clk)
 begin // Port b
 if (we_b)
 begin
 ram[addr_b] <= data_b;
 q_b <= data_b;
 end
 else
 q_b <= ram[addr_b];
 end
endmodule

Example 33. VHDL Read Statement Example

-- Port A
process(clk)
 begin
 if(rising_edge(clk)) then
 if(we_a = '1') then
 ram(addr_a) := data_a;
 end if;
 q_a <= ram(addr_a);
 end if;
end process;

-- Port B
process(clk)
 begin
 if(rising_edge(clk)) then
 if(we_b = '1') then
 ram(addr_b) := data_b;
 end if;
 q_b <= ram(addr_b);
 end if;
end process;

The VHDL single-clock code sample maps directly into Intel FPGA synchronous
memory. When a read and write operation occurs on the same port for the same
address, the new data writing to the memory is read. When a read and write operation
occurs on different ports for the same address, the behavior is undefined.
Simultaneous write operations to the same location on both ports results in
indeterminate behavior.

If you generate a dual-clock version of this design describing the same behavior, the
memory in the target device presents undefined mixed port read-during-write
behavior because it depends on the relationship between the clocks.

Example 34. VHDL True Dual-Port RAM with Single Clock

LIBRARY ieee;
use ieee.std_logic_1164.all;

entity true_dual_port_ram_single_clock is
 generic (
 DATA_WIDTH : natural := 8;
 ADDR_WIDTH : natural := 6
);

port (
 clk : in std_logic;
 addr_a : in natural range 0 to 2**ADDR_WIDTH - 1;

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 addr_b : in natural range 0 to 2**ADDR_WIDTH - 1;
 data_a : in std_logic_vector((DATA_WIDTH-1) downto 0);
 data_b : in std_logic_vector((DATA_WIDTH-1) downto 0);
 we_a : in std_logic := '1';
 we_b : in std_logic := '1';
 q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
 q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)
);
end true_dual_port_ram_single_clock;

architecture rtl of true_dual_port_ram_single_clock is
 -- Build a 2-D array type for the RAM
 subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);

 type memory_t is array((2**ADDR_WIDTH - 1) downto 0) of word_t;
 -- Declare the RAM signal.
 signal ram : memory_t;

begin
 process(clk)
 begin
 if(rising_edge(clk)) then -- Port A
 if(we_a = '1') then
 ram(addr_a) <= data_a;
 -- Read-during-write on same port returns NEW data
 q_a <= data_a;
 else
 -- Read-during-write on mixed port returns OLD
data
 q_a <= ram(addr_a);
 end if;
 end if;
 end process;

 process(clk)
 begin
 if(rising_edge(clk)) then -- Port B
 if(we_b = '1') then
 ram(addr_b) <= data_b;
 -- Read-during-write on same port returns NEW data
 q_b <= data_b;
 else
 -- Read-during-write on mixed port returns OLD data
 q_b <= ram(addr_b);
 end if;
 end if;
 end process;
end rtl;

The port behavior inferred in the Intel Quartus Prime software for the above example
is:

PORT_A_READ_DURING_WRITE_MODE = "new_data_no_nbe_read"
PORT_B_READ_DURING_WRITE_MODE = "new_data_no_nbe_read"
MIXED_PORT_FEED_THROUGH_MODE = "old"

Related Information

Guideline: Customize Read-During-Write Behavior
In Intel Arria 10 Core Fabric and General Purpose I/Os Handbook

2.4.1.9. Mixed-Width Dual-Port RAM

The RAM code examples in this section show SystemVerilog and VHDL code that infers
RAM with data ports with different widths.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

56

https://www.intel.com/content/www/us/en/docs/programmable/683461/current/guideline-customize-read-during-write.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Verilog-1995 doesn't support mixed-width RAMs because the standard lacks a multi-
dimensional array to model the different read width, write width, or both. Verilog-2001
doesn't support mixed-width RAMs because this type of logic requires multiple packed
dimensions. Different synthesis tools may differ in their support for these memories.
This section describes the inference rules for Intel Quartus Prime Standard Edition
integrated synthesis .

The first dimension of the multi-dimensional packed array represents the ratio of the
wider port to the narrower port. The second dimension represents the narrower port
width. The read and write port widths must specify a read or write ratio supported by
the memory blocks in the target device. Otherwise, the synthesis tool does not infer a
RAM.

Refer to the Intel Quartus Prime HDL templates for parameterized examples with
supported combinations of read and write widths. You can also find examples of true
dual port RAMs with two mixed-width read ports and two mixed-width write ports.

Example 35. SystemVerilog Mixed-Width RAM with Read Width Smaller than Write Width

module mixed_width_ram // 256x32 write and 1024x8 read
(
 input [7:0] waddr,
 input [31:0] wdata,
 input we, clk,
 input [9:0] raddr,
 output logic [7:0] q
);
 logic [3:0][7:0] ram[0:255];
 always_ff@(posedge clk)
 begin
 if(we) ram[waddr] <= wdata;
 q <= ram[raddr / 4][raddr % 4];
 end
endmodule : mixed_width_ram

Example 36. SystemVerilog Mixed-Width RAM with Read Width Larger than Write Width

module mixed_width_ram // 1024x8 write and 256x32 read
(
 input [9:0] waddr,
 input [31:0] wdata,
 input we, clk,
 input [7:0] raddr,
 output logic [9:0] q
);
 logic [3:0][7:0] ram[0:255];
 always_ff@(posedge clk)
 begin
 if(we) ram[waddr / 4][waddr % 4] <= wdata;
 q <= ram[raddr];
 end
endmodule : mixed_width_ram

Example 37. VHDL Mixed-Width RAM with Read Width Smaller than Write Width

library ieee;
use ieee.std_logic_1164.all;

package ram_types is
 type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
 type ram_t is array (0 to 255) of word_t;
end ram_types;

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.ram_types.all;

entity mixed_width_ram is
 port (
 we, clk : in std_logic;
 waddr : in integer range 0 to 255;
 wdata : in word_t;
 raddr : in integer range 0 to 1023;
 q : out std_logic_vector(7 downto 0));
end mixed_width_ram;

architecture rtl of mixed_width_ram is
 signal ram : ram_t;
begin -- rtl
 process(clk, we)
 begin
 if(rising_edge(clk)) then
 if(we = '1') then
 ram(waddr) <= wdata;
 end if;
 q <= ram(raddr / 4)(raddr mod 4);
 end if;
 end process;
end rtl;

Example 38. VHDL Mixed-Width RAM with Read Width Larger than Write Width

library ieee;
use ieee.std_logic_1164.all;

package ram_types is
 type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
 type ram_t is array (0 to 255) of word_t;
end ram_types;

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.ram_types.all;

entity mixed_width_ram is
 port (
 we, clk : in std_logic;
 waddr : in integer range 0 to 1023;
 wdata : in std_logic_vector(7 downto 0);
 raddr : in integer range 0 to 255;
 q : out word_t);
end mixed_width_ram;

architecture rtl of mixed_width_ram is
 signal ram : ram_t;
begin -- rtl
 process(clk, we)
 begin
 if(rising_edge(clk)) then
 if(we = '1') then
 ram(waddr / 4)(waddr mod 4) <= wdata;
 end if;
 q <= ram(raddr);
 end if;
 end process;
end rtl;

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.1.10. RAM with Byte-Enable Signals

The RAM code examples in this section show SystemVerilog and VHDL code that infers
RAM with controls for writing single bytes into the memory word, or byte-enable
signals.

Synthesis models byte-enable signals by creating write expressions with two indexes,
and writing part of a RAM "word." With these implementations, you can also write
more than one byte at once by enabling the appropriate byte enables.

Verilog-1995 doesn't support mixed-width RAMs because the standard lacks a multi-
dimensional array to model the different read width, write width, or both. Verilog-2001
doesn't support mixed-width RAMs because this type of logic requires multiple packed
dimensions. Different synthesis tools may differ in their support for these memories.
This section describes the inference rules for Intel Quartus Prime Standard Edition
integrated synthesis .

Refer to the Intel Quartus Prime HDL templates for parameterized examples that you
can use for different address widths, and true dual port RAM examples with two read
ports and two write ports.

Example 39. SystemVerilog Simple Dual-Port Synchronous RAM with Byte Enable

module byte_enabled_simple_dual_port_ram
(
 input we, clk,
 input [5:0] waddr, raddr, // address width = 6
 input [3:0] be, // 4 bytes per word
 input [31:0] wdata, // byte width = 8, 4 bytes per word
 output reg [31:0] q // byte width = 8, 4 bytes per word
);
 // use a multi-dimensional packed array
 //to model individual bytes within the word
 logic [3:0][7:0] ram[0:63]; // # words = 1 << address width

 always_ff@(posedge clk)
 begin
 if(we) begin
 if(be[0]) ram[waddr][0] <= wdata[7:0];
 if(be[1]) ram[waddr][1] <= wdata[15:8];
 if(be[2]) ram[waddr][2] <= wdata[23:16];
 if(be[3]) ram[waddr][3] <= wdata[31:24];
 end
 q <= ram[raddr];
 end
endmodule

Example 40. VHDL Simple Dual-Port Synchronous RAM with Byte Enable

library ieee;
use ieee.std_logic_1164.all;
library work;

entity byte_enabled_simple_dual_port_ram is
port (
 we, clk : in std_logic;
 waddr, raddr : in integer range 0 to 63 ; -- address width = 6
 be : in std_logic_vector (3 downto 0); -- 4 bytes per word
 wdata : in std_logic_vector(31 downto 0); -- byte width = 8
 q : out std_logic_vector(31 downto 0)); -- byte width = 8
end byte_enabled_simple_dual_port_ram;

architecture rtl of byte_enabled_simple_dual_port_ram is
 -- build up 2D array to hold the memory

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
 type ram_t is array (0 to 63) of word_t;

 signal ram : ram_t;
 signal q_local : word_t;

 begin -- Re-organize the read data from the RAM to match the output
 unpack: for i in 0 to 3 generate
 q(8*(i+1) - 1 downto 8*i) <= q_local(i);
 end generate unpack;

 process(clk)
 begin
 if(rising_edge(clk)) then
 if(we = '1') then
 if(be(0) = '1') then
 ram(waddr)(0) <= wdata(7 downto 0);
 end if;
 if be(1) = '1' then
 ram(waddr)(1) <= wdata(15 downto 8);
 end if;
 if be(2) = '1' then
 ram(waddr)(2) <= wdata(23 downto 16);
 end if;
 if be(3) = '1' then
 ram(waddr)(3) <= wdata(31 downto 24);
 end if;
 end if;
 q_local <= ram(raddr);
 end if;
 end process;
end rtl;

2.4.1.11. Specifying Initial Memory Contents at Power-Up

Your synthesis tool may offer various ways to specify the initial contents of an inferred
memory. There are slight power-up and initialization differences between dedicated
RAM blocks and the MLAB memory, due to the continuous read of the MLAB.

Intel FPGA dedicated RAM block outputs always power-up to zero, and are set to the
initial value on the first read. For example, if address 0 is pre-initialized to FF, the RAM
block powers up with the output at 0. A subsequent read after power-up from address
0 outputs the pre-initialized value of FF. Therefore, if a RAM powers up and an enable
(read enable or clock enable) is held low, the power-up output of 0 maintains until the
first valid read cycle. The synthesis tool implements MLAB using registers that power-
up to 0, but initialize to their initial value immediately at power-up or reset. Therefore,
the initial value is seen, regardless of the enable status. The Intel Quartus Prime
software maps inferred memory to MLABs when the HDL code specifies an appropriate
ramstyle attribute.

In Verilog HDL, you can use an initial block to initialize the contents of an inferred
memory. Intel Quartus Prime Standard Edition integrated synthesis automatically
converts the initial block into a Memory Initialization File (.mif) for the inferred RAM.

Example 41. Verilog HDL RAM with Initialized Contents

module ram_with_init(
 output reg [7:0] q,
 input [7:0] d,
 input [4:0] write_address, read_address,
 input we, clk
);
 reg [7:0] mem [0:31];

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 integer i;

 initial begin
 for (i = 0; i < 32; i = i + 1)
 mem[i] = i[7:0];
 end

 always @ (posedge clk) begin
 if (we)
 mem[write_address] <= d;
 q <= mem[read_address];
 end
endmodule

Intel Quartus Prime Standard Edition integrated synthesis and other synthesis tools
also support the $readmemb and $readmemh attributes. These attributes allow RAM
initialization and ROM initialization work identically in synthesis and simulation.

Example 42. Verilog HDL RAM Initialized with the readmemb Command

reg [7:0] ram[0:15];
initial
begin
 $readmemb("ram.txt", ram);
end

In VHDL, you can initialize the contents of an inferred memory by specifying a default
value for the corresponding signal. Intel Quartus Prime Standard Edition integrated
synthesis automatically converts the default value into a .mif file for the inferred
RAM.

Example 43. VHDL RAM with Initialized Contents

LIBRARY ieee;
USE ieee.std_logic_1164.all;
use ieee.numeric_std.all;

ENTITY ram_with_init IS
 PORT(
 clock: IN STD_LOGIC;
 data: IN UNSIGNED (7 DOWNTO 0);
 write_address: IN integer RANGE 0 to 31;
 read_address: IN integer RANGE 0 to 31;
 we: IN std_logic;
 q: OUT UNSIGNED (7 DOWNTO 0));
END;

ARCHITECTURE rtl OF ram_with_init IS

 TYPE MEM IS ARRAY(31 DOWNTO 0) OF unsigned(7 DOWNTO 0);
 FUNCTION initialize_ram
 return MEM is
 variable result : MEM;
 BEGIN
 FOR i IN 31 DOWNTO 0 LOOP
 result(i) := to_unsigned(natural(i), natural'(8));
 END LOOP;
 RETURN result;
 END initialize_ram;

 SIGNAL ram_block : MEM := initialize_ram;
BEGIN
 PROCESS (clock)
 BEGIN
 IF (rising_edge(clock)) THEN
 IF (we = '1') THEN

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 ram_block(write_address) <= data;
 END IF;
 q <= ram_block(read_address);
 END IF;
 END PROCESS;
END rtl;

2.4.2. Inferring ROM Functions from HDL Code

Synthesis tools infer ROMs when a CASE statement exists in which a value is set to a
constant for every choice in the CASE statement.

Because small ROMs typically achieve the best performance when they are
implemented using the registers in regular logic, each ROM function must meet a
minimum size requirement for inference and placement in memory.

Note: If you use Intel Quartus Prime Standard Edition integrated synthesis, you can direct
the Intel Quartus Prime software to infer ROM blocks for all sizes with the Allow Any
ROM Size for Recognition option in the Advanced Analysis & Synthesis Settings
dialog box.

Some synthesis tools provide options to control the implementation of inferred ROM
blocks for Intel FPGA devices with synchronous memory blocks. For example, Intel
Quartus Prime Standard Edition integrated synthesis provides the romstyle synthesis
attribute to specify the type of memory block or to specify the use of regular logic
instead of a dedicated memory block.

For device architectures with synchronous RAM blocks, such as the Arria series,
Cyclone® series, or Stratix® series devices, to infer a ROM block, synthesis must use
registers for either the address or the output. When your design uses output registers,
synthesis implements registers from the input registers of the RAM block without
affecting the functionality of the ROM. If you register the address, the power-up state
of the inferred ROM can be different from the HDL design. In this scenario, Intel
Quartus Prime synthesis issues a warning.

The following ROM examples map directly to the Intel FPGA memory architecture.

Example 44. Verilog HDL Synchronous ROM

module sync_rom (clock, address, data_out);
 input clock;
 input [7:0] address;
 output reg [5:0] data_out;
 reg [5:0] data_out;

 always @ (posedge clock)
 begin
 case (address)
 8'b00000000: data_out = 6'b101111;
 8'b00000001: data_out = 6'b110110;
 ...
 8'b11111110: data_out = 6'b000001;
 8'b11111111: data_out = 6'b101010;
 endcase
 end
endmodule

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 45. VHDL Synchronous ROM

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY sync_rom IS
 PORT (
 clock: IN STD_LOGIC;
 address: IN STD_LOGIC_VECTOR(7 downto 0);
 data_out: OUT STD_LOGIC_VECTOR(5 downto 0)
);
END sync_rom;

ARCHITECTURE rtl OF sync_rom IS
BEGIN
PROCESS (clock)
 BEGIN
 IF rising_edge (clock) THEN
 CASE address IS
 WHEN "00000000" => data_out <= "101111";
 WHEN "00000001" => data_out <= "110110";
 ...
 WHEN "11111110" => data_out <= "000001";
 WHEN "11111111" => data_out <= "101010";
 WHEN OTHERS => data_out <= "101111";
 END CASE;
 END IF;
 END PROCESS;
END rtl;

Example 46. Verilog HDL Dual-Port Synchronous ROM Using readmemb

module dual_port_rom
#(parameter data_width=8, parameter addr_width=8)
(
 input [(addr_width-1):0] addr_a, addr_b,
 input clk,
 output reg [(data_width-1):0] q_a, q_b
);
 reg [data_width-1:0] rom[2**addr_width-1:0];

 initial // Read the memory contents in the file
 //dual_port_rom_init.txt.
 begin
 $readmemb("dual_port_rom_init.txt", rom);
 end

 always @ (posedge clk)
 begin
 q_a <= rom[addr_a];
 q_b <= rom[addr_b];
 end
endmodule

Example 47. VHDL Dual-Port Synchronous ROM Using Initialization Function

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dual_port_rom is
 generic (
 DATA_WIDTH : natural := 8;
 ADDR_WIDTH : natural := 8
);
 port (
 clk : in std_logic;

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 addr_a : in natural range 0 to 2**ADDR_WIDTH - 1;
 addr_b : in natural range 0 to 2**ADDR_WIDTH - 1;
 q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
 q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)
);
end entity;

architecture rtl of dual_port_rom is
 -- Build a 2-D array type for the ROM
 subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
 type memory_t is array(2**ADDR_WIDTH - 1 downto 0) of word_t;

 function init_rom
 return memory_t is
 variable tmp : memory_t := (others => (others => '0'));
 begin
 for addr_pos in 0 to 2**ADDR_WIDTH - 1 loop
 -- Initialize each address with the address itself
 tmp(addr_pos) := std_logic_vector(to_unsigned(addr_pos, DATA_WIDTH));
 end loop;
 return tmp;
 end init_rom;

 -- Declare the ROM signal and specify a default initialization value.
 signal rom : memory_t := init_rom;
begin
 process(clk)
 begin
 if (rising_edge(clk)) then
 q_a <= rom(addr_a);
 q_b <= rom(addr_b);
 end if;
 end process;
end rtl;

2.4.3. Inferring Shift Registers in HDL Code

To infer shift registers, synthesis tools detect a group of shift registers of the same
length, and convert them to an Intel FPGA shift register IP core.

For detection, all shift registers must have the following characteristics:

• Use the same clock and clock enable

• No other secondary signals

• Equally spaced taps that are at least three registers apart

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Synthesis recognizes shift registers only for device families with dedicated RAM blocks.
Intel Quartus Prime Standard Edition integrated synthesis uses the following
guidelines:

• The Intel Quartus Prime software determines whether to infer the Intel FPGA shift
register IP core based on the width of the registered bus (W), the length between
each tap (L), or the number of taps (N).

• If the Auto Shift Register Recognition option is set to Auto, Intel Quartus
Prime Standard Edition integrated synthesis determines which shift registers are
implemented in RAM blocks for logic by using:

— The Optimization Technique setting

— Logic and RAM utilization information about the design

— Timing information from Timing-Driven Synthesis

• If the registered bus width is one (W = 1), Intel Quartus Prime synthesis infers
shift register IP if the number of taps times the length between each tap is greater
than or equal to 64 (N x L > 64).

• If the registered bus width is greater than one (W > 1), and the registered bus
width times the number of taps times the length between each tap is greater than
or equal to 32 (W × N × L > 32), the Intel Quartus Prime synthesis infers Intel
FPGA shift register IP core.

• If the length between each tap (L) is not a power of two, Intel Quartus Prime
synthesis needs external logic (LEs or ALMs) to decode the read and write
counters, because of different sizes of shift registers. This extra decode logic
eliminates the performance and utilization advantages of implementing shift
registers in memory.

The registers that Intel Quartus Prime synthesis maps to the Intel FPGA shift register
IP core, and places in RAM are not available in a Verilog HDL or VHDL output file for
simulation tools, because their node names do not exist after synthesis.

Note: The Compiler cannot implement a shift register that uses a shift enable signal into
MLAB memory; instead, the Compiler uses dedicated RAM blocks. To control the type
of memory structure that implements the shift register, use the ramstyle attribute.

2.4.3.1. Simple Shift Register

The examples in this section show a simple, single-bit wide, 67-bit long shift register.

Intel Quartus Prime synthesis implements the register (W = 1 and M = 67) in an
ALTSHIFT_TAPS IP core for supported devices and maps it to RAM in supported
devices, which may be placed in dedicated RAM blocks or MLAB memory. If the length
of the register is less than 67 bits, Intel Quartus Prime synthesis implements the shift
register in logic.

Example 48. Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register

module shift_1x67 (clk, shift, sr_in, sr_out);
 input clk, shift;
 input sr_in;
 output sr_out;

 reg [66:0] sr;

 always @ (posedge clk)
 begin

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 if (shift == 1'b1)
 begin
 sr[66:1] <= sr[65:0];
 sr[0] <= sr_in;
 end
 end
 assign sr_out = sr[65];
endmodule

Example 49. VHDL Single-Bit Wide, 64-Bit Long Shift Register

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_1x67 IS
 PORT (
 clk: IN STD_LOGIC;
 shift: IN STD_LOGIC;
 sr_in: IN STD_LOGIC;
 sr_out: OUT STD_LOGIC
);
END shift_1x67;

ARCHITECTURE arch OF shift_1x67 IS
 TYPE sr_length IS ARRAY (66 DOWNTO 0) OF STD_LOGIC;
 SIGNAL sr: sr_length;
BEGIN
 PROCESS (clk)
 BEGIN
 IF (rising_edge(clk)) THEN
 IF (shift = '1') THEN
 sr(66 DOWNTO 1) <= sr(65 DOWNTO 0);
 sr(0) <= sr_in;
 END IF;
 END IF;
 END PROCESS;
 sr_out <= sr(65);
END arch;

2.4.3.2. Shift Register with Evenly Spaced Taps

The following examples show a Verilog HDL and VHDL 8-bit wide, 64-bit long shift
register (W > 1 and M = 64) with evenly spaced taps at 15, 31, and 47.

The synthesis software implements this function in a single ALTSHIFT_TAPS IP core
and maps it to RAM in supported devices, which is allowed placement in dedicated
RAM blocks or MLAB memory.

Example 50. Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

module top (clk, shift, sr_in, sr_out, sr_tap_one, sr_tap_two,
 sr_tap_three);
 input clk, shift;
 input [7:0] sr_in;
 output [7:0] sr_tap_one, sr_tap_two, sr_tap_three, sr_out;
 reg [7:0] sr [64:0];
 integer n;
 always @ (posedge clk)
 begin
 if (shift == 1'b1)
 begin
 for (n = 64; n>0; n = n-1)
 begin
 sr[n] <= sr[n-1];
 end
 sr[0] <= sr_in;
 end

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 end
 assign sr_tap_one = sr[16];
 assign sr_tap_two = sr[32];
 assign sr_tap_three = sr[48];
 assign sr_out = sr[64];
endmodule

Example 51. VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_8x64_taps IS
 PORT (
 clk: IN STD_LOGIC;
 shift: IN STD_LOGIC;
 sr_in: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 sr_tap_one: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 sr_tap_two : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 sr_tap_three: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 sr_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
);
END shift_8x64_taps;

ARCHITECTURE arch OF shift_8x64_taps IS
 SUBTYPE sr_width IS STD_LOGIC_VECTOR(7 DOWNTO 0);
 TYPE sr_length IS ARRAY (63 DOWNTO 0) OF sr_width;
 SIGNAL sr: sr_length;
BEGIN
 PROCESS (clk)
 BEGIN
 IF (rising_edge(clk)) THEN
 IF (shift = '1') THEN
 sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
 sr(0) <= sr_in;
 END IF;
 END IF;
 END PROCESS;
 sr_tap_one <= sr(15);
 sr_tap_two <= sr(31);
 sr_tap_three <= sr(47);
 sr_out <= sr(63);
END arch;

2.5. Register and Latch Coding Guidelines

This section provides device-specific coding recommendations for Intel registers and
latches. Understanding the architecture of the target Intel device helps ensure that
your RTL produces the expected results and achieves the optimal quality of results.

2.5.1. Register Power-Up Values

Registers in the device core power-up to a low (0) logic level on all Intel FPGA devices.
However, for designs that specify a power-up level other than 0, synthesis tools can
implement logic that directs registers to behave as if they were powering up to a high
(1) logic level.

For designs that use preset signals, but the target device does not support presets in
the register architecture, synthesis may convert the preset signal to a clear signal,
which requires to perform a NOT gate push-back optimization. NOT gate push-back
adds an inverter to the input and the output of the register, so that the reset and
power-up conditions appear high, and the device operates as expected. In this case,

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the synthesis tool may issue a message about the power-up condition. The register
itself powers up low, but since the register output inverts, the signal that arrives at all
destinations is high.

Due to these effects, if you specify a non-zero reset value, the synthesis tool may use
the asynchronous clear (aclr) signals available on the registers to implement the
high bits with NOT gate push-back. In that case, the registers look as though they
power-up to the specified reset value.

When an asynchronous load (aload) signal is available in the device registers, the
synthesis tools can implement a reset of 1 or 0 value by using an asynchronous load
of 1 or 0. When the synthesis tool uses a load signal, it is not performing NOT gate
push-back, so the registers power-up to a 0 logic level. For additional details, refer to
the appropriate device family handbook.

Optionally you can force all registers into their appropriate values after reset through
an explicit reset signal. This technique allows to reset the device after power-up to
restore the proper state.

Synchronizing the device architecture's external or combinational logic before driving
the register's asynchronous control ports allows for more stable designs and avoids
potential glitches.

Related Information

Recommended Design Practices on page 4

2.5.1.1. Specifying a Power-Up Value

Options available in synthesis tools allow you to specify power-up conditions for the
design. Intel Quartus Prime Standard Edition integrated synthesis provides the
Power-Up Level logic option.

You can also specify the power-up level with an altera_attribute assignment in
the source code. This attribute forces synthesis to perform NOT gate push-back,
because synthesis tools cannot change the power-up states of core registers.

You can apply the Power-Up Level logic option to a specific register, or to a design
entity, module, or sub design. When you assign this option, every register in that
block receives the value. Registers power up to 0 by default. Therefore, you can use
this assignment to force all registers to power-up to 1 using NOT gate push-back.

Setting the Power-Up Level to a logic level of high for a large design entity could
degrade the quality of results due to the number of inverters that requires. In some
situations, this design style causes issues due to enable signal inference or
secondary control logic inference. It may also be more difficult to migrate this type of
designs.

Some synthesis tools can also read the default or initial values for registered signals
and implement this behavior in the device. For example, Intel Quartus Prime Standard
Edition integrated synthesis converts default values for registered signals into Power-
Up Level settings. When the Intel Quartus Prime software reads the default values,
the synthesized behavior matches the power-up state of the HDL code during a
functional simulation.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 52. Verilog Register with High Power-Up Value

reg q = 1’b1; //q has a default value of ‘1’

always @ (posedge clk)
begin
 q <= d;
end

Example 53. VHDL Register with High Power-Up Level

SIGNAL q : STD_LOGIC := '1'; -- q has a default value of '1'

PROCESS (clk, reset)
BEGIN
 IF (rising_edge(clk)) THEN
 q <= d;
 END IF;
END PROCESS;

Your design may contain undeclared default power-up conditions based on signal type.
If you declare a VHDL register signal as an integer, Intel Quartus Prime synthesis uses
the left end of the integer range as the power-up value. For the default signed integer
type, the default power-up value is the highest magnitude negative integer (100…
001). For an unsigned integer type, the default power-up value is 0.

Note: If the target device architecture does not support two asynchronous control signals,
such as aclr and aload, you cannot set a different power-up state and reset state. If
the NOT gate push-back algorithm creates logic to set a register to 1, that register
powers-up high. If you set a different power-up condition through a synthesis
attribute or initial value, synthesis ignores the power-up level.

2.5.2. Secondary Register Control Signals Such as Clear and Clock Enable

The registers in Intel FPGAs provide a number of secondary control signals. Use these
signals to implement control logic for each register without using extra logic cells.
Intel FPGA device families vary in their support for secondary signals, so consult the
device family data sheet to verify which signals are available in your target device.

To make the most efficient use of the signals in the device, ensure that HDL code
matches the device architecture as closely as possible. The control signals have a
certain priority due to the nature of the architecture. Your HDL code must follow that
priority where possible.

Your synthesis tool can emulate any control signals using regular logic, so achieving
functionally correct results is always possible. However, if your design requirements
allow flexibility in controlling use and priority of control signals, match your design to
the target device architecture to achieve the most efficient results. If the priority of
the signals in your design is not the same as that of the target architecture, you may
require extra logic to implement the control signals. This extra logic uses additional
device resources, and can cause additional delays for the control signals.

In certain cases, using logic other than the dedicated control logic in the device
architecture can have a larger impact. For example, the clock enable signal has
priority over the synchronous reset or clear signal in the device architecture. The

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

clock enable turns off the clock line in the LAB, and the clear signal is
synchronous. Therefore, in the device architecture, the synchronous clear takes effect
only when a clock edge occurs.

If you define a register with a synchronous clear signal that has priority over the
clock enable signal, Intel Quartus Prime synthesis emulates the clock enable
functionality using data inputs to the registers. You cannot apply a Clock Enable
Multicycle constraint, because the emulated functionality does not use the clock
enable port of the register. In this case, using a different priority causes unexpected
results with an assignment to the clock enable signal.

The signal order is the same for all Intel FPGA device families. However, not all device
families provide every signal. The priority order is:

1. Asynchronous Clear (aclr)—highest priority

2. Asynchronous Load (aload)—not available on Intel Arria 10 devices

3. Enable (ena)

4. Synchronous Clear (sclr)

5. Synchronous Load (sload)

6. Data In (data)—lowest priority

The priority order for secondary control signals in Intel FPGA devices differs from the
order for other vendors’ FPGA devices. If your design requirements are flexible
regarding priority, verify that the secondary control signals meet design performance
requirements when migrating designs between FPGA vendors. To achieve the best
results. try to match your target device architecture.

The following Verilog HDL and VHDL examples create a register with the aclr, aload,
and ena control signals.

Example 54. Verilog HDL D-Type Flipflop (Register) With ena, aclr, and aload Control
Signals

This example does not have adata on the sensitivity list. This is a limitation of the
Verilog HDL language—there is no way to describe an asynchronous load signal (in
which q toggles if adata toggles while aload is high). Despite this limitation, many
synthesis tools infer an aload signal from this construct. When they perform such
inference, you may see information or warning messages from the synthesis tool.

module dff_control(clk, aclr, aload, ena, data, adata, q);
 input clk, aclr, aload, ena, data, adata;
 output q;

 reg q;

 always @ (posedge clk or posedge aclr or posedge aload)
 begin
 if (aclr)
 q <= 1'b0;
 else if (aload)
 q <= adata;
 else if (ena)
 q <= data;
 end
endmodule

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 55. VHDL D-Type Flipflop (Register) With ena, aclr, and aload Control Signals

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff_control IS
 PORT (
 clk: IN STD_LOGIC;
 aclr: IN STD_LOGIC;
 aload: IN STD_LOGIC;
 adata: IN STD_LOGIC;
 ena: IN STD_LOGIC;
 data: IN STD_LOGIC;
q: OUT STD_LOGIC
);
END dff_control;
ARCHITECTURE rtl OF dff_control IS
BEGIN
 PROCESS (clk, aclr, aload, adata)
 BEGIN
IF (aclr = '1') THEN
q <= '0';
ELSIF (aload = '1') THEN
q <= adata;
ELSE
 IF (rising_edge(clk)) THEN
 IF (ena ='1') THEN
q <= data;
 END IF;
 END IF;
 END IF;
 END PROCESS;
END rtl;

Related Information

Clock Enable Multicycle
In Intel Quartus Prime Timing Analyzer Cookbook

2.5.3. Latches

A latch is a small combinational loop that holds the value of a signal until a new value
is assigned. Synthesis tools can infer latches from HDL code when you did not intend
to use a latch. If you do intend to infer a latch, it is important to infer it correctly to
guarantee correct device operation.

Note: Design without the use of latches whenever possible.

Related Information

Avoid Unintended Latch Inference on page 7

2.5.3.1. Avoid Unintentional Latch Generation

When you design combinational logic, certain coding styles can create an unintentional
latch. For example, when CASE or IF statements do not cover all possible input
conditions, synthesis tools can infer latches to hold the output if a new output value is
not assigned. Check your synthesis tool messages for references to inferred latches.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

71

https://www.intel.com/content/www/us/en/docs/programmable/683081/current/clock-enable-multicycle.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If your code unintentionally creates a latch, modify your RTL to remove the latch:

• Synthesis infers a latch when HDL code assigns a value to a signal outside of a
clock edge (for example, with an asynchronous reset), but the code does not
assign a value in an edge-triggered design block.

• Unintentional latches also occur when HDL code assigns a value to a signal in an
edge-triggered design block, but synthesis optimizations remove that logic. For
example, when a CASE or IF statement tests a condition that only evaluates to
FALSE, synthesis removes any logic or signal assignment in that statement during
optimization. This optimization may result in the inference of a latch for the signal.

• Omitting the final ELSE or WHEN OTHERS clause in an IF or CASE statement can
also generate a latch. Don’t care (X) assignments on the default conditions are
useful in preventing latch generation. For the best logic optimization, assign the
default CASE or final ELSE value to don’t care (X) instead of a logic value.

In Verilog HDL designs, use the full_case attribute to treat unspecified cases as
don’t care values (X). However, since the full_case attribute is synthesis-only, it can
cause simulation mismatches, because simulation tools still treat the unspecified cases
as latches.

Example 56. VHDL Code Preventing Unintentional Latch Creation

Without the final ELSE clause, the following code creates unintentional latches to
cover the remaining combinations of the SEL inputs. When you are targeting a Stratix
series device with this code, omitting the final ELSE condition can cause synthesis
tools to use up to six LEs, instead of the three it uses with the ELSE statement.
Additionally, assigning the final ELSE clause to 1 instead of X can result in slightly
more LEs, because synthesis tools cannot perform as much optimization when you
specify a constant value as opposed to a don’t care value.

LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY nolatch IS
 PORT (a,b,c: IN STD_LOGIC;
 sel: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 oput: OUT STD_LOGIC);
END nolatch;

ARCHITECTURE rtl OF nolatch IS
BEGIN
 PROCESS (a,b,c,sel) BEGIN
 IF sel = "00000" THEN
 oput <= a;
 ELSIF sel = "00001" THEN
 oput <= b;
 ELSIF sel = "00010" THEN
 oput <= c;
 ELSE --- Prevents latch inference
 oput <= 'X'; --/
 END IF;
 END PROCESS;
END rtl;

2.5.3.2. Inferring Latches Correctly

Synthesis tools can infer a latch that does not exhibit the glitch and timing hazard
problems typically associated with combinational loops. Intel Quartus Prime Standard
Edition software reports latches that synthesis inferred in the User-Specified and

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Inferred Latches section of the Compilation Report. This report indicates whether
the latch presents a timing hazard, and the total number of user-specified and inferred
latches.

Note: In some cases, timing analysis does not completely model latch timing . As a best
practice, avoid latches unless required by the design and you fully understand the
impact.

If latches or combinational loops in the design do not appear in the User Specified
and Inferred Latches section, then Intel Quartus Prime synthesis did not infer the
latch as a safe latch, so the latch is not considered glitch-free.

All combinational loops listed in the Analysis & Synthesis Logic Cells
Representing Combinational Loops table in the Compilation Report are at risk of
timing hazards. These entries indicate possible problems with the design that require
further investigation. However, correct designs can include combinational loops. For
example, it is possible that the combinational loop cannot be sensitized. This occurs
when there is an electrical path in the hardware, but either:

• The designer knows that the circuit never encounters data that causes that path to
be activated, or

• The surrounding logic is set up in a mutually exclusive manner that prevents that
path from ever being sensitized, independent of the data input.

For 4-input LUT-based devices, such as Stratix devices, the Cyclone series, and MAX®

II devices, all latches in the User Specified and Inferred Latches table with a
single LUT in the feedback loop are free of timing hazards when a single input
changes. Because of the hardware behavior of the LUT, the output does not glitch
when a single input toggles between two values that are supposed to produce the
same output value, such as a D-type input toggling when the enable input is inactive
or a set input toggling when a reset input with higher priority is active. This
hardware behavior of the LUT means that no cover term is required for a loop around
a single LUT. The Intel Quartus Prime software uses a single LUT in the feedback loop
whenever possible. A latch that has data, enable, set, and reset inputs in addition to
the output fed back to the input cannot be implemented in a single 4-input LUT. If the
Intel Quartus Prime software cannot implement the latch with a single-LUT loop
because there are too many inputs, the User Specified and Inferred Latches table
indicates that the latch is not free of timing hazards.

For 6-input LUT-based devices, Intel Quartus Prime synthesis implements all latch
inputs with a single adaptive look-up table (ALUT) in the combinational loop.
Therefore, all latches in the User-Specified and Inferred Latches table are free of
timing hazards when a single input changes.

If Intel Quartus Prime synthesis report lists a latch as a safe latch, other
optimizations, such as physical synthesis netlist optimizations in the Fitter, maintain
the hazard-free performance. To ensure hazard-free behavior, only one control input
can change at a time. Changing two inputs simultaneously, such as deasserting set
and reset at the same time, or changing data and enable at the same time, can
produce incorrect behavior in any latch.

Intel Quartus Prime synthesis infers latches from always blocks in Verilog HDL and
process statements in VHDL. However, Intel Quartus Prime synthesis does not infer
latches from continuous assignments in Verilog HDL, or concurrent signal assignments

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

in VHDL. These rules are the same as for register inference. The Intel Quartus Prime
synthesis infers registers or flipflops only from always blocks and process
statements.

Example 57. Verilog HDL Set-Reset Latch

module simple_latch (
 input SetTerm,
 input ResetTerm,
 output reg LatchOut
);
 always @ (SetTerm or ResetTerm) begin
 if (SetTerm)
 LatchOut = 1'b1;
 else if (ResetTerm)
 LatchOut = 1'b0;
 end
endmodule

Example 58. VHDL Data Type Latch

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simple_latch IS
 PORT (
 enable, data : IN STD_LOGIC;
 q : OUT STD_LOGIC
);
END simple_latch;
ARCHITECTURE rtl OF simple_latch IS
BEGIN
 latch : PROCESS (enable, data)
 BEGIN
 IF (enable = '1') THEN
 q <= data;
 END IF;
 END PROCESS latch;
END rtl;

The following example shows a Verilog HDL continuous assignment that does not infer
a latch in the Intel Quartus Prime software:

Example 59. Verilog Continuous Assignment Does Not Infer Latch

assign latch_out = (~en & latch_out) | (en & data);

The behavior of the assignment is similar to a latch, but it may not function correctly
as a latch, and its timing is not analyzed as a latch. Intel Quartus Prime Standard
Edition integrated synthesis also creates safe latches when possible for instantiations
of an Altera latch IP core. Altera latch IPs allow you to define a latch with any
combination of data, enable, set, and reset inputs. The same limitations apply for
creating safe latches as for inferring latches from HDL code.

Inferring the Altera latch IP core in another synthesis tool ensures that Intel Quartus
Prime synthesis also recognizes the implementation as a latch. If a third-party
synthesis tool implements a latch using the Altera latch IP core, Intel Quartus Prime
Standard Edition integrated synthesis reports the latch in the User-Specified and
Inferred Latches table, in the same manner as it lists latches you define in HDL
source code. The coding style necessary to produce an Altera latch IP core
implementation depends on the synthesis tool. Some third-party synthesis tools list
the number of Altera latch IP cores that are inferred.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Fitter uses global routing for control signals, including signals that synthesis
identifies as latch enables. In some cases, the global insertion delay decreases timing
performance. If necessary, you can turn off the Intel Quartus Prime Global Signal
logic option to manually prevent the use of global signals. The Global & Other Fast
Signals table in the Compilation Report reports Global latch enables.

2.6. General Coding Guidelines

This section describes how coding styles impact synthesis of HDL code into the target
Intel FPGA devices. You can improve your design efficiency and performance by
following these recommended coding styles, and designing logic structures to match
the appropriate device architecture.

2.6.1. Tri-State Signals

Use tri-state signals only when they are attached to top-level bidirectional or output
pins.

Avoid lower-level bidirectional pins. Also avoid using the Z logic value unless it is
driving an output or bidirectional pin. Even though some synthesis tools implement
designs with internal tri-state signals correctly in Intel FPGA devices using multiplexer
logic, do not use this coding style for Intel FPGA designs.

Note: In hierarchical block-based design flows, a hierarchical boundary cannot contain any
bidirectional ports, unless the lower-level bidirectional port is connected directly
through the hierarchy to a top-level output pin without connecting to any other design
logic. If you use boundary tri-states in a lower-level block, synthesis software must
push the tri-states through the hierarchy to the top level to make use of the tri-state
drivers on output pins of Intel FPGA devices. Because pushing tri-states requires
optimizing through hierarchies, lower-level tri-states are restricted with block-based
design methodologies.

2.6.2. Clock Multiplexing

Clock multiplexing is sometimes used to operate the same logic function with different
clock sources. This type of logic can introduce glitches that create functional problems.
The delay inherent in the combinational logic can also lead to timing problems. Clock
multiplexers trigger warnings from a wide range of design rule check and timing
analysis tools.

Use dedicated hardware to perform clock multiplexing when it is available, instead of
using multiplexing logic. For example, you can use the Clock Switchover feature or the
Clock Control Block available in certain Intel FPGA devices. These dedicated hardware
blocks avoid glitches, ensure that you use global low-skew routing lines, and avoid any
possible hold time problems on the device due to logic delay on the clock line. Intel
FPGA devices also support dynamic PLL reconfiguration, which is the safest and most
robust method of changing clock rates during device operation.

If your design has too many clocks to use the clock control block, or if dynamic
reconfiguration is too complex for your design, you can implement a clock multiplexer
in logic cells. However, if you use this implementation, consider simultaneous toggling
inputs and ensure glitch-free transitions.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 22. Simple Clock Multiplexer in a 6-Input LUT

clk0

clk1

clk2

clk3

Sys_clk

clk_select (static)

Each device datasheet describes how LUT outputs can glitch during a simultaneous
toggle of input signals, independent of the LUT function. Even though the 4:1 MUX
function does not generate detectable glitches during simultaneous data input toggles,
some cell implementations of multiplexing logic exhibit significant glitches, so this
clock mux structure is not recommended. An additional problem with this
implementation is that the output behaves erratically during a change in the
clk_select signals. This behavior could create timing violations on all registers fed
by the system clock and result in possible metastability.

A more sophisticated clock select structure can eliminate the simultaneous toggle and
switching problems.

Figure 23. Glitch-Free Clock Multiplexer Structure

sel0

sel1

clk0

clk1

clk_out

DQ DQ DQ

DQDQDQ

You can generalize this structure for any number of clock channels. The design
ensures that no clock activates until all others are inactive for at least a few cycles,
and that activation occurs while the clock is low. The design applies a
synthesis_keep directive to the AND gates on the right side, which ensures there
are no simultaneous toggles on the input of the clk_out OR gate.

Note: Switching from clock A to clock B requires that clock A continue to operate for at least
a few cycles. If clock A stops immediately, the design sticks. The select signals are
implemented as a “one-hot” control in this example, but you can use other encoding if
you prefer. The input side logic is asynchronous and is not critical. This design can
tolerate extreme glitching during the switch process.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 60. Verilog HDL Clock Multiplexing Design to Avoid Glitches

This example works with Verilog-2001.

module clock_mux (clk,clk_select,clk_out);

 parameter num_clocks = 4;

 input [num_clocks-1:0] clk;
 input [num_clocks-1:0] clk_select; // one hot
 output clk_out;

 genvar i;

 reg [num_clocks-1:0] ena_r0;
 reg [num_clocks-1:0] ena_r1;
 reg [num_clocks-1:0] ena_r2;
 wire [num_clocks-1:0] qualified_sel;

 // A look-up-table (LUT) can glitch when multiple inputs
 // change simultaneously. Use the keep attribute to
 // insert a hard logic cell buffer and prevent
 // the unrelated clocks from appearing on the same LUT.

 wire [num_clocks-1:0] gated_clks /* synthesis keep */;

 initial begin
 ena_r0 = 0;
 ena_r1 = 0;
 ena_r2 = 0;
 end

 generate
 for (i=0; i<num_clocks; i=i+1)
 begin : lp0
 wire [num_clocks-1:0] tmp_mask;
 assign tmp_mask = {num_clocks{1'b1}} ^ (1 << i);

 assign qualified_sel[i] = clk_select[i] & (~|(ena_r2 & tmp_mask));

 always @(posedge clk[i]) begin
 ena_r0[i] <= qualified_sel[i];
 ena_r1[i] <= ena_r0[i];
 end

 always @(negedge clk[i]) begin
 ena_r2[i] <= ena_r1[i];
 end

 assign gated_clks[i] = clk[i] & ena_r2[i];
 end
 endgenerate

 // These will not exhibit simultaneous toggle by construction
 assign clk_out = |gated_clks;

endmodule

Related Information

Intel FPGA IP Core Literature

2.6.3. Adder Trees

Structuring adder trees appropriately to match your targeted Intel FPGA device
architecture can provide significant improvements in your design's efficiency and
performance.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

77

http://www.altera.com/literature/lit-ip.jsp
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A good example of an application using a large adder tree is a finite impulse response
(FIR) correlator. Using a pipelined binary or ternary adder tree appropriately can
greatly improve the quality of your results.

This section explains why coding recommendations are different for Intel 4-input LUT
devices and 6-input LUT devices.

2.6.3.1. Architectures with 4-Input LUTs in Logic Elements

Architectures such as Stratix devices and the Cyclone series of devices contain 4-input
LUTs as the standard combinational structure in the LE.

If your design can tolerate pipelining, the fastest way to add three numbers A, B, and
C in devices that use 4-input lookup tables is to addA + B, register the output, and
then add the registered output to C. Adding A + B takes one level of logic (one bit is
added in one LE), so this runs at full clock speed. This can be extended to as many
numbers as desired.

Adding five numbers in devices that use 4-input lookup tables requires four adders
and three levels of registers for a total of 64 LEs (for 16-bit numbers).

Example 61. Verilog HDL Pipelined Binary Tree

module binary_adder_tree (a, b, c, d, e, clk, out);
 parameter width = 16;
 input [width-1:0] a, b, c, d, e;
 input clk;
 output [width-1:0] out;

 wire [width-1:0] sum1, sum2, sum3, sum4;
 reg [width-1:0] sumreg1, sumreg2, sumreg3, sumreg4;
 // Registers

 always @ (posedge clk)
 begin
 sumreg1 <= sum1;
 sumreg2 <= sum2;
 sumreg3 <= sum3;
 sumreg4 <= sum4;
 end

 // 2-bit additions
 assign sum1 = A + B;
 assign sum2 = C + D;
 assign sum3 = sumreg1 + sumreg2;
 assign sum4 = sumreg3 + E;
 assign out = sumreg4;
endmodule

2.6.3.2. Architectures with 6-Input LUTs in Adaptive Logic Modules

In Intel FPGA device families with 6-input LUT in their basic logic structure, ALMs can
simultaneously add three bits. Take advantage of this feature by restructuring your
code for better performance.

Although code targeting 4-input LUT architectures compiles successfully for 6-input
LUT devices, the implementation can be inefficient. For example, to take advantage of
the 6-input adaptive ALUT, you must rewrite large pipelined binary adder trees
designed for 4-input LUT architectures. By restructuring the tree as a ternary tree, the
design becomes much more efficient, significantly improving density utilization.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You cannot pack a LAB full when using this type of coding style because of the number
of LAB inputs. However, in a typical design, the Intel Quartus Prime Fitter can pack
other logic into each LAB to take advantage of the unused ALMs.

Example 62. Verilog HDL Pipelined Ternary Tree

The example shows a pipelined adder, but partitioning your addition operations can
help you achieve better results in non-pipelined adders as well. If your design is not
pipelined, a ternary tree provides much better performance than a binary tree. For
example, depending on your synthesis tool, the HDL code
sum = (A + B + C) + (D + E) is more likely to create the optimal
implementation of a 3-input adder for A + B + C followed by a 3-input adder for
sum1 + D + E than the code without the parentheses. If you do not add the
parentheses, the synthesis tool may partition the addition in a way that is not optimal
for the architecture.

module ternary_adder_tree (a, b, c, d, e, clk, out);
 parameter width = 16;
 input [width-1:0] a, b, c, d, e;
 input clk;
 output [width-1:0] out;

 wire [width-1:0] sum1, sum2;
 reg [width-1:0] sumreg1, sumreg2;
 // registers

 always @ (posedge clk)
 begin
 sumreg1 <= sum1;
 sumreg2 <= sum2;
 end

 // 3-bit additions
 assign sum1 = a + b + c;
 assign sum2 = sumreg1 + d + e;
 assign out = sumreg2;
endmodule

2.6.4. State Machine HDL Guidelines

Synthesis tools can recognize and encode Verilog HDL and VHDL state machines
during synthesis. This section presents guidelines to secure the best results when you
use state machines.

Synthesis tools that can recognize a piece of code as a state machine can perform
optimizations that improve the design area and performance. For example, the tool
can recode the state variables to improve the quality of results, or optimize other
parts of the design through known properties of state machines.

To achieve the best results, synthesis tools often use one-hot encoding for FPGA
devices and minimal-bit encoding for CPLD devices, although the choice of
implementation can vary for different state machines and different devices. Refer to
the synthesis tool documentation for techniques to control the encoding of state
machines.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To ensure proper recognition and inference of state machines and to improve the
quality of results, observe the following guidelines for both Verilog HDL and VHDL:

• Assign default values to outputs derived from the state machine so that synthesis
does not generate unwanted latches.

• Separate state machine logic from all arithmetic functions and datapaths,
including assigning output values.

• For designs in which more than one state perform the same operation, define the
operation outside the state machine, and direct the output logic of the state
machine to use this value.

• Ensure a defined power-up state with a simple asynchronous or synchronous
reset. In designs where the state machine contains more elaborate reset logic,
such as both an asynchronous reset and an asynchronous load, the Intel Quartus
Prime software infers regular logic rather than a state machine.

If a state machine enters an illegal state due to a problem with the device, the design
likely ceases to function correctly until the next reset of the state machine. Synthesis
tools do not provide for this situation by default. The same issue applies to any other
registers if there is some fault in the system. A default or when others clause
does not affect this operation, assuming that the design never deliberately enters this
state. Synthesis tools remove any logic generated by a default state if it is not
reachable by normal state machine operation.

Many synthesis tools (including Intel Quartus Primeintegrated synthesis) have an
option to implement a safe state machine. The Intel Quartus Prime software inserts
extra logic to detect illegal states and force the state machine’s transition to the
reset state. Safe state machines are useful when the state machine can enter an
illegal state, for example, when a state machine has control inputs that originate in
another clock domain, such as the control logic for a dual-clock FIFO.

This option protects state machines by forcing them into the reset state. All other
registers in the design are not protected this way. As a best practice for designs with
asynchronous inputs, use a synchronization register chain instead of relying on the
safe state machine option.

Related Information

Intel Quartus Prime Integrated Synthesis

2.6.4.1. Verilog HDL State Machines

To ensure proper recognition and inference of Verilog HDL state machines, observe the
following additional Verilog HDL guidelines.

Refer to your synthesis tool documentation for specific coding recommendations. If
the synthesis tool doesn't recognize and infer the state machine, the tool implements
the state machine as regular logic gates and registers, and the state machine doesn't
appear as a state machine in the Analysis & Synthesis section of the Intel Quartus
Prime Compilation Report. In this case, Intel Quartus Prime synthesis does not
perform any optimizations specific to state machines.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

80

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#mwh1409959843979
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• If you are using the SystemVerilog standard, use enumerated types to describe
state machines.

• Represent the states in a state machine with the parameter data types in
Verilog-1995 and Verilog-2001, and use the parameters to make state
assignments. This parameter implementation makes the state machine easier to
read and reduces the risk of errors during coding.

• Do not directly use integer values for state variables, such as next_state <= 0.
However, using an integer does not prevent inference in the Intel Quartus Prime
software.

• Intel Quartus Prime software doesn't infer a state machine if the state transition
logic uses arithmetic similar to the following example:

case (state)
 0: begin
 if (ena) next_state <= state + 2;
 else next_state <= state + 1;
 end
 1: begin
 ...
endcase

• Intel Quartus Prime software doesn't infer a state machine if the state variable is
an output.

• Intel Quartus Prime software doesn't infer a state machine for signed variables.

2.6.4.1.1. Verilog-2001 State Machine Coding Example

The following module verilog_fsm is an example of a typical Verilog HDL state
machine implementation. This state machine has five states.

The asynchronous reset sets the variable state to state_0. The sum of in_1 and
in_2 is an output of the state machine in state_1 and state_2. The difference
(in_1 – in_2) is also used in state_1 and state_2. The temporary variables
tmp_out_0 and tmp_out_1 store the sum and the difference of in_1 and in_2.
Using these temporary variables in the various states of the state machine ensures
proper resource sharing between the mutually exclusive states.

Example 63. Verilog-2001 State Machine

module verilog_fsm (clk, reset, in_1, in_2, out);
 input clk, reset;
 input [3:0] in_1, in_2;
 output [4:0] out;
 parameter state_0 = 3'b000;
 parameter state_1 = 3'b001;
 parameter state_2 = 3'b010;
 parameter state_3 = 3'b011;
 parameter state_4 = 3'b100;

 reg [4:0] tmp_out_0, tmp_out_1, tmp_out_2;
 reg [2:0] state, next_state;

 always @ (posedge clk or posedge reset)
 begin
 if (reset)
 state <= state_0;
 else
 state <= next_state;
 end
 always @ (*)

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 begin
 tmp_out_0 = in_1 + in_2;
 tmp_out_1 = in_1 - in_2;
 case (state)
 state_0: begin
 tmp_out_2 = in_1 + 5'b00001;
 next_state = state_1;
 end
 state_1: begin
 if (in_1 < in_2) begin
 next_state = state_2;
 tmp_out_2 = tmp_out_0;
 end
 else begin
 next_state = state_3;
 tmp_out_2 = tmp_out_1;
 end
 end
 state_2: begin
 tmp_out_2 = tmp_out_0 - 5'b00001;
 next_state = state_3;
 end
 state_3: begin
 tmp_out_2 = tmp_out_1 + 5'b00001;
 next_state = state_0;
 end
 state_4:begin
 tmp_out_2 = in_2 + 5'b00001;
 next_state = state_0;
 end
 default:begin
 tmp_out_2 = 5'b00000;
 next_state = state_0;
 end
 endcase
 end
 assign out = tmp_out_2;
endmodule

You can achieve an equivalent implementation of this state machine by using
‘define instead of the parameter data type, as follows:

‘define state_0 3'b000
‘define state_1 3'b001
‘define state_2 3'b010
‘define state_3 3'b011
‘define state_4 3'b100

In this case, you assign `state_x instead of state_x to state and next_state,
for example:

next_state <= ‘state_3;

Note: Although Intel supports the ‘define construct, use the parameter data type,
because it preserves the state names throughout synthesis.

2.6.4.1.2. SystemVerilog State Machine Coding Example

Use the following coding style to describe state machines in SystemVerilog.

Example 64. SystemVerilog State Machine Using Enumerated Types

The module enum_fsm is an example of a SystemVerilog state machine
implementation that uses enumerated types.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In Intel Quartus Prime Standard Edition integrated synthesis, the enumerated type
that defines the states for the state machine must be of an unsigned integer type. If
you do not specify the enumerated type as int unsigned, synthesis uses a signed
int type by default. In this case, the Intel Quartus Prime software synthesizes the
design, but does not infer or optimize the logic as a state machine.

module enum_fsm (input clk, reset, input int data[3:0], output int o);
enum int unsigned { S0 = 0, S1 = 2, S2 = 4, S3 = 8 } state, next_state;
always_comb begin : next_state_logic
 next_state = S0;
 case(state)
 S0: next_state = S1;
 S1: next_state = S2;
 S2: next_state = S3;
 S3: next_state = S3;
 endcase
end
always_comb begin
 case(state)
 S0: o = data[3];
 S1: o = data[2];
 S2: o = data[1];
 S3: o = data[0];
 endcase
end
always_ff@(posedge clk or negedge reset) begin
 if(~reset)
 state <= S0;
 else
 state <= next_state;
end
endmodule

2.6.4.2. VHDL State Machines

To ensure proper recognition and inference of VHDL state machines, represent the
different states with enumerated types, and use the corresponding types to make
state assignments.

This implementation makes the state machine easier to read, and reduces the risk of
errors during coding. If your RTL does not represent states with an enumerated type,
Intel Quartus Prime synthesis (and other synthesis tools) do not recognize the state
machine. Instead, synthesis implements the state machine as regular logic gates and
registers. Consequently, and the state machine does not appear in the state machine
list of the Intel Quartus Prime Compilation Report, Analysis & Synthesis section.
Moreover, Intel Quartus Prime synthesis does not perform any of the optimizations
that are specific to state machines.

2.6.4.2.1. VHDL State Machine Coding Example

The following state machine has five states. The asynchronous reset sets the variable
state to state_0.

The sum of in1 and in2 is an output of the state machine in state_1 and state_2.
The difference (in1 - in2) is also used in state_1 and state_2. The temporary
variables tmp_out_0 and tmp_out_1 store the sum and the difference of in1 and
in2. Using these temporary variables in the various states of the state machine
ensures proper resource sharing between the mutually exclusive states.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 65. VHDL State Machine

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
ENTITY vhdl_fsm IS
 PORT(
 clk: IN STD_LOGIC;
 reset: IN STD_LOGIC;
 in1: IN UNSIGNED(4 downto 0);
 in2: IN UNSIGNED(4 downto 0);
 out_1: OUT UNSIGNED(4 downto 0)
);
END vhdl_fsm;
ARCHITECTURE rtl OF vhdl_fsm IS
 TYPE Tstate IS (state_0, state_1, state_2, state_3, state_4);
 SIGNAL state: Tstate;
 SIGNAL next_state: Tstate;
BEGIN
 PROCESS(clk, reset)
 BEGIN
 IF reset = '1' THEN
 state <=state_0;
 ELSIF rising_edge(clk) THEN
 state <= next_state;
 END IF;
 END PROCESS;
PROCESS (state, in1, in2)
 VARIABLE tmp_out_0: UNSIGNED (4 downto 0);
 VARIABLE tmp_out_1: UNSIGNED (4 downto 0);
 BEGIN
 tmp_out_0 := in1 + in2;
 tmp_out_1 := in1 - in2;
 CASE state IS
 WHEN state_0 =>
 out_1 <= in1;
 next_state <= state_1;
 WHEN state_1 =>
 IF (in1 < in2) then
 next_state <= state_2;
 out_1 <= tmp_out_0;
 ELSE
 next_state <= state_3;
 out_1 <= tmp_out_1;
 END IF;
 WHEN state_2 =>
 IF (in1 < "0100") then
 out_1 <= tmp_out_0;
 ELSE
 out_1 <= tmp_out_1;
 END IF;
 next_state <= state_3;
 WHEN state_3 =>
 out_1 <= "11111";
 next_state <= state_4;
 WHEN state_4 =>
 out_1 <= in2;
 next_state <= state_0;
 WHEN OTHERS =>
 out_1 <= "00000";
 next_state <= state_0;
 END CASE;
 END PROCESS;
END rtl;

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.5. Multiplexer HDL Guidelines

Multiplexers form a large portion of the logic utilization in many FPGA designs. By
optimizing your multiplexer logic, you ensure the most efficient implementation.

This section addresses common problems and provides design guidelines to achieve
optimal resource utilization for multiplexer designs. The section also describes various
types of multiplexers, and how they are implemented.

For more information, refer to the Advanced Synthesis Cookbook.

Related Information

Advanced Synthesis Cookbook

2.6.5.1. Intel Quartus Prime Software Option for Multiplexer Restructuring

Intel Quartus Prime Standard Edition integrated synthesis provides the Restructure
Multiplexers logic option that extracts and optimizes buses of multiplexers during
synthesis. The default Auto for this option setting uses the optimization whenever
beneficial for your design. You can turn the option on or off specifically to have more
control over use.

Even with this Intel Quartus Prime-specific option turned on, it is beneficial to
understand how your coding style can be interpreted by your synthesis tool, and avoid
the situations that can cause problems in your design.

2.6.5.2. Multiplexer Types

This section addresses how Intel Quartus Prime synthesis creates multiplexers from
various types of HDL code.

State machines, CASE statements, and IF statements are all common sources of
multiplexer logic in designs. These HDL structures create different types of
multiplexers, including binary multiplexers, selector multiplexers, and priority
multiplexers.

The first step toward optimizing multiplexer structures for best results is to
understand how Intel Quartus Prime infers and implements multiplexers from HDL
code.

2.6.5.2.1. Binary Multiplexers

Binary multiplexers select inputs based on binary-encoded selection bits.

Device families featuring 6-input look up tables (LUTs) are perfectly suited for 4:1
multiplexer building blocks (4 data and 2 select inputs). The extended input mode
facilitates implementing 8:1 blocks, and the fractured mode handles residual 2:1
multiplexer pairs.

For device families using 4-input LUTs, such as the Cyclone series and Stratix series
devices, Intel Quartus Prime implements the 4:1 binary multiplexer efficiently by
using two 4-input LUTs. Intel Quartus Prime decomposes larger binary multiplexers
into 4:1 multiplexer blocks, possibly with a residual 2:1 multiplexer at the head.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

85

http://www.altera.com/literature/manual/stx_cookbook.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 66. Verilog HDL Binary-Encoded Multiplexers

case (sel)
 2'b00: z = a;
 2'b01: z = b;
 2'b10: z = c;
 2'b11: z = d;
endcase

2.6.5.2.2. Selector Multiplexers

Selector multiplexers have a separate select line for each data input. The select lines
for the multiplexer are one-hot encoded. Intel Quartus Prime commonly builds selector
multiplexers as a tree of AND and OR gates.

Even though the implementation of a tree-shaped, N-input selector multiplexer is
slightly less efficient than a binary multiplexer, in many cases the select signal is the
output of a decoder. Intel Quartus Prime synthesis combines the selector and decoder
into a binary multiplexer.

Example 67. Verilog HDL One-Hot-Encoded CASE Statement

case (sel)
 4'b0001: z = a;
 4'b0010: z = b;
 4'b0100: z = c;
 4'b1000: z = d;
 default: z = 1'bx;
endcase

2.6.5.2.3. Priority Multiplexers

In priority multiplexers, the select logic implies a priority. The options to select the
correct item must be checked in a specific order based on signal priority.

Synthesis tools commonly infer these structures from IF, ELSE, WHEN, SELECT,
and ?: statements in VHDL or Verilog HDL.

Example 68. VHDL IF Statement Implying Priority

The multiplexers form a chain, evaluating each condition or select bit sequentially.

IF cond1 THEN z <= a;
ELSIF cond2 THEN z <= b;
ELSIF cond3 THEN z <= c;
ELSE z <= d;
END IF;

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 24. Priority Multiplexer Implementation of an IF Statement

sel[1:0]

Binary MUX
sel[3:2]

“10xx”“01xx”

“00xx” “11xx”

z

a b c d

Depending on the number of multiplexers in the chain, the timing delay through this
chain can become large, especially for device families with 4-input LUTs.

To improve the timing delay through the multiplexer, avoid priority multiplexers if
priority is not required. If the order of the choices is not important to the design, use a
CASE statement to implement a binary or selector multiplexer instead of a priority
multiplexer. If delay through the structure is important in a multiplexed design
requiring priority, consider recoding the design to reduce the number of logic levels to
minimize delay, especially along your critical paths.

2.6.5.3. Implicit Defaults in IF Statements

IF statements in Verilog HDL and VHDL can simplify expressing conditions that do not
easily lend themselves to a CASE-type approach. However, IF statements can result in
complex multiplexer trees that are not easy for synthesis tools to optimize. In
particular, all IF statements have an ELSE condition, even when not specified in the
code. These implicit defaults can cause additional complexity in multiplexed designs.

You can simplify multiplexed logic and remove unneeded defaults with multiple
methods. The optimal method is recoding the design, so the logic takes the structure
of a 4:1 CASE statement. Alternatively, if priority is important, you can restructure the
code to reduce default cases and flatten the multiplexer. Examine whether the default
"ELSE IF" conditions are don’t care cases. You can add a default ELSE statement to
make the behavior explicit. Avoid unnecessary default conditions in the multiplexer
logic to reduce the complexity and logic utilization that the design implementation
requires.

2.6.5.4. default or OTHERS CASE Assignment

To fully specify the cases in a CASE statement, include a default (Verilog HDL) or
OTHERS (VHDL) assignment.

This assignment is especially important in one-hot encoding schemes where many
combinations of the select lines are unused. Specifying a case for the unused select
line combinations gives the synthesis tool information about how to synthesize these
cases, and is required by the Verilog HDL and VHDL language specifications.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For some designs you do not need to consider the outcome in the unused cases,
because these cases are unreachable. For these types of designs, you can specify any
value for the default or OTHERS assignment. However, the assignment value you
choose can have a large effect on the logic utilization required to implement the
design.

To obtain best results, explicitly define invalid CASE selections with a separate
default or OTHERS statement, instead of combining the invalid cases with one of the
defined cases.

If the value in the invalid cases is not important, specify those cases explicitly by
assigning the X (don’t care) logic value instead of choosing another value. This
assignment allows your synthesis tool to perform the best area optimizations.

2.6.6. Cyclic Redundancy Check Functions

CRC computations are used heavily by communications protocols and storage devices
to detect any corruption of data. These functions are highly effective; there is a very
low probability that corrupted data can pass a 32-bit CRC check

CRC functions typically use wide XOR gates to compare the data. The way synthesis
tools flatten and factor these XOR gates to implement the logic in FPGA LUTs can
greatly impact the area and performance results for the design. XOR gates have a
cancellation property that creates an exceptionally large number of reasonable
factoring combinations, so synthesis tools cannot always choose the best result by
default.

The 6-input ALUT has a significant advantage over 4-input LUTs for these designs.
When properly synthesized, CRC processing designs can run at high speeds in devices
with 6-input ALUTs.

The following guidelines help you improve the quality of results for CRC designs in
Intel FPGA devices.

2.6.6.1. If Performance is Important, Optimize for Speed

To minimize area and depth of levels of logic, synthesis tools flatten XOR gates.

By default, Intel Quartus Prime Standard Edition integrated synthesis targets area
optimization for XOR gates. Therefore, for more focus on depth reduction, set the
synthesis optimization technique to speed.

Note: Flattening for depth sometimes causes a significant increase in area.

2.6.6.2. Use Separate CRC Blocks Instead of Cascaded Stages

Some designs optimize CRC to use cascaded stages (for example, four stages of 8
bits). In such designs, Intel Quartus Prime synthesis uses intermediate calculations
(such as the calculations after 8, 24, or 32 bits) depending on the data width.

This design is not optimal for FPGA devices. The XOR cancellations that Intel Quartus
Prime synthesis performs in CRC designs mean that the function does not require all
the intermediate calculations to determine the final result. Therefore, forcing the use
of intermediate calculations increases the area required to implement the function, as

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

well as increasing the logic depth because of the cascading. It is typically better to
create full separate CRC blocks for each data width that you require in the design, and
then multiplex them together to choose the appropriate mode at a given time

2.6.6.3. Use Separate CRC Blocks Instead of Allowing Blocks to Merge

Synthesis tools often attempt to optimize CRC designs by sharing resources and
extracting duplicates in two different CRC blocks because of the factoring options in
the XOR logic.

CRC logic allows significant reductions, but this works best when the Compiler
optimizes CRC function separately. Check for duplicate extraction behavior if for
designs with different CRC functions that are driven by common data signals or that
feed the same destination signals.

For designs with poor quality results that have two CRC functions sharing logic you
can ensure that the blocks are synthesized independently with one of the following
methods:

• Define each CRC block as a separate design partition in an incremental
compilation design flow.

• Synthesize each CRC block as a separate project in a third-party synthesis tool
and then write a separate Verilog Quartus Mapping (.vqm) or EDIF netlist file for
each.

2.6.6.4. Take Advantage of Latency if Available

If your design can use more than one cycle to implement the CRC functionality, adding
registers and retiming the design can help reduce area, improve performance, and
reduce power utilization.

If your synthesis tool offers a retiming feature (such as the Intel Quartus Prime
software Perform gate-level register retiming option), you can insert an extra
bank of registers at the input and allow the retiming feature to move the registers for
better results. You can also build the CRC unit half as wide and alternate between
halves of the data in each clock cycle.

2.6.6.5. Save Power by Disabling CRC Blocks When Not in Use

CRC designs are heavy consumers of dynamic power because the logic toggles
whenever there is a change in the design.

To save power, use clock enables to disable the CRC function for every clock cycle that
the logic is not required. Some designs don’t check the CRC results for a few clock
cycles while other logic is performing. It is valuable to disable the CRC function even
for this short amount of time.

2.6.6.6. Initialize the Device with the Synchronous Load (sload) Signal

CRC designs often require the data to be initialized to 1’s before operation. In devices
that support the sload signal, you can use this signal to set all registers in the design
to 1’s before operation.

To enable the sload signal, follow the coding guidelines in this chapter. After
compilation you can check the register equations in the Chip Planner to ensure that
the signal behaves as expected.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you must force a register implementation using an sload signal, refer to Designing
with Low-Level Primitives User Guide to see how you can use low-level device
primitives.

Related Information

• Secondary Register Control Signals Such as Clear and Clock Enable on page 69

• Designing with Low-Level Primitives User Guide

2.6.7. Comparator HDL Guidelines

This section provides information about the different types of implementations
available for comparators (<, >, or ==), and provides suggestions on how you can
code the design to encourage a specific implementation. Synthesis tools, including
Intel Quartus Prime Standard Edition integrated synthesis, use device and context-
specific implementation rules, and select the best one for the design.

Synthesis tools implement the == comparator in general logic cells and the <
comparison in either the carry chain or general logic cells. In devices with 6-input
ALUTs, the carry chain can compare up to three bits per cell.In devices with 4-input
LUTs, the capacity is one bit of comparison per cell, similar to an add/subtract chain.
Carry chain implementation tends to be faster than general logic on standalone
benchmark test cases, but can result in lower performance on larger designs due to
increased restrictions on the Fitter. The area requirement is similar for most input
patterns. The synthesis tools select an appropriate implementation based on the input
pattern.

You can guide the Intel Quartus Prime Synthesis engine by choosing specific coding
styles. To select a carry chain implementation explicitly, rephrase the comparison in
terms of addition.

For example, the following coding style allows the synthesis tool to select the
implementation, which is most likely using general logic cells in modern device
families:

wire [6:0] a,b;
wire alb = a<b;

In the following coding style, the synthesis tool uses a carry chain (except for a few
cases, such as when the chain is very short, or the signals a and b minimize to the
same signal):

wire [6:0] a,b;
wire [7:0] tmp = a - b;
wire alb = tmp[7]

This second coding style uses the top bit of the tmp signal, which is 1 in two's
complement logic if a is less than b, because the subtraction a - b results in a negative
number.

If you have any information about the range of the input, you can use “don’t care”
values to optimize the design. This information is not available to the synthesis tool,
so specific hand implementation of the logic can reduce the device area required to
implement the comparator.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

90

http://www.altera.com/literature/ug/ug_low_level.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following logic structure, which occurs frequently in address decoders, allows you
to check whether a bus value is within a constant range with a small amount of logic
area:

Figure 25. Example Logic Structure for Using Comparators to Check a Bus Value Range

Address[]

Select[0]Select[3] Select[2] Select[1]

< 200< 2f00 < 1a0 < 100

2.6.8. Counter HDL Guidelines

The Intel Quartus Prime synthesis engine implements counters in HDL code as an
adder followed by registers, and makes available register control signals such as
enable (ena), synchronous clear (sclr), and synchronous load (sload). For best
area utilization, ensure that the up and down control or controls are expressed in
terms of one addition operator, instead of two separate addition operators.

If you use the following coding style, your synthesis engine may implement two
separate carry chains for addition:

out <= count_up ? out + 1 : out - 1;

For simple designs, the synthesis engine identifies this coding style and optimizes the
logic. However, in complex designs, or designs with preserve pragmas, the Compiler
cannot optimize all logic, so more careful coding becomes necessary.

The following coding style requires only one adder along with some other logic:

out <= out + (count_up ? 1 : -1);

This style makes more efficient use of resources and area, since it uses only one carry
chain adder, and the –1 constant logic is implemented in the LUT before the adder.

2.7. Designing with Low-Level Primitives

Low-level HDL design is the practice of using low-level primitives and assignments to
dictate a particular hardware implementation for a piece of logic. Low-level primitives
are small architectural building blocks that assist you in creating your design.

With the Intel Quartus Prime software, you can use low-level HDL design techniques
to force a specific hardware implementation that can help you achieve better resource
utilization or faster timing results.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Using low-level primitives is an optional advanced technique to help with specific
design challenges. For many designs, synthesizing generic HDL source code and Intel
FPGA IP cores give you the best results.

Low-level primitives allow you to use the following types of coding techniques:

• Instantiate the logic cell or LCELL primitive to prevent Intel Quartus Prime
Standard Edition integrated synthesis from performing optimizations across a logic
cell

• Create carry and cascade chains using CARRY, CARRY_SUM, and CASCADE
primitives

• Instantiate registers with specific control signals using DFF primitives

• Specify the creation of LUT functions by identifying the LUT boundaries

• Use I/O buffers to specify I/O standards, current strengths, and other I/O
assignments

• Use I/O buffers to specify differential pin names in your HDL code, instead of using
the automatically-generated negative pin name for each pair

For details about and examples of using these types of assignments, refer to the
Designing with Low-Level Primitives User Guide.

Related Information

Designing with Low-Level Primitives User Guide

2.8. Recommended HDL Coding Styles Revision History

The following revisions history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.
• Renamed topic: "Use the Device Synchronous Load (sload) Signal to

Initialize" to "Initialize the Device with the Synchronous Load (sload)
Signal"

2017.05.08 17.0.0 • Updated example: Verilog HDL Multiply-Accumulator
• Revised Check Read-During-Write Behavior.
• Revised Controlling RAM Inference and Implementation.
• Revised Single-Clock Synchronous RAM with Old Data Read-During-

Write Behavior.
• Revised Single-Clock Synchronous RAM with New Data Read-During-

Write Behavior.
• Updated and moved template for VHDL Single-Clock Simple Dual Port

Synchronous RAM with New Data Read-During-Write Behavior.
• Revised Inferring ROM Functions from HDL Code.
• Created example: Avoid this VHDL Coding Style.

2016.05.03 16.0.0 • Updated example code templates with latest coding styles.

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

2015.05.04 15.0.0 Added information and reference about ramstyle attribute for sift register
inference.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Optimization Settings to Compiler Settings.

continued...

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

92

http://www.altera.com/literature/ug/ug_low_level.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2014.08.18 14.0.a10.0 • Added recommendation to use register pipelining to obtain high
performance in DSP designs.

2014.06.30 14.0.0 Removed obsolete MegaWizard Plug-In Manager support.

November 2013 13.1.0 Removed HardCopy device support.

June 2012 12.0.0 • Revised section on inserting Altera templates.
• Code update for Example 11-51.
• Minor corrections and updates.

November 2011 11.1.0 • Updated document template.
• Minor updates and corrections.

December 2010 10.1.0 • Changed to new document template.
• Updated Unintentional Latch Generation content.
• Code update for Example 11-18.

July 2010 10.0.0 • Added support for mixed-width RAM
• Updated support for no_rw_check for inferring RAM blocks
• Added support for byte-enable

November 2009 9.1.0 • Updated support for Controlling Inference and Implementation in
Device RAM Blocks

• Updated support for Shift Registers

March 2009 9.0.0 • Corrected and updated several examples
• Added support for Arria II GX devices
• Other minor changes to chapter

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 Updates for the Intel Quartus Prime software version 8.0 release,
including:
• Added information to “RAM
• Functions—Inferring ALTSYNCRAM and ALTDPRAM Megafunctions from

HDL Code” on page 6–13
• Added information to “Avoid Unsupported Reset and Control Conditions”

on page 6–14
• Added information to “Check Read-During-Write Behavior” on page 6–

16
• Added two new examples to “ROM Functions—Inferring ALTSYNCRAM

and LPM_ROM Megafunctions from HDL Code” on page 6–28:
Example 6–24 and Example 6–25

• Added new section: “Clock Multiplexing” on page 6–46
• Added hyperlinks to references within the chapter
• Minor editorial updates

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

2. Recommended HDL Coding Styles

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

93

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Managing Metastability with the Intel Quartus Prime
Software

You can use the Intel Quartus Prime software to analyze the average mean time
between failures (MTBF) due to metastability caused by synchronization of
asynchronous signals, and optimize the design to improve the metastability MTBF.

All registers in digital devices, such as FPGAs, have defined signal-timing requirements
that allow each register to correctly capture data at its input ports and produce an
output signal. To ensure reliable operation, the input to a register must be stable for a
minimum amount of time before the clock edge (register setup time or tSU) and a
minimum amount of time after the clock edge (register hold time or tH). The register
output is available after a specified clock-to-output delay (tCO).

If the data violates the setup or hold time requirements, the output of the register
might go into a metastable state. In a metastable state, the voltage at the register
output hovers at a value between the high and low states, which means the output
transition to a defined high or low state is delayed beyond the specified tCO. Different
destination registers might capture different values for the metastable signal, which
can cause the system to fail.

In synchronous systems, the input signals must always meet the register timing
requirements, so that metastability does not occur. Metastability problems commonly
occur when a signal is transferred between circuitry in unrelated or asynchronous
clock domains, because the signal can arrive at any time relative to the destination
clock.

The MTBF due to metastability is an estimate of the average time between instances
when metastability could cause a design failure. A high MTBF (such as hundreds or
thousands of years between metastability failures) indicates a more robust design. You
should determine an acceptable target MTBF in the context of your entire system and
taking in account that MTBF calculations are statistical estimates.

The metastability MTBF for a specific signal transfer, or all the transfers in a design,
can be calculated using information about the design and the device characteristics.
Improving the metastability MTBF for your design reduces the chance that signal
transfers could cause metastability problems in your device.

The Intel Quartus Prime software provides analysis, optimization, and reporting
features to help manage metastability in Intel designs. These metastability features
are supported only for designs constrained with the Intel Quartus Prime Timing
Analyzer. Both typical and worst-case MBTF values are generated for select device
families.

Related Information

• Understanding Metastability in FPGAs
For more information about metastability due to signal synchronization, its
effects in FPGAs, and how MTBF is calculated

683323 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Reliability Report
For information about Intel device reliability

3.1. Metastability Analysis in the Intel Quartus Prime Software

When a signal transfers between circuitry in unrelated or asynchronous clock domains,
the first register in the new clock domain acts as a synchronization register.

To minimize the failures due to metastability in asynchronous signal transfers, circuit
designers typically use a sequence of registers (a synchronization register chain or
synchronizer) in the destination clock domain to resynchronize the signal to the new
clock domain and allow additional time for a potentially metastable signal to resolve to
a known value. Designers commonly use two registers to synchronize a new signal,
but a standard of three registers provides better metastability protection.

The timing analyzer can analyze and report the MTBF for each identified synchronizer
that meets its timing requirements, and can generate an estimate of the overall
design MTBF. The software uses this information to optimize the design MTBF, and you
can use this information to determine whether your design requires longer
synchronizer chains.

Related Information

• Metastability and MTBF Reporting on page 97

• MTBF Optimization on page 100

3.1.1. Synchronization Register Chains

A synchronization register chain, or synchronizer, is defined as a sequence of registers
that meets the following requirements:

• The registers in the chain are all clocked by the same clock or phase-related
clocks.

• The first register in the chain is driven asynchronously or from an unrelated clock
domain.

• Each register fans out to only one register, except the last register in the chain.

The length of the synchronization register chain is the number of registers in the
synchronizing clock domain that meet the above requirements. The figure shows a
sample two-register synchronization chain.

Figure 26. Sample Synchronization Register Chain

Clock 1 Domain Clock 2 Domain

Data

Clock 1 Clock 2

Output
Registers

D Q D Q D Q

Synchronization Chain

3. Managing Metastability with the Intel Quartus Prime Software

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

95

http://www.altera.com/literature/rr/rr.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The path between synchronization registers can contain combinational logic if all
registers of the synchronization register chain are in the same clock domain. The
figure shows an example of a synchronization register chain that includes logic
between the registers.

Figure 27. Sample Synchronization Register Chain Containing Logic

Clock 1 Domain Clock 2 Domain

Data

Clock 1 Clock 2

Clock 2

Clock 2

Output
Registers

D Q D Q

D Q

D Q

Synchronization Chain

Data

The timing slack available in the register-to-register paths of the synchronizer allows a
metastable signal to settle, and is referred to as the available settling time. The
available settling time in the MTBF calculation for a synchronizer is the sum of the
output timing slacks for each register in the chain. Adding available settling time with
additional synchronization registers improves the metastability MTBF.

Related Information

How Timing Constraints Affect Synchronizer Identification and Metastability Analysis
on page 96

3.1.2. Identify Synchronizers for Metastability Analysis

The first step in enabling metastability MTBF analysis and optimization in the Intel
Quartus Prime software is to identify which registers are part of a synchronization
register chain. You can apply synchronizer identification settings globally to
automatically list possible synchronizers with the Synchronizer identification option
on the Timing Analyzer page in the Settings dialog box.

Synchronization chains are already identified within most Intel FPGA intellectual
property (IP) cores.

Related Information

Identify Synchronizers for Metastability Analysis on page 96

3.1.3. How Timing Constraints Affect Synchronizer Identification and
Metastability Analysis

The timing analyzer can analyze metastability MTBF only if a synchronization chain
meets its timing requirements. The metastability failure rate depends on the timing
slack available in the synchronizer’s register-to-register connections, because that

3. Managing Metastability with the Intel Quartus Prime Software

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

slack is the available settling time for a potential metastable signal. Therefore, you
must ensure that your design is correctly constrained with the real application
frequency requirements to get an accurate MTBF report.

In addition, the Auto and Forced If Asynchronous synchronizer identification
options use timing constraints to automatically detect the synchronizer chains in the
design. These options check for signal transfers between circuitry in unrelated or
asynchronous clock domains, so clock domains must be related correctly with timing
constraints.

The timing analyzer views input ports as asynchronous signals unless they are
associated correctly with a clock domain. If an input port fans out to registers that are
not acting as synchronization registers, apply a set_input_delay constraint to the
input port; otherwise, the input register might be reported as a synchronization
register. Constraining a synchronous input port with a set_max_delay constraint for
a setup (tSU) requirement does not prevent synchronizer identification because the
constraint does not associate the input port with a clock domain.

Instead, use the following command to specify an input setup requirement associated
with a clock:

set_input_delay -max -clock <clock name> <latch – launch – tsu
requirement> <input port name>

Registers that are at the end of false paths are also considered synchronization
registers because false paths are not timing-analyzed. Because there are no timing
requirements for these paths, the signal may change at any point, which may violate
the tSU and tH of the register. Therefore, these registers are identified as
synchronization registers. If these registers are not used for synchronization, you can
turn off synchronizer identification and analysis. To do so, set Synchronizer
Identification to Off for the first synchronization register in these register chains.

3.2. Metastability and MTBF Reporting

The Intel Quartus Prime software reports the metastability analysis results in the
Compilation Report and Timing Analyzer reports.

The MTBF calculation uses timing and structural information about the design, silicon
characteristics, and operating conditions, along with the data toggle rate.

If you change the Synchronizer Identification settings, you can generate new
metastability reports by rerunning the timing analyzer. However, you should rerun the
Fitter first so that the registers identified with the new setting can be optimized for
metastability MTBF.

Related Information

• Metastability Reports on page 98

• MTBF Optimization on page 100

• Synchronizer Data Toggle Rate in MTBF Calculation on page 100

• Understanding Metastability in FPGAs
For more information about how metastability MTBF is calculated

3. Managing Metastability with the Intel Quartus Prime Software

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

97

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.1. Metastability Reports

Metastability reports summarize the results of the metastability analysis. In addition
to the MTBF Summary and Synchronizer Summary reports, the Timing Analyzer tool
reports additional statistics for each synchronizer chain.

If the design uses only the Auto Synchronizer Identification setting, the reports
list likely synchronizers but do not report MTBF. To obtain an MTBF for each register
chain you must force identification of synchronization registers.

If the synchronizer chain does not meet its timing requirements, the reports list
identified synchronizers but do not report MTBF. To obtain MTBF calculations, ensure
that the design is constrained correctly, and that the synchronizer meets its timing
requirements.

Related Information

• Identify Synchronizers for Metastability Analysis on page 96

• How Timing Constraints Affect Synchronizer Identification and Metastability
Analysis on page 96

3.2.1.1. MTBF Summary Report

The MTBF Summary reports an estimate of the overall robustness of cross-clock
domain and asynchronous transfers in the design. This estimate uses the MTBF results
of all synchronization chains in the design to calculate an MTBF for the entire design.

3.2.1.1.1. Typical and Worst-Case MTBF of Design

The MTBF Summary Report shows the Typical MTBF of Design and the Worst-Case
MTBF of Design for supported fully-characterized devices. The typical MTBF result
assumes typical conditions, defined as nominal silicon characteristics for the selected
device speed grade, as well as nominal operating conditions. The worst-case MTBF
result uses the worst case silicon characteristics for the selected device speed grade.

When you analyze multiple timing corners in the timing analyzer, the MTBF calculation
may vary because of changes in the operating conditions, and the timing slack or
available metastability settling time. Intel recommends running multi-corner timing
analysis to ensure that you analyze the worst MTBF results, because the worst timing
corner for MTBF does not necessarily match the worst corner for timing performance.

Related Information

Timing Analyzer
In Intel Quartus Prime Help

3.2.1.1.2. Synchronizer Chains

The MTBF Summary report also lists the Number of Synchronizer Chains Found
and the length of the Shortest Synchronizer Chain, which can help you identify
whether the report is based on accurate information.

If the number of synchronizer chains found is different from what you expect, or if the
length of the shortest synchronizer chain is less than you expect, you might have to
add or change Synchronizer Identification settings for the design. The report also
provides the Worst Case Available Settling Time, defined as the available settling
time for the synchronizer with the worst MTBF.

3. Managing Metastability with the Intel Quartus Prime Software

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

98

http://quartushelp.altera.com/current/index.htm#analyze/sta/sta_tqa_settings.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the reported Fraction of Chains for which MTBFs Could Not be
Calculated to determine whether a high proportion of chains are missing in the
metastability analysis. A fraction of 1, for example, means that MTBF could not be
calculated for any chains in the design. MTBF is not calculated if you have not
identified the chain with the appropriate Synchronizer identification option, or if
paths are not timing-analyzed and therefore have no valid slack for metastability
analysis. You might have to correct your timing constraints to enable complete
analysis of the applicable register chains.

3.2.1.1.3. Increasing Available Settling Time

The MTBF Summary report specifies how an increase of 100ps in available settling
time increases the MTBF values. If your MTBF is not satisfactory, this metric can help
you determine how much extra slack would be required in your synchronizer chain to
allow you to reach the desired design MTBF.

3.2.1.2. Synchronizer Summary Report

The Synchronizer Summary lists the synchronization register chains detected in the
design depending on the Synchronizer Identification setting.

The Source Node is the register or input port that is the source of the asynchronous
transfer. The Synchronization Node is the first register of the synchronization chain.
The Source Clock is the clock domain of the source node, and the Synchronization
Clock is the clock domain of the synchronizer chain.

This summary reports the calculated Worst-Case MTBF, if available, and the Typical
MTBF, for each appropriately identified synchronization register chain that meets its
timing requirement.

Related Information

Synchronizer Chain Statistics Report in the Timing Analyzer on page 99

3.2.1.3. Synchronizer Chain Statistics Report in the Timing Analyzer

The timing analyzer provides an additional report for each synchronizer chain.

The Chain Summary tab matches the Synchronizer Summary information described
in the Synchronizer Summary Report, while the Statistics tab adds more details.
These details include whether the Method of Synchronizer Identification was User
Specified (with the Forced if Asynchronous or Forced settings for the
Synchronizer Identification setting), or Automatic (with the Auto setting). The
Number of Synchronization Registers in Chainreport provides information about
the parameters that affect the MTBF calculation, including the Available Settling
Time for the chain and the Data Toggle Rate Used in MTBF Calculation.

The following information is also included to help you locate the chain in your design:

• Source Clock and Asynchronous Source node of the signal.

• Synchronization Clockin the destination clock domain.

• Node names of the Synchronization Registers in the chain.

Related Information

Synchronizer Data Toggle Rate in MTBF Calculation on page 100

3. Managing Metastability with the Intel Quartus Prime Software

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.2. Synchronizer Data Toggle Rate in MTBF Calculation

The MTBF calculations assume the data being synchronized is switching at a toggle
rate of 12.5% of the source clock frequency. That is, the arriving data is assumed to
switch once every eight source clock cycles.

If multiple clocks apply, the highest frequency is used. If no source clocks can be
determined, the data rate is taken as 12.5% of the synchronization clock frequency.

If you know an approximate rate at which the data changes, specify it with the
Synchronizer Toggle Rate assignment in the Assignment Editor. You can also apply
this assignment to an entity or the entire design. Set the data toggle rate, in number
of transitions per second, on the first register of a synchronization chain. The timing
analyzer takes the specified rate into account when computing the MTBF of that
register chain. If a data signal never toggles and does not affect the reliability of the
design, you can set the Synchronizer Toggle Rate to 0 for the synchronization chain
so the MTBF is not reported. To apply the assignment with Tcl, use the following
command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in
transitions/second> -to <register name>

In addition to Synchronizer Toggle Rate, there are two other assignments
associated with toggle rates, which are not used for metastability MTBF calculations.
The I/O Maximum Toggle Rate is only used for pins, and specifies the worst-case
toggle rates used for signal integrity purposes. The Power Toggle Rate assignment is
used to specify the expected time-averaged toggle rate, and is used by the Power
Analyzer to estimate time-averaged power consumption.

3.3. MTBF Optimization

In addition to reporting synchronization register chains and MTBF values found in the
design, the Intel Quartus Prime software can also protect these registers from
optimizations that might negatively impact MTBF and can optimize the register
placement and routing if the MTBF is too low.

Synchronization register chains must first be explicitly identified as synchronizers.
Intel recommends that you set Synchronizer Identification to Forced If
Asynchronous for all registers that are part of a synchronizer chain.

Optimization algorithms, such as register duplication and logic retiming in physical
synthesis, are not performed on identified synchronization registers. The Fitter
protects the number of synchronization registers specified by the Synchronizer
Register Chain Length option.

In addition, the Fitter optimizes identified synchronizers for improved MTBF by placing
and routing the registers to increase their output setup slack values. Adding slack in
the synchronizer chain increases the available settling time for a potentially
metastable signal, which improves the chance that the signal resolves to a known
value, and exponentially increases the design MTBF. The Fitter optimizes the number
of synchronization registers specified by the Synchronizer Register Chain Length
option.

3. Managing Metastability with the Intel Quartus Prime Software

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Metastability optimization is on by default. To view or change the Optimize Design
for Metastability option, click Assignments ➤ Settings ➤ Compiler Settings ➤
Advanced Settings (Fitter). To turn the optimization on or off with Tcl, use the
following command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

Related Information

Identify Synchronizers for Metastability Analysis on page 96

3.3.1. Synchronization Register Chain Length

The Synchronization Register Chain Length option specifies how many registers
should be protected from optimizations that might reduce MTBF for each register
chain, and controls how many registers should be optimized to increase MTBF with the
Optimize Design for Metastability option.

For example, if the Synchronization Register Chain Length option is set to 2,
optimizations such as register duplication or logic retiming are prevented from being
performed on the first two registers in all identified synchronization chains. The first
two registers are also optimized to improve MTBF when the Optimize Design for
Metastability option is turned on.

The default setting for the Synchronization Register Chain Length option is 3. The
first register of a synchronization chain is always protected from operations that might
reduce MTBF, but you should set the protection length to protect more of the
synchronizer chain. Intel recommends that you set this option to the maximum length
of synchronization chains you have in your design so that all synchronization registers
are preserved and optimized for MTBF.

Click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis) to change the global Synchronization Register Chain Length option.

You can also set the Synchronization Register Chain Length on a node or an entity
in the Assignment Editor. You can set this value on the first register in a
synchronization chain to specify how many registers to protect and optimize in this
chain. This individual setting is useful if you want to protect and optimize extra
registers that you have created in a specific synchronization chain that has low MTBF,
or optimize less registers for MTBF in a specific chain where the maximum frequency
or timing performance is not being met. To make the global setting with Tcl, use the
following command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of
registers>

To apply the assignment to a design instance or the first register in a specific chain
with Tcl, use the following command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of
registers> -to <register or instance name>

3. Managing Metastability with the Intel Quartus Prime Software

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4. Reducing Metastability Effects

You can check your design's metastability MTBF in the Metastability Summary report,
and determine an acceptable target MTBF given the context of your entire system and
the fact that MTBF calculations are statistical estimates. A high metastability MTBF
(such as hundreds or thousands of years between metastability failures) indicates a
more robust design.

This section provides guidelines to ensure complete and accurate metastability
analysis, and some suggestions to follow if the Intel Quartus Prime metastability
reports calculate an unacceptable MTBF value. The Timing Optimization Advisor
(available from the Tools menu) gives similar suggestions in the Metastability
Optimization section.

Related Information

Metastability Reports on page 98

3.4.1. Apply Complete System-Centric Timing Constraints for the Timing
Analyzer

To enable the Intel Quartus Prime metastability features, make sure that the timing
analyzer is used for timing analysis.

Ensure that the design is fully timing constrained and that it meets its timing
requirements. If the synchronization chain does not meet its timing requirements,
MTBF cannot be calculated. If the clock domain constraints are set up incorrectly, the
signal transfers between circuitry in unrelated or asynchronous clock domains might
be identified incorrectly.

Use industry-standard system-centric I/O timing constraints instead of using FPGA-
centric timing constraints.

You should use set_input_delay constraints in place of set_max_delay
constraints to associate each input port with a clock domain to help eliminate false
positives during synchronization register identification.

Related Information

How Timing Constraints Affect Synchronizer Identification and Metastability Analysis
on page 96

3.4.2. Force the Identification of Synchronization Registers

Use the guidelines in Identifying Synchronizers for Metastability Analysis to ensure the
software reports and optimizes the appropriate register chains.

Identify synchronization registers by setting Synchronizer Identification to Forced
If Asynchronous in the Assignment Editor. If there are any registers that the
software detects as synchronous, but you want to analyze for metastability, apply the
Forced setting to the first synchronizing register. Set Synchronizer Identification
to Off for registers that are not synchronizers for asynchronous signals or unrelated
clock domains.

3. Managing Metastability with the Intel Quartus Prime Software

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To help you find the synchronizers in your design, you can set the global
Synchronizer Identification setting on theTiming Analyzer page of the Settings
dialog box to Auto to generate a list of all the possible synchronization chains in your
design.

Related Information

Identify Synchronizers for Metastability Analysis on page 96

3.4.3. Set the Synchronizer Data Toggle Rate

The MTBF calculations assume the data being synchronized is switching at a toggle
rate of 12.5% of the source clock frequency.

To obtain a more accurate MTBF for a specific chain or all chains in your design, set
the Synchronizer Toggle Rate.

Related Information

Synchronizer Data Toggle Rate in MTBF Calculation on page 100

3.4.4. Optimize Metastability During Fitting

Ensure that the Optimize Design for Metastability setting is turned on.

Related Information

MTBF Optimization on page 100

3.4.5. Increase the Length of Synchronizers to Protect and Optimize

Increase the Synchronizer Chain Length parameter to the maximum length of
synchronization chains in your design. If you have synchronization chains longer than
2 identified in your design, you can protect the entire synchronization chain from
operations that might reduce MTBF and allow metastability optimizations to improve
the MTBF.

Related Information

Synchronization Register Chain Length on page 101

3.4.6. Set Fitter Effort to Standard Fit instead of Auto Fit

If your design MTBF is too low after following the other guidelines, you can try
increasing the Fitter effort to perform more metastability optimization. The default
Auto Fit setting reduces the Fitter’s effort after meeting the design’s timing and
routing requirements to reduce compilation time.

This effort reduction can result in less metastability optimization if the timing
requirements are easy to meet. If Auto Fit reduces the Fitter’s effort during your
design compilation, setting the Fitter effort to Standard Fit might improve the
design’s MTBF results. To modify the Fitter Effort, click Assignments ➤ Settings ➤
Compiler Settings ➤ Advanced Settings (Fitter).

3. Managing Metastability with the Intel Quartus Prime Software

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4.7. Increase the Number of Stages Used in Synchronizers

Designers commonly use two registers in a synchronization chain to minimize the
occurrence of metastable events, and a standard of three registers provides better
metastability protection. However, synchronization chains with two or even three
registers may not be enough to produce a high enough MTBF when the design runs at
high clock and data frequencies.

If a synchronization chain is reported to have a low MTBF, consider adding an
additional register stage to your synchronization chain. This additional stage increases
the settling time of the synchronization chain, allowing more opportunity for the signal
to resolve to a known state during a metastable event. Additional settling time
increases the MTBF of the chain and improves the robustness of your design. However,
adding a synchronization stage introduces an additional stage of latency on the signal.

If you use the Altera FIFO IP core with separate read and write clocks to cross clock
domains, increase the metastability protection (and latency) for better MTBF. In the
DCFIFO parameter editor, choose the Best metastability protection, best fmax,
unsynchronized clocks option to add three or more synchronization stages. You can
increase the number of stages to more than three using the How many sync
stages? setting.

3.4.8. Select a Faster Speed Grade Device

The design MTBF depends on process parameters of the device used. Faster devices
are less susceptible to metastability issues. If the design MTBF falls significantly below
the target MTBF, switching to a faster speed grade can improve the MTBF
substantially.

3.5. Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script. You
can also run procedures at a command prompt.

For detailed information about scripting command options, refer to the Intel Quartus
Prime Command-Line and Tcl API Help browser. To run the Help browser, type the
following command at the command prompt and then press Enter:

quartus_sh --qhelp

Related Information

• Intel Quartus Prime Standard Edition Settings File Reference Manual
For information about all settings and constraints in the Intel Quartus Prime
software.

• Tcl Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

• Command Line Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

3. Managing Metastability with the Intel Quartus Prime Software

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

104

https://www.intel.com/content/www/us/en/docs/programmable/683084/current/settings-file-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.1. Identifying Synchronizers for Metastability Analysis

To apply the global Synchronizer Identification assignment, use the following
command:

set_global_assignment -name SYNCHRONIZER_IDENTIFICATION <OFF|AUTO|"FORCED IF
ASYNCHRONOUS">

To apply the Synchronizer Identification assignment to a specific register or
instance, use the following command:

set_instance_assignment -name SYNCHRONIZER_IDENTIFICATION <AUTO|"FORCED IF
ASYNCHRONOUS"|FORCED|OFF> -to <register or instance name>

3.5.2. Synchronizer Data Toggle Rate in MTBF Calculation

To specify a toggle rate for MTBF calculations as described on page “R**Synchronizer
Data Toggle Rate in MTBF Calculation”, use the following command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in
transitions/second> -to <register name>

Related Information

Synchronizer Data Toggle Rate in MTBF Calculation on page 100

3.5.3. report_metastability and Tcl Command

If you use a command-line or scripting flow, you can generate the metastability
analysis reports described in “C**Metastability Reports” outside of the Intel Quartus
Prime and user interfaces.

The table describes the options for the report_metastability and Tcl command.

Table 3. report_metastabilty Command Options

Option Description

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension
specified in the file name determines the file type — either
*.txt or *.html.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel.

-stdout Indicates the report be sent to the standard output, via
messages. This option is required only if you have selected
another output format, such as a file, and would also like to
receive messages.

Related Information

Metastability Reports on page 98

3. Managing Metastability with the Intel Quartus Prime Software

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.4. MTBF Optimization

To ensure that metastability optimization described on page “C**MTBF Optimization”
is turned on (or to turn it off), use the following command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

Related Information

MTBF Optimization on page 100

3.5.5. Synchronization Register Chain Length

To globally set the number of registers in a synchronization chain to be protected and
optimized as described on page “C**Synchronization Register Chain Length”, use the
following command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of
registers>

To apply the assignment to a design instance or the first register in a specific chain,
use the following command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of
registers> -to <register or instance name>

Related Information

Synchronization Register Chain Length on page 101

3.6. Managing Metastability

Intel’s Intel Quartus Prime software provides industry-leading analysis and
optimization features to help you manage metastability in your FPGA designs. Set up
your Intel Quartus Prime project with the appropriate constraints and settings to
enable the software to analyze, report, and optimize the design MTBF. Take advantage
of these features in the Intel Quartus Prime software to make your design more robust
with respect to metastability.

3.7. Managing Metastability with the Intel Quartus Prime Software
Revision History

The following revisions history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2017.11.06 17.1.0 • Corrected broken links to other documents.

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Optimization Settings to Compiler Settings.

June 2014 14.0.0 Updated formatting.

June 2012 12.0.0 Removed survey link.

continued...

3. Managing Metastability with the Intel Quartus Prime Software

683323 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 Technical edit.

November 2009 9.1.0 Clarified description of synchronizer identification settings.
Minor changes to text and figures throughout document.

March 2009 9.0.0 Initial release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

3. Managing Metastability with the Intel Quartus Prime Software

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

107

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683323 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys* that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics*, and Synopsys*. Includes design flow steps,
generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor
Graphics* and Cadence*. Also includes information about signal integrity
analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

A. Intel Quartus Prime Standard Edition User Guides

683323 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

109

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(683323%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus® Prime Standard Edition
User Guide
Design Compilation

Updated for Quartus® Prime Design Suite: 18.1

This document is part of a collection - Quartus® Prime Standard Edition User Guides - Combined PDF
link

Online Version

Send Feedback UG-20176

683283

2021.10.22

https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683283.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design........7
1.1. About Quartus® Prime Incremental Compilation...7
1.2. Deciding Whether to Use an Incremental Compilation Flow..7

1.2.1. Flat Compilation Flow with No Design Partitions... 7
1.2.2. Incremental Compilation Flow With Design Partitions...................................... 8
1.2.3. Team-Based Design Flows and IP Delivery...11

1.3. Incremental Compilation Summary.. 13
1.3.1. Incremental Compilation Single Quartus Prime Project Flow...........................13
1.3.2. Steps for Incremental Compilation... 13
1.3.3. Creating Design Partitions... 14

1.4. Common Design Scenarios Using Incremental Compilation.. 15
1.4.1. Reducing Compilation Time When Changing Source Files for One Partition....... 15
1.4.2. Optimizing a Timing-Critical Partition.. 16
1.4.3. Adding Design Logic Incrementally or Working With an Incomplete Design.......17
1.4.4. Debugging Incrementally With the Signal Tap Logic Analyzer......................... 18
1.4.5. Functional Safety IP Implementation.. 19

1.5. Deciding Which Design Blocks Should Be Design Partitions.. 26
1.5.1. Impact of Design Partitions on Design Optimization...................................... 29
1.5.2. Design Partition Assignments Compared to Physical Placement Assignments.... 30
1.5.3. Using Partitions With Third-Party Synthesis Tools..30
1.5.4. Assessing Partition Quality.. 31

1.6. Specifying the Level of Results Preservation for Subsequent Compilations....................32
1.6.1. Netlist Type for Design Partitions..33
1.6.2. Fitter Preservation Level for Design Partitions.. 34
1.6.3. Where Are the Netlist Databases Saved?... 34
1.6.4. Deleting Netlists.. 35
1.6.5. What Changes Initiate the Automatic Resynthesis of a Partition?.................... 35

1.7. Exporting Design Partitions from Separate Quartus Prime Projects..............................37
1.7.1. Preparing the Top-Level Design..39
1.7.2. Project Management— Making the Top-Level Design Available to Other

Designers... 40
1.7.3. Exporting Partitions..42
1.7.4. Viewing the Contents of a Quartus Prime Exported Partition File (.qxp)............43
1.7.5. Integrating Partitions into the Top-Level Design..43

1.8. Team-Based Design Optimization and Third-Party IP Delivery Scenarios...................... 46
1.8.1. Using an Exported Partition to Send to a Design Without Including Source

Files...46
1.8.2. Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse............47
1.8.3. Designing in a Team-Based Environment...49
1.8.4. Enabling Designers on a Team to Optimize Independently............................. 51
1.8.5. Performing Design Iterations With Lower-Level Partitions.............................. 54

1.9. Creating a Design Floorplan With LogicLock Regions... 56
1.9.1. Creating and Manipulating LogicLock Regions...57
1.9.2. Changing Partition Placement with LogicLock Changes.................................. 57

1.10. Incremental Compilation Restrictions.. 58
1.10.1. When Timing Performance May Not Be Preserved Exactly............................ 58
1.10.2. When Placement and Routing May Not Be Preserved Exactly........................ 58

Contents

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.10.3. Using Incremental Compilation With Quartus Prime Archive Files.................. 58
1.10.4. Formal Verification Support..59
1.10.5. Signal Probe Pins and Engineering Change Orders...................................... 59
1.10.6. Signal Tap Logic Analyzer in Exported Partitions... 60
1.10.7. External Logic Analyzer Interface in Exported Partitions...............................60
1.10.8. Assignments Made in HDL Source Code in Exported Partitions...................... 60
1.10.9. Design Partition Script Limitations.. 60
1.10.10. Restrictions on IP Core Partitions.. 62
1.10.11. Restrictions on Arria® 10 Transceiver.. 63
1.10.12. Register Packing and Partition Boundaries..63
1.10.13. I/O Register Packing... 63

1.11. Scripting Support...64
1.11.1. Tcl Scripting and Command-Line Examples.. 64

1.12. Document Revision History..68

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments.......70
2.1. About Incremental Compilation and Floorplan Assignments..70
2.2. Incremental Compilation Overview... 70

2.2.1. Recommendations for the Netlist Type.. 71
2.3. Design Flows Using Incremental Compilation... 72

2.3.1. Using Standard Flow...72
2.3.2. Using Team-Based Flow... 72
2.3.3. Combining Design Flows.. 72
2.3.4. Project Management in Team-Based Design Flows.. 73

2.4. Why Plan Partitions and Floorplan Assignments?.. 74
2.4.1. Partition Boundaries and Optimization...74

2.5. Guidelines for Incremental Compilation...77
2.5.1. General Partitioning Guidelines.. 77
2.5.2. Design Partition Guidelines..79
2.5.3. Consider a Cascaded Reset Structure..91
2.5.4. Design Partition Guidelines for Third-Party IP Delivery...................................92

2.6. Checking Partition Quality... 96
2.6.1. Incremental Compilation Advisor..97
2.6.2. Design Partition Planner..97
2.6.3. Viewing Design Partition Planner and Floorplan Side-by-Side..........................99
2.6.4. Partition Statistics Report.. 100
2.6.5. Report Partition Timing in the Timing Analyzer... 100
2.6.6. Check if Partition Assignments Impact the Quality of Results........................100

2.7. Including SDC Constraints from Lower-Level Partitions for
Third-Party IP Delivery...101
2.7.1. Creating an .sdc File with Project-Wide Constraints..................................... 102
2.7.2. Creating an .sdc with Partition-Specific Constraints..................................... 103
2.7.3. Consolidating the .sdc in the Top-Level Design... 104

2.8. Introduction to Design Floorplans... 105
2.8.1. The Difference between Logical Partitions and Physical Regions.................... 105
2.8.2. Why Create a Floorplan?... 106
2.8.3. When to Create a Floorplan... 107

2.9. Design Floorplan Placement Guidelines..108
2.9.1. Flow for Creating a Floorplan... 108
2.9.2. Assigning Partitions to LogicLock Regions.. 109
2.9.3. How to Size and Place Regions...109

Contents

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.4. Modifying Region Size and Origin..110
2.9.5. I/O Connections...111
2.9.6. LogicLock Resource Exclusions... 111
2.9.7. Creating Non-Rectangular Regions..113

2.10. Checking Floorplan Quality.. 113
2.10.1. Incremental Compilation Advisor.. 114
2.10.2. LogicLock Region Resource Estimates..114
2.10.3. LogicLock Region Properties Statistics Report... 114
2.10.4. Locate the Quartus Prime Timing Analyzer Path in the Chip Planner.............114
2.10.5. Inter-Region Connection Bundles..114
2.10.6. Routing Utilization.. 114
2.10.7. Ensure Floorplan Assignments Do Not Significantly Impact Quality of Results114

2.11. Recommended Design Flows and Application Examples..115
2.11.1. Create a Floorplan for Major Design Blocks.. 115
2.11.2. Create a Floorplan Assignment for One Design Block with Difficult Timing.... 116
2.11.3. Create a Floorplan as the Project Lead in a Team-Based Flow..................... 116

2.12. Document Revision History.. 117

3. Quartus Prime Integrated Synthesis... 119
3.1. Design Flow...119

3.1.1. Quartus Prime Integrated Synthesis Design and Compilation Flow.................121
3.2. Language Support..122

3.2.1. Verilog and SystemVerilog Synthesis Support...123
3.2.2. VHDL Synthesis Support... 127
3.2.3. AHDL Support..128
3.2.4. Schematic Design Entry Support.. 129
3.2.5. State Machine Editor...129
3.2.6. Design Libraries... 129
3.2.7. Using Parameters/Generics..132

3.3. Incremental Compilation... 136
3.3.1. Partitions for Preserving Hierarchical Boundaries...137
3.3.2. Parallel Synthesis... 137
3.3.3. Quartus Prime Exported Partition File as Source... 138

3.4. Quartus Prime Synthesis Options..138
3.4.1. Setting Synthesis Options..138
3.4.2. Optimization Technique... 142
3.4.3. Auto Gated Clock Conversion... 142
3.4.4. Enabling Timing-Driven Synthesis...144
3.4.5. SDC Constraint Protection... 144
3.4.6. PowerPlay Power Optimization..144
3.4.7. Limiting Resource Usage in Partitions..144
3.4.8. Restructure Multiplexers..146
3.4.9. Synthesis Effort... 147
3.4.10. Fitter Intial Placement Seed... 147
3.4.11. State Machine Processing.. 147
3.4.12. Safe State Machine...151
3.4.13. Power-Up Level.. 152
3.4.14. Power-Up Don’t Care.. 153
3.4.15. Remove Duplicate Registers...153
3.4.16. Preserve Registers..153
3.4.17. Disable Register Merging/Don’t Merge Register...154

Contents

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4.18. Noprune Synthesis Attribute/Preserve Fan-out Free Register Node.............. 155
3.4.19. Keep Combinational Node/Implement as Output of Logic Cell..................... 156
3.4.20. Disabling Synthesis Netlist Optimizations with dont_retime Attribute........... 157
3.4.21. Disabling Synthesis Netlist Optimizations with dont_replicate Attribute........ 157
3.4.22. Maximum Fan-Out.. 158
3.4.23. Controlling Clock Enable Signals with Auto Clock Enable Replacement and

direct_enable...159
3.5. Inferring Multiplier, DSP, and Memory Functions from HDL Code............................... 160

3.5.1. Multiply-Accumulators and Multiply-Adders.. 160
3.5.2. Shift Registers... 161
3.5.3. RAM and ROM..161
3.5.4. Resource Aware RAM, ROM, and Shift-Register Inference.............................162
3.5.5. Auto RAM to Logic Cell Conversion..163
3.5.6. RAM Style and ROM Style—for Inferred Memory... 163
3.5.7. RAM Style Attribute—For Shift Registers Inference......................................165
3.5.8. Disabling Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute.... 166
3.5.9. RAM Initialization File—for Inferred Memory...168
3.5.10. Multiplier Style—for Inferred Multipliers... 169
3.5.11. Full Case Attribute..171
3.5.12. Parallel Case..172
3.5.13. Translate Off and On / Synthesis Off and On...173
3.5.14. Ignore translate_off and synthesis_off Directives...................................... 173
3.5.15. Read Comments as HDL.. 174
3.5.16. Use I/O Flipflops...174
3.5.17. Specifying Pin Locations with chip_pin...176
3.5.18. Using altera_attribute to Set Quartus Prime Logic Options..........................177

3.6. Analyzing Synthesis Results...179
3.6.1. Analysis & Synthesis Section of the Compilation Report............................... 180
3.6.2. Project Navigator... 180

3.7. Analyzing and Controlling Synthesis Messages... 180
3.7.1. Quartus Prime Messages... 180
3.7.2. VHDL and Verilog HDL Messages.. 181

3.8. Node-Naming Conventions in Quartus Prime Integrated Synthesis............................ 184
3.8.1. Hierarchical Node-Naming Conventions... 184
3.8.2. Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)................184
3.8.3. Register Changes During Synthesis...185
3.8.4. Preserving Register Names.. 187
3.8.5. Node-Naming Conventions for Combinational Logic Cells............................. 187
3.8.6. Preserving Combinational Logic Names... 188

3.9. Scripting Support...189
3.9.1. Adding an HDL File to a Project and Setting the HDL Version........................ 189
3.9.2. Assigning a Pin.. 191
3.9.3. Creating Design Partitions for Incremental Compilation................................191

3.10. Document Revision History.. 192

4. Reducing Compilation Time...195
4.1. Strategies to Reduce the Overall Compilation Time... 195

4.1.1. Running Rapid Recompile.. 195
4.1.2. Enabling Multi-Processor Compilation..196
4.1.3. Using Incremental Compilation...200
4.1.4. Using Block-Based Compilation.. 201

Contents

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2. Reducing Synthesis Time and Synthesis Netlist Optimization Time............................ 201
4.2.1. Settings to Reduce Synthesis Time and Synthesis Netlist Optimization Time... 201
4.2.2. Use Appropriate Coding Style to Reduce Synthesis Time.............................. 202

4.3. Reducing Placement Time..202
4.3.1. Fitter Effort Setting.. 202
4.3.2. Placement Effort Multiplier Settings.. 203
4.3.3. Physical Synthesis Effort Settings... 203
4.3.4. Preserving Placement with Incremental Compilation....................................203

4.4. Reducing Routing Time... 203
4.4.1. Identifying Routing Congestion with the Chip Planner..................................204

4.5. Reducing Static Timing Analysis Time... 205
4.6. Setting Process Priority... 205
4.7. Reducing Compilation Time Revision History.. 205

A. Quartus Prime Standard Edition User Guides.. 207

Contents

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Quartus® Prime Incremental Compilation for
Hierarchical and Team-Based Design

1.1. About Quartus® Prime Incremental Compilation

This manual provides information and design scenarios to help you partition your
design to take advantage of the Quartus® II incremental compilation feature.

The ability to iterate rapidly through FPGA design and debugging stages is critical. The
Quartus® Prime software introduced the FPGA industry’s first true incremental design
and compilation flow, with the following benefits:

• Preserves the results and performance for unchanged logic in your design as you
make changes elsewhere.

• Reduces design iteration time by an average of 75% for small changes in large
designs, so that you can perform more design iterations per day and achieve
timing closure efficiently.

• Facilitates modular hierarchical and team-based design flows, as well as design
reuse and intellectual property (IP) delivery.

Quartus Prime incremental compilation supports the Arria®, Stratix®, and Cyclone®

series of devices.

1.2. Deciding Whether to Use an Incremental Compilation Flow

The Quartus Prime incremental compilation feature enhances the standard Quartus
Prime design flow by allowing you to preserve satisfactory compilation results and
performance of unchanged blocks of your design.

1.2.1. Flat Compilation Flow with No Design Partitions

In the flat compilation flow with no design partitions, all the source code is processed
and mapped during the Analysis and Synthesis stage, and placed and routed during
the Fitter stage whenever the design is recompiled after a change in any part of the
design. One reason for this behavior is to ensure optimal push-button quality of
results. By processing the entire design, the Compiler can perform global
optimizations to improve area and performance.

You can use a flat compilation flow for small designs, such as designs in CPLD devices
or low-density FPGA devices, when the timing requirements are met easily with a
single compilation. A flat design is satisfactory when compilation time and preserving
results for timing closure are not concerns.

683283 | 2021.10.22

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

1.2.1.1. Incremental Capabilities Available When A Design Has No Partitions

The Quartus Prime software has incremental compilation features available even when
you do not partition your design, including Smart Compilation, Rapid Recompile, and
incremental debugging. These features work in either an incremental or flat
compilation flow.

1.2.1.1.1. With Smart Compilation

In any Quartus Prime compilation flow, you can use Smart Compilation to allow the
Compiler to determine which compilation stages are required, based on the changes
made to the design since the last smart compilation, and then skip any stages that are
not required. For example, when Smart Compilation is turned on, the Compiler skips
the Analysis and Synthesis stage if all the design source files are unchanged. When
Smart Compilation is turned on, if you make any changes to the logic of a design, the
Compiler does not skip any compilation stage. You can turn on Smart Compilation on
the Compilation Process Settings page of the Setting dialog box.

Note: Arria 10 devices do not support the smart compilation feature.

Related Information

Smart Compilation online help

1.2.1.1.2. With Rapid Recompile

The Quartus Prime software also includes a Rapid Recompile feature that instructs the
Compiler to reuse the compatible compilation results if most of the design has not
changed since the last compilation. This feature reduces compilation times for small
and isolated design changes. You do not have control over which parts of the design
are recompiled using this option; the Compiler determines which parts of the design
must be recompiled. The Rapid Recompile feature preserves performance and can
save compilation time by reducing the amount of changed logic that must be
recompiled.

1.2.1.1.3. With Signal Tap Logic Analyzer

During the debugging stage of the design cycle, you can add the Signal Tap to your
design, even if the design does not have partitions. To preserve the compilation netlist
for the entire design, instruct the software to reuse the compilation results for the
automatically-created "Top" partition that contains the entire design.

1.2.2. Incremental Compilation Flow With Design Partitions

In the standard incremental compilation design flow, the top-level design is divided
into design partitions, which can be compiled and optimized together in the top-level
Quartus Prime project. You can preserve fitting results and performance for completed
partitions while other parts of the design are changing, which reduces the compilation
times for each design iteration.

If you use the incremental compilation feature at any point in your design flow, it is
easier to accommodate the guidelines for partitioning a design and creating a floorplan
if you start planning for incremental compilation at the beginning of your design cycle.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

8

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_mode.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Incremental compilation is recommended for large designs and high resource densities
when preserving results is important to achieve timing closure. The incremental
compilation feature also facilitates team-based design flows that allow designers to
create and optimize design blocks independently, when necessary.

To take advantage of incremental compilation, start by splitting your design along any
of its hierarchical boundaries into design blocks to be compiled incrementally, and set
each block as a design partition. The Quartus Prime software synthesizes each
individual hierarchical design partition separately, and then merges the partitions into
a complete netlist for subsequent stages of the compilation flow. When recompiling
your design, you can use source code, post-synthesis results, or post-fitting results to
preserve satisfactory results for each partition.

In a team-based environment, part of your design may be incomplete, or it may have
been developed by another designer or IP provider. In this scenario, you can add the
completed partitions to the design incrementally. Alternatively, other designers or IP
providers can develop and optimize partitions independently and the project lead can
later integrate the partitions into the top-level design.

Related Information

• Team-Based Design Flows and IP Delivery on page 11

• Incremental Compilation Summary on page 13

• Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 70

1.2.2.1. Impact of Using Incremental Compilation with Design Partitions

Table 1. Impact Summary of Using Incremental Compilation

Characteristic Impact of Incremental Compilation with Design Partitions

Compilation Time Savings Typically saves an average of 75% of compilation time for small design
changes in large designs when post-fit netlists are preserved; there
are savings in both Quartus Prime Integrated Synthesis and the Fitter.
(1)

Performance Preservation Excellent performance preservation when timing critical paths are
contained within a partition, because you can preserve post-fitting
information for unchanged partitions.

Node Name Preservation Preserves post-fitting node names for unchanged partitions.

Area Changes The area (logic resource utilization) might increase because cross-
boundary optimizations are limited, and placement and register
packing are restricted.

fMAX Changes The design’s maximum frequency might be reduced because
cross-boundary optimizations are limited. If the design is partitioned
and the floorplan location assignments are created appropriately, there
might be no negative impact on fMAX.

(1) Quartus Prime incremental compilation does not reduce processing time for the early "pre-
fitter" operations, such as determining pin locations and clock routing, so the feature cannot
reduce compilation time if runtime is dominated by those operations.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.2.2. Quartus Prime Design Stages for Incremental Compilation

Figure 1. Design Stages for Incremental Compilation

System
VHDL
(.vhd)

AHDL
(.tdf)

Block
Design File

(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Analysis & Synthesis
Synthesize Changed Partitions,

Preserve Others

Partition Merge
Create Complete Netlist Using Appropriate Source Netlists for Each

Partition (Post-Fit, Post-Synthesis, or Imported Netlist)

Single Netlist for
Complete Design

One Post-Fit
Netlist per
Partition

One Post-Synthesis
Netlist per Partition

Single Post-Fit
Netlist for
Complete Design

Fitter
Place-and-Route Changed Partitions,

Preserve Others

Create Individual Netlists and
Complete Netlists

Assembler

Settings &
Assignments

Make Design &
Assignment Modifications

Settings &
Assignments

Design Partition
Assignments

Floorplan
Location

Assignments

Requirements
Satisfied?

Yes

No

Program/Configure Device

Partition Top

Partition 1
Partition 2

(1)

Verilog
HDL
(.sv)

Timing
Analyzer in parallel

Note: When you use EDIF or VQM netlists created by third-party EDA synthesis tools,
Analysis and Synthesis creates the design database, but logic synthesis and
technology mapping are performed only for black boxes.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.2.2.1. Analysis and Synthesis Stage

The figure above shows a top-level partition and two lower-level partitions. If any part
of the design changes, Analysis and Synthesis processes the changed partitions and
keeps the existing netlists for the unchanged partitions. After completion of Analysis
and Synthesis, there is one post-synthesis netlist for each partition.

1.2.2.2.2. Partition Merge Stage

The Partition Merge step creates a single, complete netlist that consists of
post-synthesis netlists, post-fit netlists, and netlists exported from other Quartus
Prime projects, depending on the netlist type that you specify for each partition.

1.2.2.2.3. Fitter Stage

The Fitter then processes the merged netlist, preserves the placement and routing of
unchanged partitions, and refits only those partitions that have changed. The Fitter
generates the complete netlist for use in future stages of the compilation flow,
including timing analysis and programming file generation, which can take place in
parallel if more than one processor is enabled for use in the Quartus Prime software.
The Fitter also generates individual netlists for each partition so that the Partition
Merge stage can use the post-fit netlist to preserve the placement and routing of a
partition, if specified, for future compilations.

1.2.2.2.4. How to Compare Incremental Compilation Results with Flat Design Results

If you define partitions, but want to check your compilation results without partitions
in a “what if” scenario, you can direct the Compiler to ignore all partitions assignments
in your project and compile the design as a "flat" netlist. When you turn on the
Ignore partitions assignments during compilation option on the Incremental
Compilation page, the Quartus Prime software disables all design partition
assignments in your project and runs a full compilation ignoring all partition
boundaries and netlists. Turning off the Ignore partitions assignments during
compilation option restores all partition assignments and netlists for subsequent
compilations.

1.2.3. Team-Based Design Flows and IP Delivery

The Quartus Prime software supports various design flows to enable team-based
design and third-party IP delivery. A top-level design can include one or more
partitions that are designed or optimized by different designers or IP providers, as well
as partitions that will be developed as part of a standard incremental methodology.

1.2.3.1. With a Single Quartus Prime Project

In a team-based environment, part of your design may be incomplete because it is
being developed elsewhere. The project lead or system architect can create empty
placeholders in the top-level design for partitions that are not yet complete. Designers
or IP providers can create and verify HDL code separately, and then the project lead
later integrates the code into the single top-level Quartus Prime project. In this
scenario, you can add the completed partitions to the design incrementally, however,
the design flow allows all design optimization to occur in the top-level design for
easiest design integration. Altera recommends using a single Quartus Prime project
whenever possible because using multiple projects can add significant up-front and
debugging time to the development cycle.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.3.2. With Multiple Quartus Prime Projects

Alternatively, partition designers can design their partition in a copy of the top-level
design or in a separate Quartus Prime project. Designers export their completed
partition as either a post-synthesis netlist or optimized placed and routed netlist, or
both, along with assignments such as LogicLock™ regions, as appropriate. The project
lead then integrates each design block as a design partition into the top-level design.
Altera recommends that designers export and reuse post-synthesis netlists, unless
optimized post-fit results are required in the top-level design, to simplify design
optimization.

1.2.3.2.1. Additional Planning Needed

Teams with a bottom-up design approach often want to optimize placement and
routing of design partitions independently and may want to create separate Quartus
Prime projects for each partition. However, optimizing design partitions in separate
Quartus Prime projects, and then later integrating the results into a top-level design,
can have the following potential drawbacks that require careful planning:

• Achieving timing closure for the full design may be more difficult if you compile
partitions independently without information about other partitions in the design.
This problem may be avoided by careful timing budgeting and special design rules,
such as always registering the ports at the module boundaries.

• Resource budgeting and allocation may be required to avoid resource conflicts and
overuse. Creating a floorplan with LogicLock regions is recommended when design
partitions are developed independently in separate Quartus Prime projects.

• Maintaining consistency of assignments and timing constraints can be more
difficult if there are separate Quartus Prime projects. The project lead must ensure
that the top-level design and the separate projects are consistent in their
assignments.

1.2.3.3. Collaboration on a Team-Based Design

A unique challenge of team-based design and IP delivery for FPGAs is the fact that the
partitions being developed independently must share a common set of resources. To
minimize issues that might arise from sharing a common set of resources, you can
design partitions within a single Quartus Prime project or a copy of the top-level
design. A common project ensures that designers have a consistent view of the top-
level project framework.

For timing-critical partitions being developed and optimized by another designer, it is
important that each designer has complete information about the top-level design in
order to maintain timing closure during integration, and to obtain the best results.
When you want to integrate partitions from separate Quartus Prime projects, the
project lead can perform most of the design planning, and then pass the top-level
design constraints to the partition designers. Preferably, partition designers can obtain
a copy of the top-level design by checking out the required files from a source control
system. Alternatively, the project lead can provide a copy of the top-level project
framework, or pass design information using Quartus Prime-generated design partition
scripts. In the case that a third-party designer has no information about the top-level
design, developers can export their partition from an independent project if required.

Related Information

• Exporting Design Partitions from Separate Quartus Prime Projects on page 37

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Project Management— Making the Top-Level Design Available to Other Designers
on page 40

1.3. Incremental Compilation Summary

1.3.1. Incremental Compilation Single Quartus Prime Project Flow

The figure illustrates the incremental compilation design flow when all partitions are
contained in one top-level design.

Figure 2. Top-Down Design Flow

Perform Elaboration

Repeat as Needed
During Design, Verification,
& Debugging Stages

(Optional) Create Floorplan Location
Assignments using LogicLock Regions

Perform Complete Compilation
(All Partitions are Compiled)

Set Netlist Type for Each Partition

Make Changes to Design

Perform Incremental Compilation
(Partitions are Compiled if Required)

Prepare Design for Incremental Compilation

1.3.2. Steps for Incremental Compilation

For an interactive introduction to implementing an incremental compilation design
flow, refer to the Getting Started Tutorial on the Help menu in the Quartus Prime
software.

1.3.2.1. Preparing a Design for Incremental Compilation

1. Elaborate your design, or run any compilation flow (such as a full compilation) that
includes the elaboration step. Elaboration is the part of the synthesis process that
identifies your design’s hierarchy.

2. Designate specific instances in the design hierarchy as design partitions.

3. If required for your design flow, create a floorplan with LogicLock regions location
assignments for timing-critical partitions that change with future compilations.
Assigning a partition to a physical region on the device can help maintain quality
of results and avoid conflicts in certain situations.

Related Information

• Creating Design Partitions on page 14

• Creating a Design Floorplan With LogicLock Regions on page 56

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.2.2. Compiling a Design Using Incremental Compilation

The first compilation after making partition assignments is a full compilation, and
prepares the design for subsequent incremental compilations. In subsequent
compilations of your design, you can preserve satisfactory compilation results and
performance of unchanged partitions with the Netlist Type setting in the Design
Partitions window. The Netlist Type setting determines which type of netlist or source
file the Partition Merge stage uses in the next incremental compilation. You can choose
the Source File, Post-Synthesis netlist, or Post-Fit netlist.

Related Information

Specifying the Level of Results Preservation for Subsequent Compilations on page 32

1.3.3. Creating Design Partitions

There are several ways to designate a design instance as a design partition.

Related Information

Deciding Which Design Blocks Should Be Design Partitions on page 26

1.3.3.1. Creating Design Partitions in the Project Navigator

You can right-click an instance in the list under the Hierarchy tab in the Project
Navigator and use the sub-menu to create and delete design partitions.

1.3.3.2. Creating Design Partitions in the Design Partitions Window

The Design Partitions window, available from the Assignments menu, allows you to
create, delete, and merge partitions, and is the main window for setting the netlist
type to specify the level of results preservation for each partition on subsequent
compilations.

The Design Partitions window also lists recommendations at the bottom of the window
with links to the Incremental Compilation Advisor, where you can view additional
recommendations about partitions. The Color column indicates the color of each
partition as it appears in the Design Partition Planner and Chip Planner.

You can right-click a partition in the window to perform various common tasks, such
as viewing property information about a partition, including the time and date of the
compilation netlists and the partition statistics.

When you create a partition, the Quartus Prime software automatically generates a
name based on the instance name and hierarchy path. You can edit the partition name
in the Design Partitions Window so that you avoid referring to them by their hierarchy
path, which can sometimes be long. This is especially useful when using command-line
commands or assignments, or when you merge partitions to give the partition a
meaningful name. Partition names can be from 1 to 1024 characters in length and
must be unique. The name can consist of alphanumeric characters and the pipe (|),
colon (:), and underscore (_) characters.

Related Information

Netlist Type for Design Partitions on page 33

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.3.3. Creating Design Partitions With the Design Partition Planner

The Design Partition Planner allows you to view design connectivity and hierarchy, and
can assist you in creating effective design partitions that follow Altera’s guidelines.

The Design Partition Planner displays a visual representation of design connectivity
and hierarchy, as well as partitions and entity relationships. You can explore the
connectivity between entities in the design, evaluate existing partitions with respect to
connectivity between entities, and try new partitioning schemes in "what if" scenarios.

When you extract design blocks from the top-level design and drag them into the
Design Partition Planner, connection bundles are drawn between entities, showing the
number of connections existing between pairs of entities. In the Design Partition
Planner, you can then set extracted design blocks as design partitions.

The Design Partition Planner also has an Auto-Partition feature that creates
partitions based on the size and connectivity of the hierarchical design blocks.

Related Information

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 70

1.3.3.4. Creating Design Partitions With Tcl Scripting

You can also create partitions with Tcl scripting commands.

Related Information

Scripting Support on page 64

1.3.3.5. Automatically-Generated Partitions

The Compiler creates some partitions automatically as part of the compilation process,
which appear in some post-compilation reports. For example, the sld_hub partition is
created for tools that use JTAG hub connections, such as the SignalTap II Logic
Analyzer. The hard_block partition is created to contain certain "hard" or dedicated
logic blocks in the device that are implemented in a separate partition so that they can
be shared throughout the design.

1.4. Common Design Scenarios Using Incremental Compilation

Related Information

Steps for Incremental Compilation on page 13

1.4.1. Reducing Compilation Time When Changing Source Files for One
Partition

Scenario background: You set up your design to include partitions for several of the
major design blocks, and now you have just performed a lengthy compilation of the
entire design. An error is found in the HDL source file for one partition and it is being
fixed. Because the design is currently meeting timing requirements, and the fix is not
expected to affect timing performance, it makes sense to compile only the affected
partition and preserve the rest of the design.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the flow in this example to update the source file in one partition without having
to recompile the other parts of the design. To reduce the compilation time, instruct the
software to reuse the post-fit netlists for the unchanged partitions. This flow also
preserves the performance of these blocks, which reduces additional timing closure
efforts.

Perform the following steps to update a single source file:

1. Apply and save the fix to the HDL source file.

2. On the Assignments menu, open the Design Partitions window.

3. Change the netlist type of each partition, including the top-level entity, to Post-Fit
to preserve as much as possible for the next compilation.

• The Quartus Prime software recompiles partitions by default when changes are
detected in a source file. You can refer to the Partition Dependent Files table in
the Analysis and Synthesis report to determine which partitions were
recompiled. If you change an assignment but do not change the logic in a
source file, you can set the netlist type to Source File for that partition to
instruct the software to recompile the partition's source design files and its
assignments.

4. Click Start Compilation to incrementally compile the fixed HDL code. This
compilation should take much less time than the initial full compilation.

5. Simulate the design to ensure that the error is fixed, and use the Timing Analyzer
report to ensure that timing results have not degraded.

Related Information

List of Compilation and Simulation Reports online help

1.4.2. Optimizing a Timing-Critical Partition

Scenario background: You have just performed a lengthy full compilation of a design
that consists of multiple partitions. The Timing Analyzer reports that the clock timing
requirement is not met, and you have to optimize one particular partition. You want to
try optimization techniques such as raising the Placement Effort Multiplier and running
Design Space Explorer II. Because these techniques all involve significant compilation
time, you should apply them to only the partition in question.

Use the flow in this example to optimize the results of one partition when the other
partitions in the design have already met their requirements. You can use this flow
iteratively to lock down the performance of one partition, and then move on to
optimization of another partition.

Perform the following steps to preserve the results for partitions that meet their timing
requirements, and to recompile a timing-critical partition with new optimization
settings:

1. Open the Design Partitions window.

2. For the partition in question, set the netlist type to Source File.

• If you change a setting that affects only the Fitter, you can save additional
compilation time by setting the netlist type to Post-Synthesis to reuse the
synthesis results and refit the partition.

3. For the remaining partitions (including the top-level entity), set the netlist type to
Post-Fit.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

16

http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_list_format.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• You can optionally set the Fitter Preservation Level on the Advanced tab in
the Design Partitions Properties dialog box to Placement to allow for the
most flexibility during routing.

4. Apply the desired optimization settings.

5. Click Start Compilation to perform incremental compilation on the design with
the new settings. During this compilation, the Partition Merge stage automatically
merges the critical partition’s new synthesis netlist with the post-fit netlists of the
remaining partitions. The Fitter then refits only the required partition. Because the
effort is reduced as compared to the initial full compilation, the compilation time is
also reduced.

To use Design Space Explorer II, perform the following steps:

1. Repeat steps 1–3 of the previous procedure.

2. Save the project and run Design Space Explorer II.

1.4.3. Adding Design Logic Incrementally or Working With an Incomplete
Design

Scenario background: You have one or more partitions that are known to be timing-
critical in your full design. You want to focus on developing and optimizing this subset
of the design first, before adding the rest of the design logic.

Use this flow to compile a timing-critical partition or partitions in isolation, optionally
with extra optimizations turned on. After timing closure is achieved for the critical
logic, you can preserve its content and placement and compile the remaining
partitions with normal or reduced optimization levels. For example, you may want to
compile an IP block that comes with instructions to perform optimization before you
incorporate the rest of your custom logic.

To implement this design flow, perform the following steps:

1. Partition the design and create floorplan location assignments. For best results,
ensure that the top-level design includes the entire project framework, even if
some parts of the design are incomplete and are represented by an empty
wrapper file.

2. For the partitions to be compiled first, in the Design Partitions window, set the
netlist type to Source File.

3. For the remaining partitions, set the netlist type to Empty.

4. To compile with the desired optimizations turned on, click Start Compilation.

5. Check the Timing Analyzer reports to ensure that timing requirements are met. If
so, proceed to step 6. Otherwise, repeat steps 4 and 5 until the requirements are
met.

6. In the Design Partitions window, set the netlist type to Post-Fit for the first
partitions. You can set the Fitter Preservation Level on the Advanced tab in
the Design Partitions Properties dialog box to Placement to allow more
flexibility during routing if exact placement and routing preservation is not
required.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Change the netlist type from Empty to Source File for the remaining partitions,
and ensure that the completed source files are added to the project.

8. Set the appropriate level of optimizations and compile the design. Changing the
optimizations at this point does not affect any fitted partitions, because each
partition has its netlist type set to Post-Fit.

9. Check the Timing Analyzer reports to ensure that timing requirements are met. If
not, make design or option changes and repeat step 8 and step 9 until the
requirements are met.

The flow in this example is similar to design flows in which a module is implemented
separately and is later merged into the top-level. Generally, optimization in this flow
works only if each critical path is contained within a single partition. Ensure that if
there are any partitions representing a design file that is missing from the project, you
create a placeholder wrapper file to define the port interface.

Related Information

• Designing in a Team-Based Environment on page 49

• Deciding Which Design Blocks Should Be Design Partitions on page 26

• Empty Partitions on page 40

1.4.4. Debugging Incrementally With the Signal Tap Logic Analyzer

Scenario background: Your design is not functioning as expected, and you want to
debug the design using the Signal Tap Logic Analyzer. To maintain reduced compilation
times and to ensure that you do not negatively affect the current version of your
design, you want to preserve the synthesis and fitting results and add the Signal Tap
to your design without recompiling the source code.

Use this flow to reduce compilation times when you add the logic analyzer to debug
your design, or when you want to modify the configuration of the Signal Tap File
without modifying your design logic or its placement.

It is not necessary to create design partitions in order to use the Signal Tap
incremental compilation feature. The Signal Tap Logic Analyzer acts as its own
separate design partition.

Perform the following steps to use the Signal Tap Logic Analyzer in an incremental
compilation flow:

1. Open the Design Partitions window.

2. Set the netlist type to Post-fit for all partitions to preserve their placement.

• The netlist type for the top-level partition defaults to Source File, so be sure
to change this “Top” partition in addition to any design partitions that you
have created.

3. If you have not already compiled the design with the current set of partitions,
perform a full compilation. If the design has already been compiled with the
current set of partitions, the design is ready to add the Signal Tap Logic Analyzer.

4. Set up your SignalTap II File using the post-fitting filter in the Node Finder to
add signals for logic analysis. This allows the Fitter to add the SignalTap II logic to
the post-fit netlist without modifying the design results.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To add signals from the pre-synthesis netlist, set the partition’s netlist type to Source
File and use the presynthesis filter in the Node Finder. This allows the software to
resynthesize the partition and to tap directly to the pre-synthesis node names that
you choose. In this case, the partition is resynthesized and refit, so the placement is
typically different from previous fitting results.

Related Information

Design Debugging Using the SignalTap II Embedded Logic Analyzer documentation

1.4.5. Functional Safety IP Implementation

In functional safety designs, recertification is required when logic is modified in safety
or standard areas of the design. Recertification is required because the FPGA
programming file has changed. You can reduce the amount of required recertification
if you use the functional safety separation flow in the software. By partitioning your
safety IP (SIP) from standard logic, you ensure that the safety critical areas of the
design remain the same when the standard areas in your design are modified. The
safety-critical areas remain the same at the bit level.

The functional safety separation flow supports only Cyclone IV and Cyclone V device
families.

Related Information

AN 704: FPGA-based Safety Separation Design Flow for Rapid Functional Safety
Certification

This design flow significantly reduces the certification efforts for the lifetime of an
FPGA-based industrial system containing both safety critical and nonsafety critical
components.

1.4.5.1. Software Tool Impact on Safety

The Quartus Prime software can partition your design into safety partitions and
standard partitions, but the Quartus Prime software does not perform any online
safety-related functionality. The Quartus Prime software generates a bitstream that
performs the safety functions. For the purpose of compliance with a functional safety
standard, the Quartus Prime software should be considered as an offline support tool.

1.4.5.2. Functional Safety Separation Flow

The functional safety separation flow consists of two separate work flows. The design
creation flow and the design modification flow both use incremental compilation, but
the two flows have different use-case scenarios.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

19

https://www.intel.com/content/www/us/en/docs/programmable/683552/current/design-debugging-with-the-logic-analyzer-69524.html
https://www.intel.com/content/www/us/en/docs/programmable/683720/current/fpga-based-safety-separation-design.html
https://www.intel.com/content/www/us/en/docs/programmable/683720/current/fpga-based-safety-separation-design.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3. Functional Safety Separation Flow

Design
Modification
Flow

Design
Creation
Flow

Design
Creation
Flow

 Safety IP Change?

 New Design?
no yes

no yes

Design activity
 entry point

1.4.5.2.1. Design Creation Flow

The design creation flow describes the necessary steps for initial design creation in a
way that allows you to modify your design. Some of the steps are architectural
constraints and the remaining steps are steps that you need to perform in the Quartus
Prime software. Use the design creation flow for the first pass certification of your
product.

When you make modifications to the safety IP in your design, you must use the design
creation flow.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4. Design Creation Flow

Create Design Hierarchy

Design Creation Flow
Tool Flow Stage

Intel FPGA Development
V-model Stage

Define Safety IP Partitions

Create Safety IP
LogicLock Region

Compile the Design

Export Safety IP Partition

Generate Safety IP POF Partion

Create Safety IP POF Partion Hash

Verification

Synthesis/Place and Route

Logical Module Integration

FPGA Architecture/Logical module design

The design creation flow becomes active when you have a valid safety IP partition in
your Quartus Prime project and that safety IP partition does not have place and route
data from a previous compile. In the design creation flow, the Assembler generates a
Partial Settings Mask (.psm) file for each safety IP partition. Each .psm file contains a
list of programming bits for its respective safety IP partition.

The Quartus Prime software determines whether to use the design creation flow or
design modification flow on a per partition basis. It is possible to have multiple safety
IP partitions in a design where some are running the design creation flow and others
are running the design modification flow.

To reset the complete design to the design creation flow, remove the previous place
and route data by cleaning the project (removing the dbs). Alternatively, use the
partition import flow, to selectively reset the design. You can remove the netlists for
the imported safety IP partitions individually using the Design Partitions window.

Related Information

• Exporting and Importing Your Safety IP on page 26

• Design Partitions Window online help

1.4.5.2.2. Design Modification Flow

The design modification flow describes the necessary steps to make modifications to
the standard IP in your design. This flow ensures that the previously compiled safety
IP that the project uses remains unchanged when you change or compile standard IP.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

21

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_com_qid_design_partition.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the design modification flow only after you qualify your design in the design
creation flow.

Figure 5. Design Modification Flow

Modify Standard IP

Import Safety IP Partition

Compile the Design

Create Safety POF Partition Hash

Compare POF Partition Hash

Hardware Verification
 (readback of POF)

Generate Safety IP POF Partition

When the design modification flow is active for a safety IP partition, the Fitter runs in
Strict Preservation mode for that partition. The Assembler performs run-time checks
that compare the Partial Settings Mask information matches the .psm file generated in
the design creation flow. If the Assembler detects a mismatch, a "Bad Mask!" or
"ASM_STRICT_PRESERVATION_BITS_UTILITY::compare_masked_byte_array failed"
internal error message is shown. If you see either error message while compiling your
design, contact your Intel support representative for assistance.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When a change is made to any HDL source file that belongs to a safety IP, the default
behavior of the Quartus Prime software is to resynthesize and perform a clean place
and route for that partition, which then activates the design creation flow for that
partition. To change this default behavior and keep the design modification flow active,
do the following:

• Use the partition export/import flow.

or

• Use the Design Partitions window to modify the design partition properties and
turn on Ignore changes in source files and strictly use the specified netlist,
if available.

The Fitter applies the same design flow to all partitions that belong to the same safety
IP. If more than one safety IP is used in the design, the Fitter may evoke different
flows for different safety IPs.

Note: If your safety IP is a sub-block in a Platform Designer system, every time you
regenerate HDL for the Platform Designer system, the timestamp for the safety IP HDL
changes. This results in resynthesis of the safety IP, unless the default behavior
(described above) is changed.

Related Information

• Exporting and Importing Your Safety IP on page 26

• Design Partitions Window online help

1.4.5.3. How to Turn On the Functional Safety Separation Flow

Every safety-related IP component in your design should be implemented in a
partition(s) so the safety IPs are protected from recompilation. Use the global
assignment PARTITION_ENABLE_STRICT_PRESERVATION to identify safety IP in
your design.

set_global_assignment -name PARTITION_ENABLE_STRICT_PRESERVATION <ON/OFF> -
section_id <partition_name>

When this global assignment is designated as ON for a partition, the partition is
protected from recompilation, exported as a safety IP, and included in the safety IP
POF mask. Specifying the value as ON for any partition turns on the functional safety
separation flow.

When this global assignment is designated as OFF, the partition is considered as
standard IP or as not having a PARTITION_ENABLE_STRICT_PRESERVATION
assignment at all. Logic that is not assigned to a partition is considered as part of the
top partition and treated as standard logic.

Note: Only partitions and I/O pins can be assigned to SIP.

A partition assigned to safety IP can contain safety logic only. If the parent partition is
assigned to a safety IP, then all the child partitions for this parent partition are
considered as part of the safety IP. If you do not explicitly specify a child partition as a
safety IP, a critical warning notifies you that the child partition is treated as part of a
safety IP.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

23

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_com_qid_design_partition.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A design can contain several safety IPs. All the partitions containing logic that
implements a single safety IP function should belong with the same top-level parent
partition.

You can also turn on the functional safety separation flow from the Design Partition
Properties dialog box. Click the Advanced tab and turn on Allow partition to be
strictly preserved for safety.

When the functional safety separation flow is active, you can view which partitions in
your design have the Strict Preservation property turned on. The Design Partitions
window displays a on or off value for safety IP in your design (in the Strict
Preservation column).

1.4.5.4. Preservation of Device Resources

The preservation of the partition’s netlist atoms and the atoms placement and routing,
in the design modification flow, is done by setting the netlist type to Post-fit with the
Fitter preservation level set to Placement and Routing Preserved.

1.4.5.5. Preservation of Placement in the Device with LogicLock

In order to fix the safety IP logic into specific areas of the device, you should define
LogicLock regions. By using preserved LogicLock regions, device placement is reserved
for the safety IP to prevent standard logic from being placed into the unused
resources of the safety IP region. You establish a fixed size and origin to ensure
location preservation. You need to use LogicLock to ensure a valid safety IP POF mask
is generated when you turn on the functional safety separation flow. The POF
comparison tool for functional safety can check that the safety region is unchanged
between compiles. A LogicLock region assigned to a safety IP can only contain safety
IP logic.

1.4.5.6. Assigning I/O Pins

You use a global assignment or the Design Partition Properties dialog box to
specify that a pin is assigned to a safety IP partition.

Use the following global assignment to assign a pin to a safety IP partition:

set_instance_assignment -name ENABLE_STRICT_PRESERVATION ON/OFF -to <hpath> -section_id
<region_name>

• <hpath> refers to an I/O pin (pad).

• <region_name> refers to the top-level safety IP partition name.

A value of ON indicates that the pin is a safety pin that should be preserved with the
safety IP block. A value of OFF indicates that the pin that connects to the safety IP,
should be treated as a standard pin, and is not preserved with the safety IP.

You also turn on strict preservation for I/O pins in the Design Partition Properties
dialog box. Click the Advanced tab and choose On for I/O pins that you want to
preserve.

Note: All pins that connect to a safety IP partition must have an explicit assignment. The
software reports an error if a pin that connects to the safety IP partition does not have
an assignment or if a pin does not connect to the specified <region_name>.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If an IO_REG group contains a pin that is assigned to a safety IP partition, all of the
pins in the IO_REG group are reserved for the safety IP partition. All pins in the
IO_REG group must be assigned to the same safety IP partition, and none of the pins
in the group can be assigned to standard signals.

1.4.5.7. General Guidelines for Implementation

• An internal clock source, such as a PLL, should be implemented in a safe partition.

• An I/O pin driving the external clock should be indicated as a safety pin.

• To export a safety IP containing several partitions, the top-level partition for the
safety IP should be exported. A safety IP containing several partitions is flattened
and converted into a single partition during export. This hierarchical safety IP is
flattened to ensure bit-level settings are preserved.

• Hard blocks implemented in a safe partition needs to stay with the safe partition.

1.4.5.8. Reports for Safety IP

When you have the functional safety separation flow turned on, the Quartus Prime
software displays safety IP and standard IP information in the Fitter report.

1.4.5.8.1. Fitter Report

The Fitter report includes information for each safety IP and the respective partition
and I/O usage. The report contains the following information:

• Safety IP name defined as the name of the top-level safety IP partition

• Effective design flow for the safety IP

• Names of all partitions that belong to the safety IP

• Number of safety/standard inputs to the safety IP

• Number of safety/standard outputs to the safety IP

• LogicLock region names along with size and locations for the regions

• I/O pins used for the respective safety IP in your design

• Safety-related error messages

1.4.5.9. SIP Partial Bitstream Generation

The Programmer generates a bitstream file containing only the bits for a safety IP.
This partial preserved bitstream (.ppb) file is for the safety IP region mask. The
command lines to generate the partial bitstream file are the following:

• quartus_cpf --genppb safe1.psm design.sof safe1.rbf.ppb

• quartus_cpf -c safe1.psm safe1.rbf.ppb

The .ppb file is generated in two steps.

1. Generation of partial SOF.

2. Generation of .ppb file using the partial SOF.

The .psm file, .ppb file, and MD5 hash signature (.md5.sign) file created during
partial bitstream generation should be archived for use in future design modification
flow compiles.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.5.10. Exporting and Importing Your Safety IP

Safety IP Partition Export

After you have successfully compiled the safety IP(s) in the Quartus Prime software,
save the safety IP partition place and route information for use in any subsequent
design modification flow. Saving the partition information allows the safety IP to be
imported to a clean Quartus Prime project where no previous compilation results have
been removed (even if the version of the Quartus Prime software being used is newer
than the Quartus Prime software version with which the safety IP was originally
compiled). Use the Design Partitions window to export the design partition. Verify
that only the post-fit netlist and export routing options are turned on when you
generate the .qxp file for each safety IP. The .qxp files should be archived along with
the partial bitstream files for use in later design modification flow compiles.

Safety IP Partition Import

You can import a previously exported safety IP partition into your Quartus Prime
project. There are two use-cases for this.

• (Optional) Import into the original project to ensure that any potential source code
changes do not trigger the design creation flow unintentionally.

• Import into a new or clean project where you want to use the design modification
flow for the safety IP. As the exported partition is independent of your Quartus
Prime software version, you can import the .qxp into a future Quartus Prime
software release.

To import a previously exported design partition, use the Design Partitions window
and import the .qxp.

1.4.5.11. POF Comparison Tool for Verification

There is a separate safe/standard partitioning verification tool that is licensed to safety
users. Along with the .ppb file, a .md5.sign file is generated. The MD5 hash
signature can be used for verification. For more detailed verification, the POF
comparison tool should be used. This POF comparison tool is available in the Altera
Functional Safety Data Package.

1.5. Deciding Which Design Blocks Should Be Design Partitions

The incremental compilation design flow requires more planning than flat
compilations. For example, you might have to structure your source code or design
hierarchy to ensure that logic is grouped correctly for optimization.

It is a common design practice to create modular or hierarchical designs in which you
develop each design entity separately, and then instantiate them in a higher-level
entity, forming a complete design. The Quartus Prime software does not automatically
consider each design entity or instance to be a design partition for incremental
compilation; instead, you must designate one or more design hierarchies below the
top-level project as a design partition. Creating partitions might prevent the Compiler
from performing optimizations across partition boundaries. However, this allows for
separate synthesis and placement for each partition, making incremental compilation
possible.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Partitions must have the same boundaries as hierarchical blocks in the design because
a partition cannot be a portion of the logic within a hierarchical entity. You can merge
partitions that have the same immediate parent partition to create a single partition
that includes more than one hierarchical entity in the design. When you declare a
partition, every hierarchical instance within that partition becomes part of the same
partition. You can create new partitions for hierarchical instances within an existing
partition, in which case the instances within the new partition are no longer included in
the higher-level partition, as described in the following example.

In the figure below, a complete design is made up of instances A, B, C, D, E, F, and
G. The shaded boxes in Representation i indicate design partitions in a “tree”
representation of the hierarchy. In Representation ii, the lower-level instances are
represented inside the higher-level instances, and the partitions are illustrated with
different colored shading. The top-level partition, called “Top”, automatically contains
the top-level entity in the design, and contains any logic not defined as part of another
partition. The design file for the top level may be just a wrapper for the hierarchical
instances below it, or it may contain its own logic. In this example, partition B
contains the logic in instances B, D, and E. Entities F and G were first identified as
separate partitions, and then merged together to create a partition F-G. The partition
for the top-level entity A, called “Top”, includes the logic in one of its lower-level
instances, C, because C was not defined as part of any other partition.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Partitions in a Hierarchical Design

Partition Top

Representation i

Representation ii

Partition B Merged Partition F-G

D

D

E

B

B C

A

A

F

C

E F

G

G

You can create partition assignments to any design instance. The instance can be
defined in HDL or schematic design, or come from a third-party synthesis tool as a
VQM or EDIF netlist instance.

To take advantage of incremental compilation when source files change, create
separate design files for each partition. If you define two different entities as separate
partitions but they are in the same design file, you cannot maintain incremental
compilation because the software would have to recompile both partitions if you
changed either entity in the design file. Similarly, if two partitions rely on the same
lower-level entity definition, changes in that lower-level affect both partitions.

The remainder of this section provides information to help you choose which design
blocks you should assign as partitions.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.1. Impact of Design Partitions on Design Optimization

The boundaries of your design partitions can impact the design’s quality of results.
Creating partitions might prevent the Compiler from performing logic optimizations
across partition boundaries, which allows the software to synthesize and place each
partition separately in an incremental flow. Therefore, consider partitioning guidelines
to help reduce the effect of partition boundaries.

Whenever possible, register all inputs and outputs of each partition. This helps avoid
any delay penalty on signals that cross partition boundaries and keeps each
register-to-register timing path within one partition for optimization. In addition,
minimize the number of paths that cross partition boundaries. If there are
timing-critical paths that cross partition boundaries, rework the partitions to avoid
these inter-partition paths. Including as many of the timing-critical connections as
possible inside a partition allows you to effectively apply optimizations to that partition
to improve timing, while leaving the rest of the design unchanged.

Avoid constant partition inputs and outputs. You can also merge two or more
partitions to allow cross-boundary optimizations for paths that cross between the
partitions, as long as the partitions have the same parent partition. Merging related
logic from different hierarchy blocks into one partition can be useful if you cannot
change the design hierarchy to accommodate partition assignments.

If critical timing paths cross partition boundaries, you can perform timing budgeting
and make timing assignments to constrain the logic in each partition so that the entire
timing path meets its requirements. In addition, because each partition is optimized
independently during synthesis, you may have to perform resource allocation to
ensure that each partition uses an appropriate number of device resources. If design
partitions are compiled in separate Quartus Prime projects, there may be conflicts
related to global routing resources for clock signals when the design is integrated into
the top-level design. You can use the Global Signal logic option to specify which clocks
should use global or regional routing, use the ALTCLK_CTRL IP core to instantiate a
clock control block and connect it appropriately in both the partitions being developed
in separate Quartus Prime projects, or find the compiler-generated clock control node
in your design and make clock control location assignments in the Assignment Editor.

1.5.1.1. Turning On Supported Cross-boundary Optimizations

You can improve the optimizations performed between design partitions by turning on
supported cross-boundary optimizations. These optimizations are turned on a per
partition basis and you can select the optimizations as individual assignments. This
allows the cross-boundary optimization feature to give you more control over the
optimizations that work best for your design. You can turn on the cross-boundary
optimizations for your design partitions on the Advanced tab of the Design Partition
Properties dialog box. Once you change the optimization settings, the Quartus Prime
software recompiles your partition from source automatically. Cross-boundary
optimizations include the following: propagate constants, propagate inversions on
partition inputs, merge inputs fed by a common source, merge electrically equivalent
bidirectional pins, absorb internal paths, and remove logic connected to dangling
outputs.

Cross-boundary optimizations are implemented top-down from the parent partition
into the child partition, but not vice-versa. Also, cross-boundary optimizations cannot
be enabled for partitions that allow multiple personas (partial reconfiguration
partitions).

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 70

1.5.2. Design Partition Assignments Compared to Physical Placement
Assignments

Design partitions for incremental compilation are logical partitions, which is different
from physical placement assignments in the device floorplan. A logical design partition
does not refer to a physical area of the device and does not directly control the
placement of instances. A logical design partition sets up a virtual boundary between
design hierarchies so that each is compiled separately, preventing logical optimizations
from occurring between them. When the software compiles the design source code,
the logic in each partition can be placed anywhere in the device unless you make
additional placement assignments.

If you preserve the compilation results using a Post-Fit netlist, it is not necessary for
you to back-annotate or make any location assignments for specific logic nodes. You
should not use the incremental compilation and logic placement back-annotation
features in the same Quartus Prime project. The incremental compilation feature does
not use placement “assignments” to preserve placement results; it simply reuses the
netlist database that includes the placement information.

You can assign design partitions to physical regions in the device floorplan using
LogicLock region assignments. In the Quartus Prime software, LogicLock regions are
used to constrain blocks of a design to a particular region of the device. Altera
recommends using LogicLock regions for timing-critical design blocks that will change
in subsequent compilations, or to improve the quality of results and avoid placement
conflicts in some cases.

Related Information

• Creating a Design Floorplan With LogicLock Regions on page 56

• Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 70

1.5.3. Using Partitions With Third-Party Synthesis Tools

If you are using a third-party synthesis tool, set up your tool to create a separate VQM
or EDIF netlist for each hierarchical partition. In the Quartus Prime software, assign
the top-level entity from each netlist to be a design partition. The VQM or EDIF netlist
file is treated as the source file for the partition in the Quartus Prime software.

1.5.3.1. Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus

The Synplify Pro and Synplify Premier software include the MultiPoint synthesis feature
to perform incremental synthesis for each design block assigned as a Compile Point in
the user interface or a script. The Precision RTL Plus software includes an incremental
synthesis feature that performs block-based synthesis based on Partition assignments
in the source HDL code. These features provide automated block-based incremental
synthesis flows and create different output netlist files for each block when set up for
an Altera device.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using incremental synthesis within your synthesis tool ensures that only those
sections of a design that have been updated are resynthesized when the design is
compiled, reducing synthesis run time and preserving the results for the unchanged
blocks. You can change and resynthesize one section of a design without affecting
other sections of the design.

1.5.3.2. Other Synthesis Tools

You can also partition your design and create different netlist files manually with the
basic Synplify software (non-Pro/Premier), the basic Precision RTL software
(non-Plus), or any other supported synthesis tool by creating a separate project or
implementation for each partition, including the top level. Set up each higher-level
project to instantiate the lower-level VQM/EDIF netlists as black boxes. Synplify,
Precision, and most synthesis tools automatically treat a design block as a black box if
the logic definition is missing from the project. Each tool also includes options or
attributes to specify that the design block should be treated as a black box, which you
can use to avoid warnings about the missing logic.

1.5.4. Assessing Partition Quality

The Quartus Prime software provides various tools to assess the quality of your
assigned design partitions. You can take advantage of these tools to assess your
partition quality, and use the information to improve your design or assignments as
required to achieve the best results.

1.5.4.1. Partition Statistics Reports

After compilation, you can view statistics about design partitions in the Partition Merge
Partition Statistics report, and on the Statistics tab in the Design Partitions
Properties dialog box.

The Partition Merge Partition Statistics report lists statistics about each partition. The
statistics for each partition (each row in the table) include the number of logic cells it
contains, as well as the number of input and output pins it contains, and how many
are registered or unconnected.

You can also view post-compilation statistics about the resource usage and port
connections for a particular partition on the Statistics tab in the Design Partition
Properties dialog box.

Related Information

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 70

1.5.4.2. Partition Timing Reports

You can generate a Partition Timing Overview report and a Partition Timing Details
report by clicking Report Partitions in the Tasks pane in the Timing Analyzer, or
using the report_partitions Tcl command.

The Partition Timing Overview report shows the total number of failing paths for each
partition and the worst-case slack for any path involving the partition.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Partition Timing Details report shows the number of failing partition-to-partition
paths and worst-case slack for partition-to-partition paths, to provide a more detailed
breakdown of where the critical paths in the design are located with respect to design
partitions.

1.5.4.3. Incremental Compilation Advisor

You can use the Incremental Compilation Advisor to check that your design follows
Altera’s recommendations for creating design partitions and floorplan location
assignments.

Recommendations are split into General Recommendations, Timing
Recommendations, and Team-Based Design Recommendations that apply to
design flows in which partitions are compiled independently in separate Quartus Prime
projects before being integrated into the top-level design. Each recommendation
provides an explanation, describes the effect of the recommendation, and provides the
action required to make a suggested change. In some cases, there is a link to the
appropriate Quartus Prime settings page where you can make a suggested change to
assignments or settings. For some items, if your design does not follow the
recommendation, the Check Recommendations operation creates a table that lists
any nodes or paths in your design that could be improved. The relevant timing-
independent recommendations for the design are also listed in the Design Partitions
window and the LogicLock Regions window.

To verify that your design follows the recommendations, go to the Timing
Independent Recommendations page or the Timing Dependent
Recommendations page, and then click Check Recommendations. For large
designs, these operations can take a few minutes.

After you perform a check operation, symbols appear next to each recommendation to
indicate whether the design or project setting follows the recommendations, or if some
or all of the design or project settings do not follow the recommendations. Following
these recommendations is not mandatory to use the incremental compilation feature.
The recommendations are most important to ensure good results for timing-critical
partitions.

For some items in the Advisor, if your design does not follow the recommendation, the
Check Recommendations operation lists any parts of the design that could be
improved. For example, if not all of the partition I/O ports follow the Register All
Non-Global Ports recommendation, the advisor displays a list of unregistered ports
with the partition name and the node name associated with the port.

When the advisor provides a list of nodes, you can right-click a node, and then click
Locate to cross-probe to other Quartus Prime features, such as the RTL Viewer, Chip
Planner, or the design source code in the text editor.

Note: Opening a new Timing Analyzer report resets the Incremental Compilation Advisor
results, so you must rerun the Check Recommendations process.

1.6. Specifying the Level of Results Preservation for Subsequent
Compilations

The netlist type of each design partition allows you to specify the level of results
preservation. The netlist type determines which type of netlist or source file the
Partition Merge stage uses in the next incremental compilation.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you choose to preserve a post-fit compilation netlist, the default level of Fitter
preservation is the highest degree of placement and routing preservation supported by
the device family. The advanced Fitter Preservation Level setting allows you to specify
the amount of information that you want to preserve from the post-fit netlist file.

1.6.1. Netlist Type for Design Partitions

Before starting a new compilation, ensure that the appropriate netlist type is set for
each partition to preserve the desired level of compilation results. The table below
describes the settings for the netlist type, explains the behavior of the Quartus Prime
software for each setting, and provides guidance on when to use each setting.

Table 2. Partition Netlist Type Settings

Netlist Type Quartus Prime Software Behavior for Partition During Compilation

Source File Always compiles the partition using the associated design source file(s). (2)

Use this netlist type to recompile a partition from the source code using new synthesis
or Fitter settings.

Post-Synthesis Preserves post-synthesis results for the partition and reuses the post-synthesis netlist
when the following conditions are true:
• A post-synthesis netlist is available from a previous synthesis.
• No change that initiates an automatic resynthesis has been made to the partition

since the previous synthesis. (3)

Compiles the partition from the source files if resynthesis is initiated or if a post-
synthesis netlist is not available. (2)

Use this netlist type to preserve the synthesis results unless you make design changes,
but allow the Fitter to refit the partition using any new Fitter settings.

Post-Fit Preserves post-fit results for the partition and reuses the post-fit netlist when the
following conditions are true:
• A post-fit netlist is available from a previous fitting.
• No change that initiates an automatic resynthesis has been made to the partition

since the previous fitting. (3)

When a post-fit netlist is not available, the software reuses the post-synthesis netlist if it
is available, or otherwise compiles from the source files. Compiles the partition from the
source files if resynthesis is initiated. (2)

The Fitter Preservation Level specifies what level of information is preserved from the
post-fit netlist.
Assignment changes, such as Fitter optimization settings, do not cause a partition set to
Post-Fit to recompile.

Empty Uses an empty placeholder netlist for the partition. The partition's port interface
information is required during Analysis and Synthesis to connect the partition correctly
to other logic and partitions in the design, and peripheral nodes in the source file
including pins and PLLs are preserved to help connect the empty partition to the rest of
the design and preserve timing of any lower-level non-empty partitions within empty
partitions. If the source file is not available, you can create a wrapper file that defines
the design block and specifies the input, output, and bidirectional ports. In Verilog HDL:
a module declaration, and in VHDL: an entity and architecture declaration.

continued...

(2) If you use Rapid Recompile, the Quartus Prime software might not recompile the entire
partition from the source code as described in this table; it will reuse compatible results if
there have been only small changes to the logic in the partition.

(3) You can turn on the Ignore changes in source files and strictly use the specified
netlist, if available option on the Advanced tab in the Design Partitions Properties
dialog box to specify whether the Compiler should ignore source file changes when deciding
whether to recompile the partition.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Netlist Type Quartus Prime Software Behavior for Partition During Compilation

You can use this netlist type to skip the compilation of a partition that is incomplete or
missing from the top-level design. You can also set an empty partition if you want to
compile only some partitions in the design, such as to optimize the placement of a
timing-critical block such as an IP core before incorporating other design logic, or if the
compilation time is large for one partition and you want to exclude it.
If the project database includes a previously generated post-synthesis or post-fit netlist
for an unchanged Empty partition, you can set the netlist type from Empty directly to
Post-Synthesis or Post-Fit and the software reuses the previous netlist information
without recompiling from the source files.

Related Information

• What Changes Initiate the Automatic Resynthesis of a Partition? on page 35

• Fitter Preservation Level for Design Partitions on page 34

• Incremental Capabilities Available When A Design Has No Partitions on page 8

1.6.2. Fitter Preservation Level for Design Partitions

The default Fitter Preservation Level for partitions with a Post-Fit netlist type is the
highest level of preservation available for the target device family and provides the
most compilation time reduction.

You can change the advanced Fitter Preservation Level setting to provide more
flexibility in the Fitter during placement and routing. You can set the Fitter
Preservation Level on the Advanced tab in the Design Partitions Properties dialog
box.

Table 3. Fitter Preservation Level Settings

Fitter
Preservation

Level

Quartus Prime Behavior for Partition During Compilation

Placement and
Routing

Preserves the design partition’s netlist atoms and their placement and routing.
This setting reduces compilation times compared to Placement only, but provides less flexibility to the
router to make changes if there are changes in other parts of the design.
By default, the Fitter preserves the usage of high-speed programmable power tiles contained within
the selected partition, for devices that support high-speed and low-power tiles. You can turn off the
Preserve high-speed tiles when preserving placement and routing option on the Advanced tab
in the Design Partitions Properties dialog box.

Placement Preserves the netlist atoms and their placement in the design partition. Reroutes the design partition
and does not preserve high-speed power tile usage.

Netlist Only Preserves the netlist atoms of the design partition, but replaces and reroutes the design partition. A
post-fit netlist with the atoms preserved can be different than the Post-Synthesis netlist because it
contains Fitter optimizations; for example, Physical Synthesis changes made during a previous Fitting.
You can use this setting to:
• Preserve Fitter optimizations but allow the software to perform placement and routing again.
• Reapply certain Fitter optimizations that would otherwise be impossible when the placement is

locked down.
• Resolve resource conflicts between two imported partitions.

1.6.3. Where Are the Netlist Databases Saved?

The incremental compilation database folder (\incremental_db) includes all the
netlist information from previous compilations. To avoid unnecessary recompilations,
these database files must not be altered or deleted.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you archive or reproduce the project in another location, you can use a Quartus
Prime Archive File (.qar). Include the incremental compilation database files to
preserve post-synthesis or post-fit compilation results.

To manually create a project archive that preserves compilation results without
keeping the incremental compilation database, you can keep all source and settings
files, and create and save a Quartus Prime Settings File (.qxp) for each partition in
the design that will be integrated into the top-level design.

Related Information

• Using Incremental Compilation With Quartus Prime Archive Files on page 58

• Exporting Design Partitions from Separate Quartus Prime Projects on page 37

1.6.4. Deleting Netlists

You can choose to abandon all levels of results preservation and remove all netlists
that exist for a particular partition with the Delete Netlists command in the Design
Partitions window. When you delete netlists for a partition, the partition is compiled
using the associated design source file(s) in the next compilation. Resetting the netlist
type for a partition to Source would have the same effect, though the netlists would
not be permanently deleted and would be available for use in subsequent
compilations. For an imported partition, the Delete Netlists command also optionally
allows you to remove the imported .qxp.

1.6.5. What Changes Initiate the Automatic Resynthesis of a Partition?

A partition is synthesized from its source files if there is no post-synthesis netlist
available from a previous synthesis, or if the netlist type is set to Source File.
Additionally, certain changes to a partition initiate an automatic resynthesis of the
partition when the netlist type is Post Synthesis or Post-Fit. The software
resynthesizes the partition in these cases to ensure that the design description
matches the post-place-and-route programming files.

The following list explains the changes that initiate a partition’s automatic resynthesis
when the netlist type is set to Post-Synthesis or Post-Fit:

• The device family setting has changed.

• Any dependent source design file has changed.

• The partition boundary was changed by an addition, removal, or change to the
port boundaries of a partition (for example, a new partition has been defined for a
lower-level instance within this partition).

• A dependent source file was compiled into a different library (so it has a different
-library argument).

• A dependent source file was added or removed; that is, the partition depends on a
different set of source files.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The partition’s root instance has a different entity binding. In VHDL, an instance
may be bound to a specific entity and architecture. If the target entity or
architecture changes, it triggers resynthesis.

• The partition has different parameters on its root hierarchy or on an internal AHDL
hierarchy (AHDL automatically inherits parameters from its parent hierarchies).
This occurs if you modified the parameters on the hierarchy directly, or if you
modified them indirectly by changing the parameters in a parent design hierarchy.

• You have moved the project and compiled database between a Windows and Linux
system. Due to the differences in the way new line feeds are handled between the
operating systems, the internal checksum algorithm may detect a design file
change in this case.

The software reuses the post-synthesis results but re-fits the design if you change the
device setting within the same device family. The software reuses the post-fitting
netlist if you change only the device speed grade.

Synthesis and Fitter assignments, such as optimization settings, timing assignments,
or Fitter location assignments including pin assignments, do not trigger automatic
recompilation in the incremental compilation flow. To recompile a partition with new
assignments, change the netlist type for that partition to one of the following:

• Source File to recompile with all new settings

• Post-Synthesis to recompile using existing synthesis results but new Fitter
settings

• Post-Fit with the Fitter Preservation Level set to Placement to rerun routing
using existing placement results, but new routing settings (such as delay chain
settings)

You can use the LogicLock Origin location assignment to change or fine-tune the
previous Fitter results from a Post-Fit netlist.

Related Information

Changing Partition Placement with LogicLock Changes on page 57

1.6.5.1. Resynthesis Due to Source Code Changes

The Quartus Prime software uses an internal checksum algorithm to determine
whether the contents of a source file have changed. Source files are the design
description files used to create the design, and include Memory Initialization Files
(.mif) as well as .qxp from exported partitions. When design files in a partition have
dependencies on other files, changing one file may initiate an automatic recompilation
of another file. The Partition Dependent Files table in the Analysis and Synthesis report
lists the design files that contribute to each design partition. You can use this table to
determine which partitions are recompiled when a specific file is changed.

For example, if a design has file A.v that contains entity A, B.v that contains entity B,
and C.v that contains entity C, then the Partition Dependent Files table for the
partition containing entity A lists file A.v, the table for the partition containing entity B
lists file B.v, and the table for the partition containing entity C lists file C.v. Any
dependencies are transitive, so if file A.v depends on B.v, and B.v depends on C.v,
the entities in file A.v depend on files B.v and C.v. In this case, files B.v and C.v are
listed in the report table as dependent files for the partition containing entity A.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If you use Rapid Recompile, the Quartus Prime software might not recompile the
entire partition from the source code as described in this section; it will reuse
compatible results if there have been only small changes to the logic in the partition.

If you define module parameters in a higher-level module, the Quartus Prime software
checks the parameter values when determining which partitions require resynthesis. If
you change a parameter in a higher-level module that affects a lower-level module,
the lower-level module is resynthesized. Parameter dependencies are tracked
separately from source file dependencies; therefore, parameter definitions are not
listed in the Partition Dependent Files list.

If a design contains common files, such as an includes.v file that is referenced in
each entity by the command include includes.v, all partitions are dependent on
this file. A change to includes.v causes the entire design to be recompiled. The VHDL
statement use work.all also typically results in unnecessary recompilations,
because it makes all entities in the work library visible in the current entity, which
results in the current entity being dependent on all other entities in the design.

To avoid this type of problem, ensure that files common to all entities, such as a
common include file, contain only the set of information that is truly common to all
entities. Remove use work.all statements in your VHDL file or replace them by
including only the specific design units needed for each entity.

Related Information

Incremental Capabilities Available When A Design Has No Partitions on page 8

1.6.5.2. Forcing Use of the Compilation Netlist When a Partition has Changed

Forcing the use of a post-compilation netlist when the contents of a source file has
changed is recommended only for advanced users who understand when a partition
must be recompiled. You might use this assignment, for example, if you are making
source code changes but do not want to recompile the partition until you finish
debugging a different partition, or if you are adding simple comments to the source
file but you know the design logic itself is not being changed and you want to keep the
previous compilation results.

To force the Fitter to use a previously generated netlist even when there are changes
to the source files, right-click the partition in the Design Partitions window and then
click Design Partition Properties. On the Advanced tab, turn on the Ignore
changes in source files and strictly use the specified netlist, if available
option.

Turning on this option can result in the generation of a functionally incorrect netlist
when source design files change, because source file updates will not be recompiled.
Use caution when setting this option.

1.7. Exporting Design Partitions from Separate Quartus Prime
Projects

Partitions that are developed by other designers or team members in the same
company or third-party IP providers can be exported as design partitions to a Quartus
Prime Exported Partition File (.qxp), and then integrated into a top-level design.
A .qxp is a binary file that contains compilation results describing the exported design

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

partition and includes a post-synthesis netlist, a post-fit netlist, or both, and a set of
assignments, sometimes including LogicLock placement constraints. The .qxp does
not contain the source design files from the original Quartus Prime project.

To enable team-based development and third-party IP delivery, you can design and
optimize partitions in separate copies of the top-level Quartus Prime project
framework, or even in isolation. If the designers have access to the top-level project
framework through a source control system, they can access project files as read-only
and develop their partition within the source control system. If designers do not have
access to a source control system, the project lead can provide the designer with a
copy of the top-level project framework to use as they develop their partitions. The
project lead also has the option to generate design partition scripts to manage
resource and timing budgets in the top-level design when partitions are developed
outside the top-level project framework.

The exported compilation results of completed partitions are given to the project lead,
preferably using a source control system, who is then responsible for integrating them
into the top-level design to obtain a fully functional design. This type of design flow is
required only if partition designers want to optimize their placement and routing
independently, and pass their design to the project lead to reuse placement and
routing results. Otherwise, a project lead can integrate source HDL from several
designers in a single Quartus Prime project, and use the standard incremental
compilation flow described previously.

The figure below illustrates the team-based incremental compilation design flow using
a methodology in which partitions are compiled in separate Quartus Prime projects
before being integrated into the top-level design. This flow can be used when
partitions are developed by other designers or IP providers.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7. Team-Based Incremental Compilation Design Flow

Repeat as Needed
During Design, Verification,
& Debugging Stages

Design, Compile, and
Optimize Partition(s)

Export Lower-Level Partition(s)

Integrate Partition(s)
into Top-Level Design

Perform Incremental Compilation
in Top-Level Design

Provide Project Framework or
Constraints to Designers

Prepare Top-Level Design for
 Incremental Compilation

Note: You cannot export or import partitions that have been merged.

Related Information

• Deciding Which Design Blocks Should Be Design Partitions on page 26

• Incremental Compilation Restrictions on page 58

1.7.1. Preparing the Top-Level Design

To prepare your design to incorporate exported partitions, first create the top-level
project framework of the design to define the hierarchy for the subdesigns that will be
implemented by other team members, designers, or IP providers.

In the top-level design, create project-wide settings, for example, device selection,
global assignments for clocks and device I/O ports, and any global signal constraints
to specify which signals can use global routing resources.

Next, create the appropriate design partition assignments and set the netlist type for
each design partition that will be developed in a separate Quartus Prime project to
Empty. It may be necessary to constrain the location of partitions with LogicLock
region assignments if they are timing-critical and are expected to change in future
compilations, or if the designer or IP provider wants to place and route their design
partition independently, to avoid location conflicts.

Finally, provide the top-level project framework to the partition designers, preferably
through a source control system.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Creating a Design Floorplan With LogicLock Regions on page 56

1.7.1.1. Empty Partitions

You can use a design flow in which some partitions are set to an Empty netlist type to
develop pieces of the design separately, and then integrate them into the top-level
design at a later time. In a team-based design environment, you can set the netlist
type to Empty for partitions in your design that will be developed by other designers
or IP providers. The Empty setting directs the Compiler to skip the compilation of a
partition and use an empty placeholder netlist for the partition.

When a netlist type is set to Empty, peripheral nodes including pins and PLLs are
preserved and all other logic is removed. The peripheral nodes including pins help
connect the empty partition to the design, and the PLLs help preserve timing of
non-empty partitions within empty partitions.

When you set a design partition to Empty, a design file is required during Analysis
and Synthesis to specify the port interface information so that it can connect the
partition correctly to other logic and partitions in the design. If a partition is exported
from another project, the .qxp contains this information. If there is no .qxp or design
file to represent the design entity, you must create a wrapper file that defines the
design block and specifies the input, output, and bidirectional ports. For example, in
Verilog HDL, you should include a module declaration, and in VHDL, you should include
an entity and architecture declaration.

1.7.2. Project Management— Making the Top-Level Design Available to
Other Designers

In team-based incremental compilation flows, whenever possible, all designers or IP
providers should work within the same top-level project framework. Using the same
project framework among team members ensures that designers have the settings
and constraints needed for their partition, and makes timing closure easier when
integrating the partitions into the top-level design. If other designers do not have
access to the top-level project framework, the Quartus Prime software provides tools
for passing project information to partition designers.

1.7.2.1. Distributing the Top-Level Quartus Prime Project

There are several methods that the project lead can use to distribute the “skeleton” or
top-level project framework to other partition designers or IP providers.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• If partition designers have access to the top-level project framework, the project
will already include all the settings and constraints needed for the design. This
framework should include PLLs and other interface logic if this information is
important to optimize partitions.

— If designers are part of the same design environment, they can check out the
required project files from the same source control system. This is the
recommended way to share a set of project files.

— Otherwise, the project lead can provide a copy of the top-level project
framework so that each design develops their partition within the same project
framework.

• If a partition designer does not have access to the top-level project framework,
the project lead can give the partition designer a Tcl script or other documentation
to create the separate Quartus Prime project and all the assignments from the
top-level design.

If the partition designers provide the project lead with a post-synthesis .qxp and
fitting is performed in the top-level design, integrating the design partitions should be
quite easy. If you plan to develop a partition in a separate Quartus Prime project and
integrate the optimized post-fitting results into the top-level design, use the following
guidelines to improve the integration process:

• Ensure that a LogicLock region constrains the partition placement and uses only
the resources allocated by the project lead.

• Ensure that you know which clocks should be allocated to global routing resources
so that there are no resource conflicts in the top-level design.

— Set the Global Signal assignment to On for the high fan-out signals that
should be routed on global routing lines.

— To avoid other signals being placed on global routing lines, turn off Auto
Global Clock and Auto Global Register Controls under More Settings on
the Fitter page in the Settings dialog box. Alternatively, you can set the
Global Signal assignment to Off for signals that should not be placed on global
routing lines.

Placement for LABs depends on whether the inputs to the logic cells within the
LAB use a global clock. You may encounter problems if signals do not use
global lines in the partition, but use global routing in the top-level design.

• Use the Virtual Pin assignment to indicate pins of a partition that do not drive pins
in the top-level design. This is critical when a partition has more output ports than
the number of pins available in the target device. Using virtual pins also helps
optimize cross-partition paths for a complete design by enabling you to provide
more information about the partition ports, such as location and timing
assignments.

• When partitions are compiled independently without any information about each
other, you might need to provide more information about the timing paths that
may be affected by other partitions in the top-level design. You can apply location
assignments for each pin to indicate the port location after incorporation in the
top-level design. You can also apply timing assignments to the I/O ports of the
partition to perform timing budgeting.

Related Information

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 70

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.2.2. Generating Design Partition Scripts

If IP providers or designers on a team want to optimize their design blocks
independently and do not have access to a shared project framework, the project lead
must perform some or all of the following tasks to ensure successful integration of the
design blocks:

• Determine which assignments should be propagated from the top-level design to
the partitions. This requires detailed knowledge of which assignments are required
to set up low-level designs.

• Communicate the top-level assignments to the partitions. This requires detailed
knowledge of Tcl or other scripting languages to efficiently communicate project
constraints.

• Determine appropriate timing and location assignments that help overcome the
limitations of team-based design. This requires examination of the logic in the
partitions to determine appropriate timing constraints.

• Perform final timing closure and resource conflict avoidance in the top-level
design. Because the partitions have no information about each other, meeting
constraints at the lower levels does not guarantee they are met when integrated
at the top-level. It then becomes the project lead’s responsibility to resolve the
issues, even though information about the partition implementation may not be
available.

Design partition scripts automate the process of transferring the top-level project
framework to partition designers in a flow where each design block is developed in
separate Quartus Prime projects before being integrated into the top-level design. If
the project lead cannot provide each designer with a copy of the top-level project
framework, the Quartus Prime software provides an interface for managing resources
and timing budgets in the top-level design. Design partition scripts make it easier for
partition designers to implement the instructions from the project lead, and avoid
conflicts between projects when integrating the partitions into the top-level design.
This flow also helps to reduce the need to further optimize the designs after
integration.

You can use options in the Generate Design Partition Scripts dialog box to choose
which types of assignments you want to pass down and create in the partitions being
developed in separate Quartus Prime projects.

Related Information

Enabling Designers on a Team to Optimize Independently on page 51

1.7.3. Exporting Partitions

When partition designers achieve the design requirements in their separate Quartus
Prime projects, each designer can export their design as a partition so it can be
integrated into the top-level design by the project lead. The Export Design Partition
dialog box, available from the Project menu, allows designers to export a design
partition to a Quartus Prime Exported Partition File (.qxp) with a post-synthesis
netlist, a post-fit netlist, or both. The project lead then adds the .qxp to the top-level
design to integrate the partition.

A designer developing a timing-critical partition or who wants to optimize their
partition on their own would opt to export their completed partition with a post-fit
netlist, allowing for the partition to more reliably meet timing requirements after
integration. In this case, you must ensure that resources are allocated appropriately

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

to avoid conflicts. If the placement and routing optimization can be performed in the
top-level design, exporting a post-synthesis netlist allows the most flexibility in the
top-level design and avoids potential placement or routing conflicts with other
partitions.

When designing the partition logic to be exported into another project, you can add
logic around the design block to be exported as a design partition. You can instantiate
additional design components for the Quartus Prime project so that it matches the
top-level design environment, especially in cases where you do not have access to the
full top-level design project. For example, you can include a top-level PLL in the
project, outside of the partition to be exported, so that you can optimize the design
with information about the frequency multipliers, phase shifts, compensation delays,
and any other PLL parameters. The software then captures timing and resource
requirements more accurately while ensuring that the timing analysis in the partition
is complete and accurate. You can export the partition for the top-level design without
any auxiliary components that are instantiated outside the partition being exported.

If your design team uses makefiles and design partition scripts, the project lead can
use the make command with the master_makefile command created by the scripts
to export the partitions and create .qxp files. When a partition has been compiled and
is ready to be integrated into the top-level design, you can export the partition with
option on the Export Design Partition dialog box, available from the Project menu.

1.7.4. Viewing the Contents of a Quartus Prime Exported Partition File
(.qxp)

The QXP report allows you to view a summary of the contents in a .qxp when you
open the file in the Quartus Prime software. The .qxp is a binary file that contains
compilation results so the file cannot be read in a text editor. The QXP report opens in
the main Quartus Prime window and contains summary information including a list of
the I/O ports, resource usage summary, and a list of the assignments used for the
exported partition.

1.7.5. Integrating Partitions into the Top-Level Design

To integrate a partition developed in a separate Quartus Prime project into the top-
level design, you can simply add the .qxp as a source file in your top-level design
(just like a Verilog or VHDL source file). You can also use the Import Design
Partition dialog box to import the partition.

The .qxp contains the design block exported from the partition and has the same
name as the partition. When you instantiate the design block into a top-level design
and include the .qxp as a source file, the software adds the exported netlist to the
database for the top-level design. The .qxp port names are case sensitive if the
original HDL of the partition was case sensitive.

When you use a .qxp as a source file in this way, you can choose whether you want
the .qxp to be a partition in the top-level design. If you do not designate the .qxp
instance as a partition, the software reuses just the post-synthesis compilation results
from the .qxp, removes unconnected ports and unused logic just like a regular source
file, and then performs placement and routing.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you assigned the .qxp instance as a partition, you can set the netlist type in the
Design Partitions Window to choose the level of results to preserve from the .qxp. To
preserve the placement and routing results from the exported partition, set the netlist
type to Post-Fit for the .qxp partition in the top-level design. If you assign the
instance as a design partition, the partition boundary is preserved.

Related Information

Impact of Design Partitions on Design Optimization on page 29

1.7.5.1. Integrating Assignments from the .qxp

The Quartus Prime software filters assignments from .qxp files to include appropriate
assignments in the top-level design. The assignments in the .qxp are treated like
assignments made in an HDL source file, and are not listed in the Quartus Prime
Settings File (.qsf) for the top-level design. Most assignments from the .qxp can be
overridden by assignments in the top-level design.

1.7.5.1.1. Design Partition Assignments Within the Exported Partition

Design partition assignments defined within a separate Quartus Prime project are not
added to the top-level design. All logic under the exported partition in the project
hierarchy is treated as single instance in the .qxp.

1.7.5.1.2. Synopsys Design Constraint Files for the Quartus Prime Timing Analyzer

Timing assignments made for the Quartus Prime Timing Analyzer in a Synopsys
Design Constraint File (.sdc) in the lower-level partition project are not added to the
top-level design. Ensure that the top-level design includes all of the timing
requirements for the entire project.

Related Information

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 70

1.7.5.1.3. Global Assignments

The project lead should make all global project-wide assignments in the top-level
design. Global assignments from the exported partition's project are not added to the
top-level design. When it is possible for a particular constraint, the global assignment
is converted to an instance-specific assignment for the exported design partition.

1.7.5.1.4. LogicLock Region Assignments

The project lead typically creates LogicLock region assignments in the top-level design
for any lower-level partition designs where designer or IP providers plan to export
post-fit information to be used in the top-level design, to help avoid placement
conflicts between partitions. When you use the .qxp as a source file, LogicLock
constraints from the exported partition are applied in the top-level design, but will not
appear in your .qsf file or LogicLock Regions window for you to view or edit. The
LogicLock region itself is not required to constrain the partition placement in the
top-level design if the netlist type is set to Post-Fit, because the netlist contains all
the placement information.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.5.2. Integrating Encrypted IP Cores from .qxp Files

Proper license information is required to compile encrypted IP cores. If an IP core is
exported as a .qxp from another Quartus Prime project, the top-level designer
instantiating the .qxp must have the correct license. The software requires a full
license to generate an unrestricted programming file. If you do not have a license, but
the IP in the .qxp was compiled with OpenCore Plus hardware evaluation support, you
can generate an evaluation programming file without a license. If the IP supports
OpenCore simulation only, you can fully compile the design and generate a simulation
netlist, but you cannot create programming files unless you have a full license.

1.7.5.3. Advanced Importing Options

You can use advanced options in the Import Design Partition dialog box to integrate
a partition developed in a separate Quartus Prime project into the top-level design.
The import process adds more control than using the .qxp as a source file, and is
useful only in the following circumstances:

• If you want LogicLock regions in your top-level design (.qsf)—If you have
regions in your partitions that are not also in the top-level design, the regions will
be added to your .qsf during the import process.

• If you want different settings or placement for different instantiations of
the same entity—You can control the setting import process with the advanced
import options, and specify different settings for different instances of the
same .qxp design block.

When you use the Import Design Partition dialog box to integrate a partition into
the top-level design, the import process sets the partition’s netlist type to Imported
in the Design Partitions window.

After you compile the entire design, if you make changes to the place-and-route
results (such as movement of an imported LogicLock region), use the Post-Fit netlist
type on subsequent compilations. To discard an imported netlist and recompile from
source code, you can compile the partition with the netlist type set to Source File and
be sure to include the relevant source code in the top-level design. The import process
sets the partition’s Fitter Preservation Level to the setting with the highest degree of
preservation supported by the imported netlist. For example, if a post-fit netlist is
imported with placement information, the Fitter Preservation Level is set to
Placement, but you can change it to the Netlist Only value.

When you import a partition from a .qxp, the .qxp itself is not part of the top-level
design because the netlists from the file have been imported into the project
database. Therefore if a new version of a .qxp is exported, the top-level designer
must perform another import of the .qxp.

When you import a partition into a top-level design with the Import Design
Partition dialog box, the software imports relevant assignments from the partition
into the top-level design. If required, you can change the way some assignments are
imported, as described in the following subsections.

Related Information

• Netlist Type for Design Partitions on page 33

• Fitter Preservation Level for Design Partitions on page 34

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.5.3.1. Importing LogicLock Assignments

LogicLock regions are set to a fixed size when imported. If you instantiate multiple
instances of a subdesign in the top-level design, the imported LogicLock regions are
set to a Floating location. Otherwise, they are set to a Fixed location. You can change
the location of LogicLock regions after they are imported, or change them to a Floating
location to allow the software to place each region but keep the relative locations of
nodes within the region wherever possible. To preserve changes made to a partition
after compilation, use the Post-Fit netlist type.

The LogicLock Member State assignment is set to Locked to signify that it is a
preserved region.

LogicLock back-annotation and node location data is not imported because the .qxp
contains all of the relevant placement information. Altera strongly recommends that
you do not add to or delete members from an imported LogicLock region.

Related Information

Changing Partition Placement with LogicLock Changes on page 57

1.7.5.3.2. Advanced Import Settings

The Advanced Import Settings dialog box allows you to disable assignment import
and specify additional options that control how assignments and regions are
integrated when importing a partition into a top-level design, including how to resolve
assignment conflicts.

1.8. Team-Based Design Optimization and Third-Party IP Delivery
Scenarios

1.8.1. Using an Exported Partition to Send to a Design Without Including
Source Files

Scenario background: A designer wants to produce a design block and needs to send
out their design, but to preserve their IP, they prefer to send a synthesized netlist
instead of providing the HDL source code to the recipient. You can use this flow to
implement a black box.

Use this flow to package a full design as a single source file to send to an end
customer or another design location.

As the sender in this scenario perform the following steps to export a design block:

1. Provide the device family name to the recipient. If you send placement
information with the synthesized netlist, also provide the exact device selection so
they can set up their project to match.

2. Create a black box wrapper file that defines the port interface for the design block
and provide it to the recipient for instantiating the block as an empty partition in
the top-level design.

3. Create a Quartus Prime project for the design block, and complete the design.

4. Export the level of hierarchy into a single .qxp. Following a successful compilation
of the project, you can generate a .qxp from the GUI, the command-line, or with
Tcl commands, as described in the following:

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• If you are using the Quartus Prime GUI, use the Export Design Partition
dialog box.

• If you are using command-line executables, run quartus_cdb with the --
incremental_compilation_export option.

• If you are using Tcl commands, use the following command: execute_flow
-incremental_compilation_export.

5. Select the option to include just the Post-synthesis netlist if you do not have to
send placement information. If the recipient wants to reproduce your exact Fitter
results, you can select the Post-fitting netlist option, and optionally enable
Export routing.

6. If a partition contains sub-partitions, then the sub-partitions are automatically
flattened and merged into the partition netlist before exporting. You can change
this behavior and preserve the sub-partition hierarchy by turning off the Flatten
sub-partitions option on the Export Design Partition dialog box. Optionally,
you can use the -dont_flatten sub-option for the export_partition Tcl
command.

7. Provide the .qxp to the recipient. Note that you do not have to send any of your
design source code.

As the recipient in this example, first create a Quartus Prime project for your top-level
design and ensure that your project targets the same device (or at least the same
device family if the .qxp does not include placement information), as specified by the
IP designer sending the design block. Instantiate the design block using the port
information provided, and then incorporate the design block into a top-level design.

Add the .qxp from the IP designer as a source file in your Quartus Prime project to
replace any empty wrapper file. If you want to use just the post-synthesis information,
you can choose whether you want the file to be a partition in the top-level design. To
use the post-fit information from the .qxp, assign the instance as a design partition
and set the netlist type to Post-Fit.

Related Information

• Creating Design Partitions on page 14

• Netlist Type for Design Partitions on page 33

1.8.2. Creating Precompiled Design Blocks (or Hard-Wired Macros) for
Reuse

Scenario background: An IP provider wants to produce and sell an IP core for a
component to be used in higher-level systems. The IP provider wants to optimize the
placement of their block for maximum performance in a specific Altera device and
then deliver the placement information to their end customer. To preserve their IP,
they also prefer to send a compiled netlist instead of providing the HDL source code to
their customer.

Use this design flow to create a precompiled IP block (sometimes known as a
hard-wired macro) that can be instantiated in a top-level design. This flow provides
the ability to export a design block with post-synthesis or placement (and, optionally,
routing) information and to import any number of copies of this pre-compiled block
into another design.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The customer first specifies which Altera device is being used for this project and
provides the design specifications.

As the IP provider in this example, perform the following steps to export a preplaced
IP core (or hard macro):

1. Create a black box wrapper file that defines the port interface for the IP core and
provide the file to the customer to instantiate as an empty partition in the top-
level design.

2. Create a Quartus Prime project for the IP core.

3. Create a LogicLock region for the design hierarchy to be exported.

Using a LogicLock region for the IP core allows the customer to create an empty
placeholder region to reserve space for the IP in the design floorplan and ensures
that there are no conflicts with the top-level design logic. Reserved space also
helps ensure the IP core does not affect the timing performance of other logic in
the top-level design. Additionally, with a LogicLock region, you can preserve
placement either absolutely or relative to the origin of the associated region. This
is important when a .qxp is imported for multiple partition hierarchies in the same
project, because in this case, the location of at least one instance in the top-level
design does not match the location used by the IP provider.

4. If required, add any logic (such as PLLs or other logic defined in the customer’s
top-level design) around the design hierarchy to be exported. If you do so, create
a design partition for the design hierarchy that will exported as an IP core.

5. Optimize the design and close timing to meet the design specifications.

6. Export the level of hierarchy for the IP core into a single .qxp.

7. Provide the .qxp to the customer. Note that you do not have to send any of your
design source code to the customer; the design netlist and placement and routing
information is contained within the .qxp.

Related Information

• Creating Design Partitions on page 64

• Netlist Type for Design Partitions on page 33

• Changing Partition Placement with LogicLock Changes on page 57

Incorporate IP Core

As the customer in this example, incorporate the IP core in your design by performing
the following steps:

1. Create a Quartus Prime project for the top-level design that targets the same
device and instantiate a copy or multiple copies of the IP core. Use a black box
wrapper file to define the port interface of the IP core.

2. Perform Analysis and Elaboration to identify the design hierarchy.

3. Create a design partition for each instance of the IP core with the netlist type set
to Empty.

4. You can now continue work on your part of the design and accept the IP core from
the IP provider when it is ready.

5. Include the .qxp from the IP provider in your project to replace the empty
wrapper-file for the IP instance. Or, if you are importing multiple copies of the
design block and want to import relative placement, follow these additional steps:

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a. Use the Import command to select each appropriate partition hierarchy. You
can import a .qxp from the GUI, the command-line, or with Tcl commands:

• If you are using the Quartus Prime GUI, use the Import Design
Partition command.

• If you are using command-line executables, run quartus_cdb with the
incremental_compilation_import option.

• If you are using Tcl commands, use the following
command:execute_flow -incremental_compilation_import.

b. When you have multiple instances of the IP block, you can set the imported
LogicLock regions to floating, or move them to a new location, and the
software preserves the relative placement for each of the imported modules
(relative to the origin of the LogicLock region). Routing information is
preserved whenever possible.

Note: The Fitter ignores relative placement assignments if the LogicLock
region’s location in the top-level design is not compatible with the
locations exported in the .qxp.

6. You can control the level of results preservation with the Netlist Type setting.

If the IP provider did not define a LogicLock region in the exported partition, the
software preserves absolute placement locations and this leads to placement
conflicts if the partition is imported for more than one instance

1.8.3. Designing in a Team-Based Environment

Scenario background: A project includes several lower-level design blocks that are
developed separately by different designers and instantiated exactly once in the
top-level design.

This scenario describes how to use incremental compilation in a team-based design
environment where each designer has access to the top-level project framework, but
wants to optimize their design in a separate Quartus Prime project before integrating
their design block into the top-level design.

As the project lead in this scenario, perform the following steps to prepare the
top-level design:

1. Create a new Quartus Prime project to ultimately contain the full implementation
of the entire design and include a "skeleton" or framework of the design that
defines the hierarchy for the subdesigns implemented by separate designers. The

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

top-level design implements the top-level entity in the design and instantiates
wrapper files that represent each subdesign by defining only the port interfaces,
but not the implementation.

2. Make project-wide settings. Select the device, make global assignments such as
device I/O ports, define the top-level timing constraints, and make any global
signal allocation constraints to specify which signals can use global routing
resources.

3. Make design partition assignments for each subdesign and set the netlist type for
each design partition to be imported to Empty in the Design Partitions window.

4. Create LogicLock regions to create a design floorplan for each of the partitions
that will be developed separately. This floorplan should consider the connectivity
between partitions and estimates of the size of each partition based on any initial
implementation numbers and knowledge of the design specifications.

5. Provide the top-level project framework to partition designers using one of the
following procedures:

• Allow access to the full project for all designers through a source control
system. Each designer can check out the projects files as read-only and work
on their blocks independently. This design flow provides each designer with
the most information about the full design, which helps avoid resource
conflicts and makes design integration easy.

• Provide a copy of the top-level Quartus Prime project framework for each
designer. You can use the Copy Project command on the Project menu or
create a project archive.

Exporting Your Partition

As the designer of a lower-level design block in this scenario, design and optimize your
partition in your copy of the top-level design, and then follow these steps when you
have achieved the desired compilation results:

1. On the Project menu, click Export Design Partition.

2. In the Export Design Partition dialog box, choose the netlist(s) to export. You
can export a Post-synthesis netlist if placement or performance preservation is not
required, to provide the most flexibility for the Fitter in the top-level design. Select
Post-fit netlist to preserve the placement and performance of the lower-level
design block, and turn on Export routing to include the routing information, if
required. One .qxp can include both post-synthesis and post-fitting netlists.

3. Provide the .qxp to the project lead.

Integrating Your Partitions

Finally, as the project lead in this scenario, perform these steps to integrate the .qxp
files received from designers of each partition:

1. Add the .qxp as a source file in the Quartus Prime project, to replace any empty
wrapper file for the previously Empty partition.

2. Change the netlist type for the partition from Empty to the required level of
results preservation.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.4. Enabling Designers on a Team to Optimize Independently

Scenario background: A project consists of several lower-level design blocks that are
developed separately by different designers who do not have access to a shared
top-level project framework. This scenario is similar to creating precompiled design
blocks for reuse, but assumes that there are several design blocks being developed
independently (instead of just one IP block), and the project lead can provide some
information about the design to the individual designers. If the designers have shared
access to the top-level design, use the instructions for designing in a team-based
environment.

This scenario assumes that there are several design blocks being developed
independently (instead of just one IP block), and the project lead can provide some
information about the design to the individual designers.

This scenario describes how to use incremental compilation in a team-based design
environment where designers or IP developers want to fully optimize the placement
and routing of their design independently in a separate Quartus Prime project before
sending the design to the project lead. This design flow requires more planning and
careful resource allocation because design blocks are developed independently.

Related Information

• Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse on page 47

• Designing in a Team-Based Environment on page 49

1.8.4.1. Preparing Your Top-level Design

As the project lead in this scenario, perform the following steps to prepare the
top-level design:

1. Create a new Quartus Prime project to ultimately contain the full implementation
of the entire design and include a “skeleton” or framework of the design that
defines the hierarchy for the subdesigns implemented by separate designers. The
top-level design implements the top-level entity in the design and instantiates
wrapper files that represent each subdesign by defining only the port interfaces
but not the implementation.

2. Make project-wide settings. Select the device, make global assignments such as
device I/O ports, define the top-level timing constraints, and make any global
signal constraints to specify which signals can use global routing resources.

3. Make design partition assignments for each subdesign and set the netlist type for
each design partition to be imported to Empty in the Design Partitions window.

4. Create LogicLock regions. This floorplan should consider the connectivity between
partitions and estimates of the size of each partition based on any initial
implementation numbers and knowledge of the design specifications.

5. Provide the constraints from the top-level design to partition designers using one
of the following procedures.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Use design partition scripts to pass constraints and generate separate Quartus
Prime projects. On the Project menu, use the Generate Design Partition
Scripts command, or run the script generator from a Tcl or command prompt.
Make changes to the default script options as required for your project. Altera
recommends that you pass all the default constraints, including LogicLock
regions, for all partitions and virtual pin location assignments. If partitions
have not already been created by the other designers, use the partition script
to set up the projects so that you can easily take advantage of makefiles.
Provide each partition designer with the Tcl file to create their project with the
appropriate constraints. If you are using makefiles, provide the makefile for
each partition.

• Use documentation or manually-created scripts to pass all constraints and
assignments to each partition designer.

1.8.4.2. Exporting Your Design

As the designer of a lower-level design block in this scenario, perform the appropriate
set of steps to successfully export your design, whether the design team is using
makefiles or exporting and importing the design manually.

If you are using makefiles with the design partition scripts, perform the following
steps:

1. Use the make command and the makefile provided by the project lead to create a
Quartus Prime project with all design constraints, and compile the project.

2. The information about which source file should be associated with which partition
is not available to the software automatically, so you must specify this information
in the makefile. You must specify the dependencies before the software rebuilds
the project after the initial call to the makefile.

3. When you have achieved the desired compilation results and the design is ready to
be imported into the top-level design, the project lead can use the
master_makefile command to export this partition and create a .qxp, and then
import it into the top-level design.

Exporting Without Makefiles

If you are not using makefiles, perform the following steps:

1. If you are using design partition scripts, source the Tcl script provided by the
Project Lead to create a project with the required settings:

• To source the Tcl script in the Quartus Prime software, on the Tools menu, click
Utility Windows to open the Tcl console. Navigate to the script’s directory,
and type the following command: source <filename>.

• To source the Tcl script at the system command prompt, type the following
command: quartus_cdb -t <filename>.tcl

2. If you are not using design partition scripts, create a new Quartus Prime project
for the subdesign, and then apply the following settings and constraints to ensure
successful integration:

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Make LogicLock region assignments and global assignments (including clock
settings) as specified by the project lead.

• Make Virtual Pin assignments for ports which represent connections to core
logic instead of external device pins in the top-level design.

• Make floorplan location assignments to the Virtual Pins so they are placed in
their corresponding regions as determined by the top-level design. This
provides the Fitter with more information about the timing constraints
between modules. Alternatively, you can apply timing I/O constraints to the
paths that connect to virtual pins.

3. Proceed to compile and optimize the design as needed.

4. When you have achieved the desired compilation results, on the Project menu,
click Export Design Partition.

5. In the Export Design Partition dialog box, choose the netlist(s) to export. You
can export a Post-synthesis netlist instead if placement or performance
preservation is not required, to provide the most flexibility for the Fitter in the top-
level design. Select Post-fit to preserve the placement and performance of the
lower-level design block, and turn on Export routing to include the routing
information, if required. One .qxp can include both post-synthesis and post-fitting
netlists.

6. Provide the .qxp to the project lead.

1.8.4.3. Importing Your Design

Finally, as the project lead in this scenario, perform the appropriate set of steps to
import the .qxp files received from designers of each partition.

If you are using makefiles with the design partition scripts, perform the following
steps:

1. Use the master_makefile command to export each partition and create .qxp
files, and then import them into the top-level design.

2. The software does not have all the information about which source files should be
associated with which partition, so you must specify this information in the
makefile. The software cannot rebuild the project if source files change unless you
specify the dependencies.

Importing Without Makefiles

If you are not using makefiles, perform the following steps:

1. Add the .qxp as a source file in the Quartus Prime project, to replace any empty
wrapper file for the previously Empty partition.

2. Change the netlist type for the partition from Empty to the required level of results
preservation.

1.8.4.4. Resolving Assignment Conflicts During Integration

When integrating lower-level design blocks, the project lead may notice some
assignment conflicts. This can occur, for example, if the lower-level design block
designers changed their LogicLock regions to account for additional logic or placement
constraints, or if the designers applied I/O port timing constraints that differ from
constraints added to the top-level design by the project lead. The project lead can
address these conflicts by explicitly importing the partitions into the top-level design,

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

and using options in the Advanced Import Settings dialog box. After the project
lead obtains the .qxp for each lower-level design block from the other designers, use
the Import Design Partition command on the Project menu and specify the partition
in the top-level design that is represented by the lower-level design block .qxp.
Repeat this import process for each partition in the design. After you have imported
each partition once, you can select all the design partitions and use the Reimport
using latest import files at previous locations option to import all the files from
their previous locations at one time. To address assignment conflicts, the project lead
can take one or both of the following actions:

• Allow new assignments to be imported

• Allow existing assignments to be replaced or updated

When LogicLock region assignment conflicts occur, the project lead may take one of
the following actions:

• Allow the imported region to replace the existing region

• Allow the imported region to update the existing region

• Skip assignment import for regions with conflicts

If the placement of different lower-level design blocks conflict, the project lead can
also set the set the partition’s Fitter Preservation Level to Netlist Only, which
allows the software to re-perform placement and routing with the imported netlist.

1.8.4.5. Importing a Partition to be Instantiated Multiple Times

In this variation of the design scenario, one of the lower-level design blocks is
instantiated more than once in the top-level design. The designer of the lower-level
design block may want to compile and optimize the entity once under a partition, and
then import the results as multiple partitions in the top-level design.

If you import multiple instances of a lower-level design block into the top-level design,
the imported LogicLock regions are automatically set to Floating status.

If you resolve conflicts manually, you can use the import options and manual
LogicLock assignments to specify the placement of each instance in the top-level
design.

1.8.5. Performing Design Iterations With Lower-Level Partitions

Scenario background: A project consists of several lower-level subdesigns that have
been exported from separate Quartus Prime projects and imported into the top-level
design. In this example, integration at the top level has failed because the timing
requirements are not met. The timing requirements might have been met in each
individual lower-level project, but critical inter-partition paths in the top-level design
are causing timing requirements to fail.

After trying various optimizations in the top-level design, the project lead determines
that the design cannot meet the timing requirements given the current partition
placements that were imported. The project lead decides to pass additional
information to the lower-level partitions to improve the placement.

Use this flow if you re-optimize partitions exported from separate Quartus Prime
projects by incorporating additional constraints from the integrated top-level design.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.5.1. Providing the Complete Top-Level Project Framework

The best way to provide top-level design information to designers of lower-level
partitions is to provide the complete top-level project framework using the following
steps:

1. For all partitions other than the one(s) being optimized by a designer(s) in a
separate Quartus Prime project(s), set the netlist type to Post-Fit.

2. Make the top-level design directory available in a shared source control system, if
possible. Otherwise, copy the entire top-level design project directory (including
database files), or create a project archive including the post-compilation
database.

3. Provide each partition designer with a checked-out version or copy of the top-level
design.

4. The partition designers recompile their designs within the new project framework
that includes the rest of the design's placement and routing information as well
top-level resource allocations and assignments, and optimize as needed.

5. When the results are satisfactory and the timing requirements are met, export the
updated partition as a .qxp.

1.8.5.2. Providing Information About the Top-Level Framework

If this design flow is not possible, you can generate partition-specific scripts for
individual designs to provide information about the top-level project framework with
these steps:

1. In the top-level design, on the Project menu, click Generate Design Partition
Scripts, or launch the script generator from Tcl or the command line.

2. If lower-level projects have already been created for each partition, you can turn
off the Create lower-level project if one does not exist option.

3. Make additional changes to the default script options, as necessary. Altera
recommends that you pass all the default constraints, including LogicLock regions,
for all partitions and virtual pin location assignments. Altera also recommends that
you add a maximum delay timing constraint for the virtual I/O connections in each
partition.

4. The Quartus Prime software generates Tcl scripts for all partitions, but in this
scenario, you would focus on the partitions that make up the cross-partition
critical paths. The following assignments are important in the script:

— Virtual pin assignments for module pins not connected to device I/O ports in
the top-level design.

— Location constraints for the virtual pins that reflect the initial top-level
placement of the pin’s source or destination. These help make the lower-level
placement “aware” of its surroundings in the top-level design, leading to a
greater chance of timing closure during integration at the top level.

— INPUT_MAX_DELAY and OUTPUT_MAX_DELAY timing constraints on the paths
to and from the I/O pins of the partition. These constrain the pins to optimize
the timing paths to and from the pins.

5. The partition designers source the file provided by the project lead.

— To source the Tcl script from the Quartus Prime GUI, on the Tools menu, click
Utility Windows and open the Tcl console. Navigate to the script’s directory,
and type the following command:

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

source <filename>

— To source the Tcl script at the system command prompt, type the following
command:

quartus_cdb -t <filename>.tcl

6. The partition designers recompile their designs with the new project information or
assignments and optimize as needed. When the results are satisfactory and the
timing requirements are met, export the updated partition as a .qxp.

The project lead obtains the updated .qxp files from the partition designers and
adds them to the top-level design. When a new .qxp is added to the files list, the
software will detect the change in the “source file” and use the new .qxp results
during the next compilation. If the project uses the advanced import flow, the
project lead must perform another import of the new .qxp.

You can now analyze the design to determine whether the timing requirements
have been achieved. Because the partitions were compiled with more information
about connectivity at the top level, it is more likely that the inter-partition paths
have improved placement which helps to meet the timing requirements.

1.9. Creating a Design Floorplan With LogicLock Regions

A floorplan represents the layout of the physical resources on the device. Creating a
design floorplan, or floorplanning, describe the process of mapping the logical design
hierarchy onto physical regions in the device floorplan. After you have partitioned the
design, you can create floorplan location assignments for the design to improve the
quality of results when using the incremental compilation design flow. Creating a
design floorplan is not a requirement to use an incremental compilation flow, but it is
recommended in certain cases. Floorplan location planning can be important for a
design that uses incremental compilation for the following reasons:

• To avoid resource conflicts between partitions, predominantly when partitions are
imported from another Quartus Prime project

• To ensure a good quality of results when recompiling individual timing-critical
partitions

Design floorplan assignments prevent the situation in which the Fitter must place a
partition in an area of the device where most resources are already used by other
partitions. A physical region assignment provides a reasonable region to re-place logic
after a change, so the Fitter does not have to scatter logic throughout the available
space in the device.

Floorplan assignments are not required for non-critical partitions compiled as part of
the top-level design. The logic for partitions that are not timing-critical (such as simple
top-level glue logic) can be placed anywhere in the device on each recompilation, if
that is best for your design.

The simplest way to create a floorplan for a partitioned design is to create one
LogicLock region per partition (including the top-level partition). If you have a
compilation result for a partitioned design with no LogicLock regions, you can use the
Chip Planner with the Design Partition Planner to view the partition placement in the
device floorplan. You can draw regions in the floorplan that match the general location
and size of the logic in each partition. Or, initially, you can set each region with the
default settings of Auto size and Floating location to allow the Quartus Prime
software to determine the preliminary size and location for the regions. Then, after
compilation, use the Fitter-determined size and origin location as a starting point for

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

your design floorplan. Check the quality of results obtained for your floorplan location
assignments and make changes to the regions as needed. Alternatively, you can
perform synthesis, and then set the regions to the required size based on resource
estimates. In this case, use your knowledge of the connections between partitions to
place the regions in the floorplan.

Once you have created an initial floorplan, you can refine the region using tools in the
Quartus Prime software. You can also use advanced techniques such as creating
non-rectangular regions by merging LogicLock regions.

You can use the Incremental Compilation Advisor to check that your LogicLock regions
meet Altera’s guidelines.

Related Information

• Incremental Compilation Advisor on page 32

• Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 70

1.9.1. Creating and Manipulating LogicLock Regions

Options in the LogicLock Regions Properties dialog box, available from the
Assignments menu, allow you to enter specific sizing and location requirements for a
region. You can also view and refine the size and location of LogicLock regions in the
Quartus Prime Chip Planner. You can select a region in the graphical interface in the
Chip Planner and use handles to move or resize the region.

Options in the Layer Settings panel in the Chip Planner allow you to create, delete,
and modify tasks to determine which objects, including LogicLock regions and design
partitions, to display in the Chip Planner.

1.9.2. Changing Partition Placement with LogicLock Changes

When a partition is assigned to a LogicLock region as part of a design floorplan, you
can modify the placement of a post-fit partition by moving the LogicLock region. Most
assignment changes do not initiate a recompilation of a partition if the netlist type
specifies that Fitter results should be preserved. For example, changing a pin
assignment does not initiate a recompilation; therefore, the design does not use the
new pin assignment unless you change the netlist type to Post Synthesis or Source
File.

Similarly, if a partition’s placement is preserved, and the partition is assigned to a
LogicLock region, the Fitter always reuses the corresponding LogicLock region size
specified in the post-fit netlist. That is, changes to the LogicLock Size setting do not
initiate refitting if a partition’s placement is preserved with the Post-Fit netlist type,
or with .qxp that includes post-fit information.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

However, you can use the LogicLock Origin location assignment to change or
fine-tune the previous Fitter results. When you change the Origin setting for a region,
the Fitter can move the region in the following manner, depending upon how the
placement is preserved for that region's members:

• When you set a new region Origin, the Fitter uses the new origin and replaces the
logic, preserving the relative placement of the member logic.

• When you set the region Origin to Floating, the following conditions apply:

— If the region’s member placement is preserved with an imported partition, the
Fitter chooses a new Origin and re-places the logic, preserving the relative
placement of the member logic within the region.

— If the region’s member placement is preserved with a Post-Fit netlist type,
the Fitter does not change the Origin location, and reuses the previous
placement results.

Related Information

What Changes Initiate the Automatic Resynthesis of a Partition? on page 35

1.10. Incremental Compilation Restrictions

1.10.1. When Timing Performance May Not Be Preserved Exactly

Timing performance might change slightly in a partition with placement and routing
preserved when other partitions are incorporated or re-placed and routed. Timing
changes are due to changes in parasitic loading or crosstalk introduced by the other
(changed) partitions. These timing changes are very small, typically less than 30 ps on
a timing path. Additional fan-out on routing lines when partitions are added can also
degrade timing performance.

To ensure that a partition continues to meet its timing requirements when other
partitions change, a very small timing margin might be required. The Fitter
automatically works to achieve such margin when compiling any design, so you do not
need to take any action.

1.10.2. When Placement and Routing May Not Be Preserved Exactly

The Fitter may have to refit affected nodes if the two nodes are assigned to the same
location, due to imported netlists or empty partitions set to re-use a previous post-fit
netlist. There are two cases in which routing information cannot be preserved exactly.
First, when multiple partitions are imported, there might be routing conflicts because
two lower-level blocks could be using the same routing wire, even if the floorplan
assignments of the lower-level blocks do not overlap. These routing conflicts are
automatically resolved by the Quartus Prime Fitter re-routing on the affected nets.
Second, if an imported LogicLock region is moved in the top-level design, the relative
placement of the nodes is preserved but the routing cannot be preserved, because the
routing connectivity is not perfectly uniform throughout a device.

1.10.3. Using Incremental Compilation With Quartus Prime Archive Files

The post-synthesis and post-fitting netlist information for each design partition is
stored in the project database, the incremental_db directory. When you archive a
project, the database information is not included in the archive unless you include the
compilation database in the .qar file.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you want to re-use post-synthesis or post-fitting results, include the database files
in the Archive Project dialog box so compilation results are preserved. Click
Advanced, and choose a file set that includes the compilation database, or turn on
Incremental compilation database files to create a Custom file set.

When you include the database, the file size of the .qar archive file may be
significantly larger than an archive without the database.

The netlist information for imported partitions is already saved in the
corresponding .qxp. Imported .qxp files are automatically saved in a subdirectory
called imported_partitions, so you do not need to archive the project database to
keep the results for imported partitions. When you restore a project archive, the
partition is automatically reimported from the .qxp in this directory if it is available.

For new device families with advanced support, a version-compatible database might
not be available. In this case, the archive will not include the compilation database. If
you require the database files to reproduce the compilation results in the same
Quartus Prime version, you can use the following command-line option to archive a
full database:

quartus_sh --archive -use_file_set full_db [-revision <revision
name>]<project name>

1.10.4. Formal Verification Support

You cannot use design partitions for incremental compilation if you are creating a
netlist for a formal verification tool.

1.10.5. Signal Probe Pins and Engineering Change Orders

ECO and Signal Probe changes are performed only during ECO and Signal Probe
compilations. Other compilation flows do not preserve these netlist changes.

When incremental compilation is turned on and your design contains one or more
design partitions, partition boundaries are ignored while making ECO changes and
Signal Probe signal settings. However, the presence of ECO and/or Signal Probe
changes does not affect partition boundaries for incremental compilation. During
subsequent compilations, ECO and Signal Probe changes are not preserved regardless
of the Netlist Type or Fitter Preservation Level settings. To recover ECO changes
and Signal Probe signals, you must use the Change Manager to re-apply the ECOs
after compilation.

For partitions developed independently in separate Quartus Prime projects, the
exported netlist includes all currently saved ECO changes and Signal Probe signals. If
you make any ECO or Signal Probe changes that affect the interface to the lower-level
partition, the software issues a warning message during the export process that this
netlist does not work in the top-level design without modifying the top-level HDL code
to reflect the lower-level change. After integrating the .qxp partition into the top-level
design, the ECO changes will not appear in the Change Manager.

Related Information

• Quick Design Debugging Using Signal Probe documentation

• Engineering Change Management with the Chip Planner documentation

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

59

https://www.intel.com/content/www/us/en/docs/programmable/683552/current/quick-design-debugging-using.html
https://www.intel.com/content/www/us/en/docs/programmable/683230/current/engineering-change-orders-with-the-chip-41583.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.10.6. Signal Tap Logic Analyzer in Exported Partitions

You can use the Signal Tap Embedded Logic Analyzer in any project that you can
compile and program into an Altera device.

When incremental compilation is turned on, debugging logic is added to your design
incrementally and you can tap post-fitting nodes and modify triggers and configuration
without recompiling the full design. Use the appropriate filter in the Node Finder to
find your node names. Use Signal Tap: post-fitting if the netlist type is Post-Fit to
incrementally tap node names in the post-fit netlist database. Use Signal Tap: pre-
synthesis if the netlist type is Source File to make connections to the source file
(pre-synthesis) node names when you synthesize the partition from the source code.

If incremental compilation is turned off, the debugging logic is added to the design
during Analysis and Elaboration, and you cannot tap post-fitting nodes or modify
debug settings without fully compiling the design.

For design partitions that are being developed independently in separate Quartus
Prime projects and contain the logic analyzer, when you export the partition, the
Quartus Prime software automatically removes the Signal Tap logic analyzer and
related SLD_HUB logic. You can tap any nodes in a Quartus Prime project, including
nodes within .qxp partitions. Therefore, you can use the logic analyzer within the full
top-level design to tap signals from the .qxp partition.

You can also instantiate the Signal Tap IP core directly in your lower-level design
(instead of using an .stp file) and export the entire design to the top level to include
the logic analyzer in the top-level design.

Related Information

Design Debugging Using the Signal Tap Embedded Logic Analyzer documentation

1.10.7. External Logic Analyzer Interface in Exported Partitions

You can use the Logic Analyzer Interface in any project that you can compile and
program into an Altera device. You cannot export a partition that uses the Logic
Analyzer Interface. You must disable the Logic Analyzer Interface feature and
recompile the design before you export the design as a partition.

Related Information

In-System Debugging Using External Logic Analyzers documentation

1.10.8. Assignments Made in HDL Source Code in Exported Partitions

Assignments made with I/O primitives or the altera_attribute HDL synthesis
attribute in lower-level partitions are passed to the top-level design, but do not appear
in the top-level .qsf file or Assignment Editor. These assignments are considered part
of the source netlist files. You can override assignments made in these source files by
changing the value with an assignment in the top-level design.

1.10.9. Design Partition Script Limitations

Related Information

Generating Design Partition Scripts on page 42

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

60

https://www.intel.com/content/www/us/en/docs/programmable/683552/current/design-debugging-with-the-logic-analyzer-69524.html
https://www.intel.com/content/www/us/en/docs/programmable/683552/current/in-system-debugging-using-external-logic-89197.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.10.9.1. Warnings About Extra Clocks Due to Design Partition Scripts

The generated scripts include applicable clock information for all clock signals in the
top-level design. Some of those clocks may not exist in the lower-level projects, so
you may see warning messages related to clocks that do not exist in the project. You
can ignore these warnings or edit your constraints so the messages are not generated.

1.10.9.2. Synopsys Design Constraint Files for the Timing Analyzer in Design
Partition Scripts

After you have compiled a design using Timing Analyzer constraints, and the timing
assignments option is turned on in the scripts, a separate Tcl script is generated to
create an .sdc file for each lower-level project. This script includes only clock
constraints and minimum and maximum delay settings for the Timing Analyzer.

Note: PLL settings and timing exceptions are not passed to lower-level designs in the scripts.

Related Information

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 70

1.10.9.3. Wildcard Support in Design Partition Scripts

When applying constraints with wildcards, note that wildcards are not analyzed across
hierarchical boundaries. For example, an assignment could be made to these nodes:
Top|A:inst|B:inst|*, where A and B are lower-level partitions, and hierarchy B is
a child of A, that is B is instantiated in hierarchy A. This assignment is applied to
modules A, B, and all children instances of B. However, the assignment Top|A:inst|
B:inst* is applied to hierarchy A, but is not applied to the B instances because the
single level of hierarchy represented by B:inst* is not expanded into multiple levels
of hierarchy. To avoid this issue, ensure that you apply the wildcard to the hierarchical
boundary if it should represent multiple levels of hierarchy.

When using the wildcard to represent a level of hierarchy, only single wildcards are
supported. This means assignments such as Top|A:inst|*|B:inst|* are not
supported. The Quartus Prime software issues a warning in these cases.

1.10.9.4. Derived Clocks and PLLs in Design Partition Scripts

If a clock in the top level is not directly connected to a pin of a lower-level partition,
the lower-level partition does not receive assignments and constraints from the
top-level pin in the design partition scripts.

This issue is of particular importance for clock pins that require timing constraints and
clock group settings. Problems can occur if your design uses logic or inversion to
derive a new clock from a clock input pin. Make appropriate timing assignments in
your lower-level Quartus Prime project to ensure that clocks are not unconstrained.

If the lower-level design uses the top-level project framework from the project lead,
the design will have all the required information about the clock and PLL settings.
Otherwise, if you use a PLL in your top-level design and connect it to lower-level
partitions, the lower-level partitions do not have information about the multiplication
or phase shift factors in the PLL. Make appropriate timing assignments in your
lower-level Quartus Prime project to ensure that clocks are not unconstrained or
constrained with the incorrect frequency. Alternatively, you can manually duplicate the

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

top-level derived clock logic or PLL in the lower-level design file to ensure that you
have the correct multiplication or phase-shift factors, compensation delays and other
PLL parameters for complete and accurate timing analysis. Create a design partition
for the rest of the lower-level design logic for export to the top level. When the
lower-level design is complete, export only the partition that contains the relevant
logic.

1.10.9.5. Pin Assignments for GXB and LVDS Blocks in Design Partition Scripts

Pin assignments for high-speed GXB transceivers and hard LVDS blocks are not
written in the scripts. You must add the pin assignments for these hard IP blocks in
the lower-level projects manually.

1.10.9.6. Virtual Pin Timing Assignments in Design Partition Scripts

Design partition scripts use INPUT_MAX_DELAY and OUTPUT_MAX_DELAY
assignments to specify inter-partition delays associated with input and output pins,
which would not otherwise be visible to the project. These assignments require that
the software specify the clock domain for the assignment and set this clock domain
to ” * ”.

This clock domain assignment means that there may be some paths constrained and
reported by the timing analysis engine that are not required.

To restrict which clock domains are included in these assignments, edit the generated
scripts or change the assignments in your lower-level Quartus Prime project. In
addition, because there is no known clock associated with the delay assignments, the
software assumes the worst-case skew, which makes the paths seem more timing
critical than they are in the top-level design. To make the paths appear less
timing-critical, lower the delay values from the scripts. If required, enter negative
numbers for input and output delay values.

1.10.9.7. Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition
Scripts

When a single top-level I/O port drives multiple pins on a lower-level module, it
unnecessarily restricts the quality of the synthesis and placement at the lower-level.
This occurs because in the lower-level design, the software must maintain the
hierarchical boundary and cannot use any information about pins being logically
equivalent at the top level. In addition, because I/O constraints are passed from the
top-level pin to each of the children, it is possible to have more pins in the lower level
than at the top level. These pins use top-level I/O constraints and placement options
that might make them impossible to place at the lower level. The software avoids this
situation whenever possible, but it is best to avoid this design practice to avoid these
potential problems. Restructure your design so that the single I/O port feeds the
design partition boundary and the single connection is split into multiple signals within
the lower-level partition.

1.10.10. Restrictions on IP Core Partitions

The Quartus Prime software does not support partitions for IP core instantiations. If
you use the parameter editor to customize an IP core variation, the IP core generated
wrapper file instantiates the IP core. You can create a partition for the IP core
generated wrapper file.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime software does not support creating a partition for inferred IP cores
(that is, where the software infers an IP core to implement logic in your design). If
you have a module or entity for the logic that is inferred, you can create a partition for
that hierarchy level in the design.

The Quartus Prime software does not support creating a partition for any Quartus
Prime internal hierarchy that is dynamically generated during compilation to
implement the contents of an IP core.

1.10.11. Restrictions on Arria® 10 Transceiver

The Quartus Prime software does not support partitions for Arria® 10 Transceiver PHY
or Transceiver PLL. This restriction applies to creating partitions, exporting and
importing partitions through Quartus Prime Exported Partition File (.qxp). If your
design block contains Arria 10 Transceiver PHY or Transceiver PLL, you must exclude
the transceivers before creating partition for the design block.

Related Information

Knowledge Base

1.10.12. Register Packing and Partition Boundaries

The Quartus Prime software performs register packing during compilation
automatically. However, when incremental compilation is enabled, logic in different
partitions cannot be packed together because partition boundaries might prevent
cross-boundary optimization. This restriction applies to all types of register packing,
including I/O cells, DSP blocks, sequential logic, and unrelated logic. Similarly, logic
from two partitions cannot be packed into the same ALM.

1.10.13. I/O Register Packing

Cross-partition register packing of I/O registers is allowed in certain cases where your
input and output pins exist in the top-level hierarchy (and the Top partition), but the
corresponding I/O registers exist in other partitions.

The following specific circumstances are required for input pin cross-partition register
packing:

• The input pin feeds exactly one register.

• The path between the input pin and register includes only input ports of partitions
that have one fan-out each.

The following specific circumstances are required for output register cross-partition
register packing:

• The register feeds exactly one output pin.

• The output pin is fed by only one signal.

• The path between the register and output pin includes only output ports of
partitions that have one fan-out each.

Output pins with an output enable signal cannot be packed into the device I/O cell if
the output enable logic is part of a different partition from the output register. To allow
register packing for output pins with an output enable signal, structure your HDL code
or design partition assignments so that the register and tri-state logic are defined in
the same partition.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

63

https://www.altera.com/support/support-resources/knowledge-base/tools/2017/why-do-i-get-compilation-error-when-my-design-partition-contains.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bidirectional pins are handled in the same way as output pins with an output enable
signal. If the registers that need to be packed are in the same partition as the tri-state
logic, you can perform register packing.

The restrictions on tri-state logic exist because the I/O atom (device primitive) is
created as part of the partition that contains tri-state logic. If an I/O register and its
tri-state logic are contained in the same partition, the register can always be packed
with tri-state logic into the I/O atom. The same cross-partition register packing
restrictions also apply to I/O atoms for input and output pins. The I/O atom must feed
the I/O pin directly with exactly one signal. The path between the I/O atom and the
I/O pin must include only ports of partitions that have one fan-out each.

Related Information

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
documentation on page 70

1.11. Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script or
at a command-line prompt.

1.11.1. Tcl Scripting and Command-Line Examples

The ::quartus::incremental_compilation Tcl package contains a set of
functions for manipulating design partitions and settings related to the incremental
compilation feature.

Related Information

• Quartus Prime Software Scripting Support website
Scripting support information, design examples, and training

• Tcl Scripting documentation

• Command-Line Scripting documentation

1.11.1.1. Creating Design Partitions

To create a design partition to a specified hierarchy name, use the following
command:

Example 1. Create Design Partition

create_partition [-h | -help] [-long_help] -contents
<hierarchy name> -partition <partition name>

Table 4. Tcl Script Command: create_partition

Argument Description

-h | -help Short help

-long_help Long help with examples and possible return values

-contents <hierarchy name> Partition contents (hierarchy assigned to Partition)

-partition <partition name> Partition name

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

64

https://www.intel.com/content/www/us/en/programmable/support/support-resources/support-centers/quartus-support.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.11.1.2. Enabling or Disabling Design Partition Assignments During Compilation

To direct the Quartus Prime Compiler to enable or disable design partition assignments
during compilation, use the following command:

Example 2. Enable or Disable Partition Assignments During Compilation

set_global_assignment -name IGNORE_PARTITIONS <value>

Table 5. Tcl Script Command: set_global_assignment

Value Description

OFF The Quartus Prime software recognizes the design partitions assignments set in the current Quartus Prime project
and recompiles the partition in subsequent compilations depending on their netlist status.

ON The Quartus Prime software does not recognize design partitions assignments set in the current Quartus Prime
project and performs a compilation without regard to partition boundaries or netlists.

1.11.1.3. Setting the Netlist Type

To set the partition netlist type, use the following command:

Example 3. Set Partition Netlist Type

set_global_assignment -name PARTITION_NETLIST_TYPE <value>
-section_id <partition name>

Note: The PARTITION_NETLIST_TYPE command accepts the following values: SOURCE,
POST_SYNTH, POST_FIT, and EMPTY.

1.11.1.4. Setting the Fitter Preservation Level for a Post-fit or Imported Netlist

To set the Fitter Preservation Level for a post-fit or imported netlist, use the following
command:

Example 4. Set Fitter Preservation Level

set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL
<value> -section_id <partition name>

Note: The PARTITION_FITTER_PRESERVATION command accepts the following values:
NETLIST_ONLY, PLACEMENT, and PLACEMENT_AND_ROUTING.

1.11.1.5. Preserving High-Speed Optimization

To preserve high-speed optimization for tiles contained within the selected partition,
use the following command:

Example 5. Preserve High-Speed Optimization

set_global_assignment -name PARTITION_PRESERVE_HIGH_SPEED_TILES_ON

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.11.1.6. Specifying the Software Should Use the Specified Netlist and Ignore
Source File Changes

To specify that the software should use the specified netlist and ignore source file
changes, even if the source file has changed since the netlist was created, use the
following command:

Example 6. Specify Netlist and Ignore Source File Changes

set_global_assignment -name PARTITION_IGNORE_SOURCE_FILE_CHANGES ON
-section_id "<partition name>"

1.11.1.7. Reducing Opening a Project, Creating Design Partitions, andPerforming
an Initial Compilation

Scenario background: You open a project called AB_project, set up two design
partitions, entities A and B, and then perform an initial full compilation.

Example 7. Set Up and Compile AB_project

set project AB_project

load_package incremental_compilation
load_package flow
project_open $project

Ensure that design partition assignments are not ignored
set_global_assignment -name IGNORE_PARTITIONS \ OFF

Set up the partitions
create_partition -contents A -name "Partition_A"
create_partition -contents B -name "Partition_B"

Set the netlist types to post-fit for subsequent
compilations (all partitions are compiled during the
initial compilation since there are no post-fit netlists)
set_partition -partition "Partition_A" -netlist_type POST_FIT
set_partition -partition "Partition_B" -netlist_type POST_FIT

Run initial compilation
export_assignments
execute_flow -full_compile

project_close

1.11.1.8. Optimizing the Placement for a Timing-Critical Partition

Scenario background: You have run the initial compilation shown in the example script
below. You would like to apply Fitter optimizations, such as physical synthesis, only to
partition A. No changes have been made to the HDL files. To ensure the previous
compilation result for partition B is preserved, and to ensure that Fitter optimizations
are applied to the post-synthesis netlist of partition A, set the netlist type of B to
Post-Fit (which was already done in the initial compilation, but is repeated here for
safety), and the netlist type of A to Post-Synthesis, as shown in the following
example:

Example 8. Fitter Optimization for AB_project

set project AB_project

load_package flow
load_package incremental_compilation

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

load_package project
project_open $project

Turn on Physical Synthesis Optimization
set_high_effort_fmax_optimization_assignments

For A, set the netlist type to post-synthesis
set_partition -partition "Partition_A" -netlist_type POST_SYNTH

For B, set the netlist type to post-fit
set_partition -partition "Partition_B" -netlist_type POST_FIT

Also set Top to post-fit
set_partition -partition "Top" -netlist_type POST_FIT

Run incremental compilation
export_assignments
execute_flow -full_compile

project_close

1.11.1.9. Generating Design Partition Scripts

To generate design partition scripts, use the following script:

Example 9. Generate Partition Script

load required package
load_package database_manager

name and open the project
set project <project_path/project_name>
project_open $project

generate the design partition scripts
generate_bottom_up_scripts <options>

#close project
project_close

1.11.1.10. Exporting a Partition

To open a project and load the::quartus::incremental_compilation package
before you use the Tcl commands to export a partition to a .qxp that contains both a
post-synthesis and post-fit netlist, with routing, use the following script:

Example 10. Export .qxp

load required package
load_package incremental_compilation

open project
project_open <project name>

export partition to the .qxp and set preservation level
export_partition -partition <partition name>
-qxp <.qxp file name> -<options>

#close project
project_close

1.11.1.11. Importing a Partition into the Top-Level Design

To import a .qxp into a top-level design, use the following script:

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 11. Import .qxp into Top-Level Design

load required packages
load_package incremental_compilation
load_package project
load_package flow

open project
project_open <project name>

#import partition
import_partition -partition <partition name> -qxp <.qxp file>
<-options>

#close project
project_close

1.11.1.12. Makefiles

For an example of how to use incremental compilation with a makefile as part of the
team-based incremental compilation design flow, refer to the read_me.txt file
that accompanies the incr_comp example located in the /qdesigns/
incr_comp_makefile subdirectory.

When using a team-based incremental compilation design flow, the Generate Design
Partition Scripts dialog box can write makefiles that automatically export lower-level
design partitions and import them into the top-level design whenever design files
change.

1.12. Document Revision History

Table 6. Document Revision History

Date Version Changes

2016.05.03 16.0.0 Stated limitations about deprecated physical synthesis options.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Removed Early Timing Estimate feature support.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Optimization Settings to Compiler Settings.

• Updated DSE II content.

2014.08.18 14.0a10.0 Added restriction about smart compilation in Arria 10 devices.

June 2014 14.0.0 • Dita conversion.
• Replaced MegaWizard Plug-In Manager content with IP Catalog and

Parameter Editor content.
• Revised functional safety section. Added export and import sections.

November 2013 13.1.0 Removed HardCopy device information. Revised information about Rapid
Recompile. Added information about functional safety. Added information about
flattening sub-partition hierarchies.

November 2012 12.1.0 Added Turning On Supported Cross-boundary Optimizations.

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 • Updated “Tcl Scripting and Command-Line Examples”.

continued...

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

December 2010 10.1.0 • Changed to new document template.
• Reorganized Tcl scripting section. Added description for new feature:

Ignore partitions assignments during compilation option.
• Reorganized “Incremental Compilation Summary” section.

July 2010 10.0.0 • Removed the explanation of the “bottom-up design flow” where designers
work completely independently, and replaced with Altera’s
recommendations for team-based environments where partitions are
developed in the same top-level project framework, plus an explanation of
the bottom-up process for including independent partitions from third-party
IP designers.

• Expanded the Merge command explanation to explain how it now
accommodates cross-partition boundary optimizations.

• Restructured Altera recommendations for when to use a floorplan.
• Added “Viewing the Contents of a Quartus Prime Exported Partition File

(.qxp)” section.
• Reorganized chapter to make design flow scenarios more visible; integrated

into various sections rather than at the end of the chapter.

October 2009 9.1.0 • Redefined the bottom-up design flow as team-based and reorganized
previous design flow examples to include steps on how to pass top-level
design information to lower-level designers.

• Moved SDC Constraints from Lower-Level Partitions section to the Best
Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus Prime Handbook.

• Reorganized the “Conclusion” section.
• Removed HardCopy APEX and HardCopy Stratix Devices section.

March 2009 9.0.0 • Split up netlist types table
• Moved “Team-Based Incremental Compilation Design Flow” into the

“Including or Integrating partitions into the Top-Level Design” section.
• Added new section “Including or Integrating Partitions into the Top-Level

Design”.
• Removed “Exporting a Lower-Level Partition that Uses a JTAG Feature”

restriction
• Other edits throughout chapter

November 2008 8.1.0 • Added new section “Importing SDC Constraints from Lower-Level Partitions”
on page 2–44

• Removed the Incremental Synthesis Only option
• Removed section “OpenCore Plus Feature for MegaCore Functions in

Bottom-Up Flows”
• Removed section “Compilation Time with Physical Synthesis Optimizations”
• Added information about using a .qxp as a source design file without

importing
• Reorganized several sections
• Updated Figure 2–10

Related Information

Documentation Archive
For previous versions of the Quartus Prime Handbook, search the documentation
archives.

1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

69

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Best Practices for Incremental Compilation Partitions
and Floorplan Assignments

2.1. About Incremental Compilation and Floorplan Assignments

This manual provides guidelines to help you partition your design to take advantage of
Quartus Prime incremental compilation, and to help you create a design floorplan
using Logic Lock (Standard) regions when they are recommended to support the
compilation flow.

The Quartus Prime incremental compilation feature allows you to partition a design,
compile partitions separately, and reuse results for unchanged partitions. Incremental
compilation provides the following benefits:

• Reduces compilation times by an average of 75% for large design changes

• Preserves performance for unchanged design blocks

• Provides repeatable results and reduces the number of compilations

• Enables team-based design flows

Related Information

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
documentation on page 7

2.2. Incremental Compilation Overview

Quartus Prime incremental compilation is an optional compilation flow that enhances
the default Quartus Prime compilation. If you do not partition your design for
incremental compilation, your design is compiled using the default “flat” compilation
flow.

To prepare your design for incremental compilation, you first determine which logical
hierarchy boundaries should be defined as separate partitions in your design, and
ensure your design hierarchy and source code is set up to support this partitioning.
You can then create design partition assignments in the Quartus Prime software to
specify which hierarchy blocks are compiled independently as partitions (including
empty partitions for missing or incomplete logic blocks).

During compilation, Quartus Prime Analysis & Synthesis and the Fitter create separate
netlists for each partition. Netlists are internal post-synthesis and post-fit database
representations of your design.

In subsequent compilations, you can select which netlist to preserve for each partition.
You can either reuse the synthesis or fitting netlist, or instruct the Quartus Prime
software to resynthesize the source files. You can also use compilation results
exported from another Quartus Prime project.

683283 | 2021.10.22

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

When you make changes to your design, the Quartus Prime software recompiles only
the designated partitions and merges the new compilation results with existing netlists
for other partitions, according to the degree of results preservation you set with the
netlist for each design partition.

In some cases, Altera recommends that you create a design floorplan with placement
assignments to constrain parts of the design to specific regions of the device.

You must use the partial reconfiguration (PR) feature in conjunction with incremental
compilation for Stratix® V device families. Partial reconfiguration allows you to
reconfigure a portion of the FPGA dynamically, while the remainder of the device
continues to operate as intended.

Related Information

Introduction to Design Floorplans on page 105

2.2.1. Recommendations for the Netlist Type

For subsequent compilations, you specify which post-compilation netlist you want to
use with the netlist type for each partition.

Use the following general guidelines to set the netlist type for each partition:

• Source File—Use this setting to resynthesize the source code (with any new
assignments, and replace any previous synthesis or Fitter results).

— If you modify the design source, the software automatically resynthesizes the
partitions with the appropriate netlist type, which makes the Source File
setting optional in this case.

— Most assignments do not trigger an automatic recompilation, so you must set
the netlist type to Source File to compile the source files with new
assignments or constraints that affect synthesis.

• Post-Synthesis (default)—Use this setting to re-fit the design (with any new
Fitter assignments), but preserve the synthesis results when the source files have
not changed. If it is difficult to meet the required timing performance, you can use
this setting to allow the Fitter the most flexibility in placement and routing. This
setting does not reduce compilation time as much as the Post-Fit setting or
preserve timing performance from the previous compilation.

• Post-Fit—Use this setting to preserve Fitter and performance results when the
source files have not changed. This setting reduces compilation time the most,
and preserves timing performance from the previous compilation.

• Post-Fit with Fitter Preservation Level set to Placement—Use the Advanced
Fitter Preservation Level setting on the Advanced tab in the Design Partition
Properties dialog box to allow more flexibility and find the best routing for all
partitions given their placement.

The Quartus Prime software Rapid Recompile feature instructs the Compiler to reuse
the compatible compilation results if most of the design has not changed since the last
compilation. This feature reduces compilation time and preserves performance when
there are small and isolated design changes within a partition, and works with all
netlist type settings. With this feature, you do not have control over which parts of the
design are recompiled; the Compiler determines which parts of the design must be
recompiled.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3. Design Flows Using Incremental Compilation

The Quartus Prime incremental compilation feature supports various design flows.
Your design flow affects design optimization and the amount of design planning
required to obtain optimal results.

2.3.1. Using Standard Flow

In the standard incremental compilation flow, the top-level design is divided into
partitions, which can be compiled and optimized together in one Quartus Prime
project. If another team member or IP provider is developing source code for the top-
level design, they can functionally verify their partition independently, and then simply
provide the partition’s source code to the project lead for integration into the top-level
design. If the project lead wants to compile the top-level design when source code is
not yet complete for a partition, they can create an empty placeholder for the partition
until the code is ready to be added to the top-level design.

Compiling all design partitions in a single Quartus Prime project ensures that all
design logic is compiled with a consistent set of assignments, and allows the software
to perform global placement and routing optimizations. Compiling all design logic
together is beneficial for FPGA design flows because all parts of the design must use
the same shared set of device resources. Therefore, it is often easier to ensure good
quality of results when partitions are developed within a single top-level Quartus
Prime project.

2.3.2. Using Team-Based Flow

In the team-based incremental compilation flow, you can design and optimize
partitions by accessing the top-level project from a shared source control system or
creating copies of the top-level Quartus Prime project framework. As development
continues, designers export their partition so that the post-synthesis netlist or post-
fitting results can be integrated into the top-level design.

2.3.2.1. Using Third-Party IP Delivery Flow

If required for third-party IP delivery, or in cases where designers cannot access a
shared or copied top-level project framework, you can create and compile a design
partition logic in isolation and export a partition that is included in the top-level
project. If this type of design flow is necessary, planning and rigorous design
guidelines might be required to ensure that designers have a consistent view of
project assignments and resource allocations. Therefore, developing partitions in
completely separate Quartus Prime projects can be more challenging than having all
source code within one project or developing design partitions within the same top-
level project framework.

2.3.3. Combining Design Flows

You can also combine design flows and use exported partitions only when it is
necessary to support your design environment. For example, if the top-level design
includes one or more design blocks that will be optimized by remote designers or IP
providers, you can integrate those blocks into the reserved partitions in the top-level
design when the code is complete, but also have other partitions that will be
developed within the top-level design.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If any partitions are developed independently, the project lead must ensure that top-
level constraints (such as timing constraints, any relevant floorplan or pin
assignments, and optimization settings) are consistent with those used by all
designers.

2.3.4. Project Management in Team-Based Design Flows

If possible, each team member should work within the same top-level project
framework. Using the same project framework amongst team members ensures that
designers have the settings and constraints needed for their partition and allows
designers to analyze how their design block interacts with other partitions in the top-
level design.

2.3.4.1. Using a Source Control System

In a team-based environment where designers have access to the project through
source control software, each designer can use project files as read-only and develop
their partition within the source control system. As designers check in their completed
partitions, other team members can see how their partitions interact.

2.3.4.2. Using a Copy of the Top-Level Project

If designers do not have access to a source control system, the project lead can
provide each designer with a copy of the top-level project framework to use as they
develop their partitions. In both cases, each designer exports their completed design
as a partition, and then the project lead integrates the partition into the top-level
design. The project lead can choose to use only the post-synthesis netlist and rerun
placement and routing, or to use the post-fitting results to preserve the placement
and routing results from the other designer's projects. Using post-synthesis partitions
gives the Fitter the most flexibility and is likely to achieve a good result for all
partitions, but if one partition has difficultly meeting timing, the designer can choose
to preserve their successful fitting results.

2.3.4.3. Using a Separate Project

Alternatively, designers can use their own Quartus Prime project for their independent
design block. You might use this design flow if a designer, such as a third-party IP
provider, does not have access to the entire top-level project framework. In this case,
each designer must create their own project with all the relevant assignments and
constraints. This type of design flow requires more planning and rigorous design
guidelines. If the project lead plans to incorporate the post-fitting compilation results
for the partition, this design flow requires especially careful planning to avoid resource
conflicts.

2.3.4.4. Using Scripts

The project lead also has the option to generate design partition scripts to manage
resource and timing budgets in the top-level design when partitions are developed
outside the top-level project framework. Scripts make it easier for designers of
independent Quartus Prime projects to follow instructions from the project lead. The
Quartus Prime design partition scripts feature creates Tcl scripts or .tcl files and
makefiles that an independent designer can run to set up an independent Quartus
Prime project.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.4.5. Using Constraints

If designers create Quartus Prime assignments or timing constraints for their
partitions, they must ensure that the constraints are integrated into the top-level
design. If partition designers use the same top-level project framework (and design
hierarchy), the constraints or Synopsys Design Constraints File (.sdc) can be easily
copied or included in the top-level design. If partition designers use a separate
Quartus Prime project with a different design hierarchy, they must ensure that
constraints are applied to the appropriate level of hierarchy in the top-level design,
and design the .sdc for easy delivery to the project lead.

Related Information

• Including SDC Constraints from Lower-Level Partitions for
Third-Party IP Delivery on page 101

• Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
documentation on page 7

Information about the different types of incremental design flows and example
applications, as well as documented restrictions and limitations

2.4. Why Plan Partitions and Floorplan Assignments?

Incremental design flows typically require more planning than flat compilations, and
require you to be more rigorous about following good design practices. For example,
you might need to structure your source code or design hierarchy to ensure that logic
is grouped correctly for optimization. It is easier to implement the correct logic
grouping early in the design cycle than to restructure the code later.

Planning involves setting up the design logic for partitioning and may also involve
planning placement assignments to create a floorplan. Not all design flows require
floorplan assignments. If you decide to add floorplan assignments later, when the
design is close to completion, well-planned partitions make floorplan creation easier.
Poor partition or floorplan assignments can worsen design area utilization and
performance and make timing closure more difficult.

As FPGA devices get larger and more complex, following good design practices
become more important for all design flows. Adhering to recommended synchronous
design practices makes designs more robust and easier to debug. Using an
incremental compilation flow adds additional steps and requirements to your project,
but can provide significant benefits in design productivity by preserving the
performance of critical blocks and reducing compilation time.

Related Information

Introduction to Design Floorplans on page 105

2.4.1. Partition Boundaries and Optimization

The logical hierarchical boundaries between partitions are treated as hard boundaries
for logic optimization (except for some limited cross-boundary optimizations) to allow
the software to size and place each partition independently. The figure shows the
effects of partition boundaries during logic optimization.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8. Effects of Partition Boundaries During Logic Optimization

Hierarchy A

Hierarchy B

Compile
with

partition
 boundaries

Compile
without
partition

boundaries

Hierarchy A

Hierarchy A

Hierarchy B

Hierarchy B

Cannot obtain results of an
individual hierarchy for

incremental compilation

Hierarchies remain independent
during logic optimizations

(with limited cross-boundary optimizations)

Possible to incrementally
recompile each hierarchy

2.4.1.1. Merging Partitions

You can use the Merge command in the Design Partitions window to combine
hierarchical partitions into a single partition, as long as they share the same
immediate parent partition. Merging partitions allows additional optimizations for
partition I/O ports that connect between or feed more than one of the merged
hierarchical design blocks.

When partitions are placed together, the Fitter can perform placement optimizations
on the design as a whole to optimize the placement of cross-boundary paths.
However, the Fitter can never perform logic optimizations such as physical synthesis
across the partition boundary. If partitions are fit separately in different projects, or if
some partitions use previous post-fitting results, the Fitter does not place and route
the entire cross-boundary path at the same time and cannot fully optimize placement
across the partition boundaries. Good design partitions can be placed independently
because cross-partition paths are not the critical timing paths in the design.

2.4.1.2. Resource Utilization

There are possible timing performance utilization effects due to partitioning and
creating a floorplan. Not all designs encounter these issues, but you should consider
these effects if a flat version of your design is very close to meeting its timing
requirements, or is close to using all the device resources, before adding partition or
floorplan assignments:

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Partitions can increase resource utilization due to cross-boundary optimization
limitations if the design does not follow partitioning guidelines. Floorplan
assignments can also increase resource utilization because regions can lead to
unused logic. If your device is full with the flat version of your design, you can
focus on creating partitions and floorplan assignments for timing-critical or
often-changing blocks to benefit most from incremental compilation.

• Partitions and floorplan assignments might increase routing utilization compared
to a flat design. If long compilation times are due to routing congestion, you might
not be able to use the incremental flow to reduce compilation time. Review the
Fitter messages to check how much time is spent during routing optimizations to
determine the percentage of routing utilization. When routing is difficult, you can
use incremental compilation to lock the routing for routing-critical blocks only
(with other partitions empty), and then compile the rest of the design after the
critical blocks meets their requirements.

• Partitions can reduce timing performance in some cases because of the
optimization and resource effects described above, causing longer logic delays.
Floorplan assignments restrict logic placement, which can make it more difficult
for the Fitter to meet timing requirements. Use the guidelines in this manual to
reduce any effect on your design performance.

Related Information

• Design Partition Guidelines on page 79

• Checking Floorplan Quality on page 113

2.4.1.3. Turning On Supported Cross-Boundary Optimizations

You can improve the optimizations performed between design partitions by turning on
the cross-boundary optimizations feature. You can select the optimizations as
individual assignments for each partition. This allows the cross-boundary optimization
feature to give you more control over the optimizations that work best for your design.

You can turn on the cross-boundary optimizations for your design partitions on the
Advanced tab of the Design Partition Properties dialog box. Once you change the
optimization settings, the Quartus Prime software recompiles your partition from
source automatically. Cross-boundary optimizations include the following: propagate
constants, propagate inversions on partition inputs, merge inputs fed by a common
source, merge electrically equivalent bidirectional pins, absorb internal paths, and
remove logic connected to dangling outputs.

Cross-boundary optimizations are implemented top-down from the parent partition
into the child partition, but not vice-versa. The cross-boundary optimization feature
cannot be used with partitions with multiple personas (partial reconfiguration
partitions).

Although more partitions allow for a greater reduction in compilation time, consider
limiting the number of partitions to prevent degradation in the quality of results.
Creating good design partitions and good floorplan location assignments helps to
improve the design resource utilization and timing performance results for cross-
partition paths.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5. Guidelines for Incremental Compilation

2.5.1. General Partitioning Guidelines

The first step in planning your design partitions is to organize your source code so that
it supports good partition assignments. Although you can assign any hierarchical block
of your design as a design partition or merge hierarchical blocks into the same
partition, following the design guidelines presented below ensures better results.

2.5.1.1. Plan Design Hierarchy and Design Files

You begin the partitioning process by planning the design hierarchy. When you assign
a hierarchical instance as a design partition, the partition includes the assigned
instance and entities instantiated below that are not defined as separate partitions.
You can use the Merge command in the Design Partitions window to combine
hierarchical partitions into a single partition, as long as they have the same immediate
parent partition.

• When planning your design hierarchy, keep logic in the “leaves” of the hierarchy
instead of having logic at the top-level of the design so that you can isolate
partitions if required.

• Create entities that can form partitions of approximately equal size. For example,
do not instantiate small entities at the same hierarchy level, because it is more
difficult to group them to form reasonably-sized partitions.

• Create each entity in an independent file. The Quartus Prime software uses a file
checksum to detect changes, and automatically recompiles a partition if its source
file changes and its netlist type is set to either post-synthesis or post-fit. If the
design entities for two partitions are defined in the same file, changes to the logic
in one partition initiates recompilation for both partitions.

• Design dependencies also affect which partitions are compiled when a source file
changes. If two partitions rely on the same lower-level entity definition, changes
in that lower-level entity affect both partitions. Commands such as VHDL use and
Verilog HDL include create dependencies between files, so that changes to one
file can trigger recompilations in all dependent files. Avoid these types of file
dependencies if possible. The Partition Dependent Files report for each partition in
the Analysis & Synthesis section of the Compilation report lists which files
contribute to each partition.

2.5.1.2. Using Partitions with Third-Party Synthesis Tools

Incremental compilation works well with third-party synthesis tools in addition to
Quartus Prime Integrated Synthesis. If you use a third-party synthesis tool, set up
your tool to create a separate Verilog Quartus Mapping File (.vqm) or EDIF Input File
(.edf) netlist for each hierarchical partition. In the Quartus Prime software, designate
the top-level entity from each netlist as a design partition. The .vqm or .edf netlist
file is treated as the source file for the partition in the Quartus Prime software.

Related Information

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
documentation on page 7

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.1.3. Partition Design by Functionality and Block Size

Initially, you should partition your design along functional boundaries. In a top-level
system block diagram, each block is often a natural design partition. Typically, each
block of a system is relatively independent and has more signal interaction internally
than interaction between blocks, which helps reduce optimizations between partition
boundaries. Keeping functional blocks together means that synthesis and fitting can
optimize related logic as a whole, which can lead to improved optimization.

• Consider how many partitions you want to maintain in your design to determine
the size of each partition. Your compilation time reduction goal is also a factor,
because compiling small partitions is typically faster than compiling large
partitions.

• There is no minimum size for partitions; however, having too many partitions can
reduce the quality of results by limiting optimization. Ensure that the design
partitions are not too small. As a general guideline, each partition should contain
more than approximately 2,000 logic elements (LEs) or adaptive logic modules
(ALMs). If your design is incomplete when you partition the design, use previous
designs to help estimate the size of each block.

2.5.1.4. Partition Design by Clock Domain and Timing Criticality

Consider which clock in your design feeds the logic in each partition. If possible, keep
clock domains within one partition. When a clock signal is isolated to one partition, it
reduces dependence on other partitions for timing optimization. Isolating a clock
domain to one partition also allows better use of regional clock routing networks if the
partition logic is constrained to one region of the design. Additionally, limiting the
number of clocks within each partition simplifies the timing requirements for each
partition during optimization. Use an appropriate subsystem to implement the
required logic for any clock domain transfers (such as a synchronization circuit, dual-
port RAM, or FIFO). You can include this logic inside the partition at one side of the
transfer.

Try to isolate timing-critical logic from logic that you expect to easily meet timing
requirements. Doing so allows you to preserve the satisfactory results for non-critical
partitions and focus optimization iterations on only the timing-critical portions of the
design to minimize compilation time.

Related Information

Analyzing and Optimizing the Design Floorplan with the Chip Planner documentation
Information about clock domains and their affect on partition design

2.5.1.5. Consider What Is Changing

When assigning partitions, you should consider what is changing in the design. Is
there intellectual property (IP) or reused logic for which the source code will not
change during future design iterations? If so, define the logic in its own partition so
that you can compile one time and immediately preserve the results and not have to
compile that part of the design again. Is logic being tuned or optimized, or are
specifications changing for part of the design? If so, define changing logic in its own
partition so that you can recompile only the changing part while the rest of the design
remains unchanged.

As a general rule, create partitions to isolate logic that will change from logic that will
not change. Partitioning a design in this way maximizes the preservation of unchanged
logic and minimizes compilation time.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

78

https://www.intel.com/content/www/us/en/docs/programmable/683230/current/analyzing-and-optimizing-the-design-03170.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.2. Design Partition Guidelines

Follow the design partition guidelines below when you create or modify the HDL code
for each design block that you might want to assign as a design partition. You do not
need to follow all the recommendations exactly to achieve a good quality of results
with the incremental compilation flow, but adhering to as many as possible maximizes
your chances for success.

The design partition guidelines include examples of the types of optimizations that are
prevented by partition boundaries, and describes how you can structure or modify
your partitions to avoid these limitations.

2.5.2.1. Register Partition Inputs and Outputs

Use registers at partition input and output connections that are potentially timing-
critical. Registers minimize the delays on inter-partition paths and prevent the need
for cross-boundary optimizations.

If every partition boundary has a register as shown in the figure, every register-to-
register timing path between partitions includes only routing delay. Therefore, the
timing paths between partitions are likely not timing-critical, and the Fitter can
generally place each partition independently from other partitions. This advantage
makes it easier to create floorplan location assignments for each separate partition,
and is especially important for flows in which partitions are placed independently in
separate Quartus Prime projects. Additionally, the partition boundary does not affect
combinational logic optimization because each register-to-register logic path is
contained within a single partition.

Figure 9. Registering Partition I/O

Partition A Partition B

Cross-boundary partition
routing delay is not the

critical timing path

D Q D Q D Q D Q

If a design cannot include both input and output registers for each partition due to
latency or resource utilization concerns, choose to register one end of each
connection. If you register every partition output, for example, the combinational logic
that occurs in each cross-partition path is included in one partition so that it can be
optimized together.

It is a good synchronous design practice to include registers for every output of a
design block. Registered outputs ensure that the input timing performance for each
design block is controlled exclusively within the destination logic block.

Related Information

• Partition Statistics Report on page 100

• Incremental Compilation Advisor on page 97

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.2.2. Minimize Cross-Partition-Boundary I/O

Minimize the number of I/O paths that cross between partition boundaries to keep
logic paths within a single partition for optimization. Doing so makes partitions more
independent for both logic and placement optimization.

This guideline is most important for timing-critical and high-speed connections
between partitions, especially in cases where the input and output of each partition is
not registered. Slow connections that are not timing-critical are acceptable because
they should not impact the overall timing performance of the design. If there are
timing-critical paths between partitions, rework or merge the partitions to avoid these
inter-partition paths.

When dividing your design into partitions, consider the types of functions at the
partition boundaries. The figure shows an expansive function with more outputs than
inputs in the left diagram, which makes a poor partition boundary, and, on the right
side, a better place to assign the partition boundary that minimizes
cross-partition I/Os. Adding registers to one or both sides of the cross-partition path
in this example would further improve partition quality.

Figure 10. Minimizing I/O Between Partitions by Moving the Partition Boundary

Expansive function:
Not ideal partition boundary

A A B

Better part of design to assign
a partition output boundary

B

Another way to minimize connections between partitions is to avoid using
combinational ”glue logic” between partitions. You can often move the logic to the
partition at one end of the connection to keep more logic paths within one partition.
For example, the bottom diagram includes a new level of hierarchy C defined as a
partition instead of block B. Clearly, there are fewer I/O connections between
partitions A and C than between partitions A and B.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11. Minimizing I/O between Partitions by Modifying Glue Logic

Top

A BGlue
Logic

Many cross-boundary partition paths: Poor design partition assignment

Fewer cross-boundary partition paths: Better design partition assignment
Top

A
C

Glue
Logic

B

Related Information

• Partition Statistics Report on page 100

• Incremental Compilation Advisor on page 97

2.5.2.3. Examine the Need for Logic Optimization Across Partitions

Partition boundaries prevent logic optimizations across partitions (except for some
limited cross-boundary optimizations).

In some cases, especially if part of the design is complete or comes from another
designer, the designer might not have followed these guidelines when the source code
was created. These guidelines are not mandatory to implement an incremental
compilation flow, but can improve the quality of results. If assigning a partition affects
resource utilization or timing performance of a design block as compared to the flat
design, it might be due to one of the issues described in the logic optimization across
partitions guidelines below. Many of the examples suggest simple changes to your
partition definitions or hierarchy to move the partition boundary to improve your
results.

The following guidelines ensure that your design does not require logic optimization
across partition boundaries:

2.5.2.3.1. Keep Logic in the Same Partition for Optimization and Merging

If your design logic requires logic optimization or merging to obtain optimal results,
ensure that all the logic is part of the same partition because only limited cross-
boundary optimizations are permitted.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example—Combinational Logic Path
If a combinational logic path is split across two partitions, the logic cannot be
optimized or merged into one logic cell in the device. This effect can result in an extra
logic cell in the path, increasing the logic delay. As a very simple example, consider
two inverters on the same signal in two different partitions, A and B, as shown in the
left diagram of the figure. To maintain correct incremental functionality, these two
inverters cannot be removed from the design during optimization because they occur
in different design partitions. The Quartus Prime software cannot use information
about other partitions when it compiles each partition, because each partition is
allowed to change independently from the other.

On the right side of the figure, partitions A and B are merged to group the logic in
blocks A and B into one partition. If the two blocks A and B are not under the same
immediate parent partition, you can create a wrapper file to define a new level of
hierarchy that contains both blocks, and set this new hierarchy block as the partition.
With the logic contained in one partition, the software can optimize the logic and
remove the two inverters (shown in gray), which reduces the delay for that logic path.
Removing two inverters is not a significant reduction in resource utilization because
inversion logic is readily available in Altera device architecture. However, this example
is a simple demonstration of the types of logic optimization that are prevented by
partition boundaries.

Figure 12. Keeping Logic in the Same Partition for Optimization

A B

Inverters in separate partitions A and B
cannot be removed from design:
Poor design partition assignment

Inverters in merged partition can be removed:
Better design partition assignment

A

Merged Parition

B

Example—Fitter Merging
In a flat design, the Fitter can also merge logical instantiations into the same physical
device resource. With incremental compilation, logic defined in different partitions
cannot be merged to use the same physical device resource.

For example, the Fitter can merge two single-port RAMs from a design into one
dedicated RAM block in the device. If the two RAMs are defined in different partitions,
the Fitter cannot merge them into one dedicated device RAM block.

This limitation is a only a concern if merging is required to fit the design in the target
device. Therefore, you are more likely to encounter this issue during troubleshooting
rather than during planning, if your design uses more logic than is available in the
device.

2.5.2.3.2. Merging PLLs and Transceivers (GXB)

Multiple instances of the ALTPLL IP core can use the same PLL resource on the device.
Similarly, GXB transceiver instances can share high-speed serial interface (HSSI)
resources in the same quad as other instances. The Fitter can merge multiple

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

instantiations of these blocks into the same device resource, even if it requires
optimization across partitions. Therefore, there are no restrictions for PLLs and
high-speed transceiver blocks when setting up partitions.

2.5.2.4. Keep Constants in the Same Partition as Logic

Because the Quartus Prime software cannot fully optimize across a partition boundary,
constants are not propagated across partition boundaries, except from parent partition
to child partition. A signal that is constant (1/VCC or 0/GND) in one partition cannot
affect another partition.

2.5.2.4.1. Example—Constants in Merged Partitions

For example, the left diagram of the figure shows part of a design in which partition A
defines some signals as constants (and assumes that the other input connections
come from elsewhere in the design and are not shown in the figure). Constants such
as these could appear due to parameter or generic settings or configurations with
parameters, setting a bus to a specific set of values, or could result from optimizations
that occur within a group of logic. Because the blocks are independent, the software
cannot optimize the logic in block B based on the information from block A. The right
side of the figure shows a merged partition that groups the logic in blocks A and B. If
the two blocks A and B are not under the same immediate parent partition, you can
create a wrapper file to define a new level of hierarchy that contains both blocks, and
set this new hierarchical block as the partition.

Within the single merged partition, the Quartus Prime software can use the constants
to optimize and remove much of the logic in block B (shown in gray), as shown in the
figure.

Figure 13. Keeping Constants in the Same Partition as the Logic They Feed

Connections to constants in another partition:
Poor design partition assignment

Constants in merged partition are used to optimize:
Better design partition assignment

VCC

GND

A

M
er

ge
d P

ar
tit

ion

A

VCC

GND

BB

Related Information

• Partition Statistics Report on page 100

• Incremental Compilation Advisor on page 97

2.5.2.5. Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together

Do not use the same signal to drive multiple ports of a single partition or directly
connect two ports of a partition. If the same signal drives multiple ports of a partition,
or if two ports of a partition are directly connected, those ports are logically

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

equivalent. However, the software has limited information about connections made in
another partition (including the top-level partition), the compilation cannot take
advantage of the equivalence. This restriction usually produces sub-optimal results.

If your design has these types of connections, redefine the partition boundaries to
remove the affected ports. If one signal from a higher-level partition feeds two input
ports of the same partition, feed the one signal into the partition, and then make the
two connections within the partition. If an output port drives an input port of the same
partition, the connection can be made internally without going through any I/O ports.
If an input port drives an output port directly, the connection can likely be
implemented without the ports in the lower-level partition by connecting the signals in
a higher-level partition.

2.5.2.5.1. Example—Single Signal Driving More Than One Port

The figure shows an example of one signal driving more than one port. The left
diagram shows a design where a single clock signal is used to drive both the read and
write clocks of a RAM block. Because the RAM block is compiled as a separate partition
A, the RAM block is implemented as though there are two unique clocks. If you know
that the port connectivity will not change (that is, the ports will always be driven by
the same signal in the top-level partition), redefine the port interface so that there is
only a single port that can drive both connections inside the partition. You can create a
wrapper file to define a partition that has fewer ports, as shown in the diagram on the
right side. With the single clock fed into the partition, the RAM can be optimized into a
single-clock RAM instead of a dual-clock RAM. Single-clock RAM can provide better
performance in the device architecture. Additionally, partition A might use two global
routing lines for the two copies of the clock signal. Partition B can use one global line
that fans out to all destinations. Using just the single port connection prevents
overuse of global routing resources.

Figure 14. Preventing One Signal from Driving Multiple Partition Inputs

Top

rd_clk
wr_clk

Dual-
clock
RAM

A

Clock

Top

rd_clk
wr_clk

Single-
clock
RAM

A

Clock

B

Two clocks cannot be
treated as the same signal:

Poor design partition assignment

With Partition B, RAM can
be optimized for one clock:

Better design partition assignment

Related Information

Incremental Compilation Advisor on page 97

2.5.2.6. Invert Clocks in Destination Partitions

For best results, clock inversion should be performed in the destination logic array
block (LAB) because each LAB contains clock inversion circuitry in the device
architecture. In a flat compilation, the Quartus Prime software can optimize a clock

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

inversion to propagate it to the destination LABs regardless of where the inversion
takes place in the design hierarchy. However, clock inversion cannot propagate
through a partition boundary (except from a parent partition to a child partition) to
take advantage of the inversion architecture in the destination LABs.

2.5.2.6.1. Example—Clock Signal Inversion

With partition boundaries as shown in the left diagram of the figure, the Quartus
Prime software uses logic to invert the signal in the partition that defines the inversion
(the top-level partition in this example), and then routes the signal on a global clock
resource to its destinations (in partitions A and B). The inverted clock acts as a gated
clock with high skew. A better solution is to invert the clock signal in the destination
partitions as shown on the right side of the diagram. In this case, the correct logic and
routing resources can be used, and the signal does not behave like a gated clock.

The figure shows the clock signal inversion in the destination partitions.

Figure 15. Inverting Clock Signal in Destination Partitions

Inverter acts as clock gating (adding skew):
Poor design partition assignment

Clock inverted inside destination LABs,
only one global routing signal:

Better design partition assignment

Clock

Top Top

Clock

A

B

A

B

Notice that this diagram also shows another example of a single pin feeding two ports
of a partition boundary. In the left diagram, partition B does not have the information
that the clock and inverted clock come from the same source. In the right diagram,
partition B has more information to help optimize the design because the clock is
connected as one port of the partition.

2.5.2.7. Connect I/O Pin Directly to I/O Register for Packing Across Partition
Boundaries

The Quartus Prime software allows cross-partition register packing of I/O registers in
certain cases where your input and output pins are defined in the top-level hierarchy
(and the top-level partition), but the corresponding I/O registers are defined in other
partitions.

Input pin cross-partition register packing requires the following specific circumstances:

• The input pin feeds exactly one register.

• The path between the input pin and register includes only input ports of partitions
that have one fan-out each.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Output pin cross-partition register packing requires the following specific
circumstances:

• The register feeds exactly one output pin.

• The output pin is fed by only one signal.

• The path between the register and output pin includes only output ports of
partitions that have one fan-out each.

The following examples of I/O register packing illustrate this point using Block Design
File (.bdf) schematics to describe the design logic.

2.5.2.7.1. Example 1—Output Register in Partition Feeding Multiple Output Pins

In this example, the subdesign contains a single register.

Figure 16. Subdesign with One Register, Designated as a Separate Partition

If the top-level design instantiates the subdesign with a single fan-out directly feeding
an output pin, and designates the subdesign as a separate design partition, the
Quartus Prime software can perform cross-partition register packing because the
single partition port feeds the output pin directly.

In this example, the top-level design instantiates the subdesign as an output register
with more than one fan-out signal.

Figure 17. Top-Level Design Instantiating the Subdesign with Two Output Pins

In this case, the Quartus Prime software does not perform output register packing. If
there is a Fast Output Register assignment on pin out, the software issues a
warning that the Fitter cannot pack the node to an I/O pin because the node and the
I/O cell are connected across a design partition boundary.

This type of cross-partition register packing is not allowed because it requires
modification to the interface of the subdesign partition. To perform incremental
compilation, the Quartus Prime software must preserve the interface of design
partitions.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To allow the Quartus Prime software to pack the register in the subdesign with the
output pin out in the figure, restructure your HDL code so that output registers
directly connect to output pins by making one of the following changes:

• Place the register in the same partition as the output pin. The simplest method is
to move the register from the subdesign partition into the partition containing the
output pin. Doing so guarantees that the Fitter can optimize the two nodes without
violating partition boundaries.

• Duplicate the register in your subdesign HDL so that each register feeds only one
pin, and then connect the extra output pin to the new port in the top-level design.
Doing so converts the cross-partition register packing into the simplest case where
each register has a single fan-out.

Figure 18. Modified Subdesign with Two Output Registers and Two Output Ports

Figure 19. Modified Top-Level Design Connecting Two Output Ports to Output Pins

2.5.2.7.2. Example 2—Input Register in Partition Fed by an Inverted Input Pin or Output
Register in Partition Feeding an Inverted Output Pin

In this example, a subdesign designated as a separate partition contains a register.
The top-level design in the figure instantiates the subdesign as an input register with
the input pin inverted. The top-level design instantiates the subdesign as an output
register with the signal inverted before feeding an output pin.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. Top-Level Design Instantiating Subdesign as an Input Register with an
Inverted Input Pin

Figure 21. Top-Level Design Instantiating the Subdesign as an Output Register Feeding
an Inverted Output Pin

In these cases, the Quartus Prime software does not perform register packing. If there
is a Fast Input Register assignment on pin in, as shown in the top figure, or a Fast
Output Register assignment on pin out, as shown in the bottom figure, the Quartus
Prime software issues a warning that the Fitter cannot pack the node to an I/O pin
because the node and I/O cell are connected across a design partition boundary.

This type of register packing is not allowed because it requires moving logic across a
design partition boundary to place into a single I/O device atom. To perform register
packing, either the register must be moved out of the subdesign partition, or the
inverter must be moved into the subdesign partition to be implemented in the register.

To allow the Quartus Prime software to pack the single register in the subdesign with
the input pin in, as shown in top figure or the output pin out, as shown in the bottom
figure, restructure your HDL code to place the register in the same partition as the
inverter by making one of the following changes:

• Move the register from the subdesign partition into the top-level partition
containing the pin. Doing so ensures that the Fitter can optimize the I/O register
and inverter without violating partition boundaries.

• Move the inverter from the top-level block into the subdesign, and then connect
the subdesign directly to a pin in the top-level design. Doing so allows the Fitter to
optimize the inverter into the register implementation, so that the register is
directly connected to a pin, which enables register packing.

2.5.2.8. Do Not Use Internal Tri-States

Internal tri-state signals are not recommended for FPGAs because the device
architecture does not include internal tri-state logic. If designs use internal tri-states
in a flat design, the tri-state logic is usually converted to OR gates or multiplexing
logic. If tri-state logic occurs on a hierarchical partition boundary, the Quartus Prime
software cannot convert the logic to combinational gates because the partition could
be connected to a top-level device I/O through another partition.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The figures below show a design with partitions that are not supported for incremental
compilation due to the internal tri-state output logic on the partition boundaries.
Instead of using internal tri-state logic for partition outputs, implement the correct
logic to select between the two signals. Doing so is good practice even when there are
no partitions, because such logic explicitly defines the behavior for the internal signals
instead of relying on the Quartus Prime software to convert the tri-state signals into
logic.

Figure 22. Unsupported Internal Tri-State Signals

Top

Design results in Quartus Prime error message:
The software cannot synthesize this

design and maintain incremental functionality.

Figure 23. Merged Partition Allows Synthesis to Convert Internal Tri-State Logic to
Combinational Logic

Top

Merged Partition

Merged partition allows synthesis to
convert tri-state logic into

combinational logic.

Do not use tri-state signals or bidirectional ports on hierarchical partition boundaries,
unless the port is connected directly to a top-level I/O pin on the device. If you must
use internal tri-state logic, ensure that all the control and destination logic is
contained in the same partition, in which case the Quartus Prime software can convert
the internal tri-state signals into combinational logic as in a flat design. In this
example, you can also merge all three partitions into one partition, as shown in the
bottom figure, to allow the Quartus Prime software to treat the logic as internal tri-
state and perform the same type of optimization as a flat design. If possible, you
should avoid using internal
tri-state logic in any Altera FPGA design to ensure that you get the desired
implementation when the design is compiled for the target device architecture.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.2.9. Include All Tri-State and Enable Logic in the Same Partition

When multiple output signals use tri-state logic to drive a device output pin, the
Quartus Prime software merges the logic into one tri-state output pin. The Quartus
Prime software cannot merge tri-state outputs into one output pin if any of the tri-
state logic occurs on a partition boundary. Similarly, output pins with an output enable
signal cannot be packed into the device I/O cell if the output enable logic is part of a
different partition from the output register. To allow register packing for output pins
with an output enable signal, structure your HDL code or design partition assignments
so that the register and enable logic are defined in the same partition.

The figure shows a design with tri-state output signals that feed a device bidirectional
I/O pin (assuming that the input connection feeds elsewhere in the design and is not
shown in the figure). In the left diagram below, the tri-state output signals appear as
the outputs of two separate partitions. In this case, the Quartus Prime software cannot
implement the specified logic and maintain incremental functionality. In the right
diagram, partitions A and B are merged to group the logic from the two blocks. With
this single partition, the Quartus Prime software can merge the two tri-state output
signals and implement them in the tri-state logic available in the device I/O element.

Figure 24. Including All Tri-State Output Logic in the Same Partition

A

B

Top

A

B

Multiple tri-states on partition boundaries:
Illegal design partitions

Tri-state output logic within merged partition:
Better design partition

Top

Merged Partition

A

B

2.5.2.10. Summary of Guidelines Related to Logic Optimization Across Partitions

To ensure that your design does not require logic optimization across partitions, follow
the guidelines below:

• Include logic in the same partition for optimization and merging

• Include constants in the same partition as logic

• Avoid signals that drive multiple partition I/O or connect I/O together

• Invert clocks in destination partitions

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Connect I/O directly to I/O register for packing across partition boundaries

• Do not use internal tri-states

• Include all tri-state and enable logic in the same partition

Remember that these guidelines are not mandatory when implementing an
incremental compilation flow, but can improve the quality of results. When creating
source design code, follow these guidelines and organize your HDL code to support
good partition boundaries. For designs that are complete, assess whether assigning a
partition affects the resource utilization or timing performance of a design block as
compared to the flat design. Make the appropriate changes to your design or
hierarchy, or merge partitions as required, to improve your results.

2.5.3. Consider a Cascaded Reset Structure

Designs typically have a global asynchronous reset signal where a top-level signal
feeds all partitions. To minimize skew for the high fan-out signal, the global reset
signal is typically placed onto a global routing resource.

In some cases, having one global reset signal can lead to recovery and removal time
problems. This issue is not specific to incremental flows; it could be applicable in any
large high-speed design. In an incremental flow, the global reset signal creates a
timing dependency between the top-level partition and lower-level partitions.

For incremental compilation, it is helpful to minimize the impact of global structures.
To isolate each partition, consider adding reset synchronizers. Using cascaded reset
structures, the intent is to reduce the inter-partition fan-out of the reset signal,
thereby minimizing the effect of the global signal. Reducing the fan-out of the global
reset signal also provides more flexibility in routing the cascaded signals, and might
help recovery and removal times in some cases.

This recommendation can help in large designs, regardless of whether you are using
incremental compilation. However, if one global signal can feed all the logic in its
domain and meet recovery and removal times, this recommendation may not be
applicable for your design. Minimizing global structures is more relevant for
high-performance designs where meeting timing on the reset logic can be challenging.
Isolating each partition and allowing more flexibility in global routing structures is an
additional advantage in incremental flows.

If you add additional reset synchronizers to your design, latency is also added to the
reset path, so ensure that this is acceptable in your design. Additionally, parts of the
design may come out of the reset state in different clock cycles. You can balance the
latency or add hand-shaking logic between partitions, if necessary, to accommodate
these differences.

The signal is first synchronized on the chip following good synchronous design
practices, meaning that the design asynchronously resets, but synchronously releases
from reset to avoid any race conditions or metastability problems. Then, to minimize
the impact of global structures, the circuit employs a divide-and-conquer approach for
the reset structure. By implementing a cascaded reset structure, the reset paths for
each partition are independent. This structure reduces the effect of inter-partition
dependency because the inter-partition reset signals can now be treated as false paths
for timing analysis. In some cases, the reset signal of the partition can be placed on
local lines to reduce the delay added by routing to a global routing line. In other
cases, the signal can be routed on a regional or quadrant clock signal.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The figure shows a cascaded reset structure.

Figure 25. Cascaded Reset Structure

TopFalse Timing
Paths

VCC

Reset

CLRN CLRN

D DQ Q

CLRN CLRN

CLRN CLRN

VCC

VCC

A

B

A_Reset

B_Reset

D D

DD

Q Q

QQ

This circuit design can help you achieve timing closure and partition independence for
your global reset signal. Evaluate the circuit and consider how it works for your
design.

2.5.4. Design Partition Guidelines for Third-Party IP Delivery

There are additional design guidelines that can improve incremental compilation flows
where exported partitions are developed independently. These guidelines are not
always required, but are usually recommended if the design includes partitions
compiled in a separate Quartus Prime project, such as when delivering intellectual
property (IP). A unique challenge of IP delivery for FPGAs is the fact that the partitions
developed independently must share a common set of resources. To minimize issues
that might arise from sharing a common set of resources, you can design partitions
within a single Quartus Prime project, or a copy of the top-level design. A common
project ensures that designers have a consistent view of the top-level design
framework.

Alternatively, an IP designer can export just the post-synthesis results to be integrated
in the top-level design when the post-fitting results from the IP project are not
required. Using a post-synthesis netlist provides more flexibility to the Quartus Prime
Fitter, so that less resource allocation is required. If a common project is not possible,
especially when the project lead plans to integrate the IP's post-fitting results, it is
important that the project lead and IP designer clearly communicate their
requirements.

Related Information

Project Management in Team-Based Design Flows on page 73

2.5.4.1. Allocate Logic Resources

In an incremental compilation design flow in which designers, such as third-party IP
providers, optimize partitions and then export them to a top-level design, the Quartus
Prime software places and routes each partition separately. In some cases, partitions
can use conflicting resources when combined at the top level. Allocation of logic
resources requires that you decide on a set of logic resources (including I/O, LAB logic

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

blocks, RAM and DSP blocks) that the IP block will ”own”. This process can be
interactive; the project lead and the IP designer might work together to determine
what resources are required for the IP block and are available in the top-level design.

You can constrain logic utilization for the IP core using design floorplan location
assignments. The design should specify I/O pin locations with pin assignments.

You can also specify limits for Quartus Prime synthesis to allocate and balance
resources. This procedure can also help if device resources are overused in the
individual partitions during synthesis.

In the standard synthesis flow, the Quartus Prime software can perform automated
resource balancing for DSP blocks or RAM blocks and convert some of the logic into
regular logic cells to prevent overuse.

You can use the Quartus Prime synthesis options to control inference of IP cores that
use the DSP, or RAM blocks. You can also use the IP Catalog and Parameter Editor to
customize your RAM or DSP IP cores to use regular logic instead of the dedicated
hardware blocks.

Related Information

Introduction to Design Floorplans on page 105

2.5.4.2. Allocate Global Routing Signals and Clock Networks if Required

In most cases, you do not have to allocate global routing signals because the
Quartus Prime software finds the best solution for the global signals. However, if your
design is complex and has multiple clocks, especially for a partition developed by a
third-party IP designer, you may have to allocate global routing resources between
various partitions.

Global routing signals can cause conflicts when independent partitions are integrated
into a top-level design. The Quartus Prime software automatically promotes high fan-
out signals to use global routing resources available in the device. Third-party
partitions can use the same global routing resources, thus causing conflicts in the top-
level design. Additionally, LAB placement depends on whether the inputs to the logic
cells within the LAB use a global clock signal. Problems can occur if a design does not
use a global signal in a lower-level partition, but does use a global signal in the top-
level design.

If the exported IP core is small, you can reduce the potential for problems by using
constraints to promote clock and high fan-out signals to regional routing signals that
cover only part of the device, instead of global routing signals. In this case, the
Quartus Prime software is likely to find a routing solution in the top-level design
because there are many regional routing signals available on most Altera devices, and
designs do not typically overuse regional resources.

To ensure that an IP block can utilize a regional clock signal, view the resource
coverage of regional clocks in the Chip Planner, and then align LogicLock regions that
constrain partition placement with available global clock routing resources. For
example, if the LogicLock region for a particular partition is limited to one device
quadrant, that partition’s clock can use a regional clock routing type that covers only
one device quadrant. When all partition logic is available, the project lead can compile
the entire design at the top level with floorplan assignments to allow the use of
regional clocks that span only a part of the device.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If global resources are heavily used in the overall design, or the IP designer requires
global clocks for their partition, you can set up constraints to avoid signal overuse at
the top-level by assigning the appropriate type of global signals or setting a maximum
number of clock signals for the partition.

You can use the Global Signal assignment to force or prevent the use of a global
routing line, making the assignment to a clock source node or signal. You can also
assign certain types of global clock resources in some device families, such as regional
clocks. For example, if you have an IP core, such as a memory interface that specifies
the use of a dual regional clock, you can constrain the IP to part of the device covered
by a regional clock and change the Global Signal assignment to use a regional clock.
This type of assignment can reduce clocking congestion and conflicts.

Alternatively, partition designers can specify the number of clocks allowed in the
project using the maximum clocks allowed options in the Advanced Settings
(Fitter) dialog box. Specify Maximum number of clocks of any type allowed, or
use the Maximum number of global clocks allowed, Maximum number of
regional clocks allowed, and Maximum number of periphery clocks allowed
options to restrict the number of clock resources of a particular type in your design.

If you require more control when planning a design with integrated partitions, you can
assign a specific signal to use a particular clock network in newer device families by
assigning the clock control block instance called CLKCTRL. You can make a point-to-
point assignment from a clock source node to a destination node, or a single-point
assignment to a clock source node with the Global Clock CLKCTRL Location logic
option. Set the assignment value to the name of the clock control block:
CLKCTRL_G<global network number> for a global routing network, or
CLKCTRL_R<regional network number> for a dedicated regional routing network in
the device.

If you want to disable the automatic global promotion performed in the Fitter to
prevent other signals from being placed on global (or regional) routing networks, turn
off the Auto Global Clock and Auto Global Register Control Signals options in the
Advanced Settings (Fitter) dialog box.

If you are using design partition scripts for independent partitions, the Quartus Prime
software can automatically write the commands to pass global constraints and turn off
automatic options.

Alternatively, to avoid problems when integrating partitions into the top-level design,
you can direct the Fitter to discard the placement and routing of the partition netlist
by using the post-synthesis netlist, which forces the Fitter to reassign all the global
signals for the partition when compiling the top-level design.

2.5.4.3. Assign Virtual Pins

Virtual pins map lower-level design I/Os to internal cells. If you are developing an IP
block in an independent Quartus Prime project, use virtual pins when the number of
I/Os on a partition exceeds the device I/O count, and to increase the timing accuracy
of cross-partition paths.

You can create a virtual pin assignment in the Assignment Editor for partition I/Os that
will become internal nodes in the top-level design. When you apply the Virtual Pin
assignment to an input pin, the pin no longer appears as an FPGA pin, but is fixed to
GND or VCC in the design. The assigned pin is not an open node. Leave the clock pins
mapped to I/O pins to ensure proper routing.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can specify locations for the virtual pins that correspond to the placement of other
partitions, and also make timing assignments to the virtual pins to define a timing
budget. Virtual pins are created automatically from the top-level design if you use
design partition scripts. The scripts place the virtual pins to correspond with the
placement of the other partitions in the top-level design.

Note: Tri-state outputs cannot be assigned as virtual pins because internal tri-state signals
are not supported in Altera devices. Connect the signal in the design with regular
logic, or allow the software to implement the signal as an external device I/O pin.

2.5.4.4. Perform Timing Budgeting if Required

If you optimize partitions independently and integrate them to the top-level design, or
compile with empty partitions, any unregistered paths that cross between partitions
are not optimized as entire paths. In these cases, the Quartus Prime software has no
information about the placement of the logic that connects to the I/O ports. If the
logic in one partition is placed far away from logic in another partition, the routing
delay between the logic can lead to problems in meeting timing requirements. You can
reduce this effect by ensuring that input and output ports of the partitions are
registered whenever possible. Additionally, using the same top-level project
framework helps to avoid this problem by providing the software with full information
about other design partitions in the top-level design.

To ensure that the software correctly optimizes the input and output logic in any
independent partitions, you might be required to perform some manual timing
budgeting. For each unregistered timing path that crosses between partitions, make
timing assignments on the corresponding I/O path in each partition to constrain both
ends of the path to the budgeted timing delay. Assigning a timing budget for each part
of the connection ensures that the software optimizes the paths appropriately.

When performing manual timing budgeting in a partition for I/O ports that become
internal partition connections in a top-level design, you can assign location and timing
constraints to the virtual pin that represents each connection to further improve the
quality of the timing budget.

Note: If you use design partition scripts, the Quartus Prime software can write I/O timing
budget constraints automatically for virtual pins.

2.5.4.5. Drive Clocks Directly

When partitions are exported from another Quartus Prime project, you should drive
partition clock inputs directly with device clock input pins.

Connecting the clock signal directly avoids any timing analysis difficulties with gated
clocks. Clock gating is never recommended for FPGA designs because of potential
glitches and clock skew. Clock gating can be especially problematic with exported
partitions because the partitions have no information about gating that takes place at
the top-level design or in another partition. If a gated clock is required in a partition,
perform the gating within that partition.

Direct connections to input clock pins also allows design partition scripts to send
constraints from the top-level device pin to lower-level partitions.

Related Information

Invert Clocks in Destination Partitions on page 84

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.4.6. Recreate PLLs for Lower-Level Partitions if Required

If you connect a PLL in your top-level design to partitions designed in separate
Quartus Prime projects by third-party IP designers, the IP partitions do not have
information about the multiplication, phase shift, or compensation delays for the PLL
in the top-level design. To accommodate the PLL timing, you can make appropriate
timing assignments in the projects created by IP designers to ensure that clocks are
not left unconstrained or constrained with an incorrect frequency. Alternatively, you
can duplicate the top-level PLL (or other derived clock logic) in the design file for the
project created by the IP designer to ensure that you have the correct PLL parameters
and clock delays for a complete and accurate timing analysis.

If the project lead creates a copy of the top-level project framework that includes all
the settings and constraints needed for the design, this framework should include PLLs
and other interface logic if this information is important to optimize partitions.

If you use a separate Quartus Prime project for an independent design block (such as
when a designer or third-party IP provider does not have access to the entire design
framework), include a copy of the top-level PLL in the lower-level partition as shown in
figure.

In either case, the IP partition in the separate Quartus Prime project should contain
just the partition logic that will be exported to the top-level design, while the full
project includes more information about the top-level design. When the partition is
complete, you can export just the partition without exporting the auxiliary PLL
components to the top-level design. When you export a partition, the Quartus Prime
software exports any hierarchy under the specified partition into the Quartus Prime
Exported Partition File (.qxp), but does not include logic defined outside the partition
(the PLL in this example).

Figure 26. Recreating a Top-Level PLL in a Lower-Level Partition

Device Input
Clock

Other Inputs
from Device

Pins

PLL From
Top-Level

Design

Virtual
Input
Pins Lower-Level

Partition
to be

Exported

Virtual
Output

Pins

Outputs to
Device Pins

Top Partition
in Lower-Level

Project

2.6. Checking Partition Quality

There are several tools you can use to create and analyze partitions in the Quartus
Prime software. Take advantage of these tools to assess your partition quality, and use
the information to improve your design or assignments as required to achieve the best
results.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.1. Incremental Compilation Advisor

You can use the Incremental Compilation Advisor to ensure that your design follows
Altera’s recommendations for creating design partitions and implementing the
incremental compilation design flow methodology. Each recommendation in the
Incremental Compilation Advisor provides an explanation, describes the effect of the
recommendation, and provides the action required to make the suggested change.

Related Information

• Incremental Compilation Advisor on page 97

• Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
documentation on page 7

2.6.2. Design Partition Planner

The Design Partition Planner allows you to view design connectivity and hierarchy, and
can assist you in creating effective design partitions that follow the guidelines in this
manual. You can also use the Design Partition Planner to optimize design performance
by isolating and resolving failing paths on a partition-by-partition basis.

To view a design and create design partitions in the Design Partition Planner, you must
first compile the design, or perform Analysis & Synthesis. In the Design Partition
Planner, the design appears as a single top-level design block, with lower-level
instances displayed as color-specific boxes.

In the Design Partition Planner, you can show connectivity between blocks and extract
instances from the top-level design block. When you extract entities, connection
bundles are drawn between entities, showing the number of connections existing
between pairs of entities. When you have extracted a design block that you want to
set as a design partition, right-click that design block, and then click Create Design
Partition.

The Design Partition Planner also has an auto-partition feature that creates partitions
based on the size and connectivity of the hierarchical design blocks. You can right-click
the design block you want to partition (such as the top-level design hierarchy), and
then click Auto-Partition Children. You can then analyze and adjust the partition
assignments as required.

The figure shows the Design Partition Planner after making a design partition
assignment to one instance and dragging another instance away from the top-level
block within the same partition (two design blocks in the pale blue shaded box). The
figure shows the connections between each partition and information about the size of
each design instance.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

97

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 27. Design Partition Planner

You can switch between connectivity display mode and hierarchical display mode, to
examine the view-only hierarchy display. You can also remove the connection lines
between partitions and I/O banks by turning off Display connections to I/O banks,
or use the settings on the Connection Counting tab in the Bundle Configuration
dialog box to adjust how the connections are counted in the bundles.

To optimize design performance, confine failing paths within individual design
partitions so that there are no failing paths passing between partitions. In the top-
level entity, child entities that contain failing paths are marked by a small red dot in
the upper right corner of the entity box.

To view the critical timing paths from a timing analyzer report, first perform a timing
analysis on your design, and then in the Design Partition Planner, click Show Timing
Data on the View menu.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.3. Viewing Design Partition Planner and Floorplan Side-by-Side

You can use the Design Partition Planner together with the Chip Planner to analyze
natural placement groupings. This information can help you decide whether the design
blocks should be grouped together in one partition, or whether they will make good
partitions in the next compilation. It can also help determine whether the logic can
easily be constrained by a LogicLock region. If logic naturally groups together when
compiled without placement constraints, you can probably assign a reasonably sized
LogicLock region to constrain the placement for subsequent compilations. You can
experiment by extracting different design blocks in the Design Partition Planner and
viewing the placement results of those design blocks from the previous compilation.

To view the Design Partition Planner and Chip Planner side-by-side, open the Design
Partition Planner, and then open the Chip Planner and select the Design Partition
Planner task. The Design Partition Planner task displays the physical locations of
design entities with the same colors as in the Design Partition Planner.

In the Design Partition Planner, you can extract instances of interest from their parents
by dragging and dropping, or with the Extract from Parent command. Evaluate the
physical locations of instances in the Chip Planner and the connectivity between
instances displayed in the Design Partition Planner. An entity is generally not suitable
to be set as a separate design partition or constrained in a LogicLock region if the Chip
Planner shows it physically dispersed over a noncontiguous area of the device after
compilation. Use the Design Partition Planner to analyze the design connections. Child
instances that are unsuitable to be set as separate design partitions or placed in
LogicLock regions can be returned to their parent by dragging and dropping, or with
the Collapse to Parent command.

The figure shows a design displayed in the Design Partition Planner and the Chip
Planner with different colors for the top-level design and the three major design
instances.

Figure 28. Design Partition Planner and Chip Planner

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.4. Partition Statistics Report

You can view statistics about design partitions in the Partition Merge Partition
Statistics report and the Statistics tab of the Design Partitions Properties dialog
box. These reports are useful when optimizing your design partitions, or when
compiling the completed top-level design in a team-based compilation flow to ensure
that partitions meet the guidelines discussed in this manual.

The Partition Merge Partition Statistics report in the Partition Merge section of the
Compilation report lists statistics about each partition. The statistics for each partition
(each row in the table) include the number of logic cells, as well as the number of
input and output pins and how many are registered. This report also lists how many
ports are unconnected, or driven by a constant VCC or GND. You can use this
information to assess whether you have followed the guidelines for partition
boundaries.

You can also view statistics about the resource and port connections for a particular
partition on the Statistics tab of the Design Partition Properties dialog box. The
Show All Partitions button allows you to view all the partitions in the same report.
The Partition Merge Partition Statistics report also shows statistics for the Internal
Congestion: Total Connections and Registered Connections. This information
represents how many signals are connected within the partition. It then lists the inter-
partition connections for each partition, which helps you to see how partitions are
connected to each other.

2.6.5. Report Partition Timing in the Timing Analyzer

The Report Partitions diagnostic report and the report_partitions SDC command
in the Timing Analyzer produce a Partition Timing Overview and Partition Timing
Details table, which lists the partitions, the number of failing paths, and the worst
case timing slack within each partition.

You can use these reports to analyze the location of the critical timing paths in the
design in relation to partitions. If a certain partition contains many failing paths, or
failing inter-partition paths, you might be able to change your partitioning scheme and
improve timing performance.

Related Information

Quartus Prime Timing Analyzer documentation
Information about the Timing Analyzer report_timing command and reports

2.6.6. Check if Partition Assignments Impact the Quality of Results

You can ensure that you limit negative effect on the quality of results by following an
iterative methodology during the partitioning process. In any incremental compilation
flow where you can compile the source code for every partition during the partition
planning phase, Altera recommends the following iterative flow:

1. Start with a complete design that is not partitioned and has no location or
LogicLock region assignments.

To run a full compilation, use the Start Compilation command.

2. Record the quality of results from the Compilation report (timing slack or fMAX,
area and any other relevant results).

3. Create design partitions following the guidelines described in this manual.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

100

https://www.intel.com/content/www/us/en/docs/programmable/683068.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Recompile the design.

5. Record the quality of results from the Compilation report. If the quality of results
is significantly worse than those obtained in the previous compilation, repeat step
3 through step 5 to change your partition assignments and use a different
partitioning scheme.

6. Even if the quality of results is acceptable, you can repeat step 3 through step 5
by further dividing a large partition into several smaller partitions, which can
improve compilation time in subsequent incremental compilations. You can repeat
these steps until you achieve a good trade-off point (that is, all critical paths are
localized within partitions, the quality of results is not negatively affected, and the
size of each partition is reasonable).

You can also remove or disable partition assignments defined in the top-level design at
any time during the design flow to compile the design as one flat compilation and get
all possible design optimizations to assess the results. To disable the partitions without
deleting the assignments, use the Ignore partition assignments during
compilation option on the Incremental Compilation page of the Settings dialog
box in the Quartus Prime software. This option disables all design partition
assignments in your project and runs a full compilation, ignoring all partition
boundaries and netlists. This option can be useful if you are using partitions to reduce
compilation time as you develop various parts of the design, but can run a long
compilation near the end of the design cycle to ensure the design meets its timing
requirements.

2.7. Including SDC Constraints from Lower-Level Partitions for
Third-Party IP Delivery

When exported partitions are compiled in a separate Quartus Prime project, such as
when a third-party designer is delivering IP, the project lead must transfer the top-
level project framework information and constraints to the partitions, so that each
designer has a consistent view of the constraints that apply to the entire design. If the
independent partition designers make any changes or add any constraints, they might
have to transfer new constraints back to the project lead, so that these constraints are
included in final timing sign-off of the entire design. Many assignments from the
partition are carried with the partition into the top-level design; however, SDC format
constraints for the Timing Analyzer are not copied into the top-level design
automatically.

Passing additional timing constraints from a partition to the top-level design must be
managed carefully. You can design within a single Quartus Prime project or a copy of
the top-level design to simplify constraint management.

To ensure that there are no conflicts between the project lead’s top-level constraints
and those added by the third-party IP designer, use two .sdc files for each separate
Quartus Prime project: an .sdc created by the project lead that includes project-wide
constraints, and an .sdc created by the IP designer that includes partition-specific
constraints.

The example design shown in the figure below is used to illustrate recommendations
for managing the timing constraints in a third-party IP delivery flow. The top-level
design instantiates a lower-level design block called module_A that is set as a design
partition and developed by an IP designer in a separate Quartus Prime project.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29. Example Design to Illustrate SDC Constraints

In this top-level design, there is a single clock setting called clk associated with the
FPGA input called top_level_clk. The top-level .sdc contains the following
constraint for the clock:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 } \
[get_ports {TOP_LEVEL_CLK}]

2.7.1. Creating an .sdc File with Project-Wide Constraints

The .sdc with project-wide constraints for the separate Quartus Prime project should
contain all constraints that are not completely localized to the partition. The .sdc
should be maintained by the project lead. The project lead must ensure that these
timing constraints are delivered to the individual partition owners and that they are
syntactically correct for each of the separate Quartus Prime projects. This
communication can be challenging when the design is in flux and hierarchies change.
The project lead can use design partition scripts to automatically pass some of these
constraints to the separate Quartus Prime projects.

The .sdc with project-wide constraints is used in the partition, but is not exported
back to the top-level design. The partition designer should not modify this file. If
changes are necessary, they should be communicated to the project lead, who can
then update the SDC constraints and distribute new files to all partition designers as
required.

The .sdc should include clock creation and clock constraints for any clock used by
more than one partition. These constraints are particularly important when working
with complex clocking structures, such as the following:

• Cascaded clock multiplexers

• Cascaded PLLs

• Multiple independent clocks on the same clock pin

• Redundant clocking structures required for secure applications

• Virtual clocks and generated clocks that are consistently used for source
synchronous interfaces

• Clock uncertainties

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Additionally, the .sdc with project-wide constraints should contain all project-wide
timing exception assignments, such as the following:

• Multicycle assignments, set_multicycle_path

• False path assignments, set_false_path

• Maximum delay assignments, set_max_delay

• Minimum delay assignments, set_min_delay

The project-wide .sdc can also contain any set_input_delay or
set_output_delay constraints that are used for ports in separate Quartus Prime
projects, because these represent delays external to a given partition. If the partition
designer wants to set these constraints within the separate Quartus Prime projects,
the team must ensure that the I/O port names are identical in all projects so that the
assignments can be integrated successfully without changes.

Similarly, a constraint on a path that crosses a partition boundary should be in the
project-wide .sdc, because it is not completely localized in a separate Quartus Prime
project.

2.7.1.1. Example Step 1—Project Lead Produces .sdc with Project-Wide
Constraints for Lower-Level Partitions

The device input top_level_clk in Figure 29 on page 102 drives the input_clk
port of module_A. To make sure the clock constraint is passed correctly to the
partition, the project lead creates an .sdc with project-wide constraints for module_A
that contains the following command:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 } [get_ports
{INPUT_CLK}]

The designer of module_A includes this .sdc as part of the separate Quartus Prime
project.

2.7.2. Creating an .sdc with Partition-Specific Constraints

The .sdc with partition-specific constraints should contain all constraints that affect
only the partition. For example, a set_false_path or set_multicycle_path
constraint for a path entirely within the partition should be in the partition-
specific .sdc. These constraints are required for correct compilation of the partition,
but do not need to be present in any other separate Quartus Prime projects.

The partition-specific .sdc should be maintained by the partition designer; they must
add any constraints required to properly compile and analyze their partition.

The partition-specific .sdc is used in the separate Quartus Prime project and must be
exported back to the project lead for the top-level design. The project lead must use
the partition-specific constraints to properly constrain the placement, routing, or both,

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

if the partition logic is fit at the top level, and to ensure that final timing sign-off is
accurate. Use the following guidelines in the partition-specific .sdc to simplify these
export and integration steps:

• Create a hierarchy variable for the partition (such as module_A_hierarchy) and
set it to an empty string because the partition is the top-level instance in the
separate Quartus Prime project. The project lead modifies this variable for the top-
level hierarchy, reducing the effort of translating constraints on lower-level design
hierarchies into constraints that apply in the top-level hierarchy. Use the following
Tcl command first to check if the variable is already defined in the project, so that
the top-level design does not use this empty hierarchy path: if {![info
exists module_A_hierarchy]}.

• Use the hierarchy variable in the partition-specific .sdc as a prefix for
assignments in the project. For example, instead of naming a particular instance
of a register reg:inst, use ${module_A_hierarchy}reg:inst. Also, use the
hierarchy variable as a prefix to any wildcard characters (such as ” * ”).

• Pay attention to the location of the assignments to I/O ports of the partition. In
most cases, these assignments should be specified in the .sdc with project-wide
constraints, because the partition interface depends on the top-level design. If you
want to set I/O constraints within the partition, the team must ensure that the I/O
port names are identical in all projects so that the assignments can be integrated
successfully without changes.

• Use caution with the derive_clocks and derive_pll_clocks commands. In
most cases, the .sdc with project-wide constraints should call these commands.
Because these commands impact the entire design, integrating them unexpectedly
into the top-level design might cause problems.

If the design team follows these recommendations, the project lead should be able to
include the .sdc with the partition-specific constraints provided by the partition
designer directly in the top-level design.

2.7.2.1. Example Step 2—Partition Designer Creates .sdc with Partition-Specific
Constraints

The partition designer compiles the design with the .sdc with project-wide constraints
and might want to add some additional constraints. In this example, the designer
realizes that he or she must specify a false path between the register called
reg_in_1 and all destinations in this design block with the wildcard character (such
as ” * ”). This constraint applies entirely within the partition and must be exported to
the top-level design, so it qualifies for inclusion in the .sdc with partition-specific
constraints. The designer first defines the module_A_hierarchy variable and uses it
when writing the constraint as follows:

if {![info exists module_A_hierarchy]} {
 set module_A_hierarchy ""
}
set_false_path -from [get_registers ${module_A_hierarchy}reg_in_1] \
-to [get_registers ${module_A_hierarchy}*]

2.7.3. Consolidating the .sdc in the Top-Level Design

When the partition designers complete their designs, they export the results to the
project lead. The project lead receives the exported .qxp files and a copy of the .sdc
with partition-specific constraints.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

104

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To set up the top-level .sdc constraint file to accept the .sdc files from the separate
Quartus Prime projects, the top-level .sdc should define the hierarchy variables
specified in the partition .sdc files. List the variable for each partition and set it to the
hierarchy path, up to and including the instantiation of the partition in the top-level
design, including the final hierarchy character ”|”.

To ensure that the .sdc files are used in the correct order, the project lead can use
the Tcl Source command to load each .sdc.

2.7.3.1. Example Step 3—Project Lead Performs Final Timing Analysis and Sign-
off

With these commands, the top-level .sdc file looks like the following example:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 } \
[get_ports {TOP_LEVEL_CLK}]
Include the lower-level SDC file
set module_A_hierarchy "module_A:inst|" # Note the final '|' character
source <partition-specific constraint file such as ..\module_A
\module_A_constraints>.sdc

When the project lead performs top-level timing analysis, the false path assignment
from the lower-level module_A project expands to the following:

set_false_path -from module_A:inst|reg_in_1 -to module_A:inst|*

Adding the hierarchy path as a prefix to the SDC command makes the constraint legal
in the top-level design, and ensures that the wildcard does not affect any nodes
outside the partition that it was intended to target.

2.8. Introduction to Design Floorplans

A floorplan represents the layout of the physical resources on the device. Creating a
design floorplan, or floorplanning, describes the process of mapping the logical design
hierarchy onto physical regions in the device.

In the Quartus Prime software, LogicLock regions can be used to constrain blocks of a
design to a particular region of the device. LogicLock regions represent an area on the
device with a user-defined or Fitter-defined size and location in the device layout.

Related Information

Analyzing and Optimizing the Design Floorplan with the Chip Planner documentation

2.8.1. The Difference between Logical Partitions and Physical Regions

Design partitions are logical entities based on the design hierarchy. LogicLock regions
are physical placement assignments that constrain logic to a particular region on the
device.

A common misconception is that logic from a design partition is always grouped
together on the device when you use incremental compilation. Actually, logic from a
partition can be placed anywhere in the device if it is not constrained to a LogicLock
region, although the Fitter can pack related logic together to improve timing
performance. A logical design partition does not refer to any physical area on the
device and does not directly control where instances are placed on the device.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

105

https://www.intel.com/content/www/us/en/docs/programmable/683230/current/analyzing-and-optimizing-the-design-03170.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you want to control the placement of logic from a design partition and isolate it to a
particular part of the device, you can assign the logical design partition to a physical
region in the device floorplan with a LogicLock region assignment. Altera recommends
creating a design floorplan by assigning design partitions to LogicLock regions to
improve the quality of results and avoid placement conflicts in some situations for
incremental compilation.

Another misconception is that LogicLock assignments are used to preserve placement
results for incremental compilation. Actually, LogicLock regions only constrain logic to
a physical region on the device. Incremental compilation does not use LogicLock
assignments or any location assignments to preserve the placement results; it simply
reuses the results stored in the database netlist from a previous compilation.

2.8.2. Why Create a Floorplan?

Creating a design floorplan is usually required if you want to preserve placement for
partitions that will be exported, to avoid resource conflicts between partitions in the
top-level design. Floorplan location planning can be important for a design that uses
incremental compilation, for the following reasons:

• To avoid resource conflicts between partitions, predominantly when integrating
partitions exported from another Quartus Prime project.

• To ensure good quality of results when recompiling individual timing-critical
partitions.

Location assignments for each partition ensure that there are no placement conflicts
between partitions. If there are no LogicLock region assignments, or if LogicLock
regions are set to auto-size or floating location, no device resources are specifically
allocated for the logic associated with the region. If you do not clearly define resource
allocation, logic placement can conflict when you integrate the partitions in the top-
level design if you reuse the placement information from the exported netlist.

Creating a floorplan is also recommended for timing-critical partitions that have little
timing margin to maintain good quality of results when the design changes.

Floorplan assignments are not required for non-critical partitions compiled in the same
Quartus Prime project. The logic for partitions that are not timing-critical can be
placed anywhere in the device on each recompilation if that is best for your design.

Design floorplan assignments prevent the situation in which the Fitter must place a
partition in an area of the device where most resources are used by other partitions. A
LogicLock region provides a reasonable region to re-place logic after a change, so the
Fitter does not have to scatter logic throughout the available space in the device.

The figure illustrates the problems that may be associated with refitting designs that
do not have floorplan location assignments. The left floorplan shows the initial
placement of a four-partition design (P1-P4) without any floorplan location
assignments. The right floorplan shows the device if a change occurs to P3. After
removing the logic for the changed partition, the Fitter must re-place and reroute the
new logic for P3 in the scattered white space. The placement of the post-fit netlists for
other partitions forces the Fitter to implement P3 with the device resources that have
not been used.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 30. Representation of Device Floorplan without Location Assignments

P1
P3

P3

P4P1

P2

P2

P1

No floorplan assignments: Device has 4 partitions
and the logic is placed throughout

P3

P1

P4P1

P2

P2

P1

Device after removing changed partition P3:
New P3 must be placed in empty areas

Change in P3

The Fitter has a more difficult task because of more difficult physical constraints, and
as a result, compilation time often increases. The Fitter might not be able to find any
legal placement for the logic in partition P3, even if it could in the initial compilation.
Additionally, if the Fitter can find a legal placement, the quality of results often
decreases in these cases, sometimes dramatically, because the new partition is now
scattered throughout the device.

The figure below shows the initial placement of a four-partition design with floorplan
location assignments. Each partition is assigned to a LogicLock region. The second
part of the figure shows the device after partition P3 is removed. This placement
presents a much more reasonable task to the Fitter and yields better results.

Figure 31. Representation of Device Floorplan with Location Assignments

P2 P3

P1 P4

With floorplan location assignments: Device has
4 partitions placed in 4 LogicLock regions

Device after removing changed partition P3:
Much easier to place new P3 partition in empty area

P2

P1 P4

Change in P3

Altera recommends that you create a LogicLock floorplan assignment for timing-critical
blocks with little timing margin that will be recompiled as you make changes to the
design.

2.8.3. When to Create a Floorplan

It is important that you plan early to incorporate partitions into the design, and ensure
that each partition follows partitioning guidelines. You can create floorplan
assignments at different stages of the design flow, early or late in the flow. These
guidelines help ensure better results as you begin creating floorplan location
assignments.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.8.3.1. Early Floorplan

An early floorplan is created before the design stage. You can plan an early floorplan
at the top level of a design to allocate each partition a portion of the device resources.
Doing so allows the designer for each block to create the logic for their design
partition without conflicting with other logic. Each partition can be optimized in a
separate Quartus Prime project if required, and the design can still be easily
integrated in the top-level design. Even within one Quartus Prime project, each
partition can be locked down with a post-fit netlist, and you can be sure there is space
in the device floorplan for other partitions.

When you have compiled your complete design, or after you have integrated the first
versions of partitions developed in separate Quartus Prime projects, you can use the
design information and Quartus Prime features to tune and improve the floorplan .

2.8.3.2. Late Floorplan

A late floorplan is created or modified after the design is created, when the code is
close to complete and the design structure is likely to remain stable. Creating a late
floorplan is typically necessary only if you are starting to use incremental compilation
late in the design flow, or need to reserve space for a logic block that becomes timing-
critical but still has HDL changes to be integrated. When the design is complete, you
can take advantage of the Quartus Prime analysis features to check the floorplan
quality. To adjust the floorplan, you can perform iterative compilations as required and
assess the results of different assignments.

Note: It may not be possible to create a good-quality late floorplan if you do not create
partitions in the early stages of the design.

2.9. Design Floorplan Placement Guidelines

The following guidelines are key to creating a good design floorplan:

• Capture correct resources in each region.

• Use good region placement to maintain design performance compared to flat
compilation.

A common misconception is that creating a floorplan enhances timing performance, as
compared to a flat compilation with no location assignments. The Fitter does not
usually require guidance to get optimal results for a full design.

Floorplan assignments can help maintain good performance when designs change
incrementally. However, poor placement assignments in an incremental compilation
can often adversely affect performance results, as compared to a flat compilation,
because the assignments limit the options for the Fitter. Investing time to find good
region placement is required to match the performance of a full flat compilation.

2.9.1. Flow for Creating a Floorplan

Use the following general procedure to create a floorplan:

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Divide the design into partitions.

2. Assign the partitions to LogicLock regions.

3. Compile the design.

4. Analyze the results.

5. Modify the placement and size of regions, as required.

You might have to perform these steps several times to find the best combination of
design partitions and LogicLock regions that meet the resource and timing goals of the
design.

Related Information

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
documentation on page 7

2.9.2. Assigning Partitions to LogicLock Regions

Before compiling a design with new LogicLock assignments, ensure that the partition
netlist type is set to Post-Synthesis or Source File, so that the Fitter does not reuse
previous placement results.

In most cases, you should include logic from one partition in each LogicLock region.
This organization helps to prevent resource conflicts when partitions are exported and
can lead to better performance preservation when locking down parts of a design in a
single project.

The Quartus Prime software is flexible and allows exceptions to this rule. For example,
you can place more than one partition in the same LogicLock region if the partitions
are tightly connected, but you do not want to merge the partitions into one larger
partition. For best results, ensure that you recompile all partitions in the LogicLock
region every time the logic in one partition changes. Additionally, if a partition
contains multiple lower-level entities, you can place those entities in different areas of
the device with multiple LogicLock regions, even if they are defined in the same
partition.

You can use the Reserved LogicLock option to ensure that you avoid conflicts with
other logic that is not locked into a LogicLock region. This option prevents other logic
from being placed in the region, and is useful if you have empty partitions at any point
during your design flow, so that you can reserve space in the floorplan. Do not make
reserved regions too large to prevent unused area because no other logic can be
placed in a region with the Reserved LogicLock option.

Related Information

LogicLock Region Properties Dialog Box online help

2.9.3. How to Size and Place Regions

In an early floorplan, assign physical locations based on design specifications. Use
information about the connections between partitions, the partition size, and the type
of device resources required.

In a late floorplan, when the design is complete, you can use locations or regions
chosen by the Fitter as a guideline. If you have compiled the full design, you can view
the location of the partition logic in the Chip Planner. You can use the natural grouping

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

109

http://quartushelp.altera.com/current/index.htm#optimize/lock/asd_com_logiclock_properties.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

of each unconstrained partition as a starting point for a LogicLock region constraint.
View the placement for each partition that requires a floorplan constraint, and create a
new LogicLock region by drawing a box around the area on the floorplan, and then
assigning the partition to the region to constrain the partition placement.

Instead of creating regions based on the previous compilation results, you can start
with the Fitter results for a default auto size and floating origin location for each new
region when the design logic is complete. After compilation, lock the size and origin
location.

Alternatively, if the design logic is complete with auto-sized or floating location
regions, you can specify the size based on the synthesis results and use the locations
chosen by the Fitter with the Set to Estimated Size command. Like the previous
option, start with floating origin location. After compilation, lock the origin location.
You can also enable the Fast Synthesis Effort setting to reduce synthesis time.

After a compilation, save the Fitter size and origin location of the Fitter with the Set
Size and Origin to Previous Fitter Results command.

Note: It is important that you use the Fitter-chosen locations only as a starting point to give
the regions a good fixed size and location. Ensure that all LogicLock regions in the
design have a fixed size and have their origin locked to a specific location on the
device. On average, regions with fixed size and location yield better timing
performance than auto-sized regions.

Related Information

Checking Partition Quality on page 96

2.9.4. Modifying Region Size and Origin

After saving the Fitter results from an initial compilation for a late floorplan, modify
the regions using your knowledge of the design to set a specific size and location. If
you have a good understanding of how the design fits together, you can often improve
upon the regions placed in the initial compilation. In an early floorplan, when the
design has not yet been created, you can use the guidelines in this section to set the
size and origin, even though there is no initial Fitter placement.

The easiest way to move and resize regions is to drag the region location and borders
in the Chip Planner. Make sure that you select the User-Defined region in the
floorplan (as opposed to the Fitter-Placed region from the last compilation) so that
you can change the region.

Generally, you can keep the Fitter-determined relative placement of the regions, but
make adjustments if required to meet timing performance. Performing a full
compilation ensures that the Fitter can optimize for a full placement and routing.

If two LogicLock regions have several connections between them, ensure they are
placed near each other to improve timing performance. By placing connected regions
near each other, the Fitter has more opportunity to optimize inter-region paths when
both partitions are recompiled. Reducing the criticality of inter-region paths also allows
the Fitter more flexibility when placing other logic in each region.

If resource utilization is low in the overall device, enlarge the regions. Doing so usually
improves the final results because it gives the Fitter more freedom to place additional
or modified logic added to the partition during subsequent incremental compilations. It
also allows room for optimizations such as pipelining and logic duplication.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Try to have each region evenly full, with the same ”fullness” that the complete design
would have without LogicLock regions; Altera recommends approximately 75% full.

Allow more area for regions that are densely populated, because overly congested
regions can lead to poor results. Allow more empty space for timing-critical partitions
to improve results. However, do not make regions too large for their logic. Regions
that are too large can result in wasted resources and also lead to suboptimal results.

Ideally, almost the entire device should be covered by LogicLock regions if all
partitions are assigned to regions.

Regions should not overlap in the device floorplan. If two partitions are allocated on
an overlapping portion of the chip, each may independently claim common resources
in this region. This leads to resource conflicts when integrating results into a top-level
design. In a single project, overlapping regions give more difficult constraints to the
Fitter and can lead to reduced quality of results.

You can create hierarchical LogicLock regions to ensure that the logic in a child
partition is physically placed inside the LogicLock region for its parent partition. This
can be useful when the parent partition does not contain registers at the boundary
with the lower-level child partition and has a lot of signal connectivity. To create a
hierarchical relationship between regions in the LogicLock Regions window, drag and
drop the child region to the parent region.

2.9.5. I/O Connections

Consider I/O timing when placing regions. Using I/O registers can minimize I/O timing
problems, and using boundary registers on partitions can minimize problems
connecting regions or partitions. However, I/O timing might still be a concern. It is
most important for flows where each partition is compiled independently, because the
Fitter can optimize the placement for paths between partitions if the partitions are
compiled at the same time.

Place regions close to the appropriate I/O, if necessary. For example, DDR memory
interfaces have very strict placement rules to meet timing requirements. Incorporate
any specific placement requirements into your floorplan as required. You should create
LogicLock regions for internal logic only, and provide pin location assignments for
external device I/O pins (instead of including the I/O cells in a LogicLock region to
control placement).

2.9.6. LogicLock Resource Exclusions

You can exclude certain resource types from a LogicLock region to manage the ratio of
logic to dedicated DSP and RAM resources in the region.

If your design contains memory or Digital Signal Processing (DSP) elements, you may
want to exclude these elements from the LogicLock region. LogicLock resource
exceptions prevent certain types of elements from being assigned to a region.
Therefore, those elements are not required to be placed inside the region boundaries.
The option does not prevent them from being placed inside the region boundaries
unless the Reserved property of the region is turned on.

Resource exceptions are useful in cases where it is difficult to place rectangular
regions for design blocks that contain memory and DSP elements, due to their
placement in columns throughout the device floorplan. Exclude RAMs, DSPs, or logic
cells to give the Fitter more flexibility with region sizing and placement. Excluding RAM

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

or DSP elements can help to resolve no-fit errors that are caused by regions spanning
too many resources, especially for designs that are memory-intensive, DSP-intensive,
or both. The figure shows an example of a design with an odd-shaped region to
accommodate DSP blocks for a region that does not contain very much logic. The right
side of the figure shows the result after excluding DSP blocks from the region. The
region can be placed more easily without wasting logic resources.

Figure 32. LogicLock Resource Exclusion Example

DSP blocks force
odd-shaped region

DS
P

M
4K

 RA
M

M
51

2 R
AM

M
RA

M

Allows better shape, easier
placement, and less unused

logic resources

DS
P

M
4K

 RA
M

M
51

2 R
AM

M
RA

M

DS
P

M
4K

 RA
M

M
51

2 R
AM

M
RA

M

Exclude DSP
blocks from
LogicLock region

To view any resource exceptions, right-click in the LogicLock Regions window, and
then click LogicLock Regions Properties. In the LogicLock Regions Properties
dialog box, select the design element (module or entity) in the Members box, and
then click Edit. In the Edit Node dialog box, to set up a resource exception, click the
Edit button next to the Excluded element types box, and then turn on the design
element types to be excluded from the region. You can choose to exclude
combinational logic or registers from logic cells, or any of the sizes of TriMatrix
memory blocks, or DSP blocks.

If the excluded logic is in its own lower-level design entity (even if it is within the
same design partition), you can assign the entity to a separate LogicLock region to
constrain its placement in the device.

You can also use this feature with the LogicLock Reserved property to reserve specific
resources for logic that will be added to the design.

2.9.6.1. Creating Floorplan Location Assignments With Tcl Commands—Excluding
or Filtering Certain Device Elements (Such as RAM or DSP Blocks)

To assign a code block to a LogicLock region, with exclusions, use the following
command:

set_logiclock_contents -region <LogicLock region name> \
-to <block> -exceptions \"<keyword>:<keyword>"

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• <LogicLock region name>—The name of the LogicLock region to which the code
block is assigned.

• <block>—A code block in a Quartus Prime project hierarchy, which can also be a
design partition.

• <keyword>—The list of exceptions made during assignment. For example, if DSP
was in the keyword list, the named block of code would be assigned to the
LogicLock region, except for any DSP block within the code block. You can include
the following exceptions in the set_logiclock_contents command:

Keyword variables:

• REGISTER—Any registers in the logic cells.

• COMBINATIONAL—Any combinational elements in the logic cells.

• SMALL_MEM—Small TriMatrix memory blocks (M512 or MLAB).

• MEDIUMEM_MEM—Medium TriMatrix memory blocks (M4K or M9K).

• LARGE_MEM—Large TriMatrix memory blocks (M-RAM or M144K).

• DSP—Any DSP blocks.

• VIRTUAL_PIN—Any virtual pins.

Note: Resource filtering uses the optional Tcl argument -exclude_resources in the
set_logiclock_contents function. If left unspecified, no resource filter is created.
In the .qsf, resource filtering uses an extra LogicLock membership assignment called
LL_MEMBER_RESOURCE_EXCLUDE. For example, the following line in the .qsf is used
to specify a resource filter for the alu:alu_unit entity assigned to the ALU region.

set_instance_assignment -name LL_MEMBER_RESOURCE_EXCLUDE \
"DSP:SMALL_MEM" -to "alu:alu_unit" -section_id ALU

2.9.7. Creating Non-Rectangular Regions

To constrain placement to non-rectangular or non-contiguous areas of the device, you
can connect multiple rectangular regions together using the Merge command.

For devices that do not support the Merge command (MAXTM II devices), you can limit
entity placement to a sub-area of a LogicLock region to create non-rectangular
constraints. In these devices, construct a LogicLock hierarchy by creating child regions
inside of parent regions, and then use the Reserved option to control which logic can
be placed inside these child regions. Setting the Reserved option for the region
prevents the Fitter from placing nodes that are not assigned to the region inside the
boundary of the region.

2.10. Checking Floorplan Quality

The Quartus Prime software has several tools to help you create a floorplan. You can
use these tools to assess your floorplan quality and use the information to improve
your design or assignments as required to achieve the best results.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.1. Incremental Compilation Advisor

You can use the Incremental Compilation Advisor to check that your design follows the
recommendations for creating floorplan location assignments that are presented in
this manual.

2.10.2. LogicLock Region Resource Estimates

You can view resource estimates for a LogicLock region to determine the region’s
resource coverage, and use this estimate before compilation to check region size.
Using this estimate helps to ensure adequate resources when you are sizing or moving
regions.

2.10.3. LogicLock Region Properties Statistics Report

LogicLock region statistics are similar to design partition properties, but also include
resource usage details after compilation.

The statistics report the number of resources used and the total resources covered by
the region, and also lists the number of I/O connections and how many I/Os are
registered (good), as well as the number of internal connections and the number of
inter-region connections (bad).

2.10.4. Locate the Quartus Prime Timing Analyzer Path in the Chip
Planner

In the Timing Analyzer user interface, you can locate a specific path in the Chip
Planner to view its placement and perform a report timing operation (for example,
report timing for all paths with less than 0 ns slack).

2.10.5. Inter-Region Connection Bundles

The Chip Planner can display bundles of connections between LogicLock regions, with
filtering options that allow you to choose the relevant data for display. These bundles
can help you to visualize how many connections there are between each LogicLock
region to improve floorplan assignments or to change partition assignments, if
required.

2.10.6. Routing Utilization

The Chip Planner includes a feature to display a color map of routing congestion. This
display helps identify areas of the chip that are too tightly packed.

In the Chip Planner, red LAB blocks indicate higher routing congestion. You can
position the mouse pointer over a LAB to display a tooltip that reports the logic and
routing utilization information.

2.10.7. Ensure Floorplan Assignments Do Not Significantly Impact Quality
of Results

The end results of design partitioning and floorplan creation differ from design to
design. However, it is important to evaluate your results to ensure that your scheme is
successful. Compare your before and after results, and consider using another scheme
if any of the following guidelines are not met:

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

114

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• You should see only minor degradation in fMAX after the design is partitioned and
floorplan location assignments are created. There is some performance cost
associated with setting up a design for incremental compilation; approximately 3%
is typical.

• The area increase should be no more than 5% after the design is partitioned and
floorplan location assignments are created.

• The time spent in the routing stage should not significantly increase.

The amount of compilation time spent in the routing stage is reported in the Messages
window with an Info message that indicates the elapsed time for Fitter routing
operations. If you notice a dramatic increase in routing time, the floorplan location
assignments may be creating substantial routing congestion. In this case, decrease
the number of LogicLock regions, which typically reduces the compilation time in
subsequent incremental compilations and may also improve design performance.

2.11. Recommended Design Flows and Application Examples

Listed below are application examples with design flows for partitioning and creating a
design floorplan during common timing closure and team-based design scenarios.
Each flow describes the situation in which it should be used, and provides a step-by-
step description of the commands required to implement the flow.

2.11.1. Create a Floorplan for Major Design Blocks

Use this incremental compilation flow for designs when you want to assign a floorplan
location for each major block in your design. A full floorplan ensures that partitions do
not interact as they are changed and recompiled— each partition has its own area of
the device floorplan.

To create a floorplan for major design blocks, follow this general methodology:

1. In the Design Partitions window, ensure that all partitions have their netlist type
set to Source File or Post-Synthesis. If the netlist type is set to Post-Fit,
floorplan location assignments are not used when recompiling the design.

2. Create a LogicLock region for each partition (including the top-level entity, which
is set as a partition by default).

3. Run a full compilation of your design to view the initial Fitter-chosen placement of
the LogicLock regions as a guideline.

4. In the Chip Planner, view the placement results of each partition and LogicLock
region on the device.

5. If required, modify the size and location of the LogicLock regions in the Chip
Planner. For example, enlarge the regions to fill up the device and allow for future
logic changes.You can also, if needed, create a new LogicLock region by drawing a
box around an area on the floorplan.

6. Run the Compiler with the Start Compilation command to determine the timing
performance of your design with the modified or new LogicLock regions.

7. Repeat steps 5 and 6 until you are satisfied with the quality of results for your
design floorplan. Once you are satisfied with your results, run a full compilation of
your design.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.11.2. Create a Floorplan Assignment for One Design Block with Difficult
Timing

Use this flow when you have one timing-critical design block that requires more
optimization than the rest of your design. You can take advantage of incremental
compilation to reduce your compilation time without creating a full design floorplan.

In this scenario, you do not want to create floorplan assignments for the entire design.
Instead, you can create a region to constrain the location of your critical design block,
and allow the rest of the logic to be placed anywhere on the device. To create a region
for critical design block, follow these steps:

1. Divide up your design into partitions. Ensure that you isolate the timing-critical
logic in a separate partition.

2. Define a LogicLock region for the timing-critical partition. Ensure that you capture
the correct amount of device resources in the region. Turn on the Reserved
property to prevent any other logic from being placed in the region.

• If the design block is not complete, reserve space in the design floorplan
based on your knowledge of the design specifications, connectivity between
design blocks, and estimates of the size of the partition based on any initial
implementation numbers.

• If the critical design block has initial source code ready, compile the design to
place the LogicLock region. Save the Fitter-determined size and origin, and
then enlarge the region to provide more flexibility and allow for future design
changes.

As the rest of the design is completed, and the device fills up, the timing-critical
region reserves an area of the floorplan. When you make changes to the design
block, the logic will be re-placed in the same part of the device, which helps
ensure good quality of results.

Related Information

Design Partition Guidelines on page 79

2.11.3. Create a Floorplan as the Project Lead in a Team-Based Flow

Use this approach when you have several designs that will be implemented in separate
Quartus Prime projects by different designers, or third-party IP designers who want to
optimize their designs independently and pass the results to the project lead.

As the project lead in this scenario, follow these steps to prepare the top-level design
for a successful team-based design methodology with early floorplan planning:

1. Create a new Quartus Prime project that will ultimately contain the full
implementation of the entire design.

2. Create a “skeleton” or framework of the design that defines the hierarchy for the
subdesigns that will be implemented by separate designers. Consider the
partitioning guidelines in this manual when determining the design hierarchy.

3. Make project-wide settings. Select the device, make global assignments for clocks
and device I/O ports, and make any global signal constraints to specify which
signals can use global routing resources.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Make design partition assignments for each major subdesign. Set the netlist type
for each partition that will be implemented in a separate Quartus Prime project
and later exported and integrated with the top-level design set to Empty.

5. Create LogicLock regions for each partition to create a design floorplan. This
floorplan should consider the connectivity between partitions and estimates of the
size of each partition based on any initial implementation numbers and knowledge
of the design specifications. Use the guidelines described in this chapter to choose
a size and location for each LogicLock region.

6. Provide the constraints from the top-level design to partition designers using one
of the following procedures:

a. Create a copy of the top-level Quartus Prime project framework by checking
out the appropriate files from a source control system, using the Copy
Project command, or creating a project archive. Provide each partition
designer with the copy of the project.

b. Provide the constraints with documentation or scripts.

2.12. Document Revision History

Table 7. Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Removed support for early timing estimate feature.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and Physical
Optimization Settings to Compiler Settings.

• Updated description of Virtual Pin assingment to clarify that assigned pins are no longer
free as input pins.

June 2014 14.0.0 • Dita conversion.
• Removed obsolete devices content for Arria GX, Cyclone, Cyclone II, Cyclone III, Stratix,

Stratix GX, Stratix II, Stratix II GX,
• Replace Megafunction content with IP Catalog and Parameter Editor content.

November 2013 13.1.0 Removed HardCopy device information.

November 2012 12.1.0 Added Turning On Supported Cross-Boundary Optimizations.

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Updated links.

December 2010 10.1.0 • Changed to new document template.
• Moved "Creating Floorplan Location Assignments With Tcl Commands—Excluding or

Filtering Certain Device Elements (Such as RAM or DSP Blocks)" from the Quartus Prime
Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus Prime Handbook.

• Consolidated Design Partition Planner and Incremental Compilation Advisor information
between the Quartus Prime Incremental Compilation for Hierarchical and Team-Based
Design and Best Practices for Incremental Compilation Partitions and Floorplan
Assignments handbook chapters.

continued...

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

July 2010 10.0.0 • Removed the explanation of the “bottom-up design flow” where designers work
completely independently, and replaced with Altera’s recommendations for team-based
environments where partitions are developed in the same top-level project framework,
plus an explanation of the bottom-up process for including independent partitions from
third-party IP designers.

• Expanded the Merge command explanation to explain how it now accommodates cross-
partition boundary optimizations.

• Restructured Altera recommendations for when to use a floorplan.

October 2009 9.1.0 • Redefined the bottom-up design flow as team-based and reorganized previous design flow
examples to include steps on how to pass top-level design information to lower-level
projects.

• Added "Including SDC Constraints from Lower-Level Partitions for Third-Party IP Delivery"
from the Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus Prime Handbook.

• Reorganized the "Recommended Design Flows and Application Examples" section.
• Removed HardCopy APEX and HardCopy Stratix Devices section.

March 2009 9.0.0 • Added I/O register packing examples from Incremental Compilation for Hierarchical and
Team-Based Designs chapter

• Moved "Incremental Compilation Advisor" section
• Added "Viewing Design Partition Planner and Floorplan Side-by-Side" section
• Updated Figure 15-22
• Chapter 8 was previously Chapter 7 in software release 8.1.

November 2008 8.1.0 • Changed to 8-1/2 x 11 page size. No change to content.

May 2007 8.0.0 • Initial release.

Related Information

Documentation Archive
For previous versions of the Quartus Prime Handbook, search the documentation
archives.

2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

118

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Quartus Prime Integrated Synthesis
As programmable logic designs become more complex and require increased
performance, advanced synthesis becomes an important part of a design flow. The
Altera® Quartus® II software includes advanced Integrated Synthesis that fully
supports VHDL, Verilog HDL, and Altera-specific design entry languages, and provides
options to control the synthesis process. With this synthesis support, the Quartus
Prime software provides a complete, easy-to-use solution.

Related Information

Designing With Low-Level Primitives User Guide
For more information about coding with primitives that describe specific low-level
functions in Altera devices

3.1. Design Flow

The Quartus Prime Analysis & Synthesis stage of the compilation flow runs Integrated
Synthesis, which fully supports Verilog HDL, VHDL, and Altera-specific languages, and
major features of the SystemVerilog language.

In the synthesis stage of the compilation flow, the Quartus Prime software performs
logic synthesis to optimize design logic and performs technology mapping to
implement the design logic in device resources such as logic elements (LEs) or
adaptive logic modules (ALMs), and other dedicated logic blocks. The synthesis stage
generates a single project database that integrates all your design files in a project
(including any netlists from third-party synthesis tools).

683283 | 2021.10.22

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://www.altera.com/literature/ug/ug_low_level.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

You can use Analysis & Synthesis to perform the following compilation processes:

Table 8. Compilation Process

Compilation Process Description

Analyze Current File Parses your current design source file to check for syntax
errors. This command does not report many semantic errors
that require further design synthesis. To perform this
analysis, on the Processing menu, click Analyze Current
File.

Analysis & Elaboration Checks your design for syntax and semantic errors and
performs elaboration to identify your design hierarchy. To
perform Analysis & Elaboration, on the Processing menu,
point to Start, and then click Start Analysis &
Elaboration.

Hierarchy Elaboration Parses HDL designs and generates a skeleton of hierarchies.
Hierarchy Elaboration is similar to the Analysis & Elaboration
flow, but without any elaborated logic, thus making it much
faster to generate.

Analysis & Synthesis Performs complete Analysis & Synthesis on a design,
including technology mapping. To perform Analysis &
Synthesis, on the Processing menu, point to Start, and then
click Start Analysis & Synthesis.

Related Information

Language Support on page 122

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.1. Quartus Prime Integrated Synthesis Design and Compilation Flow

Figure 33. Basic Design Flow Using Quartus Prime Integrated Synthesis

No

Gate-Level
Functional
Simulation

Functional/RTL
Simulation

Yes

Timing & Area
Requirements

Satisfied?

Gate-Level Timing
Simulation

Formal Verification
Using Source Code as
Golden Netlist, and VO

as Revised Netlist

Internal
Synthesis

Netlist

Configuration/
Programming
Files (.sof/.pof)

Analysis & SynthesisConstraints
& Settings

Constraints
& Settings Fitter Assembler Timing

Analyzer

Post Synthesis
Simulation File

(.vho/.vo)

Post
 Placement and Routing

Simulation Files
(.vho/.vo and .sdo)

Post
Placement and Routing
Formal Verification File

(.vo)

Verilog HDL VHDL

Altera
Hardware

Description
Language

(AHDL)

Altera
schematic

Block Design
File (.bdf)

Configure/Program Device

System Verilog

Quartus Prime
Exported

Partition File
(.qxp)

The Quartus Prime Integrated Synthesis design and compilation flow consists of the
following steps:

1. Create a project in the Quartus Prime software and specify the general project
information, including the top-level design entity name.

2. Create design files in the Quartus Prime software or with a text editor.

3. On the Project menu, click Add/Remove Files in Project and add all design files
to your Quartus Prime project using the Files page of the Settings dialog box.

4. Specify Compiler settings that control the compilation and optimization of your
design during synthesis and fitting.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Add timing constraints to specify the timing requirements.

6. Compile your design. To synthesize your design, on the Processing menu, point to
Start, and then click Start Analysis & Synthesis. To run a complete compilation
flow including placement, routing, creation of a programming file, and timing
analysis, click Start Compilation on the Processing menu.

7. After obtaining synthesis and placement and routing results that meet your
requirements, program or configure your Altera device.

Integrated Synthesis generates netlists that enable you to perform functional
simulation or gate-level timing simulation, timing analysis, and formal verification.

Related Information

• Quartus Prime Synthesis Options on page 138
For more information about synthesis settings

• Incremental Compilation on page 136
For more information about partitioning your design to reduce compilation time

• Quartus Prime Exported Partition File as Source on page 138
For more information about using .qxp as a design source file

• Introduction to the Quartus Prime Software
For an overall summary of features in the Quartus Prime software

3.1.1.1. Factors Affecting Compilation Results

Almost any change to the following project settings, hardware, or software can impact
the results from one compilation to the next.

• Project Files—changes to project settings (.qsf, quartus2.ini), design files,
and timing constraints (.sdc) can change the results.

• Any setting that changes the number of processors during compilation can impact
compilation results.

• Hardware—CPU architecture, not including hard disk or memory size differences.
Windows XP x32 results are not identical to Windows XP x64 results. Linux x86
results is not identical to Linux x86_64.

• Quartus Prime Software Version—including build number and installed interim
updates. Click Help > About to obtain this information.

• Operating System—Windows or Linux operating system, excluding version
updates. For example, Windows XP, Windows Vista, and Windows 7 results are
identical. Similarly, Linux RHEL, CentOS 4, and CentOS 5 results are identical.

3.2. Language Support

Quartus Prime Integrated Synthesis supports HDL. You can specify the Verilog HDL or
VHDL language version in your design.

To ensure that the Quartus Prime software reads all associated project files, add each
file to your Quartus Prime project by clicking Add/Remove Files in Project on the
Project menu. You can add design files to your project. You can mix all supported
languages and netlists generated by third-party synthesis tools in a single Quartus
Prime project.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

122

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Design Libraries on page 129
Describes how to compile and reference design units in custom libraries

• Using Parameters/Generics on page 132
Describes how to use parameters or generics and pass them between
languages

3.2.1. Verilog and SystemVerilog Synthesis Support

Quartus Prime synthesis supports the following Verilog HDL language standards:

• Verilog-1995 (IEEE Standard 1364-1995)

• Verilog-2001 (IEEE Standard 1364-2001)

• SystemVerilog-2005 (IEEE Standard 1800-2005)

The following important guidelines apply to Quartus Prime synthesis of Verilog HDL
and SystemVerilog:

• The Compiler uses the Verilog-2001 standard by default for files with an extension
of .v, and the SystemVerilog standard for files with the extension of .sv.

• If you use scripts to add design files, you can use the -HDL_VERSION command
to specify the HDL version for each design file.

• Compiler support for Verilog HDL is case sensitive in accordance with the Verilog
HDL standard.

• The Compiler supports the compiler directive `define, in accordance with the
Verilog HDL standard.

• The Compiler supports the include compiler directive to include files with
absolute paths (with either “/” or “\” as the separator), or relative paths.

• When searching for a relative path, the Compiler initially searches relative to the
project directory. If the Compiler cannot find the file, the Compiler next searches
relative to all user libraries. Finally, the Compiler searches relative to the current
file's directory location.

3.2.1.1. Verilog HDL Configuration

Verilog HDL configuration is a set of rules that specify the source code for particular
instances. Verilog HDL configuration allows you to perform the following tasks:

• Specify a library search order for resolving cell instances (as does a library
mapping file).

• Specify overrides to the logical library search order for specified instances.

• Specify overrides to the logical library search order for all instances of specified
cells.

3.2.1.1.1. Configuration Syntax

A Verilog HDL configuration contains the following statements:

config config_identifier;
design [library_identifier.]cell_identifier;
config_rule_statement;
endconfig

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• config—the keyword that begins the configuration.

• config_identifier—the name you enter for the configuration.

• design—the keyword that starts a design statement for specifying the top of the
design.

• [library_identifier.]cell_identifier—specifies the top-level module
(or top-level modules) in the design and the logical library for this module
(modules).

• config_rule_statement—one or more of the following clauses: default,
instance, or cell. For more information, refer to Table 9 on page 124.

• endconfig—the keyword that ends a configuration.

Table 9. Type of Clauses for the config_rule_statement Keyword

Clause Type Description

default Specifies the logical libraries to search to resolve a default cell instance. A default cell instance is an instance
in the design that is not specified in a subsequent instance or cell clause in the configuration.
You specify these libraries with the liblist keyword. The following is an example of a default clause:
default liblist lib1 lib2;

Also specifies resolving default instances in the logical libraries (lib1 and lib2).
Because libraries are inherited, some simulators (for example, VCS) also search the default (or current)
library as well after the searching the logical libraries (lib1 and lib2).

instance Specifies a specific instance. The specified instance clause depends on the use of the following keywords:
— liblist—specifies the logical libraries to search to resolve the instance.
— use—specifies that the instance is an instance of the specified cell in the specified logical library.

The following are examples of instance clauses:
instance top.dev1 liblist lib1 lib2;

This instance clause specifies to resolve instance top.dev1 with the cells assigned to logical libraries
lib1 and lib2;
instance top.dev1.gm1 use lib2.gizmult;

This instance clause specifies that top.dev1.gm1 is an instance of the cell named gizmult in logical
library lib2.

cell A cell clause is similar to an instance clause, except that the cell clause specifies all instances of a cell
definition instead of specifying a particular instance. What it specifies depends on the use of the liblist or
use keywords:
— liblist—specifies the logical libraries to search to resolve all instances of the cell.
— use—the specified cell’s definition is in the specified library.

3.2.1.1.2. Hierarchical Design Configurations

A design can have more than one configuration. For example, you can define a
configuration that specifies the source code you use in particular instances in a sub-
hierarchy, and then define a configuration for a higher level of the design.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, suppose a subhierarchy of a design is an eight-bit adder, and the RTL
Verilog code describes the adder in a logical library named rtllib. The gate-level
code describes the adder in the gatelib logical library. If you want to use the gate-
level code for the 0 (zero) bit of the adder and the RTL level code for the other seven
bits, the configuration might appear as follows:

Example 12. Gate-level code for the 0 (zero) bit of the adder

config cfg1;
design aLib.eight_adder;
default liblist rtllib;
instance adder.fulladd0 liblist gatelib;
endconfig

If you are instantiating this eight-bit adder eight times to create a 64-bit adder, use
configuration cfg1 for the first instance of the eight-bit adder, but not in any other
instance. A configuration that performs this function is shown below:

Example 13. Use configuration cfg1 for first instance of eight-bit adder

config cfg2;
design bLib.64_adder;
default liblist bLib;
instance top.64add0 use work.cfg1:config;
endconfig

Note: The name of the unbound module may be different from the name of the cell that is
bounded to the instance.

3.2.1.1.3. Suffix :config

To distinguish between a module by the same name, use the optional
extension :config to refer to configuration names. For example, you can always
refer to a cfg2 configuration as cfg2:config (even if the cfg2 module does not
exist).

3.2.1.2. SystemVerilog Support

The Quartus Prime software supports the SystemVerilog constructs.

Note: Designs written to support the Verilog-2001 standard might not compile with the
SystemVerilog setting because the SystemVerilog standard has several new reserved
keywords.

3.2.1.3. Initial Constructs and Memory System Tasks

The Quartus Prime software infers power-up conditions from the Verilog HDL initial
constructs. The Quartus Prime software also creates power-up settings for variables,
including RAM blocks. If the Quartus Prime software encounters non-synthesizable
constructs in an initial block, it generates an error.

To avoid such errors, enclose non-synthesizable constructs (such as those intended
only for simulation) in translate_off and translate_on synthesis directives.
Synthesis of initial constructs enables the power-up state of the synthesized design to
match the power-up state of the original HDL code in simulation.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Initial blocks do not infer power-up conditions in some third-party EDA synthesis tools.
If you convert between synthesis tools, you must set your power-up conditions
correctly.

Quartus Prime synthesis supports the $readmemb and $readmemh system tasks to
initialize memories.

Example 14. Verilog HDL Code: Initializing RAM with the readmemb Command

reg [7:0] ram[0:15];
initial
begin
$readmemb("ram.txt", ram);
end

When creating a text file to use for memory initialization, specify the address using
the format @<location> on a new line, and then specify the memory word such as
110101 or abcde on the next line.

The following example shows a portion of a Memory Initialization File (.mif) for the
RAM.

Example 15. Text File Format: Initializing RAM with the readmemb Command

@0
00000000
@1
00000001
@2
00000010
…
@e
00001110
@f
00001111

3.2.1.4. Verilog HDL Macros

The Quartus Prime software fully supports Verilog HDL macros, which you can define
with the 'define compiler directive in your source code. You can also define macros
in the Quartus Prime software or on the command line.

To set Verilog HDL macros at the command line for the Quartus Prime Pro Edition
synthesis (quartus_syn) executable, use the following format:

quartus_syn <PROJECT_NAME> --set=VERILOG_MACRO=a=2

This command adds the following new line to the project .qsf file:

set_global_assignment -name VERILOG_MACRO "a=2"

To avoid adding this line to the project .qsf, add this option to the quartus_syn
command:

--write_settings_files=off

3.2.1.4.1. Setting a Verilog HDL Macro Default Value in the Quartus Prime Software

To specify a macro in the Quartus Prime software, follow these steps:

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Click Assignments ➤ Settings ➤ Compiler Settings ➤ Verilog HDL Input

2. Under Verilog HDL macro, type the macro name in the Name box and the value
in the Setting box.

3. Click Add.

3.2.1.4.2. Setting a Verilog HDL Macro Default Value on the Command Line

To set a default value for a Verilog HDL macro on the command line, use the --
verilog_macro option:

quartus_map <Design name> --verilog_macro= "<Macro name>=<Macro setting>"

The command in this example has the same effect as specifying
`define a 2 in the Verilog HDL source code:

quartus_map my_design --verilog_macro="a=2"

To specify multiple macros, you can repeat the option more than once.

quartus_map my_design --verilog_macro="a=2" --verilog_macro="b=3"

3.2.2. VHDL Synthesis Support

Quartus Prime synthesis supports the following VHDL language standards.

• VHDL 1987 (IEEE Standard 1076-1987)

• VHDL 1993 (IEEE Standard 1076-1993)

• VHDL 2008 (IEEE Standard 1076-2008)

The Quartus Prime Compiler uses the VHDL 1993 standard by default for files that
have the extension .vhdl or .vhd.

Note: The VHDL code samples follow the VHDL 1993 standard.

3.2.2.1. Quartus Prime Support for VHDL 2008

The Quartus Prime software contains support for VHDL 2008 with the following
constructs defined in the IEEE Standard 1076-2008 version of the IEEE Standard for
VHDL Language Reference Manual:

• Section 5.3.2—Unconstrained elements in arrays

• Section 9.2.3—Matching equality/inequality operators

• Section 9.2.9—Condition operator

• Section 10.9—Matching case statement

• Section 11.3—Simplified sensitivity lists

• Section 11.8—Extensions to the generate statement (elsif and else
constructs in if generate statements and support for case generate
statements)

• Section 15.8—Enhanced Bit-string literals

• Section 15.9—Block comments

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime software provides a library of HDL design templates, including
VHDL 2008 constructs, that you can access through the Insert Template dialog box.

3.2.2.2. VHDL Standard Libraries and Packages

The Quartus Prime software includes the standard IEEE libraries and several vendor-
specific VHDL libraries. The IEEE library includes the standard VHDL packages
std_logic_1164, numeric_std, numeric_bit, and math_real.

The STD library is part of the VHDL language standard and includes the packages
standard (included in every project by default) and textio. For compatibility with
older designs, the Quartus Prime software also supports the following vendor-specific
packages and libraries:

• Synopsys* packages such as std_logic_arith and std_logic_unsigned in
the IEEE library.

• Mentor Graphics* packages such as std_logic_arith in the ARITHMETIC
library.

• Primitive packages altera_primitives_components (for primitives such as
GLOBAL and DFFE) and maxplus2 in the ALTERA library.

• IP core packages altera_mf_components in the ALTERA_MF library for specific
IP cores including LCELL. In addition, lpm_components in the LPM library for
library of parameterized modules (LPM) functions.

Note: Import component declarations for primitives such as GLOBAL and DFFE from the
altera_primitives_components package and not the altera_mf_components
package.

3.2.2.3. VHDL wait Constructs

The Quartus Prime software supports one VHDL wait until statement per process
block. However, the Quartus Prime software does not support other VHDL wait
constructs, such as wait for and wait on statements, or processes with multiple
wait statements.

Example 16. VHDL wait until construct example

architecture dff_arch of ls_dff is
begin
output: process begin
wait until (CLK'event and CLK='1');
Q <= D;
Qbar <= not D;
end process output;
end dff_arch;

3.2.3. AHDL Support

The Quartus Prime Compiler’s Analysis & Synthesis module fully supports the Altera
Hardware Description Language (AHDL).

AHDL designs use Text Design Files (.tdf). You can import AHDL Include Files (.inc)
into a .tdf with an AHDL include statement. Altera provides .inc files for all IP cores
shipped with the Quartus Prime software.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The AHDL language does not support the synthesis directives or attributes.

3.2.4. Schematic Design Entry Support

The Quartus Prime Compiler’s Analysis & Synthesis module fully supports .bdf for
schematic design entry.

Note: Schematic entry methods do not support the synthesis directives or attributes.

3.2.5. State Machine Editor

The Quartus Prime Pro Edition software supports graphical state machine entry. To
create a new finite state machine (FSM) design:

1. Click File ➤ New.

2. In the New dialog box, expand the Design Files list, and then select State
Machine File.

3.2.6. Design Libraries

By default, the Compiler processes all design files into one or more libraries.

• When compiling a design instance, the Compiler initially searches for the entity in
the library associated with the instance (which is the work library if you do not
specify any library).

• If the Compiler cannot locate the entity definition, the Compiler searches for a
unique entity definition in all design libraries.

• If the Compiler finds more than one entity with the same name, the Compiler
generates an error. If your design uses multiple entities with the same name, you
must compile the entities into separate libraries.

Note: If you do not specify a design library, if a file refers to a library that does not exist, or
if the referenced library does not contain a referenced design unit, the Quartus Prime
software searches the work library. This behavior allows the Quartus Prime software to
compile most designs with minimal setup, but you have the option of creating
separate custom design libraries.

Related Information

Mapping a VHDL Instance to an Entity in a Specific Library on page 131

3.2.6.1. Specifying a Destination Library Name in the Settings Dialog Box

To specify a library name for one of your design files, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, select Files.

3. Select the file in the File Name list.

4. Click Properties.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. In the File Properties dialog box, select the type of design file from the Type
list.

6. Type the library name in the Library field.

7. Click OK.

3.2.6.2. Specifying a Destination Library Name in the Quartus Prime Settings File
or with Tcl

You can specify the library name with the -library option to the
<language type>_FILE assignment in the Quartus Prime Settings File (.qsf) or with
Tcl commands.

For example, the following assignments specify that the Quartus Prime software
analyzes the my_file.vhd and stores its contents (design units) in the VHDL library
my_lib, and then analyzes the Verilog HDL file my_header_file.h and stores its
contents in a library called another_lib.

set_global_assignment –name VHDL_FILE my_file.vhd –library my_lib
set_global_assignment –name VERILOG_FILE my_header_file.h –library another_lib

Related Information

Scripting Support on page 189
For more information about Tcl scripting

3.2.6.3. Specifying a Destination Library Name in a VHDL File

You can use the library synthesis directive to specify a library name in your VHDL
source file. This directive takes the name of the destination library as a single string
argument. Specify the library directive in a VHDL comment before the context
clause for a primary design unit (that is, a package declaration, an entity declaration,
or a configuration), with one of the supported keywords for synthesis directives, that
is, altera, synthesis, pragma, synopsys, or exemplar.

The library directive overrides the default library destination work, the library
setting specified for the current file in the Settings dialog box, any existing .qsf
setting, any setting made through the Tcl interface, or any prior library directive in
the current file. The directive remains effective until the end of the file or the next
library synthesis directive.

The following example uses the library synthesis directive to create a library called
my_lib containing the my_entity design unit:

-- synthesis library my_lib
library ieee;
use ieee.std_logic_1164.all;
entity my_entity(...)
end entity my_entity;

Note: You can specify a single destination library for all your design units in a given source
file by specifying the library name in the Settings dialog box, editing the .qsf, or
using the Tcl interface. To organize your design units in a single file into different
libraries rather than just a single library, you can use the library directive to change
the destination VHDL library in a source file.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime software generates an error if you use the library directive in a
design unit.

Related Information

Synthesis Directives on page 141
For more information about specifying synthesis directives

3.2.6.4. Mapping a VHDL Instance to an Entity in a Specific Library

The VHDL language provides several ways to map or bind an instance to an entity in a
specific library.

3.2.6.4.1. Direct Entity Instantiation

In the direct entity instantiation method, the instantiation refers to an entity in a
specific library.

The following shows the direct entity instantiation method for VHDL:

entity entity1 is
port(...);
end entity entity1;
architecture arch of entity1 is
begin
inst: entity lib1.foo
port map(...);
end architecture arch;

3.2.6.4.2. Component Instantiation—Explicit Binding Instantiation

You can bind a component to an entity in several mechanisms. In an explicit binding
indication, you bind a component instance to a specific entity.

The following shows the binding instantiation method for VHDL:

entity entity1 is
port(...);
end entity entity1;
package components is
component entity1 is
port map (...);
end component entity1;
end package components;
entity top_entity is
port(...);
end entity top_entity;
use lib1.components.all;
architecture arch of top_entity is
-- Explicitly bind instance I1 to entity1 from lib1
for I1: entity1 use entity lib1.entity1
port map(...);
end for;
begin
I1: entity1 port map(...);
end architecture arch;

3.2.6.4.3. Component Instantiation—Default Binding

If you do not provide an explicit binding indication, the Quartus Prime software binds a
component instance to the nearest visible entity with the same name. If no such
entity is visible in the current scope, the Quartus Prime software binds the instance to

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the entity in the library in which you declare the component. For example, if you
declare the component in a package in the MY_LIB library, an instance of the
component binds to the entity in the MY_LIB library.

The code examples in the following examples show this instantiation method:

Example 17. VHDL Code: Default Binding to the Entity in the Same Library as the
Component Declaration

use mylib.pkg.foo; -- import component declaration from package “pkg” in

 -- library “mylib”
architecture rtl of top
...
begin
-- This instance will be bound to entity “foo” in library “mylib”
inst: foo
port map(...);
end architecture rtl;

Example 18. VHDL Code: Default Binding to the Directly Visible Entity

use mylib.foo; -- make entity “foo” in library “mylib” directly visible
architecture rtl of top
component foo is
generic (...)
port (...);
end component;
begin
-- This instance will be bound to entity “foo” in library “mylib”
inst: foo
port map(...);
end architecture rtl;

3.2.7. Using Parameters/Generics

The Quartus Prime software supports parameters (known as generics in VHDL) and
you can pass these parameters between design languages.

Click Assignments ➤ Settings ➤ Compiler Settings ➤ Default Parameters to
enter default parameter values for your design. In AHDL, the Quartus Prime software
inherits parameters, so any default parameters apply to all AHDL instances in your
design. You can also specify parameters for instantiated modules in a .bdf. To specify
parameters in a .bdf instance, double-click the parameter value box for the instance
symbol, or right-click the symbol and click Properties, and then click the
Parameters tab.

You can specify parameters for instantiated modules in your design source files with
the provided syntax for your chosen language. Some designs instantiate entities in a
different language; for example, they might instantiate a VHDL entity from a Verilog
HDL design file. You can pass parameters or generics between VHDL, Verilog HDL,
AHDL, and BDF schematic entry, and from EDIF or VQM to any of these languages.
You do not require an additional procedure to pass parameters from one language to
another. However, sometimes you must specify the type of parameter you are passing.
In those cases, you must follow certain guidelines to ensure that the Quartus Prime
software correctly interprets the parameter value.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Setting Default Parameter Values and BDF Instance Parameter Values on page 133
For more information about the GUI-based entry methods, the interpretation of
parameter values, and format recommendations

• Passing Parameters Between Two Design Languages on page 134
For more information about parameter type rules

3.2.7.1. Setting Default Parameter Values and BDF Instance Parameter Values

Default parameter values and BDF instance parameter values do not have an explicitly
declared type. Usually, the Quartus Prime software can correctly infer the type from
the value without ambiguity. For example, the Quartus Prime software interprets
“ABC” as a string, 123 as an integer, and 15.4 as a floating-point value. In other
cases, such as when the instantiated subdesign language is VHDL, the Quartus Prime
software uses the type of the parameter, generic, or both in the instantiated entity to
determine how to interpret the value, so that the Quartus Prime software interprets a
value of 123 as a string if the VHDL parameter is of a type string. In addition, you can
set the parameter value in a format that is legal in the language of the instantiated
entity. For example, to pass an unsized bit literal value from .bdf to Verilog HDL, you
can use '1 as the parameter value, and to pass a 4-bit binary vector from .bdf to
Verilog HDL, you can use 4'b1111 as the parameter value.

In a few cases, the Quartus Prime software cannot infer the correct type of parameter
value. To avoid ambiguity, specify the parameter value in a type-encoded format in
which the first or first and second characters of the parameter indicate the type of the
parameter, and the rest of the string indicates the value in a quoted sub-string. For
example, to pass a binary string 1001 from .bdf to Verilog HDL, you cannot use the
value 1001, because the Quartus Prime software interprets it as a decimal value. You
also cannot use the string "1001" because the Quartus Prime software interprets it as
an ASCII string. You must use the type-encoded string B"1001" for the Quartus
Prime software to correctly interpret the parameter value.

This table lists valid parameter strings and how the Quartus Prime software interprets
the parameter strings. Use the type-encoded format only when necessary to resolve
ambiguity.

Table 10. Valid Parameter Strings and Interpretations

Parameter String Quartus Prime Parameter Type, Format, and Value

S"abc", s"abc" String value abc

"abc123", "123abc" String value abc123 or 123abc

F"12.3", f"12.3" Floating point number 12.3

-5.4 Floating point number -5.4

D"123", d"123" Decimal number 123

123, -123 Decimal number 123, -123

X"ff", H"ff" Hexadecimal value FF

Q"77", O"77" Octal value 77

B"1010", b"1010" Unsigned binary value 1010

continued...

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter String Quartus Prime Parameter Type, Format, and Value

SB"1010", sb"1010" Signed binary value 1010

R"1", R"0", R"X", R"Z", r"1", r"0", r"X", r"Z" Unsized bit literal

E"apple", e"apple" Enumeration type, value name is apple

P"1 unit" Physical literal, the value is (1, unit)

A(...), a(...) Array type or record type. The string (...) determines the
array type or record type content

You can select the parameter type for global parameters or global constants with the
pull-down list in the Parameter tab of the Symbol Properties dialog box. If you do
not specify the parameter type, the Quartus Prime software interprets the parameter
value and defines the parameter type. You must specify parameter type with the pull-
down list to avoid ambiguity.

Note: If you open a .bdf in the Quartus Prime software, the software automatically updates
the parameter types of old symbol blocks by interpreting the parameter value based
on the language-independent format. If the Quartus Prime software does not
recognize the parameter value type, the software sets the parameter type as
untyped.

The Quartus Prime software supports the following parameter types:

• Unsigned Integer

• Signed Integer

• Unsigned Binary

• Signed Binary

• Octal

• Hexadecimal

• Float

• Enum

• String

• Boolean

• Char

• Untyped/Auto

3.2.7.2. Passing Parameters Between Two Design Languages

When passing a parameter between two different languages, a design block that is
higher in the design hierarchy instantiates a lower-level subdesign block and provides
parameter information. The subdesign language (the design entity that you
instantiate) must correctly interpret the parameter. Based on the information provided
by the higher-level design and the value format, and sometimes by the parameter
type of the subdesign entity, the Quartus Prime software interprets the type and value
of the passed parameter.

When passing a parameter whose value is an enumerated type value or literal from a
language that does not support enumerated types to one that does (for example, from
Verilog HDL to VHDL), you must ensure that the enumeration literal is in the correct

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

spelling in the language of the higher-level design block (block that is higher in the
hierarchy). The Quartus Prime software passes the parameter value as a string literal,
and the language of the lower-level design correctly convert the string literal into the
correct enumeration literal.

If the language of the lower-level entity is SystemVerilog, you must ensure that the
enum value is in the correct case. In SystemVerilog, two enumeration literals differ in
more than just case. For example, enum {item, ITEM} is not a good choice of item
names because these names can create confusion and is more difficult to pass
parameters from case-insensitive HDLs, such as VHDL.

Arrays have different support in different design languages. For details about the array
parameter format, refer to the Parameter section in the Analysis & Synthesis Report
of a design that contains array parameters or generics.

The following code shows examples of passing parameters from one design entry
language to a subdesign written in another language.

Table 11. VHDL Parameterized Subdesign Entity
This table shows a VHDL subdesign that you instantiate in a top-level Verilog HDL design in Table 12 on page
135.

HDL Code

VHDL type fruit is (apple, orange, grape);
entity vhdl_sub is
generic (
name : string := "default",
width : integer := 8,
number_string : string := "123",
f : fruit := apple,
binary_vector : std_logic_vector(3 downto 0) := "0101",
signed_vector : signed (3 downto 0) := "1111");

Table 12. Verilog HDL Top-Level Design Instantiating and Passing Parameters to VHDL
Entity
This table shows a Verilog HDL Top-Level Design Instantiating and Passing Parameters to VHDL Entity from
Table 11 on page 135.

HDL Code

Verilog HDL vhdl_sub inst (...);
defparam inst.name = "lower";
defparam inst.width = 3;
defparam inst.num_string = "321";
defparam inst.f = "grape"; // Must exactly match enum value
defparam inst.binary_vector = 4'b1010;
 defparam inst.signed_vector = 4'sb1010;

Table 13. Verilog HDL Parameterized Subdesign Module
This table shows a Verilog HDL subdesign that you instantiate in a top-level VHDL design in Table 14 on page
136.

HDL Code

Verilog HDL module veri_sub (...)
parameter name = "default";
parameter width = 8;
parameter number_string = "123";
parameter binary_vector = 4'b0101;
parameter signed_vector = 4'sb1111;

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

135

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 14. VHDL Top-Level Design Instantiating and Passing Parameters to the Verilog
HDL Module
This table shows a VHDL Top-Level Design Instantiating and Passing Parameters to the Verilog HDL Module
from Table 13 on page 135.

HDL Code

VHDL inst:veri_sub
generic map (
name => "lower",
width => 3,
number_string => "321"
binary_vector = "1010"
signed_vector = "1010")

To use an HDL subdesign such as the one shown in Table 13 on page 135 in a top-
level .bdf design, you must generate a symbol for the HDL file, as shown in Figure 34
on page 136. Open the HDL file in the Quartus Prime software, and then, on the File
menu, point to Create/Update, and then click Create Symbol Files for Current
File.

To specify parameters on a .bdf instance, double-click the parameter value box for the
instance symbol, or right-click the symbol and click Properties, and then click the
Parameters tab. Right-click the symbol and click Update Design File from
Selected Block to pass the updated parameter to the HDL file.

Figure 34. BDF Top-Level Design Instantiating and Passing Parameters to the Verilog
HDL Module
This figure shows BDF Top-Level Design Instantiating and Passing Parameters to the Verilog HDL Module from
Table 13 on page 135

3.3. Incremental Compilation

Incremental compilation manages a design hierarchy for incremental design by
allowing you to divide your design into multiple partitions. Incremental compilation
ensures that the Quartus Prime software resynthesizes only the updated partitions of
your design during compilation, to reduce the compilation time and the runtime
memory usage. The feature maintains node names during synthesis for all registered
and combinational nodes in unchanged partitions. You can perform incremental
synthesis by setting the netlist type for all design partitions to Post-Synthesis.

You can also preserve the placement and routing information for unchanged partitions.
This feature allows you to preserve performance of unchanged blocks in your design
and reduces the time required for placement and routing, which significantly reduces
your design compilation time.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

136

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design on
page 7

For more information about incremental compilation for hierarchical and team-
based design

3.3.1. Partitions for Preserving Hierarchical Boundaries

A design partition represents a portion of your design that you want to synthesize and
fit incrementally.

If you want to preserve the Optimization Technique and Restructure
Multiplexers logic options in any entity, you must create new partitions for the entity
instead of using the Preserve Hierarchical Boundary logic option. If you have
settings applied to specific existing design hierarchies, particularly those created in the
Quartus Prime software versions before 9.0, you must create a design partition for the
design hierarchy so that synthesis can optimize the design instance independently and
preserve the hierarchical boundaries.

Note: The Preserve Hierarchical Boundary logic option is available only in Quartus Prime
software versions 8.1 and earlier. Altera recommends using design partitions if you
want to preserve hierarchical boundaries through the synthesis and fitting process,
because incremental compilation maintains the hierarchical boundaries of design
partitions.

3.3.2. Parallel Synthesis

The Parallel Synthesis logic option reduces compilation time for synthesis. The
option enables the Quartus Prime software to use multiple processors to synthesize
multiple partitions in parallel.

This option is available when you perform the following tasks:

• Specify the maximum number of processors allowed under Parallel Compilation
options in the Compilation Process Settings page of the Settings dialog box.

• Enable the incremental compilation feature.

• Use two or more partitions in your design.

• Turn on the Parallel Synthesis option.

By default, the Quartus Prime software enables the Parallel Synthesis option. To
disable parallel synthesis, click Assignments ➤ Settings ➤ Compiler Settings ➤
Advanced Settings (Synthesis) ➤ Parallel Synthesis.

You can also set the Parallel Synthesis option with the following Tcl command:

set_global_assignment -name parallel_synthesis off

If you use the command line, you can differentiate among the interleaved messages
by turning on the Show partition that generated the message option in the
Messages page. This option shows the partition ID in parenthesis for each message.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

137

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can view all the interleaved messages from different partitions in the Messages
window. The Partition column in the Messages window displays the partition ID of the
partition referred to in the message. After compilation, you can sort the messages by
partition.

Related Information

About the Messages Window
For more information about displaying the Partition column

3.3.3. Quartus Prime Exported Partition File as Source

You can use a .qxp as a source file in incremental compilation. The .qxp contains the
precompiled design netlist exported as a partition from another Quartus Prime project,
and fully defines the entity. Project team members or intellectual property (IP)
providers can use a .qxp to send their design to the project lead, instead of sending
the original HDL source code. The .qxp preserves the compilation results and
instance-specific assignments. Not all global assignments can function in a different
Quartus Prime project. You can override the assignments for the entity in the .qxp by
applying assignments in the top-level design.

Related Information

• Quartus Prime Exported Partition File .qxp
For more information about .qxp

• Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
on page 7

For more information about exporting design partitions and using .qxp files

3.4. Quartus Prime Synthesis Options

The Quartus Prime software offers several options to help you control the synthesis
process and achieve optimal results for your design.

Note: When you apply a Quartus Prime Synthesis option globally or to an entity, the option
affects all lower-level entities in the hierarchy path, including entities instantiated with
Altera and third-party IP.

Related Information

Setting Synthesis Options on page 138
Describes the Compiler Settings page of the Settings dialog box, in which you
can set the most common global settings and options, and defines the following
types of synthesis options: Quartus Prime logic options, synthesis attributes, and
synthesis directives.

3.4.1. Setting Synthesis Options

You can set synthesis options in the Settings dialog box, or with logic options in the
Quartus Prime software, or you can use synthesis attributes and directives in your
HDL source code.

The Compiler Settings page of the Settings dialog box allows you to set global
synthesis options that apply to the entire project. You can also use a corresponding Tcl
command.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

138

http://quartushelp.altera.com/current/index.htm#report/msw/msw_com_msw.htm
http://quartushelp.altera.com/current/index.htm#reference/glossary/def_qxp.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can set some of the advanced synthesis settings in the Advanced Settings
dialog box on the Compiler Settings page.

Related Information

Netlist Optimizations and Physical Synthesis
For more information about Physical Synthesis options

3.4.1.1. Quartus Prime Logic Options

The Quartus Prime logic options control many aspects of the synthesis and placement
and routing process. To set logic options in the Quartus Prime software, on the
Assignments menu, click Assignment Editor. You can also use a corresponding Tcl
command to set global assignments. The Quartus Prime logic options enable you to
set instance or node-specific assignments without editing the source HDL code.

3.4.1.2. Synthesis Attributes

The Quartus Prime software supports synthesis attributes for Verilog HDL and VHDL,
also commonly called pragmas. These attributes are not standard Verilog HDL or VHDL
commands. Synthesis tools use attributes to control the synthesis process. The
Quartus Prime software applies the attributes in the HDL source code, and attributes
always apply to a specific design element. Some synthesis attributes are also available
as Quartus Prime logic options via the Quartus Prime software or scripting. Each
attribute description indicates a corresponding setting or a logic option that you can
set in the Quartus Prime software. You can specify only some attributes with HDL
synthesis attributes.

Attributes specified in your HDL code are not visible in the Assignment Editor or in
the .qsf. Assignments or settings made with the Quartus Prime software, the .qsf, or
the Tcl interface take precedence over assignments or settings made with synthesis
attributes in your HDL code. The Quartus Prime software generates warning messages
if the software finds invalid attributes, but does not generate an error or stop the
compilation. This behavior is necessary because attributes are specific to various
design tools, and attributes not recognized in the Quartus Prime software might be for
a different EDA tool. The Quartus Prime software lists the attributes specified in your
HDL code in the Source assignments table of the Analysis & Synthesis report.

The Verilog-2001, SystemVerilog, and VHDL language definitions provide specific
syntax for specifying attributes, but in Verilog-1995, you must embed attribute
assignments in comments. You can enter attributes in your code using the syntax in
Specifying Synthesis Attributes in Verilog-1995 on page 140 through Synthesis
Attributes in VHDL on page 141, in which <attribute>, <attribute type>, <value>,
<object>, and <object type> are variables, and the entry in brackets is optional.
These examples demonstrate each syntax form.

Note: Verilog HDL is case sensitive; therefore, synthesis attributes in Verilog HDL files are
also case sensitive.

In addition to the synthesis keyword shown above, the Quartus Prime software
supports the pragma, synopsys, and exemplar keywords for compatibility with
other synthesis tools. The software also supports the altera keyword, which allows
you to add synthesis attributes that the Quartus Prime Integrated Synthesis feature
recognizes and not by other tools that recognize the same synthesis attribute.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

139

https://www.intel.com/content/www/us/en/docs/programmable/683230/current/netlist-optimizations-and-physical-synthesis-29493.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Because formal verification tools do not recognize the exemplar, pragma, and
altera keywords, avoid using these attribute keywords when using formal
verification.

Related Information

• Maximum Fan-Out on page 158
For more information about maximum fan-out attribute

• Preserve Registers on page 153
For more information about preserve attribute

3.4.1.2.1. Synthesis Attributes in Verilog-1995

You must use Verilog-1995 comment-embedded attributes as a suffix to the
declaration of an item and must appear before a semicolon, when a semicolon is
necessary.

Note: You cannot use the open one-line comment in Verilog HDL when a semicolon is
necessary after the line, because it is not clear to which HDL element that the
attribute applies. For example, you cannot make an attribute assignment such as
reg r; // synthesis <attribute> because the Quartus Prime software could
read the attribute as part of the next line.

Specifying Synthesis Attributes in Verilog-1995

The following show an example of specifying synthesis attributes in Verilog-1995:

// synthesis <attribute> [= <value>]
or
/* synthesis <attribute> [= <value>] */

Applying Multiple Attributes to the Same Instance in Verilog-1995

To apply multiple attributes to the same instance in Verilog-1995, separate the
attributes with spaces.

//synthesis <attribute1> [= <value>] <attribute2> [= <value>]

For example, to set the maxfan attribute to 16 and set the preserve attribute on a
register called my_reg, use the following syntax:

reg my_reg /* synthesis maxfan = 16 preserve */;

Related Information

• Maximum Fan-Out on page 158
For more information about maximum fan-out attribute

• Preserve Registers on page 153
For more information about preserve attribute

3.4.1.2.2. Synthesis Attributes in Verilog-2001

You must use Verilog-2001 attributes as a prefix to a declaration, module item,
statement, or port connection, and as a suffix to an operator or a Verilog HDL function
name in an expression.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

140

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Formal verification does not support the Verilog-2001 attribute syntax because the
tools do not recognize the syntax.

Specifying Synthesis Attributes in Verilog-2001 and SystemVerilog

(* <attribute> [= <value>] *)

Applying Multiple Attributes

To apply multiple attributes to the same instance in Verilog-2001 or SystemVerilog,
separate the attributes with commas.

(* <attribute1> [= <value1>], <attribute2> [= <value2>] *)

For example, to set the maxfan attribute to 16 and set the preserve attribute on a
register called my_reg, use the following syntax:

(* maxfan = 16, preserve *) reg my_reg;

Related Information

• Maximum Fan-Out on page 158
For more information about maximum fan-out attribute

• Preserve Registers on page 153
For more information about preserve attribute

3.4.1.2.3. Synthesis Attributes in VHDL

VHDL attributes declare and apply the attribute type to the object you specify.

Synthesis Attributes in VHDL

The following shows the synthesis attributes example in VHDL:

attribute <attribute> : <attribute type> ;
attribute <attribute> of <object> : <object type> is <value>;

altera_syn_attributes

The Quartus Prime software defines and applies each attribute separately to a given
node. For VHDL designs, the software declares all supported synthesis attributes in
the altera_syn_attributes package in the Altera library. You can call this library
from your VHDL code to declare the synthesis attributes:

LIBRARY altera;
USE altera.altera_syn_attributes.all;

3.4.1.3. Synthesis Directives

The Quartus Prime software supports synthesis directives, also commonly called
compiler directives or pragmas. You can include synthesis directives in Verilog HDL or
VHDL code as comments. These directives are not standard Verilog HDL or VHDL
commands. Synthesis tools use directives to control the synthesis process. Directives
do not apply to a specific design node, but change the behavior of the synthesis tool
from the point in which they occur in the HDL source code. Other tools, such as
simulators, ignore these directives and treat them as comments.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

141

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 15. Specifying Synthesis Directives
You can enter synthesis directives in your code using the syntax in the following table, in which <directive>
and <value> are variables, and the entry in brackets are optional. For synthesis directives, no equal sign
before the value is necessary; this is different than the Verilog syntax for synthesis attributes. The examples
demonstrate each syntax form.

Language Syntax Example

Verilog
HDL(4) // synthesis <directive> [<value>]

or
/* synthesis <directive> [<value>] */

VHDL -- synthesis <directive> [<value>]

VHDL-2008 /* synthesis <directive> [<value>] */

In addition to the synthesis keyword shown above, the software supports the
pragma, synopsys, and exemplar keywords in Verilog HDL and VHDL for
compatibility with other synthesis tools. The Quartus Prime software also supports the
keyword altera, which allows you to add synthesis directives that only Quartus
Prime Integrated Synthesis feature recognizes, and not by other tools that recognize
the same synthesis directives.

Note: Because formal verification tools ignore the exemplar, pragma, and altera
keywords, Altera recommends that you avoid using these directive keywords when
you use formal verification to prevent mismatches with the Quartus Prime results.

3.4.2. Optimization Technique

The Optimization Technique logic option specifies the goal for logic optimization
during compilation; that is, whether to attempt to achieve maximum speed
performance or minimum area usage, or a balance between the two.

Related Information

Optimization Technique logic option
For more information about the Optimization Technique logic option

3.4.3. Auto Gated Clock Conversion

Clock gating is a common optimization technique in ASIC designs to minimize power
consumption. You can use the Auto Gated Clock Conversion logic option to optimize
your prototype ASIC designs by converting gated clocks into clock enables when you
use FPGAs in your ASIC prototyping. The automatic conversion of gated clocks to clock
enables is more efficient than manually modifying source code. The Auto Gated
Clock Conversion logic option automatically converts qualified gated clocks (base
clocks as defined in the Synopsys Design Constraints [SDC]) to clock enables. Click
AssignmentsSettingsCompiler SettingsAdvanced Settings (Synthesis) to
enable Auto Gated Clock Conversion.

(4) Verilog HDL is case sensitive; therefore, all synthesis directives are also case sensitive.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

142

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_optimization_technique.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The gated clock conversion occurs when all these conditions are met:

• Only one base clock drives a gated-clock

• For one set of gating input values, the value output of the gated clock remains
constant and does not change as the base clock changes

• For one value of the base clock, changes in the gating inputs do not change the
value output for the gated clock

The option supports combinational gates in clock gating network.

Figure 35. Example Gated Clock Conversion

clk
ena1

clk
ena1

ena

ena

clk

ena1

ena

ena

ena2

ena

ena

clk

ena

enaena1
ena2

Note: This option does not support registers in RAM, DSP blocks, or I/O related WYSIWYG
primitives. Because the gated-clock conversion cannot trace the base clock from the
gated clock, the gated clock conversion does not support multiple design partitions
from incremental compilation in which the gated clock and base clock are not in the
same hierarchical partition. A gated clock tree, instead of every gated clock, is the
basis of each conversion. Therefore, if you cannot convert a gated clock from a root
gated clock of a multiple cascaded gated clock, the conversion of the entire gated
clock tree fails.

The Info tab in the Messages window lists all the converted gated clocks. You can
view a list of converted and nonconverted gated clocks from the Compilation Report
under the Optimization Results of the Analysis & Synthesis Report. The Gated
Clock Conversion Details table lists the reasons for nonconverted gated clocks.

Related Information

Auto Gated Clock Conversion logic option
For more information about Auto Gated Clock Conversion logic option and a list of
supported devices

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

143

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_synth_gated_clock_conversion.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4.4. Enabling Timing-Driven Synthesis

Timing-driven synthesis directs the Compiler to account for your timing constraints
during synthesis. Timing-driven synthesis runs initial timing analysis to obtain netlist
timing information. Synthesis then focuses performance efforts on timing-critical
design elements, while optimizing non-timing-critical portions for area.

Timing-driven synthesis preserves timing constraints, and does not perform
optimizations that conflict with timing constraints. Timing-driven synthesis may
increase the number of required device resources. Specifically, the number of adaptive
look-up tables (ALUTs) and registers may increase. The overall area can increase or
decrease. Runtime and peak memory use increases slightly.

Timing-Driven Synthesis prevents registers with incompatible timing constraints
from merging for any Optimization Technique setting. If your design contains
multiple partitions, you can select Timing-Driven Synthesis options for each
partition. If you use a .qxp as a source file, or if your design uses partitions
developed in separate Quartus Prime projects, the software cannot properly compute
timing of paths that cross the partition boundaries.

3.4.5. SDC Constraint Protection

The SDC Constraint Protection option specifies whether Analysis & Synthesis should
protect registers from merging when they have incompatible timing constraints. For
example, when you turn on this option, the software does not merge two registers
that are duplicates of each other but have different multicycle constraints on them.
When you turn on the Timing-Driven Synthesis option, the software detects
registers with incompatible constraints, and you do not need to turn on SDC
Constraint Protection. Click Assignments ➤ Settings ➤ Compiler Settings ➤
Advanced Settings (Synthesis) to enable the SDC constraint protection option.

3.4.6. PowerPlay Power Optimization

The PowerPlay Power Optimization logic option controls the power-driven
compilation setting of Analysis & Synthesis and determines how aggressively Analysis
& Synthesis optimizes your design for power.

Related Information

• PowerPlay Power Optimization logic option
For more information about the available settings for the PowerPlay power
optimization logic option and a list of supported devices

• Power Optimization
For more information about optimizing your design for power utilization

• PowerPlay Power Analysis
For information about analyzing your power results

3.4.7. Limiting Resource Usage in Partitions

Resource balancing is important when performing Analysis & Synthesis. During
resource balancing, Quartus Prime Integrated Synthesis considers the amount of used
and available DSP and RAM blocks in the device, and tries to balance these resources
to prevent no-fit errors.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

144

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_optimize_power_during_synth.htm
https://www.intel.com/content/www/us/en/docs/programmable/683230/current/power-optimization.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For DSP blocks, Resource balancing is important when performing Analysis &
Synthesis. During resource balancing, Quartus Prime Integrated Synthesis considers
the amount of used and available DSP and RAM blocks in the device, and tries to
balance these resources to prevent no-fit errors. resource balancing converts the
remaining DSP blocks to equivalent logic if there are more DSP blocks in your design
that the software can place in the device. For RAM blocks, resource balancing converts
RAM blocks to different types of RAM blocks if there are not enough blocks of a certain
type available in the device; however, Quartus Prime Integrated Synthesis does not
convert RAM blocks to logic.

Note: The RAM balancing feature does not support Stratix V devices because Stratix V has
only M20K memory blocks.

By default, Quartus Prime Integrated Synthesis considers the information in the
targeted device to identify the number of available DSP or RAM blocks. However, in
incremental compilation, each partition considers the information in the device
independently and consequently assumes that the partition has all the DSP and RAM
blocks in the device available for use, resulting in over allocation of DSP or RAM blocks
in your design, which means that the total number of DSP or RAM blocks used by all
the partitions is greater than the number of DSP or RAM blocks available in the device,
leading to a no-fit error during the fitting process.

Related Information

• Creating LogicLock Regions on page 145
For more information about preventing a no-fit error during the fitting process

• Using Assignments to Limit the Number of RAM and DSP Blocks on page 146
For more information about preventing a no-fit error during the fitting process

3.4.7.1. Creating LogicLock Regions

The floorplan-aware synthesis feature allows you to use LogicLock regions to define
resource allocation for DSP blocks and RAM blocks. For example, if you assign a
certain partition to a certain LogicLock region, resource balancing takes into account
that all the DSP and RAM blocks in that partition need to fit in this LogicLock region.
Resource balancing then balances the DSP and RAM blocks accordingly.

Because floorplan-aware balancing step considers only one partition at a time, it does
not know that nodes from another partition may be using the same resources. When
using this feature, Altera recommends that you do not manually assign nodes from
different partitions to the same LogicLock region.

If you do not want the software to consider the LogicLock floorplan constraints when
performing DSP and RAM balancing, you can turn off the floorplan-aware synthesis
feature. Click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced
Settings (Synthesis) to disable Use LogicLock Constraints During Resource
Balancing option.

Related Information

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design on
page 7

For more information about using LogicLock regions to create a floorplan for
incremental compilation

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

145

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4.7.2. Using Assignments to Limit the Number of RAM and DSP Blocks

For DSP and RAM block balancing, you can use assignments to limit the maximum
number of blocks that the balancer allows. You can set these assignments globally or
on individual partitions. For DSP block balancing, the Maximum DSP Block Usage
logic option allows you to specify the maximum number of DSP blocks that the DSP
block balancer assumes are available for the current partition. For RAM blocks, the
floorplan-aware logic option allows you to specify maximum resources for different
RAM types, such as Maximum Number of M4K/M9K/M20K/M10K Memory
Blocks, Maximum Number of M512 Memory Blocks, Maximum Number of M-
RAM/M144K Memory Blocks, or Maximum Number of LABs.

The partition-specific assignment overrides the global assignment, if any. However,
each partition that does not have a partition-specific assignment uses the value set by
the global assignment, or the value derived from the device size if no global
assignment exists. This action can also lead to over allocation. Therefore, Altera
recommends that you always set the assignment on each partition individually.

To select the Maximum Number <block type> Memory Blocks option or the
Maximum DSP Block Usage option globally, click Assignments ➤ Settings ➤
Compiler Settings ➤ Advanced Settings (Synthesis). You can use the Assignment
Editor to set this assignment on a partition by selecting the assignment, and setting it
on the root entity of a partition. You can set any positive integer as the value of this
assignment. If you set this assignment on a name other than a partition root, Analysis
& Synthesis gives an error.

Related Information

• Maximum DSP Block Usage logic option on page 0
For more information about the Maximum DSP Block Usage logic option,
including a list of supported device families

• Maximum Number of M4K/M9K/M20K/M10K Memory Blocks logic option on page
0

For more information about the Maximum Number of M4K/M9K/M20K/
M10K Memory Blocks logic option, including a list of supported device
families

3.4.8. Restructure Multiplexers

The Restructure Multiplexers logic option restructures multiplexers to create more
efficient use of area, allowing you to implement multiplexers with a reduced number of
LEs or ALMs.

When multiplexers from one part of your design feed multiplexers in another part of
your design, trees of multiplexers form. Multiplexers may arise in different parts of
your design through Verilog HDL or VHDL constructs such as the “if,” “case,” or “?:”
statements. Multiplexer buses occur most often as a result of multiplexing together
arrays in Verilog HDL, or STD_LOGIC_VECTOR signals in VHDL. The Restructure
Multiplexers logic option identifies buses of multiplexer trees that have a similar
structure. This logic option optimizes the structure of each multiplexer bus for the
target device to reduce the overall amount of logic in your design.

Results of the multiplexer optimizations are design dependent, but area reductions as
high as 20% are possible. The option can negatively affect your design’s fMAX.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

146

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_max_balancing_dsp_blocks.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_max_ram_blocks_m4k.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Analysis Synthesis Optimization Results Reports
For more information about the Multiplexer Restructuring Statistics report table
for each bus of multiplexers

• Restructure Multiplexers logic option
For more information about the Restructure Multiplexers logic option, including
the settings and a list of supported device families

3.4.9. Synthesis Effort

The Synthesis Effort logic option specifies the overall synthesis effort level in the
Quartus Prime software.

Related Information

Synthesis Effort logic option
For more information about Synthesis Effort logic option, including a list of
supported device families

3.4.10. Fitter Intial Placement Seed

Specifies the starting value the Fitter uses when randomly determining the initial
placement for the current design. The value can be any non-negative integer value.
Changing the starting value may or may not produce better fitting. Specify a starting
value only if the Fitter is not meeting timing requirements by a small amount. Use the
Design Space Explorer to sweep many seed values easily and find the best value for
your project. Modifying the design or Quartus settings even slightly usually changes
which seed is best for the design.

To set the Synthesis Seed option, click Assignments ➤ Settings ➤ Compiler
Settings ➤ Advanced Settings (Fitter). The default value is 1. You can specify a
positive integer value.

3.4.11. State Machine Processing

The State Machine Processing logic option specifies the processing style to
synthesize a state machine.

The default state machine encoding, Auto, uses one-hot encoding for FPGA devices
and minimal-bits encoding for CPLDs. These settings achieve the best results on
average, but another encoding style might be more appropriate for your design, so
this option allows you to control the state machine encoding.

For one-hot encoding, the Quartus Prime software does not guarantee that each state
has one bit set to one and all other bits set to zero. Quartus Prime Integrated
Synthesis creates one-hot register encoding with standard one-hot encoding and then
inverts the first bit. This results in an initial state with all zero values, and the
remaining states have two 1 values. Quartus Prime Integrated Synthesis encodes the
initial state with all zeros for the state machine power-up because all device registers
power up to a low value. This encoding has the same properties as true one-hot

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

147

http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_file_analysis_optimize_results.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_mux_restructure.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_synthesis_effort.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

encoding: the software recognizes each state by the value of one bit. For example, in
a one-hot-encoded state machine with five states, including an initial or reset state,
the software uses the following register encoding:

State 0 0 0 0 0 0
State 1 0 0 0 1 1
State 2 0 0 1 0 1
State 3 0 1 0 0 1
State 4 1 0 0 0 1

If you set the State Machine Processing logic option to User-Encoded in a Verilog
HDL design, the software starts with the original design values for the state constants.
For example, a Verilog HDL design can contain the following declaration:

parameter S0 = 4'b1010, S1 = 4'b0101, ...

If the software infers the states S0, S1,... the software uses the encoding
4'b1010, 4'b0101,... . If necessary, the software inverts bits in a user-encoded
state machine to ensure that all bits of the reset state of the state machine are zero.

Note: You can view the state machine encoding from the Compilation Report under the State
Machines of the Analysis & Synthesis Report. The State Machine Viewer displays only a
graphical representation of the state machines as interpreted from your design.

To assign your own state encoding with the User-Encoded setting of the State
Machine Processing option in a VHDL design, you must apply specific binary
encoding to the elements of an enumerated type because enumeration literals have no
numeric values in VHDL. Use the syn_encoding synthesis attribute to apply your
encoding values.

Related Information

• Manually Specifying State Assignments Using the syn_encoding Attribute on page
148

• State Machine Processing logic option

3.4.11.1. Manually Specifying State Assignments Using the syn_encoding
Attribute

The Quartus Prime software infers state machines from enumerated types and
automatically assigns state encoding based on State Machine Processing on page 147.

With this logic option, you can choose the value User-Encoded to use the encoding
from your HDL code. However, in standard VHDL code, you cannot specify user
encoding in the state machine description because enumeration literals have no
numeric values in VHDL.

To assign your own state encoding for the User-Encoded State Machine
Processing setting, use the syn_encoding synthesis attribute to apply specific
binary encodings to the elements of an enumerated type or to specify an encoding
style. The Quartus Prime software can implement Enumeration Types with different
encoding styles, as listed in this table.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

148

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_smp_process_type.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16. syn_encoding Attribute Values

Attribute Value Enumeration Types

"default" Use an encoding based on the number of enumeration literals in the Enumeration Type. If the number of
literals is less than five, use the "sequential" encoding. If the number of literals is more than five, but
fewer than 50, use a "one-hot" encoding. Otherwise, use a "gray" encoding.

"sequential" Use a binary encoding in which the first enumeration literal in the Enumeration Type has encoding 0 and the
second 1.

"gray" Use an encoding in which the encodings for adjacent enumeration literals differ by exactly one bit. An N-bit
gray code can represent 2N values.

"johnson" Use an encoding similar to a gray code. An N-bit Johnson code can represent at most 2N states, but
requires less logic than a gray encoding.

"one-hot" The default encoding style requiring N bits, in which N is the number of enumeration literals in the
Enumeration Type.

"compact" Use an encoding with the fewest bits.

"user" Encode each state using its value in the Verilog source. By changing the values of your state constants, you
can change the encoding of your state machine.

The syn_encoding attribute must follow the enumeration type definition, but
precede its use.

Related Information

State Machine Processing on page 147

3.4.11.2. Manually Specifying Enumerated Types Using the enum_encoding
Attribute

By default, the Quartus Prime software one-hot encodes all enumerated types you
defined. With the enum_encoding attribute, you can specify the logic encoding for an
enumerated type and override the default one-hot encoding to improve the logic
efficiency.

Note: If an enumerated type represents the states of a state machine, using the
enum_encoding attribute to specify a manual state encoding prevents the Compiler
from recognizing state machines based on the enumerated type. Instead, the
Compiler processes these state machines as regular logic with the encoding specified
by the attribute, and the Report window for your project does not list these states
machines as state machines. If you want to control the encoding for a recognized
state machine, use the State Machine Processing logic option and the
syn_encoding synthesis attribute.

To use the enum_encoding attribute in a VHDL design file, associate the attribute
with the enumeration type whose encoding you want to control. The enum_encoding
attribute must follow the enumeration type definition, but precede its use. In addition,
the attribute value should be a string literal that specifies either an arbitrary user
encoding or an encoding style of "default", "sequential", "gray", "johnson",
or "one-hot".

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

149

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

An arbitrary user encoding consists of a space-delimited list of encodings. The list
must contain as many encodings as the number of enumeration literals in your
enumeration type. In addition, the encodings should have the same length, and each
encoding must consist solely of values from the std_ulogic type declared by the
std_logic_1164 package in the IEEE library.

In this example, the enum_encoding attribute specifies an arbitrary user encoding
for the enumeration type fruit.

Example 19. Specifying an Arbitrary User Encoding for Enumerated Type

type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "11 01 10 00";

This example shows the encoded enumeration literals:

Example 20. Encoded Enumeration Literals

apple = "11"
orange = "01"
pear = "10"
mango = "00"

Altera recommends that you specify an encoding style, rather than a manual user
encoding, especially when the enumeration type has a large number of enumeration
literals. The Quartus Prime software can implement Enumeration Types with the
different encoding styles, as shown in this table.

Table 17. enum_encoding Attribute Values

Attribute Value Enumeration Types

"default" Use an encoding based on the number of enumeration literals in the enumeration type. If the number of
literals are fewer than five, use the "sequential" encoding. If the number of literals are more than five,
but fewer than 50 literals, use a "one-hot" encoding. Otherwise, use a "gray" encoding.

"sequential" Use a binary encoding in which the first enumeration literal in the enumeration type has encoding 0 and
the second 1.

"gray" Use an encoding in which the encodings for adjacent enumeration literals differ by exactly one bit. An N-bit
gray code can represent 2N values.

"johnson" Use an encoding similar to a gray code. An N-bit Johnson code can represent at most 2N states, but
requires less logic than a gray encoding.

"one-hot" The default encoding style requiring N bits, in which N is the number of enumeration literals in the
enumeration type.

In Specifying an Arbitrary User Encoding for Enumerated Type on page 149, the
enum_encoding attribute manually specified a gray encoding for the enumeration
type fruit. You can also concisely write this example by specifying the "gray"
encoding style instead of a manual encoding, as shown in the following example:

Example 21. Specifying the “gray” Encoding Style or Enumeration Type

type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "gray";

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

150

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4.12. Safe State Machine

The Safe State Machine logic option and corresponding syn_encoding attribute
value safe specify that the software must insert extra logic to detect an illegal state,
and force the transition of the state machine to the reset state.

A finite state machine can enter an illegal state—meaning the state registers contain a
value that does not correspond to any defined state. By default, the behavior of the
state machine that enters an illegal state is undefined. However, you can set the
syn_encoding attribute to safe or use the Safe State Machine logic option if you
want the state machine to recover deterministically from an illegal state. The software
inserts extra logic to detect an illegal state, and forces the transition of the state
machine to the reset state. You can use this logic option when the state machine
enters an illegal state. The most common cause of an illegal state is a state machine
that has control inputs that come from another clock domain, such as the control logic
for a clock-crossing FIFO, because the state machine must have inputs from another
clock domain. This option protects only state machines (and not other registers) by
forcing them into the reset state. You can use this option if your design has
asynchronous inputs. However, Altera recommends using a synchronization register
chain instead of relying on the safe state machine option.

The safe state machine value does not use any user-defined default logic from your
HDL code that corresponds to unreachable states. Verilog HDL and VHDL enable you
to specify a behavior for all states in the state machine explicitly, including
unreachable states. However, synthesis tools detect if state machine logic is
unreachable and minimize or remove the logic. Synthesis tools also remove any flag
signals or logic that indicate such an illegal state. If the software implements the state
machine as safe, the recovery logic added by Quartus Prime Integrated Synthesis
forces its transition from an illegal state to the reset state.

You can set the Safe State Machine logic option globally, or on individual state
machines. To set this logic option, click Assignments ➤ Settings ➤ Compiler
Settings ➤ Advanced Settings (Synthesis).

Table 18. Setting the syn_encoding safe attribute on a State Machine in HDL

HDL Code

Verilog HDL reg [2:0] my_fsm /* synthesis syn_encoding = "safe" */;

Verilog-2001 and
SystemVerilog

(* syn_encoding = "safe" *) reg [2:0] my_fsm;

VHDL ATTRIBUTE syn_encoding OF my_fsm : TYPE IS "safe";

If you specify an encoding style, separate the encoding style value in the quotation
marks with the safe value with a comma, as follows: "safe, one-hot" or "safe,
gray".

Safe state machine implementation can result in a noticeable area increase for your
design. Therefore, Altera recommends that you set this option only on the critical
state machines in your design in which the safe mode is necessary, such as a state
machine that uses inputs from asynchronous clock domains. You may not need to use
this option if you correctly synchronize inputs coming from other clock domains.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If you create the safe state machine assignment on an instance that the software
fails to recognize as a state machine, or an entity that contains a state machine, the
software takes no action. You must restructure the code, so that the software
recognizes and infers the instance as a state machine.

Related Information

• Manually Specifying State Assignments Using the syn_encoding Attribute on page
148

• Safe State Machine logic option
For more information about the Safe State Machine logic option

3.4.13. Power-Up Level

This logic option causes a register (flipflop) to power up with the specified logic level,
either high (1) or low (0). The registers in the core hardware power up to 0 in all
Altera devices. For the register to power up with a logic level high, the Compiler
performs an optimization referred to as NOT-gate push back on the register. NOT-gate
push back adds an inverter to the input and the output of the register, so that the
reset and power-up conditions appear to be high and the device operates as expected.
The register itself still powers up to 0, but the register output inverts so the signal
arriving at all destinations is 1.

The Power-Up Level option supports wildcard characters, and you can apply this
option to any register, registered logic cell WYSIWYG primitive, or to a design entity
containing registers, if you want to set the power level for all registers in your design
entity. If you assign this option to a registered logic cell WYSIWYG primitive, such as
an atom primitive from a third-party synthesis tool, you must turn on the Perform
WYSIWYG Primitive Resynthesis logic option for the option to take effect. You can
also apply the option to a pin with the logic configurations described in the following
list:

• If you turn on this option for an input pin, the option transfers to the register that
the pin drives, if all these conditions are present:

— No logic, other than inversion, between the pin and the register.

— The input pin drives the data input of the register.

— The input pin does not fan-out to any other logic.

• If you turn on this option for an output or bidirectional pin, the option transfers to
the register that feeds the pin, if all these conditions are present:

— No logic, other than inversion, between the register and the pin.

— The register does not fan out to any other logic.

Related Information

Power-Up Level logic option
For more information about the Power-Up Level logic option, including information
on the supported device families

3.4.13.1. Inferred Power-Up Levels

Quartus Prime Integrated Synthesis reads default values for registered signals defined
in Verilog HDL and VHDL code, and converts the default values into Power-Up Level
settings. The software also synthesizes variables with assigned values in Verilog HDL

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

152

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_safe_state_machine.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_power_up_high.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

initial blocks into power-up conditions. Synthesis of these default and initial constructs
allows synthesized behavior of your design to match, as closely as possible, the
power-up state of the HDL code during a functional simulation.

The following register declarations all set a power-up level of VCC or a logic value “1”,
as shown in this example:

signal q : std_logic = '1'; -- power-up to VCC

reg q = 1'b1; // power-up to VCC

reg q;
initial begin q = 1'b1; end // power-up to VCC

3.4.14. Power-Up Don’t Care

This logic option allows the Compiler to optimize registers in your design that do not
have a defined power-up condition.

For example, your design might have a register with its D input tied to VCC, and with
no clear signal or other secondary signals. If you turn on this option, the Compiler can
choose for the register to power up to VCC. Therefore, the output of the register is
always VCC. The Compiler can remove the register and connect its output to VCC. If
you turn this option off or if you set a Power-Up Level assignment of Low for this
register, the register transitions from GND to VCC when your design starts up on the
first clock signal. Thus, the register is at VCC and you cannot remove the register.
Similarly, if the register has a clear signal, the Compiler cannot remove the register
because after asserting the clear signal, the register transitions again to GND and
back to VCC.

If the Compiler performs a Power-Up Don’t Care optimization that allows it to
remove a register, it issues a message to indicate that it is doing so.

This project-wide option does not apply to registers that have the Power-Up Level
logic option set to either High or Low.

Related Information

Power-Up Don’t Care logic option
For more information about Power-Up Don’t Care logic option and a list of
supported devices

3.4.15. Remove Duplicate Registers

The Remove Duplicate Registers logic option removes registers that are identical to
other registers.

Related Information

Remove Duplicate Registers logic option
For more information about Remove Duplicate Registers logic option and the
supported devices

3.4.16. Preserve Registers

This attribute and logic option directs the Compiler not to minimize or remove a
specified register during synthesis optimizations or register netlist optimizations.
Optimizations can eliminate redundant registers and registers with constant drivers;

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

153

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_allow_power_up_dont_care.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_dup_reg_extraction.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

this option prevents the software from reducing a register to a constant or merging
with a duplicate register. This option can preserve a register so you can observe the
register during simulation or with the Signal Tap. Additionally, this option can preserve
registers if you create a preliminary version of your design in which you have not
specified the secondary signals. You can also use the attribute to preserve a duplicate
of an I/O register so that you can place one copy of the I/O register in an I/O cell and
the second in the core.

Note: This option cannot preserve registers that have no fan-out.

The Preserve Registers logic option prevents the software from inferring a register
as a state machine.

You can set the Preserve Registers logic option in the Quartus Prime software, or
you can set the preserve attribute in your HDL code. In these examples, the Quartus
Prime software preserves the my_reg register.

Table 19. Setting the syn_preserve attribute in HDL Code

HDL Code(5)

Verilog HDL reg my_reg /* synthesis syn_preserve = 1 */;

 Verilog-2001 (* syn_preserve = 1 *) reg my_reg;

Table 20. Setting the preserve attribute in HDL Code
In addition to preserve, the Quartus Prime software supports the syn_preserve attribute name for
compatibility with other synthesis tools.

HDL Code

VHDL signal my_reg : stdlogic;
attribute preserve : boolean;
attribute preserve of my_reg : signal is true;

Related Information

• Preserve Registers logic option
For more information about the Preserve Registers logic option and the
supported devices

• Noprune Synthesis Attribute/Preserve Fan-out Free Register Node on page 155
For more information about preventing the removal of registers with no fan-out

3.4.17. Disable Register Merging/Don’t Merge Register

This logic option and attribute prevents the specified register from merging with other
registers and prevents other registers from merging with the specified register. When
applied to a design entity, it applies to all registers in the entity.

(5) The = 1 after the preserve are optional, because the assignment uses a default value of 1
when you specify the assignment.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

154

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_preserve_register.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can set the Disable Register Merging logic option in the Quartus Prime
software, or you can set the dont_merge attribute in your HDL code, as shown in
these examples. In these examples, the logic option or the attribute prevents the
my_reg register from merging.

Table 21. Setting the dont_merge attribute in HDL code

HDL Code

Verilog HD reg my_reg /* synthesis dont_merge */;

Verilog-2001 and
SystemVerilog

(* dont_merge *) reg my_reg;

VHDL signal my_reg : stdlogic;
attribute dont_merge : boolean;
attribute dont_merge of my_reg : signal is true;

Related Information

Disable Register Merging logic option
For more information about the Disable Register Merging logic option and the
supported devices

3.4.18. Noprune Synthesis Attribute/Preserve Fan-out Free Register Node

This synthesis attribute and corresponding logic option direct the Compiler to preserve
a fan-out-free register through the entire compilation flow. This option is different
from the Preserve Registers option, which prevents the Quartus Prime software
from reducing a register to a constant or merging with a duplicate register. Standard
synthesis optimizations remove nodes that do not directly or indirectly feed a top-level
output pin. This option can retain a register so you can observe the register in the
Simulator or the Signal TapAdditionally, this option can retain registers if you create a
preliminary version of your design in which you have not specified the fan-out logic of
the register.

You can set the Preserve Fan-out Free Register Node logic option in the Quartus
Prime software, or you can set the noprune attribute in your HDL code, as shown in
these examples. In these examples, the logic option or the attribute preserves the
my_reg register.

Note: You must use the noprune attribute instead of the logic option if the register has no
immediate fan-out in its module or entity. If you do not use the synthesis attribute,
the software removes (or “prunes”) registers with no fan-out during Analysis &
Elaboration before the logic synthesis stage applies any logic options. If the register
has no fan-out in the full design, but has fan-out in its module or entity, you can use
the logic option to retain the register through compilation.

The software supports the attribute name syn_noprune for compatibility with other
synthesis tools.

Table 22. Setting the noprune attribute in HDL code

HDL Code

Verilog HD reg my_reg /* synthesis syn_noprune */;

continued...

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

155

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_dont_merge_register.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Code

Verilog-2001 and
SystemVerilog

(* noprune *) reg my_reg;

VHDL signal my_reg : stdlogic;
attribute noprune: boolean;
attribute noprune of my_reg : signal is true;

Related Information

Preserve Fan-out Free Register logic option
For more information about Preserve Fan-out Free Register Node logic option
and a list of supported devices

3.4.19. Keep Combinational Node/Implement as Output of Logic Cell

This synthesis attribute and corresponding logic option direct the Compiler to keep a
wire or combinational node through logic synthesis minimizations and netlist
optimizations. A wire that has a keep attribute or a node that has the Implement as
Output of Logic Cell logic option applied becomes the output of a logic cell in the
final synthesis netlist, and the name of the logic cell remains the same as the name of
the wire or node. You can use this directive to make combinational nodes visible to the
Signal Tap.

Note: The option cannot keep nodes that have no fan-out. You cannot maintain node names
for wires with tri-state drivers, or if the signal feeds a top-level pin of the same name
(the software changes the node name to a name such as <net name>~buf0).

You can use the Ignore LCELL Buffers logic option to direct Analysis & Synthesis to
ignore logic cell buffers that the Implement as Output of Logic Cell logic option or
the LCELL primitive created. If you apply this logic option to an entity, it affects all
lower-level entities in the hierarchy path.

Note: To avoid unintended design optimizations, ensure that any entity instantiated with
Altera or third-party IP that relies on logic cell buffers for correct behavior does not
inherit the Ignore LCELL Buffers logic option. For example, if an IP core uses logic
cell buffers to manage high fan-out signals and inherits the Ignore LCELL Buffers
logic option, the target device may no longer function properly.

You can turn off the Ignore LCELL Buffers logic option for a specific entity to
override any assignments inherited from higher-level entities in the hierarchy path if
logic cell buffers created by the Implement as Output of Logic Cell logic option or
the LCELL primitive are required for correct behavior.

You can set the Implement as Output of Logic Cell logic option in the Quartus
Prime software, or you can set the keep attribute in your HDL code, as shown in these
tables. In these tables, the Compiler maintains the node name my_wire.

Table 23. Setting the keep Attribute in HDL code

HDL Code

Verilog HD wire my_wire /* synthesis keep = 1 */;

Verilog-2001 (* keep = 1 *) wire my_wire;

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

156

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_preserve_fanout_free_node.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 24. Setting the syn_keep Attribute in HDL Code
In addition to keep, the Quartus Prime software supports the syn_keep attribute name for compatibility with
other synthesis tools.

HDL Code

VHDL signal my_wire: bit;
attribute syn_keep: boolean;
attribute syn_keep of my_wire: signal is true;

Related Information

Implement as Output of Logic Cell logic option
For more information about the Implement as Output of Logic Cell logic option
and the supported devices

3.4.20. Disabling Synthesis Netlist Optimizations with dont_retime
Attribute

This attribute disables synthesis retiming optimizations on the register you specify.
When applied to a design entity, it applies to all registers in the entity.

You can turn off retiming optimizations with this option and prevent node name
changes, so that the Compiler can correctly use your timing constraints for the
register.

You can set the Netlist Optimizations logic option to Never Allow in the Quartus
Prime software to disable retiming along with other synthesis netlist optimizations, or
you can set the dont_retime attribute in your HDL code, as shown in the following
table. In the following table, the code prevents my_reg register from being retimed.

Table 25. Setting the dont_retime Attribute in HDL Code

HDL Code

Verilog HDL reg my_reg /* synthesis dont_retime */;

Verilog-2001 and SystemVerilo (* dont_retime *) reg my_reg;

VHD signal my_reg : std_logic;
attribute dont_retime : boolean;
attribute dont_retime of my_reg : signal is true;

Note: For compatibility with third-party synthesis tools, Quartus Prime Integrated Synthesis
also supports the attribute syn_allow_retiming. To disable retiming, set
syn_allow_retiming to 0 (Verilog HDL) or false (VHDL). This attribute does not
have any effect when you set the attribute to 1 or true.

3.4.21. Disabling Synthesis Netlist Optimizations with dont_replicate
Attribute

This attribute disables synthesis replication optimizations on the register you specify.
When applied to a design entity, it applies to all registers in the entity.

You can turn off register replication (or duplication) optimizations with this option, so
that the Compiler uses your timing constraints for the register.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

157

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_implement_as_lcell.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can set the Netlist Optimizations logic option to Never Allow in the Quartus
Prime software to disable replication along with other synthesis netlist optimizations,
or you can set the dont_replicate attribute in your HDL code, as shown in these
examples. In these examples, the code prevents the replication of the my_reg
register.

Table 26. Setting the dont_replicate attribute in HDL Code

HDL Code

Verilog HD reg my_reg /* synthesis dont_replicate */;

Verilog-2001 and
SystemVerilog

(* dont_replicate *) reg my_reg;

VHDL signal my_reg : std_logic;
attribute dont_replicate : boolean;
attribute dont_replicate of my_reg : signal is true;

Note: For compatibility with third-party synthesis tools, Quartus Prime Integrated Synthesis
also supports the attribute syn_replicate. To disable replication, set
syn_replicate to 0 (Verilog HDL) or false (VHDL). This attribute does not have
any effect when you set the attribute to 1 or true.

3.4.22. Maximum Fan-Out

This Maximum Fan-Out attribute and logic option direct the Compiler to control the
number of destinations that a node feeds. The Compiler duplicates a node and splits
its fan-out until the individual fan-out of each copy falls below the maximum fan-out
restriction. You can apply this option to a register or a logic cell buffer, or to a design
entity that contains these elements. You can use this option to reduce the load of
critical signals, which can improve performance. You can use the option to instruct the
Compiler to duplicate a register that feeds nodes in different locations on the target
device. Duplicating the register can enable the Fitter to place these new registers
closer to their destination logic to minimize routing delay.

To turn off the option for a given node if you set the option at a higher level of the
design hierarchy, in the Netlist Optimizations logic option, select Never Allow. If
not disabled by the Netlist Optimizations option, the Compiler acknowledges the
maximum fan-out constraint as long as the following conditions are met:

• The node is not part of a cascade, carry, or register cascade chain.

• The node does not feed itself.

• The node feeds other logic cells, DSP blocks, RAM blocks, and pins through data,
address, clock enable, and other ports, but not through any asynchronous control
ports (such as asynchronous clear).

The Compiler does not create duplicate nodes in these cases, because there is no clear
way to duplicate the node, or to avoid the small differences in timing which could
produce functional differences in the implementation (in the third condition above in
which asynchronous control signals are involved). If you cannot apply the constraint
because you do not meet one of these conditions, the Compiler issues a message to
indicate that the Compiler ignores the maximum fan-out assignment. To instruct the
Compiler not to check node destinations for possible problems such as the third
condition, you can set the Netlist Optimizations logic option to Always Allow for a
given node.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

158

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If you have enabled any of the Quartus Prime netlist optimizations that affect
registers, add the preserve attribute to any registers to which you have set a
maxfan attribute. The preserve attribute ensures that the netlist optimization
algorithms, such as register retiming, do not affect the registers.

You can set the Maximum Fan-Out logic option in the Quartus Prime software. This
option supports wildcard characters. You can also set the maxfan attribute in your
HDL code, as shown in these examples. In these examples, the Compiler duplicates
the clk_gen register, so its fan-out is not greater than 50.

Table 27. Setting the maxfan attribute in HDL Code

HDL Code

Verilog HDL reg clk_gen /* synthesis syn_maxfan = 50 */;

Verilog-2001 (* maxfan = 50 *) reg clk_gen;

Table 28. Setting the syn_maxfan attribute in HDL Code
The Quartus Prime software supports the syn_maxfan attribute for compatibility with other synthesis tools.

HDL Code

VHDL signal clk_gen : stdlogic;
attribute maxfan : signal ;
attribute maxfan of clk_gen : signal is 50;

Related Information

• Netlist Optimizations and Physical Synthesis
For details about netlist optimizations

• Maximum Fan-Out logic option
For more information about the Maximum Fan-Out logic option and the
supported devices

3.4.23. Controlling Clock Enable Signals with Auto Clock Enable
Replacement and direct_enable

The Auto Clock Enable Replacement logic option allows the software to find logic
that feeds a register and move the logic to the register’s clock enable input port. To
solve fitting or performance issues with designs that have many clock enables, you
can turn off this option for individual registers or design entities. Turning the option off
prevents the software from using the register’s clock enable port. The software
implements the clock enable functionality using multiplexers in logic cells.

If the software does not move the specific logic to a clock enable input with the Auto
Clock Enable Replacement logic option, you can instruct the software to use a
direct clock enable signal. The attribute ensures that the signal drives the clock enable
port, and the software does not optimize or combine the signal with other logic.

These tables show how to set this attribute to ensure that the attribute preserves the
signal and uses the signal as a clock enable.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

159

https://www.intel.com/content/www/us/en/docs/programmable/683230/current/netlist-optimizations-and-physical-synthesis-29493.html
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_max_fanout.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 29. Setting the direct_enable in HDL Code

HDL Code

Verilog HDL wire my_enable /* synthesis direct_enable = 1 */ ;

VHDL attribute direct_enable: boolean;
attribute direct_enable of my_enable: signal is true;

Table 30. Setting the syn_direct_enable in HDL Code
The Quartus Prime software supports the syn_direct_enable attribute name for compatibility with other
synthesis tools.

HDL Code

Verilog-2001 and
SystemVerilog

(* syn_direct_enable *) wire my_enable;

Related Information

Auto Clock Enable Replacement logic option
For more information about the Auto Clock Enable Replacement logic option
and the supported devices

3.5. Inferring Multiplier, DSP, and Memory Functions from HDL
Code

The Quartus Prime Compiler automatically recognizes multipliers, multiply-
accumulators, multiply-adders, or memory functions described in HDL code, and either
converts the HDL code into respective IP core or maps them directly to device atoms
or memory atoms. If the software converts the HDL code into an IP core, the software
uses the Altera IP core code when you compile your design, even when you do not
specifically instantiate the IP core. The software infers IP cores to take advantage of
logic that you optimize for Altera devices. The area and performance of such logic can
be better than the results from inferring generic logic from the same HDL code.

Additionally, you must use IP cores to access certain architecture-specific features,
such as RAM, DSP blocks, and shift registers that provide improved performance
compared with basic logic cells.

The Quartus Prime software provides options to control the inference of certain types
of IP cores.

3.5.1. Multiply-Accumulators and Multiply-Adders

Use the Auto DSP Block Replacement logic option to control DSP block inference for
multiply-accumulations and multiply-adders. To disable inference, turn off this option
for the entire project on the Advanced Analysis & Synthesis dialog box of the
Compiler Settings page.

Related Information

Auto DSP Block Replacement logic option
For more information about the Auto DSP Block Replacement logic option and the
supported devices

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

160

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_clock_enable_recognition.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_dsp_recognition.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.2. Shift Registers

Use the Auto Shift Register Replacement logic option to control shift register
inference. This option has three settings: Off, Auto and Always. Auto is the default
setting in which Quartus Prime Integrated Synthesis decides which shift registers to
replace or leave in registers. Placing shift registers in memory saves logic area, but
can have a negative effect on fmax. Quartus Prime Integrated Synthesis uses the
optimization technique setting, logic and RAM utilization of your design, and timing
information from Timing-Driven Synthesis to determine which shift registers are
located in memory and which are located in registers. To disable inference, click
Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis). You can also disable the option for a specific block with the Assignment
Editor. Even if you set the logic option to On or Auto, the software might not infer
small shift registers because small shift registers do not benefit from implementation
in dedicated memory. However, you can use the Allow Any Shift Register Size for
Recognition logic option to instruct synthesis to infer a shift register even when its
size is too small.

You can use the Allow Shift Register Merging across Hierarchies option to
prevent the Compiler from merging shift registers in different hierarchies into one
larger shift register. The option has three settings: On, Off, and Auto. The Auto
setting is the default setting, and the Compiler decides whether or not to merge shift
registers across hierarchies. When you turn on this option, the Compiler allows all shift
registers to merge across hierarchies, and when you turn off this option, the Compiler
does not allow any shift registers to merge across hierarchies. You can set this option
globally or on entities or individual nodes.

Note: The registers that the software maps to the RAM-based Shift Register IP core and
places in RAM are not available in the Simulator because their node names do not
exist after synthesis.

The Compiler turns off the Auto Shift Register Replacement logic option when you
select a formal verification tool on the EDA Tool Settings page. If you do not select a
formal verification tool, the Compiler issues a warning and the compilation report lists
shift registers that the logic option might infer. To enable an IP core for the shift
register in the formal verification flow, you can either instantiate a shift register
explicitly with the IP catalog or make the shift register into a black box in a separate
entity or module.

Related Information

• Auto Shift Register Replacement logic option
For more information about the Auto Shift Register Replacement logic option
and the supported devices

• RAM-Based Shift Register (ALTSHIFT_TAPS) User Guide
For more information about the RAM-based Shift Register IP core

3.5.3. RAM and ROM

Use the Auto RAM Replacement and Auto ROM Replacement logic options to
control RAM and ROM inference, respectively. To disable the inference, click
Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis).

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

161

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_shift_register_recognition.htm
http://www.altera.com/literature/ug/ug_shift_register_ram_based.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Although the software implements inferred shift registers in RAM blocks, you cannot
turn off the Auto RAM Replacement option to disable shift register replacement. Use
the Auto Shift Register Replacement option.

The software might not infer very small RAM or ROM blocks because you can
implement very small memory blocks with the registers in the logic. However, you can
use the Allow Any RAM Size for Recognition and Allow Any ROM Size for
Recognition logic options to instruct synthesis to infer a memory block even when its
size is too small.

Note: The software turns off the Auto ROM Replacement logic option when you select a
formal verification tool in the EDA Tool Settings page. If you do not select a formal
verification tool, the software issues a warning and a report panel provides a list of
ROMs that the logic option might infer. To enable an IP core for the shift register in the
formal verification flow, you can either instantiate a ROM explicitly using the IP
Catalog or create a black box for the ROM in a separate entity or in a separate
module.

Although formal verification tools do not support inferred RAM blocks, due to the
importance of inferring RAM in many designs, the software turns on the Auto RAM
Replacement logic option when you select a formal verification tool in the EDA Tool
Settings page. The software automatically performs black box instance for any
module or entity that contains an inferred RAM block. The software issues a warning
and lists the black box created in the compilation report. This black box allows formal
verification tools to proceed; however, the formal verification tool cannot verify the
entire module or entire entity that contains the RAM. Altera recommends that you
explicitly instantiate RAM blocks in separate modules or in separate entities so that the
formal verification tool can verify as much logic as possible.

Related Information

• Shift Registers on page 161

• Auto RAM Replacement logic option
For more information about the Auto RAM Replacement logic option and its
supported devices

• Auto ROM Replacement logic option
For more information about the Auto ROM Replacement logic option and its
supported devices

3.5.4. Resource Aware RAM, ROM, and Shift-Register Inference

The Quartus Prime Integrated Synthesis considers resource usage when inferring RAM,
ROM, and shift registers. During RAM, ROM, and shift register inferencing, synthesis
looks at the number of memories available in the current device and does not infer
more memory than is available to avoid a no-fit error. Synthesis tries to select the
memories that are not inferred in a way that aims at the smallest increase in logic and
registers.

Resource aware RAM, ROM and shift register inference is controlled by the Resource
Aware Inference for Block RAM option. To disable this option for the entire project,
click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis).

When you select the Auto setting, resource aware RAM, ROM, and shift register
inference use the resource counts from the largest device.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

162

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_ram_recognition.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_rom_recognition.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For designs with multiple partitions, Quartus Prime Integrated Synthesis considers one
partition at a time. Therefore, for each partition, it assumes that all RAM blocks are
available to that partition. If this causes a no-fit error, you can limit the number of
RAM blocks available per partition with the Maximum Number of M512 Memory
Blocks, Maximum Number of M4K/M9K/M20K/M10K Memory Blocks,
Maximum Number of M-RAM/M144K Memory Blocks and Maximum Number of
LABs settings in the Assignment Editor. The balancer also uses these options.

3.5.5. Auto RAM to Logic Cell Conversion

The Auto RAM to Logic Cell Conversion logic option allows Quartus Prime
Integrated Synthesis to convert small RAM blocks to logic cells if the logic cell
implementation gives better quality of results. The software converts only single-port
or simple-dual port RAMs with no initialization files to logic cells. You can set this
option globally or apply it to individual RAM nodes. You can enable this option by
turning on the appropriate option for the entire project in the Advanced Analysis &
Synthesis Settings dialog box.

For Arria GX and Stratix family of devices, the software uses the following rules to
determine the placement of a RAM, either in logic cells or a dedicated RAM block:

• If the number of words is less than 16, use a RAM block if the total number of bits
is greater than or equal to 64.

• If the number of words is greater than or equal to 16, use a RAM block if the total
number of bits is greater than or equal to 32.

• Otherwise, implement the RAM in logic cells.

For the Cyclone family of devices, the software uses the following rules:

• If the number of words is greater than or equal to 64, use a RAM block.

• If the number of words is greater than or equal to 16 and less than 64, use a RAM
block if the total number of bits is greater than or equal to 128.

• Otherwise, implement the RAM in logic cells.

Related Information

Auto RAM to Logic Cell Conversion logic option
For more information about the Auto RAM to Logic Cell Conversion logic options
and the supported devices

3.5.6. RAM Style and ROM Style—for Inferred Memory

These attributes specify the implementation for an inferred RAM or ROM block. You
can specify the type of TriMatrix embedded memory block, or specify the use of
standard logic cells (LEs or ALMs). The Quartus Prime software supports the attributes
only for device families with TriMatrix embedded memory blocks.

The ramstyle and romstyle attributes take a single string value. The M512, M4K,
M-RAM, MLAB, M9K, M144K, M20K, and M10K values (as applicable for the target
device family) indicate the type of memory block to use for the inferred RAM or ROM.
If you set the attribute to a block type that does not exist in the target device family,
the software generates a warning and ignores the assignment. The logic value
indicates that the Quartus Prime software implements the RAM or ROM in regular logic
rather than dedicated memory blocks. You can set the attribute on a module or entity,
in which case it specifies the default implementation style for all inferred memory

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

163

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_ram_to_lcell_conversion.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

blocks in the immediate hierarchy. You can also set the attribute on a specific signal
(VHDL) or variable (Verilog HDL) declaration, in which case it specifies the preferred
implementation style for that specific memory, overriding the default implementation
style.

Note: If you specify a logic value, the memory appears as a RAM or ROM block in the RTL
Viewer, but Integrated Synthesis converts the memory to regular logic during
synthesis.

In addition to ramstyle and romstyle, the Quartus Prime software supports the
syn_ramstyle attribute name for compatibility with other synthesis tools.

These tables specify that you must implement all memory in the module or the
my_memory_blocks entity with a specific type of block.

Table 31. Applying a romstyle Attribute to a Module Declaration

HDL Code

Verilog-1995 module my_memory_blocks (...) /* synthesis romstyle = "M4K" */;

Table 32. Applying a ramstyle Attribute to a Module Declaration

HDL Code

Verilog-2001 and
SystemVerilog

 (* ramstyle = "M512" *) module my_memory_blocks (...);

Table 33. Applying a romstyle Attribute to an Architecture

HDL Code

VHDL architecture rtl of my_ my_memory_blocks is
attribute romstyle : string;
attribute romstyle of rtl : architecture is "M-RAM";
begin

These tables specify that you must implement the inferred my_ram or my_rom
memory with regular logic instead of a TriMatrix memory block.

Table 34. Applying a syn_ramstyle Attribute to a Variable Declaration

HDL Code

Verilog-1995 reg [0:7] my_ram[0:63] /* synthesis syn_ramstyle = "logic" */;

Table 35. Applying a romstyle Attribute to a Variable Declaration

HDL Code

Verilog-2001 and
SystemVerilog

(* romstyle = "logic" *) reg [0:7] my_rom[0:63];

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

164

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 36. Applying a ramstyle Attribute to a Signal Declaration

HDL Code

VHDL type memory_t is array (0 to 63) of std_logic_vector (0 to 7);
signal my_ram : memory_t;
attribute ramstyle : string;
attribute ramstyle of my_ram : signal is "logic";

You can control the depth of an inferred memory block and optimize its usage with the
max_depth attribute. You can also optimize the usage of the memory block with this
attribute.

These tables specify the depth of the inferred memory mem using the max_depth
synthesis attribute.

Table 37. Applying a max_depth Attribute to a Variable Declaration

HDL Code

Verilog-1995 reg [7:0] mem [127:0] /* synthesis max_depth = 2048 */

Table 38. Applying a max_depth Attribute to a Variable Declaration

HDL Code

 Verilog-2001 and
SystemVerilog

(* max_depth = 2048*) reg [7:0] mem [127:0];

Table 39. Applying a max_depth Attribute to a Variable Declaration

HDL Code

VHDL type ram_block is array (0 to 31) of std_logic_vector (2 downto 0);
signal mem : ram_block;
attribute max_depth : natural;
attribute max_depth OF mem : signal is 2048;

The syntax for setting these attributes in HDL is the same as the syntax for other
synthesis attributes, as shown in Synthesis Attributes on page 139.

Related Information

Synthesis Attributes on page 139

3.5.7. RAM Style Attribute—For Shift Registers Inference

The RAM style attribute for shift register allows you to use the RAM style attribute for
shift registers, just as you use them for RAM or ROMs. The Quartus Prime Synthesis
uses the RAM style attribute during shift register inference. If synthesis infers the shift
register to RAM, it will be sent to the requested RAM block type. Shift registers are
merged only if the RAM style attributes are compatible. If the RAM style is set to logic,
a shift register does not get inferred to RAM.

Table 40. Setting the RAM Style Attribute for Shift Registers

HDL Code

Verilog (* ramstyle = "mlab" *)reg [N-1:0] sr;

continued...

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

165

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Code

VHDL attribute ramstyle : string;attribute ramstyle of sr : signal is "M20K";

3.5.8. Disabling Add Pass-Through Logic to Inferred RAMs no_rw_check
Attribute

Use the no_rw_check value for the ramstyle attribute, or disable the
add_pass_through_logic_to_inferred_rams option logic option assignment
to indicate that your design does not depend on the behavior of the inferred RAM,
when there are reads and writes to the same address in the same clock cycle. If you
specify the attribute or disbale the logic option, the Quartus Prime software chooses a
read-during-write behavior instead of the read-during-write behavior of your HDL
source code.

You disable or edit the attributes of this option by modifying the
add_pass_through_logic_to_inferred_rams option in the Quartus Prime
Settings File (.qsf). There is no corresponding GUI setting for this option.

Sometimes, you must map an inferred RAM into regular logic cells because the
inferred RAM has a read-during-write behavior that the TriMatrix memory blocks in
your target device do not support. In other cases, the Quartus Prime software must
insert extra logic to mimic read-during-write behavior of the HDL source to increase
the area of your design and potentially reduce its performance. In some of these
cases, you can use the attribute to specify that the software can implement the RAM
directly in a TriMatrix memory block without using logic. You can also use the attribute
to prevent a warning message for dual-clock RAMs in the case that the inferred
behavior in the device does not exactly match the read-during-write conditions
described in the HDL code.

These examples use two addresses and normally require extra logic after the RAM to
ensure that the read-during-write conditions in the device match the HDL code. If your
design does not require a defined read-during-write condition, the extra logic is not
necessary. With the no_rw_check attribute, Quartus Prime Integrated Synthesis does
not generate the extra logic.

Table 41. Inferred RAM Using no_rw_check Attribute

HDL Code

Verilog HDL module ram_infer (q, wa, ra, d, we, clk);
 output [7:0] q;
 input [7:0] d;
 input [6:0] wa;
 input [6:0] ra;
 input we, clk;
 reg [6:0] read_add;
 (* ramstyle = "no_rw_check" *) reg [7:0] mem [127:0];
 always @ (posedge clk) begin
 if (we)
 mem[wa] <= d;
 read_add <= ra;
 end
 assign q = mem[read_add];
endmodule

 VHDL LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY ram IS
 PORT (
 clock: IN STD_LOGIC;

continued...

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

166

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Code

 data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;
 read_address: IN INTEGER RANGE 0 to 31;
 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));
END ram;
ARCHITECTURE rtl OF ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
 SIGNAL ram_block: MEM;
 ATTRIBUTE ramstyle : string;
 ATTRIBUTE ramstyle of ram_block : signal is "no_rw_check";
 SIGNAL read_address_reg: INTEGER RANGE 0 to 31;
BEGIN
 PROCESS (clock)
 BEGIN
 IF (clock'event AND clock = '1') THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 read_address_reg <= read_address;
 END IF;
 END PROCESS;
 q <= ram_block(read_address_reg);
END rtl;

You can use a ramstyle attribute with the MLAB value, so that the Quartus Prime
software can infer a small RAM block and place it in an MLAB.

Note: You can use this attribute in cases in which some asynchronous RAM blocks might be
coded with read-during-write behavior that does not match the Stratix IV and
Stratix V architectures. Thus, the device behavior would not exactly match the
behavior that the code describes. If the difference in behavior is acceptable in your
design, use the ramstyle attribute with the no_rw_check value to specify that the
software should not check the read-during-write behavior when inferring the RAM.
When you set this attribute, Quartus Prime Integrated Synthesis allows the behavior
of the output to differ when the asynchronous read occurs on an address that had a
write on the most recent clock edge. That is, the functional HDL simulation results do
not match the hardware behavior if you write to an address that is being read. To
include these attributes, set the value of the ramstyle attribute to MLAB,
no_rw_check.

These examples show the method of setting two values to the ramstyle attribute
with a small asynchronous RAM block, with the ramstyle synthesis attribute set, so
that the software can implement the memory in the MLAB memory block and so that
the read-during-write behavior is not important. Without the attribute, this design
requires 512 registers and 240 ALUTs. With the attribute, the design requires eight
memory ALUTs and only 15 registers.

Table 42. Inferred RAM Using no_rw_check and MLAB Attributes

HDL Code

Verilog HDL module async_ram (
 input [5:0] addr,
 input [7:0] data_in,
 input clk,
 input write,
 output [7:0] data_out);
 (* ramstyle = "MLAB, no_rw_check" *) reg [7:0] mem[0:63];
 assign data_out = mem[addr];
 always @ (posedge clk)
 begin
 if (write)
 mem[addr] = data_in;
 end
endmodule

continued...

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Code

VHDL LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY ram IS
 PORT (
 clock: IN STD_LOGIC;
 data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;
 read_address: IN INTEGER RANGE 0 to 31;
 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));
END ram;
ARCHITECTURE rtl OF ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
 SIGNAL ram_block: MEM;
 ATTRIBUTE ramstyle : string;
 ATTRIBUTE ramstyle of ram_block : signal is "MLAB , no_rw_check";
 SIGNAL read_address_reg: INTEGER RANGE 0 to 31;
BEGIN
 PROCESS (clock)
 BEGIN
 IF (clock'event AND clock = '1') THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 read_address_reg <= read_address;
 END IF;
 END PROCESS;
 q <= ram_block(read_address_reg);
END rtl;

Related Information

Add Pass-Through Logic to Inferred RAMs logic option
For more information about the Add Pass-Through Logic to Inferred RAMs logic
option and the supported devices

3.5.9. RAM Initialization File—for Inferred Memory

The ram_init_file attribute specifies the initial contents of an inferred memory
with a .mif. The attribute takes a string value containing the name of the RAM
initialization file.

The ram_init_file attribute is supported for ROM too.

Table 43. Applying a ram_init_file Attribute

HDL Code

Verilog-1995 reg [7:0] mem[0:255] /* synthesis ram_init_file
= " my_init_file.mif" */;

 Verilog-2001 (* ram_init_file = "my_init_file.mif" *) reg [7:0] mem[0:255];

VHDL(6)
type mem_t is array(0 to 255) of unsigned(7 downto 0);
signal ram : mem_t;
attribute ram_init_file : string;
attribute ram_init_file of ram :
signal is "my_init_file.mif";

(6) You can also initialize the contents of an inferred memory by specifying a default value for the
corresponding signal. In Verilog HDL, you can use an initial block to specify the memory
contents. Quartus Prime Integrated Synthesis automatically converts the default value into
a .mif for the inferred RAM.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

168

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_add_pass_through_logic_to_inferred_rams.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.10. Multiplier Style—for Inferred Multipliers

The multstyle attribute specifies the implementation style for multiplication
operations (*) in your HDL source code. You can use this attribute to specify whether
you prefer the Compiler to implement a multiplication operation in general logic or
dedicated hardware, if available in the target device.

The multstyle attribute takes a string value of "logic" or "dsp", indicating a
preferred implementation in logic or in dedicated hardware, respectively. In Verilog
HDL, apply the attribute to a module declaration, a variable declaration, or a specific
binary expression that contains the * operator. In VHDL, apply the synthesis attribute
to a signal, variable, entity, or architecture.

Note: Specifying a multstyle of "dsp" does not guarantee that the Quartus Prime
software can implement a multiplication in dedicated DSP hardware. The final
implementation depends on several conditions, including the availability of dedicated
hardware in the target device, the size of the operands, and whether or not one or
both operands are constant.

In addition to multstyle, the Quartus Prime software supports the syn_multstyle
attribute name for compatibility with other synthesis tools.

When applied to a Verilog HDL module declaration, the attribute specifies the default
implementation style for all instances of the * operator in the module. For example, in
the following code examples, the multstyle attribute directs the Quartus Prime
software to implement all multiplications inside module my_module in the dedicated
multiplication hardware.

Table 44. Applying a multstyle Attribute to a Module Declaration

HDL Code

Verilog-1995 module my_module (...) /* synthesis multstyle = "dsp" */;

 Verilog-2001 (* multstyle = "dsp" *) module my_module(...);

When applied to a Verilog HDL variable declaration, the attribute specifies the
implementation style for a multiplication operator, which has a result directly assigned
to the variable. The attribute overrides the multstyle attribute with the enclosing
module, if present.

In these examples, the multstyle attribute applied to variable result directs the
Quartus Prime software to implement a * b in logic rather than the dedicated
hardware.

Table 45. Applying a multstyle Attribute to a Variable Declaration

HDL Code

 Verilog-2001 wire [8:0] a, b;
(* multstyle = "logic" *) wire [17:0] result;
assign result = a * b; //Multiplication must be
 //directly assigned to result

continued...

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Code

Verilog-1995 wire [8:0] a, b;
wire [17:0] result /* synthesis multstyle = "logic" */;
assign result = a * b; //Multiplication must be
 //directly assigned to result

When applied directly to a binary expression that contains the * operator, the attribute
specifies the implementation style for that specific operator alone and overrides any
multstyle attribute with the target variable or enclosing module.

In this example, the multstyle attribute indicates that you must implement a * b
in the dedicated hardware.

Table 46. Applying a multstyle Attribute to a Binary Expression

HDL Code

Verilog-2001 wire [8:0] a, b;
wire [17:0] result;
assign result = a * (* multstyle = "dsp" *) b;

Note: You cannot use Verilog-1995 attribute syntax to apply the multstyle attribute to a
binary expression.

When applied to a VHDL entity or architecture, the attribute specifies the default
implementation style for all instances of the * operator in the entity or architecture.

In this example, the multstyle attribute directs the Quartus Prime software to use
dedicated hardware, if possible, for all multiplications inside architecture rtl of entity
my_entity.

Table 47. Applying a multstyle Attribute to an Architecture

HDL Code

VHDL architecture rtl of my_entity is
 attribute multstyle : string;
 attribute multstyle of rtl : architecture is "dsp";
begin

When applied to a VHDL signal or variable, the attribute specifies the implementation
style for all instances of the * operator, which has a result directly assigned to the
signal or variable. The attribute overrides the multstyle attribute with the enclosing
entity or architecture, if present.

In this example, the multstyle attribute associated with signal result directs the
Quartus Prime software to implement a * b in logic rather than the dedicated
hardware.

Table 48. Applying a multstyle Attribute to a Signal or Variable

HDL Code

VHDL signal a, b : unsigned(8 downto 0);
signal result : unsigned(17 downto 0);

attribute multstyle : string;
attribute multstyle of result : signal is "logic";
result <= a * b;

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.11. Full Case Attribute

A Verilog HDL case statement is full when its case items cover all possible binary
values of the case expression or when a default case statement is present. A
full_case attribute attached to a case statement header that is not full forces
synthesis to treat the unspecified states as a don’t care value. VHDL case statements
must be full, so the attribute does not apply to VHDL.

Using this attribute on a case statement that is not full allows you to avoid the latch
inference problems.

Note: Latches have limited support in formal verification tools. Do not infer latches
unintentionally, for example, through an incomplete case statement when using formal
verification.

Formal verification tools support the full_case synthesis attribute (with limited
support for attribute syntax, as described in Synthesis Attributes on page 139).

Using the full_case attribute might cause a simulation mismatch between the
Verilog HDL functional and the post-Quartus Prime simulation because unknown case
statement cases can still function as latches during functional simulation. For example,
a simulation mismatch can occur with the code in Table 49 on page 171 when sel is
2'b11 because a functional HDL simulation output behaves as a latch and the Quartus
Prime simulation output behaves as a don’t care value.

Note: Altera recommends making the case statement “full” in your regular HDL code,
instead of using the full_case attribute.

Table 49. A full_case Attribute
The case statement in this example is not full because you do not specify some sel binary values. Because
you use the full_case attribute, synthesis treats the output as “don’t care” when the sel input is 2'b11.

HDL Code

 Verilog HDL module full_case (a, sel, y);
 input [3:0] a;
 input [1:0] sel;
 output y;
 reg y;
 always @ (a or sel)
 case (sel) // synthesis full_case
 2'b00: y=a[0];
 2'b01: y=a[1];
 2'b10: y=a[2];
 endcase
endmodule

Verilog-2001 syntax also accepts the statements in Table 50 on page 171 in the case
header instead of the comment form as shown in Table 49 on page 171.

Table 50. Syntax for the full_case Attribute

HDL Syntax

 Verilog-2001 (* full_case *) case (sel)

Related Information

Synthesis Attributes on page 139

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

171

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.12. Parallel Case

The parallel_case attribute indicates that you must consider a Verilog HDL case
statement as parallel; that is, you can match only one case item at a time. Case items
in Verilog HDL case statements might overlap. To resolve multiple matching case
items, the Verilog HDL language defines a priority among case items in which the case
statement always executes the first case item that matches the case expression value.
By default, the Quartus Prime software implements the extra logic necessary to satisfy
this priority relationship.

Attaching a parallel_case attribute to a case statement header allows the Quartus
Prime software to consider its case items as inherently parallel; that is, at most one
case item matches the case expression value. Parallel case items simplify the
generated logic.

In VHDL, the individual choices in a case statement might not overlap, so they are
always parallel and this attribute does not apply.

Altera recommends that you use this attribute only when the case statement is truly
parallel. If you use the attribute in any other situation, the generated logic does not
match the functional simulation behavior of the Verilog HDL.

Note: Altera recommends that you avoid using the parallel_case attribute, because you
may mismatch the Verilog HDL functional and the post-Quartus Prime simulation.

If you specify SystemVerilog-2005 as the supported Verilog HDL version for your
design, you can use the SystemVerilog keyword unique to achieve the same result as
the parallel_case directive without causing simulation mismatches.

This example shows a casez statement with overlapping case items. In functional
HDL simulation, the software prioritizes the three case items by the bits in sel. For
example, sel[2] takes priority over sel[1], which takes priority over sel[0].
However, the synthesized design can simulate differently because the
parallel_case attribute eliminates this priority. If more than one bit of sel is high,
more than one output (a, b, or c) is high as well, a situation that cannot occur in
functional HDL simulation.

Table 51. A parallel_case Attribute

HDL Code

Verilog HDL module parallel_case (sel, a, b, c);
 input [2:0] sel;
 output a, b, c;
 reg a, b, c;
 always @ (sel)
 begin
 {a, b, c} = 3'b0;
 casez (sel) // synthesis parallel_case
 3'b1??: a = 1'b1;
 3'b?1?: b = 1'b1;
 3'b??1: c = 1'b1;
 endcase
 end
endmodule

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

172

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 52. Verilog-2001 Syntax
Verilog-2001 syntax also accepts the statements as shown in the following table in the case (or casez)
header instead of the comment form, as shown in Table 51 on page 172.

HDL Syntax

Verilog-2001 (* parallel_case *) casez (sel)

3.5.13. Translate Off and On / Synthesis Off and On

The translate_off and translate_on synthesis directives indicate whether the
Quartus Prime software or a third-party synthesis tool should compile a portion of HDL
code that is not relevant for synthesis. The translate_off directive marks the
beginning of code that the synthesis tool should ignore; the translate_on directive
indicates that synthesis should resume. You can also use the synthesis_on and
synthesis_off directives as a synonym for translate on and off.

You can use these directives to indicate a portion of code for simulation only. The
synthesis tool reads synthesis-specific directives and processes them during synthesis;
however, third-party simulation tools read the directives as comments and ignore
them.

These examples show these directives.

Table 53. Translate Off and On

HDL Code

Verilog HDL // synthesis translate_off
parameter tpd = 2; // Delay for simulation
#tpd;
// synthesis translate_on

VHDL -- synthesis translate_off
use std.textio.all;
-- synthesis translate_on

VHDL 2008 /* synthesis translate_off */
use std.textio.all;
/* synthesis translate_on */

If you want to ignore only a portion of code in Quartus Prime Integrated Synthesis,
you can use the Altera-specific attribute keyword altera. For example, use the //
altera translate_off and // altera translate_on directives to direct
Quartus Prime Integrated Synthesis to ignore a portion of code that you intend only
for other synthesis tools.

3.5.14. Ignore translate_off and synthesis_off Directives

The Ignore translate_off and synthesis_off Directives logic option directs
Quartus Prime Integrated Synthesis to ignore the translate_off and
synthesis_off directives. Turning on this logic option allows you to compile code
that you want the third-party synthesis tools to ignore; for example, IP core
declarations that the other tools treat as black boxes but the Quartus Prime software
can compile. To set the Ignore translate_off and synthesis_off Directives logic
option, click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis).

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Ignore translate_off and synthesis_off Directives logic option
For more information about the Ignore translate_off and synthesis_off
Directives logic option and the supported devices

3.5.15. Read Comments as HDL

The read_comments_as_HDL synthesis directive indicates that the Quartus Prime
software should compile a portion of HDL code that you commented out. This directive
allows you to comment out portions of HDL source code that are not relevant for
simulation, while instructing the Quartus Prime software to read and synthesize that
same source code. Setting the read_comments_as_HDL directive to on indicates the
beginning of commented code that the synthesis tool should read; setting the
read_comments_as_HDL directive to off indicates the end of the code.

Note: You can use this directive with translate_off and translate_on to create one
HDL source file that includes an IP core instantiation for synthesis and a behavioral
description for simulation.

Formal verification tools do not support the read_comments_as_HDL directive
because the tools do not recognize the directive.

In these examples, the Compiler synthesizes the commented code enclosed by
read_comments_as_HDL because the directive is visible to the Quartus Prime
Compiler. VHDL 2008 allows block comments, which comments are also supported for
synthesis directives.

Note: Because synthesis directives are case sensitive in Verilog HDL, you must match the
case of the directive, as shown in the following examples.

Table 54. Read Comments as HDL

HDL Code

Verilog HDL // synthesis read_comments_as_HDL on
// my_rom lpm_rom (.address (address),
// .data (data));
// synthesis read_comments_as_HDL off

VHDL -- synthesis read_comments_as_HDL on
-- my_rom : entity lpm_rom
-- port map (
-- address => address,
-- data => data,);
-- synthesis read_comments_as_HDL off

VHDL 2008 /* synthesis read_comments_as_HDL on */
/* my_rom : entity lpm_rom
 port map (
 address => address,
 data => data,); */
 synthesis read_comments_as_HDL off */

3.5.16. Use I/O Flipflops

The useioff attribute directs the Quartus Prime software to implement input, output,
and output enable flipflops (or registers) in I/O cells that have fast, direct connections
to an I/O pin, when possible. To improve I/O performance by minimizing setup, clock-
to-output, and clock-to-output enable times, you can apply the useioff synthesis

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

174

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_ignore_translate_off.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

attribute. The Fast Input Register, Fast Output Register, and Fast Output
Enable Register logic options support this synthesis attribute. You can also set this
synthesis attribute in the Assignment Editor.

The useioff synthesis attribute takes a boolean value. You can apply the value only
to the port declarations of a top-level Verilog HDL module or VHDL entity (it is ignored
if applied elsewhere). Setting the value to 1 (Verilog HDL) or TRUE (VHDL) instructs
the Quartus Prime software to pack registers into I/O cells. Setting the value to 0
(Verilog HDL) or FALSE (VHDL) prevents register packing into I/O cells.

In Table 55 on page 175 and Table 56 on page 175, the useioff synthesis attribute
directs the Quartus Prime software to implement the a_reg, b_reg, and o_reg
registers in the I/O cells corresponding to the a, b, and o ports, respectively.

Table 55. Verilog HDL Code: The useioff Attribute

HDL Code

Verilog HDL module top_level(clk, a, b, o);
 input clk;
 input [1:0] a, b /* synthesis useioff = 1 */;
 output [2:0] o /* synthesis useioff = 1 */;
 reg [1:0] a_reg, b_reg;
 reg [2:0] o_reg;
 always @ (posedge clk)
 begin
 a_reg <= a;
 b_reg <= b;
 o_reg <= a_reg + b_reg;
 end
 assign o = o_reg;
endmodule

Table 56 on page 175 and Table 57 on page 175 show that the Verilog-2001 syntax
also accepts the type of statements instead of the comment form in Table 55 on page
175.

Table 56. Verilog-2001 Code: the useioff Attribute

HDL Code

Verilog-2001 (* useioff = 1 *) input [1:0] a, b;
(* useioff = 1 *) output [2:0] o;

Table 57. VHDL Code: the useioff Attribute

HDL Code

VHDL library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity useioff_example is
 port (
 clk : in std_logic;
 a, b : in unsigned(1 downto 0);
 o : out unsigned(1 downto 0));
 attribute useioff : boolean;
 attribute useioff of a : signal is true;
 attribute useioff of b : signal is true;
 attribute useioff of o : signal is true;
end useioff_example;
architecture rtl of useioff_example is
 signal o_reg, a_reg, b_reg : unsigned(1 downto 0);
begin
 process(clk)
 begin
 if (clk = '1' AND clk'event) then
 a_reg <= a;
 b_reg <= b;
 o_reg <= a_reg + b_reg;

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

175

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Code

 end if;
 end process;
o <= o_reg;
end rtl;

3.5.17. Specifying Pin Locations with chip_pin

The chip_pin attribute allows you to assign pin locations in your HDL source. You
can use the attribute only on the ports of the top-level entity or module in your
design. You can assign pins only to single-bit or one-dimensional bus ports in your
design.

For single-bit ports, the value of the chip_pin attribute is the name of the pin on the
target device, as specified by the pin table of the device.

Note: In addition to the chip_pin attribute, the Quartus Prime software supports the
altera_chip_pin_lc attribute name for compatibility with other synthesis tools.
When using this attribute in other synthesis tools, some older device families require
an “@” symbol in front of each pin assignment. In the Quartus Prime software, the
“@” is optional.

Table 58. Applying Chip Pin to a Single Pin
These examples in this table show different ways of assigning my_pin1 to Pin C1 and my_pin2 to Pin 4 on a
different target device.

HDL Code

Verilog-1995 input my_pin1 /* synthesis chip_pin = "C1" */;
input my_pin2 /* synthesis altera_chip_pin_lc = "@4" */;

Verilog-2001
(* chip_pin = "C1" *) input my_pin1;
(* altera_chip_pin_lc = "@4" *) input my_pin2;

VHDL entity my_entity is
port(my_pin1: in std_logic; my_pin2: in std_logic;…);
end my_entity;
attribute chip_pin : string;
attribute altera_chip_pin_lc : string;
attribute chip_pin of my_pin1 : signal is "C1";
attribute altera_chip_pin_lc of my_pin2 : signal is "@4";

For bus I/O ports, the value of the chip pin attribute is a comma-delimited list of pin
assignments. The order in which you declare the range of the port determines the
mapping of assignments to individual bits in the port. To leave a bit unassigned, leave
its corresponding pin assignment blank.

Table 59. Applying Chip Pin to a Bus of Pins
The example in this table assigns my_pin[2] to Pin_4, my_pin[1] to Pin_5, and my_pin[0] to Pin_6.

HDL Code

Verilog-1995 input [2:0] my_pin /* synthesis chip_pin = "4, 5, 6" */;

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

176

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 60. Applying Chip Pin to Part of a Bus
The example in this table reverses the order of the signals in the bus, assigning my_pin[0] to Pin_4 and
my_pin[2] to Pin_6 but leaves my_pin[1] unassigned.

HDL Code

Verilog-1995 input [0:2] my_pin /* synthesis chip_pin = "4, ,6" */;

Table 61. Applying Chip Pin to Part of a Bus of Pins
The example in this table assigns my_pin[2] to Pin 4 and my_pin[0] to Pin 6, but leaves my_pin[1]
unassigned.

HDL Code

VHDL entity my_entity is
port(my_pin: in std_logic_vector(2 downto 0);…);
end my_entity;
attribute chip_pin of my_pin: signal is "4, , 6";

Table 62. VHDL and Verilog-2001 Examples: Assigning Pin Location and I/O Standard

HDL Code

VHDL attribute altera_chip_pin_lc: string;
attribute altera_attribute: string;
attribute altera_chip_pin_lc of clk: signal is "B13";
attribute altera_attribute of clk:signal is "-name IO_STANDARD ""3.3-V LVCMOS""";

 Verilog-2001 (* altera_attribute = "-name IO_STANDARD \"3.3-V LVCMOS\"" *)(* chip_pin = "L5" *)input clk;
(* altera_attribute = "-name IO_STANDARD LVDS" *)(* chip_pin = "L4" *)input sel;
output [3:0] data_o, input [3:0] data_i);

3.5.18. Using altera_attribute to Set Quartus Prime Logic Options

The altera_attribute attribute allows you to apply Quartus Prime logic options
and assignments to an object in your HDL source code. You can set this attribute on
an entity, architecture, instance, register, RAM block, or I/O pin. You cannot set it on
an arbitrary combinational node such as a net. With altera_attribute, you can
control synthesis options from your HDL source even when the options lack a specific
HDL synthesis attribute. You can also use this attribute to pass entity-level settings
and assignments to phases of the Compiler flow that follow Analysis & Synthesis, such
as Fitting.

Assignments or settings made through the Quartus Prime software, the .qsf, or the Tcl
interface take precedence over assignments or settings made with the
altera_attribute synthesis attribute in your HDL code.

The attribute value is a single string containing a list of .qsf variable assignments
separated by semicolons:

-name <variable_1> <value_1>;-name <variable_2> <value_2>[;…]

If the Quartus Prime option or assignment includes a target, source, and section tag,
you must use the syntax in this example for each .qsf variable assignment:

-name <variable> <value>
-from <source> -to <target> -section_id <section>

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

177

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This example shows the syntax for the full attribute value, including the optional
target, source, and section tags for two different .qsf assignments:

" -name <variable_1> <value_1> [-from <source_1>] [-to <target_1>] [-section_id
\ <section_1>]; -name <variable_2> <value_2> [-from <source_2>] [-to <target_2>]
\
[-section_id <section_2>] "

Table 63. Example Usage
If the assigned value of a variable is a string of text, you must use escaped quotes around the value in Verilog
HDL or double-quotes in VHDL:

HDL Code

 Assigned Value of a Variable in Verilog HDL (With
Nonexistent Variable and Value Terms)

"VARIABLE_NAME \"STRING_VALUE\""

Assigned Value of a Variable in VHDL (With Nonexistent
Variable and Value Terms)

"VARIABLE_NAME ""STRING_VALUE"""

To find the .qsf variable name or value corresponding to a specific Quartus Prime
option or assignment, you can set the option setting or assignment in the Quartus
Prime software, and then make the changes in the .qsf.

Applying altera_attribute to an Instance

These examples use altera_attribute to set the power-up level of an inferred
register.

Table 64. Applying altera_attribute to an Instance
These examples use altera_attribute to set the power-up level of an inferred register.

HDL Code

 Verilog-1995 reg my_reg /* synthesis altera_attribute = "-name POWER_UP_LEVEL HIGH" */;

 Verilog-2001 (* altera_attribute = "-name POWER_UP_LEVEL HIGH" *) reg my_reg;

VHDL signal my_reg : std_logic;
attribute altera_attribute : string;
attribute altera_attribute of my_reg: signal is "-name POWER_UP_LEVEL HIGH";

Note: For inferred instances, you cannot apply the attribute to the instance directly.
Therefore, you must apply the attribute to one of the output nets of the instance. The
Quartus Prime software automatically moves the attribute to the inferred instance.

Applying altera_attribute to an Entity

These examples use the altera_attribute to disable the Auto Shift Register
Replacement synthesis option for an entity. To apply the Altera Attribute to a VHDL
entity, you must set the attribute on its architecture rather than on the entity itself.

Table 65. Applying altera_attribute to an Entity

HDL Code

 Verilog-1995 module my_entity(…) /* synthesis altera_attribute = "-name AUTO_SHIFT_REGISTER_RECOGNITION OFF"
*/;

continued...

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

178

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Code

 Verilog-2001 (* altera_attribute = "-name AUTO_SHIFT_REGISTER_RECOGNITION OFF" *) module my_entity(…) ;

 VHDL entity my_entity is
-- Declare generics and ports
end my_entity;
architecture rtl of my_entity is
attribute altera_attribute : string;
-- Attribute set on architecture, not entity
attribute altera_attribute of rtl: architecture is "-name AUTO_SHIFT_REGISTER_RECOGNITION OFF";
begin
-- The architecture body
end rtl;

Applying altera_attribute with the -to Option

You can also use altera_attribute for more complex assignments that have more
than one instance. In Table 66 on page 179, the altera_attribute cuts all timing
paths from reg1 to reg2, equivalent to this Tcl or .qsf command, as shown in the
example below:

set_instance_assignment -name CUT ON -from reg1 -to reg2

Table 66. Applying altera_attribute with the -to Option

HDL Code

 Verilog-1995 reg reg2;
reg reg1 /* synthesis altera_attribute = "-name CUT ON -to reg2" */;

 Verilog-2001
and
SystemVerilog

reg reg2;
(* altera_attribute = "-name CUT ON -to reg2" *) reg reg1;

 VHDL signal reg1, reg2 : std_logic;
attribute altera_attribute: string;
attribute altera_attribute of reg1 : signal is "-name CUT ON -to reg2";

You can specify either the -to option or the -from option in a single
altera_attribute; Integrated Synthesis automatically sets the remaining option to
the target of the altera_attribute. You can also specify wildcards for either
option. For example, if you specify “*” for the -to option instead of reg2 in these
examples, the Quartus Prime software cuts all timing paths from reg1 to every other
register in this design entity.

You can use the altera_attribute only for entity-level settings, and the
assignments (including wildcards) apply only to the current entity.

Related Information

• Synthesis Attributes on page 139

• Quartus Prime Settings File Manual
Lists all variable names

3.6. Analyzing Synthesis Results

After performing synthesis, you can check your synthesis results in the Analysis &
Synthesis section of the Compilation Report and the Project Navigator.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

179

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.6.1. Analysis & Synthesis Section of the Compilation Report

The Compilation Report, which provides a summary of results for the project, appears
after a successful compilation. After Analysis & Synthesis, the Summary section of the
Compilation Report provides a summary of utilization based on synthesis data, before
Fitter optimizations have occurred. The Analysis & Synthesis section lists synthesis-
specific information.

Analysis & Synthesis includes various report sections, including a list of the source
files read for the project, the resource utilization by entity after synthesis, and
information about state machines, latches, optimization results, and parameter
settings.

Related Information

Analysis Synthesis Summary Reports
For more information about each report section

3.6.2. Project Navigator

The Hierarchy tab of the Project Navigator provides a view of the project hierarchy
and a summary of resource and device information about the current project. After
Analysis & Synthesis, before the Fitter begins, the Project Navigator provides a
summary of utilization based on synthesis data, before Fitter optimizations have
occurred.

If an entity in the Hierarchy tab contains parameter settings, a tooltip displays the
settings when you hold the pointer over the entity.

3.6.2.1. Upgrade IP Components Dialog Box

In the Quartus Prime software version 12.1 SP1 and later, the Upgrade IP
Components dialog box allows you to upgrade all outdated IP in your project after
you move to a newer version of the Quartus Prime software.

Related Information

Upgrade IP Components dialog box
For more information about the Upgrade IP Components dialog box

3.7. Analyzing and Controlling Synthesis Messages

You can analyze the generated messages during synthesis and control which
messages appear during compilation.

3.7.1. Quartus Prime Messages

The messages that appear during Analysis & Synthesis describe many of the
optimizations during the synthesis stage, and provide information about how the
software interprets your design. Altera recommends checking the messages to analyze
Critical Warnings and Warnings, because these messages can relate to important
design problems. Read the Info messages to get more information about how the
software processes your design.

The software groups the messages by following types: Info, Warning, Critical
Warning, and Error.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

180

http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_file_analysis_summary.htm
http://quartushelp.altera.com/current/index.htm#global/pjn/pjn_com_regenerate_ip.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can specify the type of Analysis & Synthesis messages that you want to view by
selecting the Analysis & Synthesis Message Level option. To specify the display
level, click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis)

Related Information

About the Messages Window
For more information about the Messages window and message suppression

3.7.2. VHDL and Verilog HDL Messages

The Quartus Prime software issues a variety of messages when it is analyzing and
elaborating the Verilog HDL and VHDL files in your design. These HDL messages are a
subset of all Quartus Prime messages that help you identify potential problems early
in the design process.

HDL messages fall into the following categories:

• Info message—lists a property of your design.

• Warning message—indicates a potential problem in your design. Potential
problems come from a variety of sources, including typos, inappropriate design
practices, or the functional limitations of your target device. Though HDL warning
messages do not always identify actual problems, Altera recommends
investigating code that generates an HDL warning. Otherwise, the synthesized
behavior of your design might not match your original intent or its simulated
behavior.

• Error message—indicates an actual problem with your design. Your HDL code can
be invalid due to a syntax or semantic error, or it might not be synthesizable as
written.

In this example, the sensitivity list contains multiple copies of the variable i. While
the Verilog HDL language does not prohibit duplicate entries in a sensitivity list, it is
clear that this design has a typing error: Variable j should be listed on the sensitivity
list to avoid a possible simulation or synthesis mismatch.

//dup.v
module dup(input i, input j, output reg o);
always @ (i or i)
 o = i & j;
endmodule

When processing the HDL code, the Quartus Prime software generates the following
warning message.

Warning: (10276) Verilog HDL sensitivity list warning at dup.v(2): sensitivity
list contains multiple entries for "i".

In Verilog HDL, variable names are case sensitive, so the variables my_reg and
MY_REG below are two different variables. However, declaring variables that have
names in different cases is confusing, especially if you use VHDL, in which variables
are not case sensitive.

// namecase.v
module namecase (input i, output o);
 reg my_reg;

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

181

http://quartushelp.altera.com/current/index.htm#report/msw/msw_com_msw.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 reg MY_REG;
 assign o = i;
endmodule

When processing the HDL code, the Quartus Prime software generates the following
informational message:

Info: (10281) Verilog HDL information at namecase.v(3): variable name "MY_REG"
and variable name "my_reg" should not differ only in case.

In addition, the Quartus Prime software generates additional HDL info messages to
inform you that this small design does not use neither my_reg nor MY_REG:

Info: (10035) Verilog HDL or VHDL information at namecase.v(3): object "my_reg"
declared but not used
Info: (10035) Verilog HDL or VHDL information at namecase.v(4): object "MY_REG"
declared but not used

The Quartus Prime software allows you to control how many HDL messages you can
view during the Analysis & Elaboration of your design files. You can set the HDL
Message Level to enable or disable groups of HDL messages, or you can enable or
disable specific messages.

Related Information

Synthesis Directives on page 141
For more information about synthesis directives and their syntax

3.7.2.1. Setting the HDL Message Level

The HDL Message Level specifies the types of messages that the Quartus Prime
software displays when it is analyzing and elaborating your design files.

Table 67. HDL Info Message Level

Level Purpose Description

Level1 High-severity messages only If you want to view only the HDL messages that identify likely
problems with your design, select Level1. When you select Level1, the
Quartus Prime software issues a message only if there is an actual
problem with your design.

Level2 High-severity and medium-
severity messages

If you want to view additional HDL messages that identify possible
problems with your design, select Level2. Level2 is the default setting.

Level3 All messages, including low-
severity messages

If you want to view all HDL info and warning messages, select Level3.
This level includes extra “LINT” messages that suggest changes to
improve the style of your HDL code.

You must address all issues reported at the Level1 setting. The default HDL message
level is Level2.

To set the HDL Message Level in the Quartus Prime software, follow these steps:

1. Click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis)

2. Set the necessary message level from the pull-down menu in the HDL Message
Level list, and then click OK.

You can override this default setting in a source file with the message_level
synthesis directive, which takes the values level1, level2, and level3, as
shown in the following table.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

182

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 68. HDL Examples of message_level Directive

HDL Code

Verilog HDL // altera message_level level1
or
/* altera message_level level3 */

VHDL -- altera message_level level2

A message_level synthesis directive remains effective until the end of a file or
until the next message_level directive. In VHDL, you can use the
message_level synthesis directive to set the HDL Message Level for entities and
architectures, but not for other design units. An HDL Message Level for an entity
applies to its architectures, unless overridden by another message_level
directive. In Verilog HDL, you can use the message_level directive to set the
HDL Message Level for a module.

3.7.2.2. Enabling or Disabling Specific HDL Messages by Module/Entity

Message ID is in parentheses at the beginning of the message. Use the Message ID to
enable or disable a specific HDL info or warning message. Enabling or disabling a
specific message overrides its HDL Message Level. This method is different from the
message suppression in the Messages window because you can disable messages for a
specific module or a specific entity. This method applies only to the HDL messages,
and if you disable a message with this method, the Quartus Prime software lists the
message as a suppressed message.

To disable specific HDL messages in the Quartus Prime software, follow these steps:

1. Click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis).

2. In the Advanced Message Settings dialog box, add the Message IDs you want
to enable or disable.

To enable or disable specific HDL messages in your HDL, use the message_on and
message_off synthesis directives. These directives require a space-separated list
of Message IDs. You can enable or disable messages with these synthesis
directives immediately before Verilog HDL modules, VHDL entities, or VHDL
architectures. You cannot enable or disable a message during an HDL construct.

A message enabled or disabled via a message_on or message_off synthesis
directive overrides its HDL Message Level or any message_level synthesis
directive. The message remains disabled until the end of the source file or until
you use another message_on or message_off directive to change the status of
the message.

Table 69. HDL message_off Directive for Message with ID 10000

HDL Code

 Verilog HDL // altera message_off 10000
or
/* altera message_off 10000 */

 VHDL -- altera message_off 10000

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

183

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.8. Node-Naming Conventions in Quartus Prime Integrated
Synthesis

Whenever possible, Quartus Prime Integrated Synthesis uses wire or signal names
from your source code to name nodes such as LEs or ALMs. Some nodes, such as
registers, have predictable names that do not change when a design is resynthesized,
although certain optimizations can affect register names. The names of other nodes,
particularly LEs or ALMs that contain only combinational logic, can change due to logic
optimizations that the software performs.

3.8.1. Hierarchical Node-Naming Conventions

To make each name in your design unique, the Quartus Prime software adds the
hierarchy path to the beginning of each name. The “|” separator indicates a level of
hierarchy. For each instance in the hierarchy, the software adds the entity name and
the instance name of that entity, with the “:” separator between each entity name and
its instance name. For example, if a design defines entity A with the name
my_A_inst, the hierarchy path of that entity would be A:my_A_inst. You can obtain
the full name of any node by starting with the hierarchical instance path, followed by a
“|”, and ending with the node name inside that entity.

This example shows you the convention:

<entity 0>:<instance_name 0>|<entity 1>:<instance_name 1>|...|<instance_name n>|
<node_name>

For example, if entity A contains a register (DFF atom) called my_dff, its full
hierarchy name would be A:my_A_inst|my_dff.

To instruct the Compiler to generate node names that do not contain entity names, on
the Compilation Process Settings page of the Settings dialog box, click More
Settings, and then turn off Display entity name for node name.

With this option turned off, the node names use the convention in shown in this
example:

<instance_name 0>|<instance_name 1>|...|<instance_name n> |<node_name>

3.8.2. Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)

In Verilog HDL and VHDL, inferred registers use the names of the reg or signal
connected to the output.

Table 70. HDL Example of a Register that Creates my_dff_out DFF Primitive

HDL Register Code

Verilog HDL wire dff_in, my_dff_out, clk;
always @ (posedge clk)
my_dff_out <= dff_in;

VHDL signal dff_in, my_dff_out, clk;
process (clk)
begin
if (rising_edge(clk)) then
my_dff_out <= dff_in;
end if;
end process;

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

184

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AHDL designs explicitly declare DFF registers rather than infer, so the software uses
the user-declared name for the register.

For schematic designs using a .bdf, your design names all elements when you
instantiate the elements in your design, so the software uses the name you defined for
the register or DFF.

In the special case that a wire or signal (such as my_dff_out in the preceding
examples) is also an output pin of your top-level design, the Quartus Prime software
cannot use that name for the register (for example, cannot use my_dff_out) because
the software requires that all logic and I/O cells have unique names. Here, Quartus
Prime Integrated Synthesis appends ~reg0 to the register name.

Table 71. Verilog HDL Register Feeding Output Pin
For example, the Verilog HDL code example in this table generates a register called q~reg0.

HDL Code

Verilog HDL module my_dff (input clk, input d, output q);
always @ (posedge clk)
q <= d;
endmodule

This situation occurs only for registers driving top-level pins. If a register drives a port
of a lower level of the hierarchy, the software removes the port during hierarchy
flattening and the register retains its original name, in this case, q.

3.8.3. Register Changes During Synthesis

On some occasions, you might not find registers that you expect to view in the
synthesis netlist. Logic optimization might remove registers and synthesis
optimizations might change the names of the registers. Common optimizations include
inference of a state machine, counter, adder-subtractor, or shift register from registers
and surrounding logic. Other common register changes occur when the software packs
these registers into dedicated hardware on the FPGA, such as a DSP block or a RAM
block.

The following factors can affect register names:

• Synthesis and Fitting Optimizations on page 185

• State Machines on page 186

• Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions on page
187

• Packed Input and Output Registers of RAM and DSP Blocks on page 187

3.8.3.1. Synthesis and Fitting Optimizations

Logic optimization during synthesis might remove registers if you do not connect the
registers to inputs or outputs in your design, or if you can simplify the logic due to
constant signal values. Synthesis optimizations might change register names, such as
when the software merges duplicate registers to reduce resource utilization.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

185

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NOT-gate push back optimizations can affect registers that use preset signals. This
type of optimization can impact your timing assignments when the software uses
registers as clock dividers. If this situation occurs in your design, change the clock
settings to work on the new register name.

Synthesis netlist optimizations often change node names because the software can
combine or duplicate registers to optimize your design.

The Quartus Prime Compilation Report provides a list of registers that synthesis
optimizations remove, and a brief reason for the removal. To generate the Quartus
Prime Compilation Report, follow these steps:

1. In the Analysis & Synthesis folder, open Optimization Results.

2. Open Register Statistics, and then click the Registers Removed During
Synthesis report.

3. Click Removed Registers Triggering Further Register Optimizations.

The second report contains a list of registers that causes synthesis optimizations to
remove other registers from your design. The report provides a brief reason for the
removal, and a list of registers that synthesis optimizations remove due to the
removal of the initial register.

Quartus Prime Integrated Synthesis creates synonyms for registers duplicated with the
Maximum Fan-Out option (or maxfan attribute). Therefore, timing assignments
applied to nodes that are duplicated with this option are applied to the new nodes as
well.

The Quartus Prime Fitter can also change node names after synthesis (for example,
when the Fitter uses register packing to pack a register into an I/O element, or when
physical synthesis modifies logic). The Fitter creates synonyms for duplicated registers
so timing analysis can use the existing node name when applying assignments.

You can instruct the Quartus Prime software to preserve certain nodes throughout
compilation so you can use them for verification or making assignments.

3.8.3.2. State Machines

If your HDL code infers a state machine, the software maps the registers that
represent the states into a new set of registers that implement the state machine.
Most commonly, the software converts the state machine into a one-hot form in which
one register represents each state. In this case, for Verilog HDL or VHDL designs, the
registers take the name of the state register and the states.

For example, consider a Verilog HDL state machine in which the states are parameter
state0 = 1, state1 = 2, state2 = 3, and in which the software declares the
state machine register as reg [1:0] my_fsm. In this example, the three one-hot
state registers are my_fsm.state0, my_fsm.state1, and my_fsm.state2.

An AHDL design explicitly specifies state machines with a state machine name. Your
design names state machine registers with synthesized names based on the state
machine name, but not the state names. For example, if a my_fsm state machine has
four state bits, The software might synthesize these state bits with names such as
my_fsm~12, my_fsm~13, my_fsm~14, and my_fsm~15.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

186

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.8.3.3. Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions

The Quartus Prime software infers IP cores from Verilog HDL and VHDL code for logic
that forms adder-subtractors, shift registers, RAM, ROM, and arithmetic functions that
are placed in DSP blocks.

Because adder-subtractors are part of an IP core instead of generic logic, the
combinational logic exists in the design with different names. For shift registers,
memory, and DSP functions, the software implements the registers and logic inside
the dedicated RAM or DSP blocks in the device. Thus, the registers are not visible as
separate LEs or ALMs.

3.8.3.4. Packed Input and Output Registers of RAM and DSP Blocks

The software packs registers into the input registers and output registers of RAM and
DSP blocks, so that they are not visible as separate registers in LEs or ALMs.

3.8.4. Preserving Register Names

Altera recommends that you preserve certain register names for verification or
debugging, or to ensure that you applied timing assignments correctly. Quartus Prime
Integrated Synthesis preserves certain nodes automatically if the software uses the
nodes in a timing constraint.

Related Information

• Preserve Registers on page 153
Use the preserve attribute to instruct the Compiler not to minimize or remove
a specified register during synthesis optimizations or register netlist
optimizations

• Noprune Synthesis Attribute/Preserve Fan-out Free Register Node on page 155
Use the noprune attribute to preserve a fan-out-free register through the
entire compilation flow

• Disable Register Merging/Don’t Merge Register on page 154
Use the synthesis attribute syn_dont_merge to ensure that the Compiler does
not merge registers with other registers

3.8.5. Node-Naming Conventions for Combinational Logic Cells

Whenever possible for Verilog HDL, VHDL, and AHDL code, the Quartus Prime software
uses wire names that are the targets of assignments, but can change the node names
due to synthesis optimizations.

For example, consider the Verilog HDL code in this example. Quartus Prime Integrated
Synthesis uses the names c, d, e, and f for the generated combinational logic cells.

wire c;
reg d, e, f;
assign c = a | b;
always @ (a or b)
d = a & b;
always @ (a or b) begin : my_label
e = a ^ b;
end
always @ (a or b)
f = ~(a | b);

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

187

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For schematic designs using a .bdf, your design names all elements when you
instantiate the elements in your design and the software uses the name you defined
when possible.

If logic cells are packed with registers in device architectures such as the Stratix and
Cyclone device families, those names might not appear in the netlist after fitting. In
other devices, such as newer families in the Stratix and Cyclone series device families,
the register and combinational nodes are kept separate throughout the compilation, so
these names are more often maintained through fitting.

When logic optimizations occur during synthesis, it is not always possible to retain the
initial names as described. Sometimes, synthesized names are used, which are the
wire names with a tilde (~) and a number appended. For example, if a complex
expression is assigned to wire w and that expression generates several logic cells,
those cells can have names such as w, w~1, and w~2. Sometimes the original wire
name w is removed, and an arbitrary name such as rtl~123 is created. Quartus
Prime Integrated Synthesis attempts to retain user names whenever possible. Any
node name ending with ~<number> is a name created during synthesis, which can
change if the design is changed and re-synthesized. Knowing these naming
conventions helps you understand your post-synthesis results, helping you to debug
your design or create assignments.

During synthesis, the software maintains combinational clock logic by not changing
nodes that might be clocks. The software also maintains or protects multiplexers in
clock trees, so that the Timing Analyzer has information about which paths are unate,
to allow complete and correct analysis of combinational clocks. Multiplexers often
occur in clock trees when the software selects between different clocks. To help with
the analysis of clock trees, the software ensures that each multiplexer encountered in
a clock tree is broken into 2:1 multiplexers, and each of those 2:1 multiplexers is
mapped into one lookup table (independent of the device family). This optimization
might result in a slight increase in area, and for some designs a decrease in timing
performance. To disable the option, click Assignments ➤ Settings ➤ Compiler
Settings ➤ Advanced Settings (Synthesis) ➤ Clock MUX Protection.

Related Information

Clock MUX Protection logic option
For more information about Clock MUX Protection logic option and a list of
supported devices

3.8.6. Preserving Combinational Logic Names

You can preserve certain combinational logic node names for verification or
debugging, or to ensure that timing assignments are applied correctly.

Use the keep attribute to keep a wire name or combinational node name through logic
synthesis minimizations and netlist optimizations.

For any internal node in your design clock network, use keep to protect the name so
that you can apply correct clock settings. Also, set the attribute for combinational logic
involved in cut and -through assignments.

Note: Setting the keep attribute for combinational logic can increase the area utilization and
increase the delay of the final mapped logic because the attribute requires the
insertion of extra combinational logic. Use the attribute only when necessary.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

188

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_synth_clock_mux_protection.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Keep Combinational Node/Implement as Output of Logic Cell on page 156

3.9. Scripting Support

You can run procedures and make settings in a Tcl script. You can also run some
procedures at a command prompt. For detailed information about scripting command
options, refer to the Quartus Prime Command-Line and Tcl API Help browser.

To run the Help browser, type the command at the command prompt shown in this
example:

quartus_sh --qhelp

You can specify many of the options either on an instance, at the global level, or both.

To make a global assignment, use the Tcl command shown in this example:

set_global_assignment -name <QSF Variable Name> <Value>

To make an instance assignment, use the Tcl command shown in this example:

set_instance_assignment -name <QSF Variable Name> <Value>\ -to <Instance Name>

To set the Synthesis Effort option at the command line, use the --effort option
with the quartus_map executable shown in this example:

quartus_map <Design name> --effort= "auto | fast"

Related Information

• Tcl Scripting
For more information about Tcl scripting

• Quartus Prime Settings File Manual
For more information about all settings and constraints in the Quartus Prime
software

• Command-Line Scripting
For more information about command-line scripting

3.9.1. Adding an HDL File to a Project and Setting the HDL Version

To add an HDL or schematic entry design file to your project, use the Tcl assignments
shown in this example:

set_global_assignment –name VERILOG_FILE <file name>.<v|sv>
set_global_assignment –name SYSTEMVERILOG_FILE <file name>.sv
set_global_assignment –name VHDL_FILE <file name>.<vhd|vhdl>
set_global_assignment -name AHDL_FILE <file name>.tdf
set_global_assignment -name BDF_FILE <file name>.bdf

Note: You can use any file extension for design files, as long as you specify the correct
language when adding the design file. For example, you can use .h for Verilog HDL
header files.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

189

https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683084.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To specify the Verilog HDL or VHDL version, use the option shown in this example, at
the end of the VERILOG_FILE or VHDL_FILE command:

- HDL_VERSION <language version>

The variable <language version> takes one of the following values:

• VERILOG_1995

• VERILOG_2001

• SYSTEMVERILOG_2005

• VHDL_1987

• VHDL_1993

• VHDL_2008

For example, to add a Verilog HDL file called my_file.v written in Verilog-1995, use
the command shown in this example:

set_global_assignment –name VERILOG_FILE my_file.v –HDL_VERSION \ VERILOG_1995

In this example, the syn_encoding attribute associates a binary encoding with the
states in the enumerated type count_state. In this example, the states are encoded
with the following values: zero = "11", one = "01", two = "10", three = "00".

ARCHITECTURE rtl OF my_fsm IS
 TYPE count_state is (zero, one, two, three);
 ATTRIBUTE syn_encoding : STRING;
 ATTRIBUTE syn_encoding OF count_state : TYPE IS "11 01 10 00";
 SIGNAL present_state, next_state : count_state;
BEGIN

You can also use the syn_encoding attribute in Verilog HDL to direct the synthesis
tool to use the encoding from your HDL code, instead of using the State Machine
Processing option.

The syn_encoding value "user" instructs the Quartus Prime software to encode
each state with its corresponding value from the Verilog HDL source code. By changing
the values of your state constants, you can change the encoding of your state
machine.

In Verilog-2001 and SystemVerilog Code: Specifying User-Encoded States with the
syn_encoding Attribute on page 190, the states are encoded as follows:

init = "00"
last = "11"
next = "01"
later = "10"

Example 22. Verilog-2001 and SystemVerilog Code: Specifying User-Encoded States with
the syn_encoding Attribute

(* syn_encoding = "user" *) reg [1:0] state;
parameter init = 0, last = 3, next = 1, later = 2;
always @ (state) begin
case (state)
init:
out = 2'b01;
next:

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

190

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

out = 2'b10;
later:
out = 2'b11;
last:
out = 2'b00;
endcase
end

Without the syn_encoding attribute, the Quartus Prime software encodes the state
machine based on the current value of the State Machine Processing logic option.

If you also specify a safe state machine (as described in Safe State Machine on page
151), separate the encoding style value in the quotation marks from the safe value
with a comma, as follows: “safe, one-hot” or “safe, gray”.

Related Information

• Safe State Machine on page 151

• Manually Specifying State Assignments Using the syn_encoding Attribute on page
148

3.9.2. Assigning a Pin

To assign a signal to a pin or device location, use the Tcl command shown in this
example:

set_location_assignment -to <signal name> <location>

Valid locations are pin location names. Some device families also support edge and I/O
bank locations. Edge locations are EDGE_BOTTOM, EDGE_LEFT, EDGE_TOP, and
EDGE_RIGHT. I/O bank locations include IOBANK_1 to IOBANK_n, where n is the
number of I/O banks in a device.

3.9.3. Creating Design Partitions for Incremental Compilation

To create a partition, use the command shown in this example:

set_instance_assignment -name PARTITION_HIERARCHY \
<file name> -to <destination> -section_id <partition name>

The <file name> variable is the name used for internally generated netlist files during
incremental compilation. If you create the partition in the Quartus Prime software,
netlist files are named automatically by the Quartus Prime software based on the
instance name. If you use Tcl to create your partitions, you must assign a custom file
name that is unique across all partitions. For the top-level partition, the specified file
name is ignored, and you can use any dummy value. To ensure the names are safe
and platform independent, file names should be unique, regardless of case. For
example, if a partition uses the file name my_file, no other partition can use the file
name MY_FILE. To make file naming simple, Altera recommends that you base each
file name on the corresponding instance name for the partition.

The <destination> is the short hierarchy path of the entity. A short hierarchy path is
the full hierarchy path without the top-level name, for example: "ram:ram_unit|
altsyncram:altsyncram_component" (with quotation marks). For the top-level
partition, you can use the pipe (|) symbol to represent the top-level entity.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

191

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The <partition name> is the partition name you designate, which should be unique
and less than 1024 characters long. The name may only consist of alphanumeric
characters, as well as pipe (|), colon (:), and underscore (_) characters. Altera
recommends enclosing the name in double quotation marks (" ").

Related Information

Node-Naming Conventions in Quartus Prime Integrated Synthesis on page 184
For more information about hierarchical naming conventions

3.10. Document Revision History

Table 72. Document Revision History

Date Version Changes

2021.11.01 21.1 • Added "Support for VHDL 2008" and provide list of supported VHDL 2008
constructs. The previous removal of this topic was done in error.

2019.01.25 18.1.0 • Removed reference to Add Pass-Through Logic to Inferred RAMs GUI option. This
option can only be set in the Intel Quartus Prime Settings File (.qsf).

2018.09.24 18.1.0 • Added Factors Affecting Compilation Results topic.
• Removed references to VHDL-2008 synthesis support. This support was listed in

error and VHDL-2008 is only supported in Quartus Prime Pro Edition

2016.05.03 16.0.0 Corrected description of Fitter Initial Placement Seed option.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 • Removed support for early timing estimate feature.
• Removed the note on the assignment of the RAM style attributes as it is no

longer relevant.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and Physical
Optimization Settings to Compiler Settings.

2014.06.30 14.0.0 Template update.

November 2013 13.1.0 • Added a note regarding ROM inference using the ram_init_file in “RAM
Initialization File—for Inferred Memory” on page 16–61.

May 2013 13.0.0 • Added “Verilog HDL Configuration” on page 16–6.
• Added “RAM Style Attribute—For Shift Registers Inference” on page 16–57.
• Added “Upgrade IP Components Dialog Box” on page 16–75.

June 2012 12.0.0 • Updated “Design Flow” on page 16–2.

November 2011 11.1.0 • Updated “Language Support” on page 16–5, “Incremental Compilation” on
page 16–22, “Quartus Prime Synthesis Options” on page 16–24.

May 2011 11.0.0 • Updated “Specifying Pin Locations with chip_pin” on page 14–65, and “Shift
Registers” on page 14–48.

• Added a link to Quartus Prime Help in “SystemVerilog Support” on page 14–5.
• Added Example 14–106 and Example 14–107 on page 14–67.

December 2010 10.1.0 • Updated “Verilog HDL Support” on page 13–4 to include Verilog-2001 support.
• Updated “VHDL-2008 Support” on page 13–9 to include the condition operator

(explicit and implicit) support.
• Rewrote “Limiting Resource Usage in Partitions” on page 13–32.
• Added “Creating LogicLock Regions” on page 13–32 and “Using Assignments to

Limit the Number of RAM and DSP Blocks” on page 13–33.

continued...

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

192

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

• Updated “Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check
Attribute” on page 13–55.

• Updated “Auto Gated Clock Conversion” on page 13–28.
• Added links to Quartus Prime Help.

July 2010 10.0.0 • Removed Referenced Documents section.
• Added “Synthesis Seed” on page 9–36 section.
• Updated the following sections:

“SystemVerilog Support” on page 9–5
“VHDL-2008 Support” on page 9–10
“Using Parameters/Generics” on page 9–16
“Parallel Synthesis” on page 9–21
“Limiting Resource Usage in Partitions” on page 9–32
“Synthesis Effort” on page 9–35
“Synthesis Attributes” on page 9–25
“Synthesis Directives” on page 9–27
“Auto Gated Clock Conversion” on page 9–29
“State Machine Processing” on page 9–36
“Multiply-Accumulators and Multiply-Adders” on page 9–50
“Resource Aware RAM, ROM, and Shift-Register Inference” on page 9–52
“RAM Style and ROM Style—for Inferred Memory” on page 9–53
“Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check
Attribute” on page 9–55
“Using altera_attribute to Set Quartus Prime Logic Options” on page 9–68
“Adding an HDL File to a Project and Setting the HDL Version” on page 9–83
“Creating Design Partitions for Incremental Compilation” on page 9–85
“Inferring Multiplier, DSP, and Memory Functions from HDL Code” on page 9–50

• Updated Table 9–9 on page 9–86.

December 2009 9.1.1 • Added information clarifying inheritance of Synthesis settings by lower-level
entities, including Altera and third-party IP

• Updated “Keep Combinational Node/Implement as Output of Logic Cell” on
page 9–46

November 2009 9.1.0 • Updated the following sections:
“Initial Constructs and Memory System Tasks” on page 9–7
“VHDL Support” on page 9–9
“Parallel Synthesis” on page 9–21
“Synthesis Directives” on page 9–27
“Timing-Driven Synthesis” on page 9–31
“Safe State Machines” on page 9–40
“RAM Style and ROM Style—for Inferred Memory” on page 9–53
“Translate Off and On / Synthesis Off and On” on page 9–62
“Read Comments as HDL” on page 9–63
“Adding an HDL File to a Project and Setting the HDL Version” on page 9–81

• Removed “Remove Redundant Logic Cells” section
• Added “Resource Aware RAM, ROM, and Shift-Register Inference” section
• Updated Table 9–9 on page 9–83

March 2009 9.0.0 • Updated Table 9–9.
• Updated the following sections:

“Partitions for Preserving Hierarchical Boundaries” on page 9–20
“Analysis & Synthesis Settings Page of the Settings Dialog Box” on page 9–24
“Timing-Driven Synthesis” on page 9–30
“Turning Off Add Pass-Through Logic to Inferred RAMs/ no_rw_check Attribute
Setting” on page 9–54

• Added “Parallel Synthesis” on page 9–21
• Chapter 9 was previously Chapter 8 in software version 8.1

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

193

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Documentation Archive
For previous versions of the Quartus Prime Handbook, search the documentation
archives.

3. Quartus Prime Integrated Synthesis

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

194

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Reducing Compilation Time
You can employ various techniques to reduce the time required for synthesis and
fitting in the Quartus Prime Compiler.

4.1. Strategies to Reduce the Overall Compilation Time

You can use the following strategies to reduce the overall time required to compile
your design:

• Enabling Multi-Processor Compilation on page 196

• Using Incremental Compilation on page 200

• Using Block-Based Compilation on page 201

• Incremental compilation reduces compilation time by only recompiling design
partitions that have not met design requirements.

4.1.1. Running Rapid Recompile

During Rapid Recompile the Compiler reuses previous synthesis and fitting results
whenever possible, and does not reprocess unchanged design blocks. Use Rapid
Recompile to reduce timing variations and the total recompilation time after making
small design changes.

Figure 36. Rapid Recompile

Regular Compile

A

B
C

D

E

J G
x y z

Unchanged

Changed

Rapid
Recompile

683283 | 2021.10.22

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

To run Rapid Recompile, follow these steps:

1. Prior to initial compilation, click Assignments ➤ Settings ➤ Compiler Settings
and turn on Enable Intermediate Fitter Snapshots. This option must be
enabled to subsequently use the Rapid Recompile feature.

2. To start Rapid Recompile following an initial compilation (or after running the
Route stage of the Fitter), click Processing ➤ Start ➤ Start Rapid Recompile.
Rapid Recompile implements the following types of design changes without full
recompilation:

• Changes to nodes tapped by the Signal Tap Logic Analyzer

• Changes to combinational logic functions

• Changes to state machine logic (for example, new states, state transition
changes)

• Changes to signal or bus latency or addition of pipeline registers

• Changes to coefficients of an adder or multiplier

• Changes register packing behavior of DSP, RAM, or I/O

• Removal of unnecessary logic

• Changes to synthesis directives

The Incremental Compilation Preservation Summary report provides details about
placement and routing implementation.

3. Click the Rapid Recompile Preservation Summary report to view detailed
information about the percentage of preserved compilation results.

Figure 37. Rapid Recompile Preservation Summary

4.1.2. Enabling Multi-Processor Compilation

The compiler can detect and use multiple processors to reduce total compilation time.
By default, the compiler uses the setting specified under Parallel Compilation in the
Processing page of the Options dialog box. To reserve some processors for other
tasks, specify the maximum number of processors the software must use.

4. Reducing Compilation Time

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

196

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using multiple processor cores provides several benefits for improving software
performance as follows:

• Faster execution: The Quartus Prime software can support up to 24 processors,
which means the software can run algorithms in parallel. This technique reduces
the compilation time by up to 10% on systems with two processing cores and up
to 20% on systems with four processors. When running timing analysis
independently, two processors reduce the timing analysis time by an average of
10%. This reduction reaches an average of 15% when using four processors.

• Increased throughput: With more processing cores, systems can execute
multiple tasks simultaneously, which means the software can handle more
requests simultaneously. The Quartus Prime software may not necessarily utilize
all the processors specified during compilation. The software has the flexibility to
scale its usage to use up to the maximum number of processors specified. To
achieve the highest possible throughput, Intel recommends using a system
equipped with at least four processing cores, allowing the software to take full
advantage of the available computing resources.

• Reduced latency: With multiple processing cores, the software responds more
quickly to your requests, improving the overall experience. The software never
uses more than the specified number of processors, so you can work on other
tasks in parallel without slowing down your computer.

• More efficient resource utilization: By distributing tasks across multiple
processor cores, the Quartus Prime software can use available resources more
efficiently, reducing the overall cost of running the software.

The use of multiple processors does not affect the quality of the fit. The fit is the same
and deterministic for a given Fitter seed and given Maximum processors allowed
setting on a specific design. This remains true regardless of the target system and the
number of available processors. Different Maximum processors allowed
specifications produces different results of the same quality. The impact is similar to
changing the Fitter seed setting.

To enable multiprocessor compilation, follow these steps:

1. Open or create an Quartus Prime project.

2. Click Assignments ➤ Settings ➤ Compilation Process Settings.

3. Under Parallel compilation, specify options for the number of processors the
compiler uses.

View the number of processors detected on your system in the Parallel
Compilation report after compilation ends.

Figure 38. Parallel Compilation Report

The following is the QSF setting that controls the maximum number of processors.
If this line is in your project's QSF file, do not specify it again.

set_global_assignment -name NUM_PARALLEL_PROCESSORS <value>

4. Reducing Compilation Time

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

197

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In this case, <value> is an integer from 1 to 24.

If you want the Quartus Prime software to detect the number of processors and
use all the processors for the compilation, include the following Tcl command in
your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS ALL

The actual reduction in compilation time when using incremental compilation
partitions depends on your design and on the specific compilation settings. For
example, compilations with multi-corner optimization enabled benefit more from
using multiple processors than compilations without multi-corner optimization. The
Fitter (quartus_fit) and the Quartus Prime Timing Analyzer (quartus_sta)
stages in the compilation can, in certain cases, benefit from the use of multiple
processors. The Flow Elapsed Time report shows the average number of
processors for these stages. The Parallel Compilation report shows a more detailed
breakdown of processor usage. This report displays only if you enable parallel
compilation.

For designs with partitions, once you partition your design and enable partial
compilation, the Quartus Prime software can use different processors to compile
those partitions simultaneously during Analysis & Synthesis. This can cause higher
peak memory usage during Analysis & Synthesis.

Note: • Using multiple processor cores can help the Quartus Prime software run
faster, handle more tasks, and provide a better user experience.
However, other factors, such as memory bandwidth or I/O bottlenecks,
may limit performance. So, you must consider specific requirements and
constraints of each project when deciding how many processor cores to
use.

• The compiler detects Intel® Hyper-Threading® Technology (Intel HT
Technology) as a single processor. If your system includes a single
processor with Intel HT Technology, set the number of processors to
one. Set the number of processors according to the number of physical
processors in your system,

The following are other factors that affect performance in the Quartus Prime
software:

4.1.2.1. Processor Base Clock Frequency

Using faster processor cores provides several advantages, including:

• Faster execution: With faster processor cores, the Quartus Prime software can
execute tasks more quickly, which can improve overall system performance and
reduce the time required to complete complex calculations, algorithms, and data
processing tasks.

• Improved multitasking: Faster processor cores can improve the ability of the
Quartus Prime software to handle multiple tasks simultaneously, reducing the risk
of system slowdowns when running several algorithms simultaneously.

• Quicker start-up and shutdown times: Faster processors can reduce the time
required for the Quartus Prime software to open and close side applications, such
as Timing Analyzer, Platform Designer, and more. This can improve your
productivity and reduce downtime.

4. Reducing Compilation Time

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

198

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For shortest compile times, you should choose processors with the highest base clock
frequency available and prioritizing higher CPU frequency over having more cores.
While additional cores can be beneficial for tasks that are highly parallelizable,
focusing on higher frequency ensures faster execution of individual threads, leading to
improved responsiveness and overall performance of the Quartus Prime Pro Edition
software.

4.1.2.2. Random Access Memory (RAM)

There are several advantages to having more RAM, including:

• Improved performance: With more RAM, the Quartus Prime software can store
more data in memory, thereby reducing the need for the system to access the
slower hard drive for frequently used data. This can result in faster application
launch times, quicker compilation times, and faster overall system performance.

• Better multitasking: More RAM allows a computer to handle more processes
simultaneously without slowing down. This is particularly important when you
want to simultaneously use the Quartus Prime software and other applications or
programs.

• Improved productivity: More RAM can improve the productivity of the Quartus
Prime software by reducing the time required for complex tasks, such as
compilation.

Note: • The Quartus Prime Pro Edition Software and Device Support Release Notes
provides valuable information regarding the software’s system requirements and
recommended configurations. Consult the release notes to determine the
minimum required RAM for your computer to optimize performance.

• To fully leverage the system’s capabilities, Intel recommends utilizing the
maximum number of DIMM slots available. This configuration provides ample
memory capacity and bandwidth, allowing for efficient handling of complex
designs.

In addition, by tracking the virtual memory utilization, you can identify potential
performance issues and optimize your system for better efficiency when using the
Quartus Prime Pro Edition software. Consult the peak virtual memory from a previous
compile by viewing the flow report or the Flow Elapsed Time report category from the
compilation report in the compilation dashboard.

The following example Flow Elapsed Time report shows the peak virtual memory:

Figure 39. Flow Elapsed Time Report

4. Reducing Compilation Time

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

199

https://www.intel.com/content/www/us/en/docs/programmable/683706.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Running numerous processes concurrently can consume a significant amount of
memory resources and potentially lead to performance issues. so Intel recommends
considering the peak virtual memory used for each project and avoiding multiple
compilations that exceed the available memory capacity of your computer. This helps
prevent congestion in the RAM memory.

Overall, by maximizing the RAM capacity, you can ensure smooth and optimal
performance and better multitasking to enhance productivity during resource-
intensive tasks, enabling faster processing, reduced latency, and improved
productivity of the Quartus Prime Pro Edition software.

4.1.2.3. Storage

Storage can be a factor that limits performance in the Quartus Prime software since
the Quartus Prime Pro Edition software reads source files and constraints and reads/
writes to the database. For best results, Intel recommends the following to ensure
consistent system performance:

• Downloading all the necessary files from the network.

• Completing the compilation process using local disks.

• Uploading the finished results back to the network by avoiding storage latency
(varies on each system).

Intel recommends prioritizing the selection of the fastest affordable SSD drive for your
storage needs. Opting for an SSD over traditional disk drives significantly enhances
load and save times and greatly improves overall operating system performance.
SSDs offer superior speed and responsiveness, making them an excellent choice to
ensure the best performance experience when using the Quartus Prime Pro Edition
software.

4.1.3. Using Incremental Compilation

The incremental compilation feature can accelerate design iteration time by up to 70%
for small design changes, and helps you reach design timing closure more efficiently.

You can speed up design iterations by recompiling only a particular design partition
and merging results with previous compilation results from other partitions. You can
also use physical synthesis optimization techniques for specific design partitions while
leaving other parts of your design untouched to preserve performance.

If you are using a third-party synthesis tool, you can create separate atom netlist files
for the parts of your design that you already have synthesized and optimized so that
you update only the parts of your design that change.

In the standard incremental compilation design flow, you can divide the top-level
design into partitions, which the software can compile and optimize in the top-level
Quartus Prime project. You can preserve fitting results and performance for completed
partitions while other parts of your design are changing. Incremental compilation
reduces the compilation time for each design iteration because the software does not
recompile the unchanged partitions in your design.

The incremental compilation feature facilitates team-based design flows by enabling
designers to create and optimize design blocks independently, when necessary, and
supports third-party IP integration.

4. Reducing Compilation Time

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

200

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.1.4. Using Block-Based Compilation

During the design process, when making minor modifications to a design, recompiling
the entire design can result in longer compilation times than anticipated. This is
because every time you recompile a design following a change, the compiler may
apply global optimizations to enhance resource utilization and timing performance,
thus extending the compilation time. By employing a block-based flow in the Quartus
Prime Pro Edition software, you can isolate functional blocks that meet placement and
timing requirements from others still undergoing change and optimization. By isolating
functional blocks into partitions, the results and performance of unaltered logic within
a design are maintained so you can apply optimization techniques to selected areas
and only compile those areas. This approach can significantly diminish design
compilation time, enabling several iterations per day and facilitating more efficient
achievement of timing closure.

To create partitions dividing functional blocks:

1. In the Design Partition Planner, identify blocks of a size suitable for partitioning.

A partition generally represents roughly 15 to 20% of the total design size. You
should use the information area below the bar at the top of each entity.

Figure 40. Entity representation in the Design Partition Planner

Percent of total design size

2. Extract and collapse entities as necessary to achieve stand-alone blocks.

3. For each entity of the desired size containing related blocks of logic, right-click the
entity and click Create Design Partition to place that entity in its own partition.

The goal is to achieve partitions containing related blocks of logic.

Intel recommends consulting the Quartus Prime Pro Edition User Guide: Block-Based
Design to gain in-depth knowledge about block-based designs. This guide serves as a
comprehensive resource that provides detailed information, instructions, and
explanations related to the Quartus Prime Pro Edition software.

4.2. Reducing Synthesis Time and Synthesis Netlist Optimization
Time

You can reduce synthesis time without affecting the Fitter time by reducing your use
of netlist optimizations. For tips on reducing synthesis time when using third-party
EDA synthesis tools, refer to your synthesis software’s documentation.

4.2.1. Settings to Reduce Synthesis Time and Synthesis Netlist
Optimization Time

Synthesis netlist and physical synthesis optimization settings can significantly increase
the overall compilation time for large designs. Refer to Analysis and Synthesis
messages to determine the length of optimization time.

4. Reducing Compilation Time

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

201

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If your design already meets performance requirements without synthesis netlist or
physical synthesis optimizations, turn off these options to reduce compilation time. If
you require synthesis netlist optimizations to meet performance, optimize partitions of
your design hierarchy separately to reduce the overall time spent in Analysis and
Synthesis.

4.2.2. Use Appropriate Coding Style to Reduce Synthesis Time

Your HDL coding style can also affect the synthesis time. For example, if you want to
infer RAM blocks from your code, you must follow the guidelines for inferring RAMs. If
RAM blocks are not inferred properly, the software implements those blocks as
registers.

If you are trying to infer a large memory block, the software consumes more
resources on the FPGA. This can cause routing congestion and increases compilation
time significantly. If you see high routing utilization in certain blocks, review the code
for such blocks.

4.3. Reducing Placement Time

The time required to place a design depends on two factors:

• The number of ways the logic in your design can be placed in the device.

• The settings that control the amount of effort required to find a good placement.

You can also observe the placement of major logic blocks in your design (over multiple
compiles) to see whether the major blocks tend to get placed in the same places in
the floorplan between the compiles. Suppose major blocks get placed in different
places in some compiles. If those placements correlate with good QoR, create Logic
Lock regions to ensure the blocks are placed in those regions with good QoR, which
should help reduce compile time.

You can reduce the placement time by changing the settings for the placement
algorithm, or by using incremental compilation to preserve the placement for the
unchanged parts of your design.

Sometimes there is a trade-off between placement time and routing time. Routing
time can increase if the placer does not run long enough to find a good placement.
When you reduce placement time, ensure that it does not increase routing time and
negate the overall time reduction.

4.3.1. Fitter Effort Setting

For designs with very tight timing requirements, both Auto Fit and Standard Fit use
the maximum effort during optimization.Intel recommends using Auto Fit for
reducing compilation time.

The highest Fitter effort setting, Standard Fit, requires the most runtime, but does
not always yield a better result than using the default Auto Fit. If you are certain that
your design has only easy-to-meet timing constraints, you can select Fast Fit for an
even greater runtime savings.

4. Reducing Compilation Time

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

202

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.3.2. Placement Effort Multiplier Settings

The Placement Effort Multiplier option controls how much time the Fitter spends in
placement. Click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced
Settings (Fitter) and specify a value for Placement Effort Multiplier.

The default value is 1.0, and valid values are greater than 0. Specifying a floating-
point number allows you to control the placement effort. A lower value decreases the
CPU time but may reduce placement quality. You cannot directly increase the
Placement Effort Multiplier to a value greater than 1.0. Use predefined
Optimization Mode settings to increase placement effort for improved timing
optimization.

4.3.3. Physical Synthesis Effort Settings

Physical synthesis options enable you to optimize the post-synthesis netlist and
improve timing performance. These options, which affect placement, can significantly
increase compilation time.

If your design meets your performance requirements without physical synthesis
options, turn them off to reduce compilation time. For example, if some or all the
physical synthesis algorithm information messages display an improvement of 0 ps,
turning off physical synthesis can reduce compilation time.

You also can use the Physical synthesis effort setting on the Advanced Fitter
Settings dialog box to reduce the amount of extra compilation time used by these
optimizations.

The Fast setting directs the Quartus Prime software to use a lower level of physical
synthesis optimization. Compared to the Normal physical synthesis effort level, using
the Fast setting can cause a smaller increase in compilation time. However, the lower
level of optimization can result in a smaller increase in design performance.

4.3.4. Preserving Placement with Incremental Compilation

Preserving information about previous placements can make future placements faster.
The incremental compilation feature provides an easy-to-use method for preserving
placement results.

4.4. Reducing Routing Time

The routing time is usually not a significant amount of the compilation time. The time
required to route a design depends on three factors: the device architecture, the
placement of your design in the device, and the connectivity between different parts of
your design.

If your design requires a long time to route, perform one or more of the following
actions:

• Check for routing congestion.

• Turn off Fitter Aggressive Routability Optimization.

• Use incremental compilation to preserve routing information for parts of your
design.

4. Reducing Compilation Time

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

203

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.4.1. Identifying Routing Congestion with the Chip Planner

To identify areas of routing congestion in your design:

1. Click Tools ➤ Chip Planner.

2. To view the routing congestion in the Chip Planner, double-click the Report
Routing Utilization command in the Tasks list.

3. Click Preview in the Report Routing Utilization dialog box to preview the
default congestion display.

4. Change the Routing utilization type to display congestion for specific resources.
The default display uses dark blue for 0% congestion and red for 100%.

5. Adjust the slider for Threshold percentage to change the congestion threshold
level.

The Quartus Prime compilation messages contain information about average and peak
interconnect usage. Peak interconnect usage over 75%, or average interconnect usage
over 60% indicate possible difficulties fitting your design. Similarly, peak interconnect
usage over 90%, or average interconnect usage over 75%, indicate a high chance of
not getting a valid fit.

Related Information

Using Incremental Compilation on page 200

4.4.1.1. Areas with Routing Congestion

Even if average congestion is not high, the design may have areas where congestion is
high in a specific type of routing. You can use the Chip Planner to identify areas of
high congestion for specific interconnect types.

• You can change the connections in your design to reduce routing congestion

• If the area with routing congestion is in a Logic Lock region or between Logic Lock
regions, change or remove the Logic Lock regions and recompile your design.

— If the routing time remains the same, the time is a characteristic of your
design and the placement

— If the routing time decreases, consider changing the size, location, or contents
of Logic Lock regions to reduce congestion and decrease routing time.

4.4.1.2. Congestion due to HDL Coding style

Sometimes, routing congestion may be a result of the HDL coding style used in your
design. After identifying congested areas using the Chip Planner, review the HDL code
for the blocks placed in those areas to determine whether you can reduce interconnect
usage by code changes.

4.4.1.3. Preserving Routing with Incremental Compilation

Preserving the previous routing results for part of your design can reduce future
routing time. Incremental compilation provides an easy-to-use methodology that
preserves placement and routing results.

4. Reducing Compilation Time

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

204

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.5. Reducing Static Timing Analysis Time

If you are performing timing-driven synthesis, the Quartus Prime software runs the
Timing Analyzer during Analysis and Synthesis.

The Quartus Prime Fitter also runs the Timing Analyzer during placement and routing.
If there are incorrect constraints in the Synopsys Design Constraints File (.sdc), the
Quartus Prime software may spend unnecessary time processing constraints several
times.

• If you do not specify false paths and multicycle paths in your design, the Timing
Analyzer may analyze paths that are not relevant to your design.

• If you redefine constraints in the .sdc files, the Timing Analyzer may spend
additional time processing them. To avoid this situation, look for indications that
Synopsis design constraints are being redefined in the compilation messages, and
update the .sdc file.

• Ensure that you provide the correct timing constraints to your design, because the
software cannot assume design intent, such as which paths to consider as false
paths or multicycle paths. When you specify these assignments correctly, the
Timing Analyzer skips analysis for those paths, and the Fitter does not spend
additional time optimizing those paths.

4.6. Setting Process Priority

It might be necessary to reduce the computing resources allocated to the compilation
at the expense of increased compilation time. It can be convenient to reduce the
resource allocation to the compilation with single processor machines if you must run
other tasks at the same time.

Related Information

Processing Page (Options Dialog Box)
In Quartus Prime Help.

4.7. Reducing Compilation Time Revision History

Date Version Changes

2016.05.02 16.0.0 • Corrected typo in Using Parallel Compilation with Multiple Processors.
• Stated limitations about deprecated physical synthesis options.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and Physical
Synthesis Optimizations to Compiler Settings.

• Added information about Rapid Recompile feature.

2014.08.18 14.0a10.0 Added restriction about smart compilation in Arria 10 devices.

June 2014 14.0.0 Updated format.

May 2013 13.0.0 Removed the “Limit to One Fitting Attempt”, “Using Early Timing Estimation”, “Final
Placement Optimizations”, and “Using Rapid Recompile” sections.
Updated “Placement Effort Multiplier Settings” section.
Updated “Identifying Routing Congestion in the Chip Planner” section.
General editorial changes throughout the chapter.

continued...

4. Reducing Compilation Time

683283 | 2021.10.22

Send Feedback Quartus Prime Standard Edition User Guide: Design Compilation

205

http://quartushelp.altera.com/current/index.htm#global/global/gl_tab_processing.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 • Updated “Using Parallel Compilation with Multiple Processors”.
• Updated “Identifying Routing Congestion in the Chip Planner”.
• General editorial changes throughout the chapter.

December 2010 10.1.0 • Template update.
• Added details about peak and average interconnect usage.
• Added new section “Reducing Static Timing Analysis Time”.
• Minor changes throughout chapter.

July 2010 10.0.0 Initial release.

4. Reducing Compilation Time

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

206

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Quartus Prime Standard Edition FPGA design flow.

Related Information

• Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Quartus Prime
Standard Edition software, including managing Quartus Prime Standard Edition
projects and IP, initial design planning considerations, and project migration
from previous software versions.

• Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Quartus Prime
Standard Edition software. HDL coding styles and synchronous design practices
can significantly impact design performance. Following recommended HDL
coding styles ensures that Quartus Prime Standard Edition synthesis optimally
implements your design in hardware.

• Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Quartus Prime
Standard Edition Compiler. The Compiler synthesizes, places, and routes your
design before generating a device programming file.

• Quartus Prime Standard Edition User Guide: Design Optimization
Describes Quartus Prime Standard Edition settings, tools, and techniques that
you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Quartus Prime Standard Edition Programmer, which
allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683283 | 2021.10.22

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics, and Synopsys that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics, and Synopsys. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Quartus Prime
Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis tool
that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Quartus Prime Standard Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor Graphics
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Quartus Prime
Standard Edition software and to perform a wide range of functions, such as
managing projects, specifying constraints, running compilation or timing
analysis, or generating reports.

A. Quartus Prime Standard Edition User Guides

683283 | 2021.10.22

Quartus Prime Standard Edition User Guide: Design Compilation Send Feedback

208

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Compilation%20(683283%202021.10.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Standard
Edition User Guide
Design Optimization

Updated for Intel® Quartus® Prime Design Suite: 18.1

This document is part of a collection - Intel® Quartus® Prime Standard Edition User Guides -
Combined PDF link

Online Version

Send Feedback UG-20177

683230

2018.11.12

https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683230.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Design Optimization Overview.. 6
1.1. Device Considerations.. 6

1.1.1. Device Migration Considerations.. 6
1.2. Required Settings for Initial Compilation... 7

1.2.1. Guidelines for I/O Assignments..7
1.2.2. Guidelines for Time Constraints... 7
1.2.3. Partitions and Floorplan Assignments for Incremental Compilation....................8

1.3. Trade-Offs and Limitations.. 8
1.3.1. Preserving Results and Enabling Teamwork... 9
1.3.2. Reducing Area...9
1.3.3. Reducing Critical Path Delay..9
1.3.4. Reducing Power Consumption.. 10
1.3.5. Reducing Runtime..10

1.4. Intel Quartus Prime Software Tools for Design Optimization....................................... 11
1.4.1. Design Visualization Tools... 11
1.4.2. Advisors... 11
1.4.3. Design Exploration... 12

1.5. Design Space Explorer II.. 12
1.5.1. How DSE II Works..13
1.5.2. Performing a Design Exploration with the DSE II Utility................................. 14

1.6. Design Optimization Overview Revision History.. 15

2. Optimizing the Design Netlist... 16
2.1. When to Use the Netlist Viewers: Analyzing Design Problems16
2.2. Intel Quartus Prime Design Flow with the Netlist Viewers.. 17
2.3. RTL Viewer Overview..18

2.3.1. Maximizing Readability in RTL Viewer..19
2.3.2. Running the RTL Viewer..20

2.4. State Machine Viewer Overview... 20
2.5. Technology Map Viewer Overview...20
2.6. Netlist Viewer User Interface... 21

2.6.1. Netlist Navigator Pane.. 24
2.6.2. Properties Pane... 24
2.6.3. Netlist Viewers Find Pane.. 26

2.7. Schematic View... 26
2.7.1. Display Schematics in Multiple Tabbed View...26
2.7.2. Schematic Symbols.. 27
2.7.3. Select Items in the Schematic View.. 31
2.7.4. Shortcut Menu Commands in the Schematic View...32
2.7.5. Filtering in the Schematic View.. 32
2.7.6. View Contents of Nodes in the Schematic View.. 33
2.7.7. Moving Nodes in the Schematic View.. 34
2.7.8. View LUT Representations in the Technology Map Viewer...............................35
2.7.9. Zoom Controls...35
2.7.10. Navigating with the Bird's Eye View.. 36
2.7.11. Partition the Schematic into Pages..36
2.7.12. Follow Nets Across Schematic Pages... 37

Contents

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.8. State Machine Viewer... 37
2.8.1. State Diagram View... 38
2.8.2. State Transition Table... 38
2.8.3. State Encoding Table.. 38
2.8.4. Switch Between State Machines... 39

2.9. Cross-Probing to a Source Design File and Other Intel Quartus Prime Windows............ 39
2.10. Cross-Probing to the Netlist Viewers from Other Intel Quartus Prime Windows............40
2.11. Viewing a Timing Path.. 40
2.12. Optimizing the Design Netlist Revision History..41

3. Timing Closure and Optimization.. 43
3.1. Optimize Multi Corner Timing.. 43
3.2. Critical Paths...43

3.2.1. Viewing Critical Paths... 44
3.3. Design Evaluation for Timing Closure..44

3.3.1. Review Compilation Results... 44
3.3.2. Review Details of Timing Paths.. 55
3.3.3. Adjusting and Recompiling.. 58

3.4. Design Analysis... 59
3.4.1. Ignored Timing Constraints... 59
3.4.2. I/O Timing.. 59
3.4.3. Register-to-Register Timing Analysis...60

3.5. Timing Optimization... 64
3.5.1. Displaying Timing Closure Recommendations for Failing Paths........................64
3.5.2. Timing Optimization Advisor.. 65
3.5.3. Optional Fitter Settings...66
3.5.4. I/O Timing Optimization Techniques... 68
3.5.5. Register-to-Register Timing Optimization Techniques.................................... 72
3.5.6. Logic Lock (Standard) Assignments.. 78
3.5.7. Location Assignments... 80
3.5.8. Metastability Analysis and Optimization Techniques...................................... 80

3.6. Periphery to Core Register Placement and Routing Optimization 80
3.6.1. Setting Periphery to Core Optimizations in the Advanced Fitter Setting

Dialog Box.. 81
3.6.2. Setting Periphery to Core Optimizations in the Assignment Editor................... 82
3.6.3. Viewing Periphery to Core Optimizations in the Fitter Report.......................... 82

3.7. Scripting Support...83
3.7.1. Initial Compilation Settings... 84
3.7.2. I/O Timing Optimization Techniques ...84
3.7.3. Register-to-Register Timing Optimization Techniques.................................... 85

3.8. Timing Closure and Optimization Revision History...86

4. Area Optimization... 89
4.1. Resource Utilization Information.. 89

4.1.1. Flow Summary Report.. 89
4.1.2. Fitter Reports.. 89
4.1.3. Analysis and Synthesis Reports..90
4.1.4. Compilation Messages.. 90

4.2. Optimizing Resource Utilization..90
4.2.1. Using the Resource Optimization Advisor...91
4.2.2. Resource Utilization Issues Overview.. 91
4.2.3. I/O Pin Utilization or Placement..91

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2.4. Logic Utilization or Placement.. 92
4.2.5. Routing.. 96

4.3. Scripting Support...98
4.3.1. Initial Compilation Settings... 99
4.3.2. Resource Utilization Optimization Techniques... 100

4.4. Area Optimization Revision History... 101

5. Analyzing and Optimizing the Design Floorplan.. 102
5.1. Design Floorplan Analysis in the Chip Planner...102

5.1.1. Starting the Chip Planner.. 103
5.1.2. Chip Planner GUI Components... 103
5.1.3. Viewing Architecture-Specific Design Information....................................... 105
5.1.4. Viewing Available Clock Networks in the Device..105
5.1.5. Viewing Routing Congestion...106
5.1.6. Viewing I/O Banks..107
5.1.7. Viewing High-Speed Serial Interfaces (HSSI)... 107
5.1.8. Viewing the Source and Destination of Placed Nodes................................... 108
5.1.9. Viewing Fan-In and Fan-Out Connections of Placed Resources...................... 109
5.1.10. Generating Immediate Fan-In and Fan-Out Connections.............................110
5.1.11. Exploring Paths in the Chip Planner...110
5.1.12. Viewing Assignments in the Chip Planner... 112
5.1.13. Viewing High-Speed and Low-Power Tiles in the Chip Planner..................... 113
5.1.14. Viewing Design Partition Placement...114

5.2. Logic Lock (Standard) Regions... 114
5.2.1. Attributes of a Logic Lock (Standard) Region..115
5.2.2. Creating Logic Lock (Standard) Regions.. 115
5.2.3. Customizing the Shape of Logic Lock Regions...118
5.2.4. Placing Logic Lock (Standard) Regions.. 119
5.2.5. Placing Device Resources into Logic Lock (Standard) Regions....................... 120
5.2.6. Hierarchical (Parent and Child) Logic Lock (Standard) Regions......................123
5.2.7. Additional Intel Quartus Prime Logic Lock (Standard) Design Features...........124
5.2.8. Logic Lock (Standard) Regions Window... 124

5.3. Using Logic Lock (Standard) Regions in the Chip Planner... 125
5.3.1. Viewing Connections Between Logic Lock (Standard) Regions in the Chip

Planner...125
5.3.2. Using Logic Lock (Standard) Regions with the Design Partition Planner.......... 126

5.4. Scripting Support...126
5.4.1. Initializing and Uninitializing a Logic Lock (Standard) Region........................ 126
5.4.2. Creating or Modifying Logic Lock (Standard) Regions.................................. 126
5.4.3. Obtaining Logic Lock (Standard) Region Properties..................................... 127
5.4.4. Assigning Logic Lock (Standard) Region Content...127
5.4.5. Save a Node-Level Netlist for the Entire Design into a Persistent Source File.. 127
5.4.6. Setting Logic Lock (Standard) Assignment Priority...................................... 128
5.4.7. Assigning Virtual Pins with a Tcl command... 128

5.5. Analyzing and Optimizing the Design Floorplan Revision History............................... 128

6. Netlist Optimizations and Physical Synthesis.. 131
6.1. Physical Synthesis Optimizations.. 131

6.1.1. Enabling Physical Synthesis Optimization...132
6.1.2. Physical Synthesis Options.. 132
6.1.3. Perform Register Retiming for Performance..133
6.1.4. Preventing Register Movement During Retiming..134

Contents

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.2. Applying Netlist Optimizations..135
6.2.1. WYSIWYG Primitive Resynthesis...136
6.2.2. Saving a Node-Level Netlist... 137

6.3. Viewing Synthesis and Netlist Optimization Reports.. 138
6.4. Scripting Support...138

6.4.1. Synthesis Netlist Optimizations.. 139
6.4.2. Physical Synthesis Optimizations.. 139
6.4.3. Back-Annotating Assignments.. 140

6.5. Netlist Optimizations and Physical Synthesis Revision History................................... 140

7. Engineering Change Orders with the Chip Planner.. 142
7.1. Engineering Change Orders... 142

7.1.1. Performance Preservation..143
7.1.2. Compilation Time... 143
7.1.3. Verification..143
7.1.4. Change Modification Record...144

7.2. ECO Design Flow..144
7.3. The Chip Planner Overview..146

7.3.1. Opening the Chip Planner..146
7.3.2. The Chip Planner Tasks and Layers... 147

7.4. Performing ECOs with the Chip Planner (Floorplan View)..147
7.4.1. Creating, Deleting, and Moving Atoms...147
7.4.2. Check and Save Netlist Changes...147

7.5. Performing ECOs in the Resource Property Editor..147
7.5.1. Logic Elements.. 148
7.5.2. Adaptive Logic Modules...150
7.5.3. FPGA I/O Elements...151
7.5.4. FPGA RAM Blocks... 155
7.5.5. FPGA DSP Blocks..156

7.6. Change Manager..157
7.6.1. Complex Changes in the Change Manager... 158
7.6.2. Managing Signal Probe Signals...158
7.6.3. Exporting Changes... 158

7.7. Scripting Support...158
7.8. Common ECO Applications.. 158

7.8.1. Adjust the Drive Strength of an I/O with the Chip Planner............................159
7.8.2. Modify the PLL Properties With the Chip Planner... 160
7.8.3. PLL Properties..161
7.8.4. Modify the Connectivity between Resource Atoms.......................................163

7.9. Post ECO Steps..164
7.10. Engineering Change Orders with the Chip Planner Revision History..........................164

A. Intel Quartus Prime Standard Edition User Guides..166

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Design Optimization Overview
In a typical design flow, the early stages of development concentrate on meeting
timing, area and power goals. Once the design meets those goals, the efforts focus on
improving performance. This chapter introduces techniques and tools in the Intel®
Quartus® Prime software that you can use to achieve the highest design performance.

Optimization of a FPGA design requires a multi-dimensional approach that meets the
design goals while reducing area, critical path delay, power consumption, and runtime.
The Intel Quartus Prime software includes advisors to address each of these issues. By
implementing the advisor's suggestions, you can reduce the time spent on design
iterations.

Related Information

Intel Quartus Prime Design Software - Support Center

1.1. Device Considerations

All Intel FPGAs have a unique timing model that contains delay information for all
physical elements in the device, such as combinational adaptive logic modules,
memory blocks, interconnects, and registers. The delays encompass all valid
combinations of operating conditions for the target FPGA. Additionally, the device size
and package determine pin-out and the resource availability.

Related Information

Guaranteeing Silicon Performance with FPGA Timing Models
Intel FPGA White Paper (PDF)

1.1.1. Device Migration Considerations

If you anticipate a change to the target device later in the design cycle, plan for the
migration from the beginning of cycle. This strategy helps to minimize changes to the
design at a later stage.

When choosing a design's target device in the Intel Quartus Prime software, you can
see a list of compatible devices by clicking the Migration Devices button in the
Device dialog box.

Related Information

Migration Devices Dialog Box

683230 | 2018.11.12

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/support/support-resources/support-centers/quartus-support.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01139-timing-model.pdf
http://quartushelp.altera.com/current/index.htm#comp/migrate/comp_db_migration.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

1.2. Required Settings for Initial Compilation

Compilation results can vary significantly depending on the assignments and settings
that you choose. In the Intel Quartus Prime software, the default values for settings
and options provide the best trade-off between compilation time, resource utilization,
and timing performance. Before compiling a design in the Intel Quartus Prime
software, consider the following guidelines.

1.2.1. Guidelines for I/O Assignments

In a FPGA design, I/O standards and drive strengths affect I/O timing.

• When specifying I/O assignments, make sure that the Intel Quartus Prime
software is using an accurate I/O timing delay for timing analysis and Fitter
optimizations.

• If the PCB layout does not indicate pin locations, then leave the pin locations
unconstrained. This technique allows the Compiler to search for the best layout.
Otherwise, make pin assignments to constrain the compilation appropriately.

Related Information

I/O Planning Overview

1.2.2. Guidelines for Time Constraints

For best results, use real time requirements. Applying more demanding timing
requirements than the design needs can cause the Compiler to trade off by increasing
resource usage, power utilization, or compilation time.

Comprehensive timing requirement settings achieve the best results for the following
reasons:

• Correct timing assignments enable the software to work hardest to optimize the
performance of the timing-critical parts of the design and make trade-offs for
performance. This optimization can also save area or power utilization in non-
critical parts of the design.

• If enabled, the Intel Quartus Prime software performs physical synthesis
optimizations based on timing requirements.

• Depending on the Fitter Effort setting, the Fitter can reduce runtime if the design
meets the timing requirements.

The Intel Quartus Prime Timing Analyzer determines if the design implementation
meets the timing requirement. The Compilation Report shows whether the design
meets the timing requirements, while the timing analysis reporting commands provide
detailed information about the timing paths.

Related Information

• Timing Closure and Optimization on page 43

• Using the Intel Quartus Prime Timing Analyzer

• Intel Quartus Prime Timing Analyzer Cookbook

• Advanced Settings (Fitter)

1. Design Optimization Overview

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

7

https://www.intel.com/content/www/us/en/docs/programmable/683492/current/i-o-planning-overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683068/current/using-the-timing-analyzer.html
https://www.intel.com/content/www/us/en/docs/programmable/683081/current/timing-analyzer-cookbook.html
http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_fitting.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.3. Partitions and Floorplan Assignments for Incremental Compilation

The Intel Quartus Prime incremental compilation feature enables hierarchical and
team-based design flows in which you can compile parts of your design while other
parts of your design remain unchanged. You can also Import parts of your design from
separate Intel Quartus Prime projects.

Using incremental compilation for your design with good design partitioning
methodology helps to achieve timing closure. Creating design partitions on some of
the major blocks in your design and assigning them to Logic Lock (Standard)™

regions, reduces Fitter time and improves the quality and repeatability of the results.
Logic Lock (Standard) regions are flexible, reusable floorplan location constraints that
help you place logic on the target device. When you assign entity instances or nodes
to a Logic Lock (Standard) region, you direct the Fitter to place those entity instances
or nodes inside the region during fitting.

Using incremental compilation helps you achieve timing closure block by block and
preserve the timing performance between iterations, which aid in achieving timing
closure for the entire design. Incremental compilation may also help reduce
compilation times.

Note: If you plan to use incremental compilation, you must create a floorplan for your
design. If you are not using incremental compilation, creating a floorplan is optional.

Related Information

• Reducing Compilation Time

• Best Practices for Incremental Compilation Partitions and Floorplan Assignments

1.3. Trade-Offs and Limitations

Many optimization goals can conflict with one another, so you might need to resolve
conflicting goals.

Table 1. Examples of Trade offs in Design Optimization

Trade-off Comments

Resource usage and critical path
timing.

Certain techniques (such as logic duplication) can improve timing performance at
the cost of increased area.

Power requirements can result in area
and timing trade-offs.

For example, reducing the number of available high-speed tiles, or attempting to
shorten high-power nets at the expense of critical path nets.

System cost and time-to-market
considerations can affect the choice of
device.

For example, a device with a higher speed grade or more clock networks can
facilitate timing closure at the expense of higher power consumption and system
cost.

Finally, constrains that are too severe limit design feasibility as far as no possible
solution for the selected device. If the Fitter cannot resolve a design due to resource
limitations, timing constraints, or power constraints, consider rewriting parts of the
HDL code.

1. Design Optimization Overview

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

8

https://www.intel.com/content/www/us/en/docs/programmable/683283/current/reducing-compilation-time.html
https://www.intel.com/content/www/us/en/docs/programmable/683283/current/best-practices-for-incremental-compilation.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.1. Preserving Results and Enabling Teamwork

For some Intel Quartus Prime Fitter algorithms, small changes to the design can have
a large impact on the final result. For example, a critical path delay can change by
10% or more because of seemingly insignificant changes. If you are close to meeting
your timing objectives, you can use the Fitter algorithm to your advantage by
changing the fitter seed, which changes the pseudo-random result of the Fitter.

Conversely, if you cannot meet timing on a portion of your design, you can partition
that portion and prevent it from recompiling if an unrelated part of the design is
changed. This feature, known as incremental compilation, can reduce the Fitter
runtimes by up to 70% if the design is partitioned, such that only small portions
require recompilation at any one time.

When you use incremental compilation, you can apply design optimization options to
individual design partitions and preserve performance in other partitions by leaving
them untouched. Many optimization techniques often result in longer compilation
times, but by applying them only on specific partitions, you can reduce this impact
and complete iterations more quickly.

In addition, by physically floorplanning your partitions with Logic Lock (Standard)
regions, you can enable team-based flows and allow multiple people to work on
different portions of the design.

Related Information

Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based Designs

1.3.2. Reducing Area

By default, the Intel Quartus Prime Fitter might physically spread a design over the
entire device to meet the set timing constraints. If you prefer to optimize your design
to use the smallest area, you can change this behavior. If you require reduced area,
you can enable certain physical synthesis options to modify your netlist to create a
more area-efficient implementation, but at the cost of increased runtime and
decreased performance.

Related Information

• Area Optimization on page 89

• Netlist Optimizations and Physical Synthesis on page 131

1.3.3. Reducing Critical Path Delay

To meet complex timing requirements involving multiple clocks, routing resources, and
area constraints, the Intel Quartus Prime software offers a close interaction between
synthesis, floorplan editing, place-and-route, and timing analysis processes.

By default, the Intel Quartus Prime Fitter works to meet the timing requirements, and
stops when the requirements are met. Therefore, realistic constraints are crucial for
timing closure.

Under-constrained designs can lead to sub-optimal results. For over-constrained
designs, the Fitter might over-optimize non-critical paths at the expense of true
critical paths. In addition, area and compilation time may also increase.

1. Design Optimization Overview

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

9

https://www.intel.com/content/www/us/en/docs/programmable/683283/current/incremental-compilation-for-hierarchical.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For designs with high resource usage, the Intel Quartus Prime Fitter might have
trouble finding a legal placement. In such circumstances, the Fitter automatically
modifies settings to try to trade off performance for area.

The Intel Quartus Prime Fitter offers advanced options that can help improve the
design performance when you properly set constraints. Use the Timing Optimization
Advisor to determine which options are best suited for the design.

If you use incremental compilation, you can help resolve inter-partition timing
requirements by locking down results, one partition at a time, or by guiding the
placement of the partitions with Logic Lock (Standard) regions. You might improve the
timing on such paths by placing the partitions optimally to reduce the length of critical
paths. Once the inter-partition timing requirements are met, use incremental
compilation to preserve the results and work on partitions that have not met timing
requirements.

In high-density FPGAs, routing accounts for a major part of critical path timing.
Because of this, duplicating or retiming logic can allow the Fitter to reduce delay on
critical paths. The Intel Quartus Prime software offers push-button netlist
optimizations and physical synthesis options that can improve design performance at
the expense of considerable increases of compilation time and area. Turn on only
those options that help you keep reasonable compilation times and resource usage.
Alternately, you can modify the HDL to manually duplicate or adjust the timing logic.

Related Information

Critical Paths on page 43

1.3.4. Reducing Power Consumption

The Intel Quartus Prime software has features that help reduce design power
consumption. The power optimization options control the power-driven compilation
settings for Synthesis and the Fitter.

Related Information

Power Optimization

1.3.5. Reducing Runtime

Many Fitter settings influence compilation time. Most of the default settings in the
Intel Quartus Prime software are set for reduced compilation time. You can modify
these settings based on your project requirements.

The Intel Quartus Prime software supports parallel compilation in computers with
multiple processors. This can reduce compilation times by up to 15%.

You can also reduce compilation time with your iterations by using incremental
compilation. Use incremental compilation when you want to change parts of your
design, while keeping most of the remaining logic unchanged.

Related Information

Reducing Compilation Time

1. Design Optimization Overview

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

10

https://www.intel.com/content/www/us/en/docs/programmable/683506/current/power-optimization.html
https://www.intel.com/content/www/us/en/docs/programmable/683283/current/reducing-compilation-time.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4. Intel Quartus Prime Software Tools for Design Optimization

The Intel Quartus Prime software offers tools that you can use to optimize a design.

1.4.1. Design Visualization Tools

The Intel Quartus Prime software provides tools that display graphical representations
of a design.

Table 2. Visualization Tools

Tool Description

RTL Viewer Provides a schematic representation of the design before synthesis and place-
and-route.

Technology Map Viewer Provides a schematic representation of the design implementation in the selected
device architecture after synthesis and place-and-route. Optionally, you can
include timing information.

Design Partition Planner Displays designs at partition and entity levels, and can display connectivity
between entities

Design Partition Planner and Chip
Planner (With incremental compilation)

Allow you to partition and layout the design at a higher level.

Chip Planner Allow you to make floorplan assignments, implement engineering change orders
(ECOs), perform power analysis, and visualize critical paths and routing
congestion.

Related Information

• Design Floorplan Analysis in the Chip Planner on page 102

• Optimizing the Design Netlist on page 16

• RTL Viewer Overview on page 18

1.4.2. Advisors

The Intel Quartus Prime software includes several advisors to help you optimize your
design and reduce compilation time.

The advisors provide recommendations based on the project settings and design
constraints. Those recommendations can help you to fit the project, meet timing or
power requirements, or improve the design performance.

The advisors organize the recommendations from general to specific. Where
applicable, the categories are divided into of stages presented by complexity.

The advisors are:

• Resource Optimization Advisor

• Timing Optimization Advisor

• Power Optimization Advisor

• Compilation Time Advisor

• Pin Optimization Advisor

• Incremental Compilation Advisor

1. Design Optimization Overview

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Compilation Time Advisor

• Advisors in the Intel Quartus Prime Software

• Timing Optimization Advisor on page 65

• Power Optimization Advisor

1.4.3. Design Exploration

The Design Space Explorer II tool (DSE II) provides an easy and efficient way for you
to run experiments on your design settings. You can run a single compilation locally on
your PC or remotely using compute farm resources.

Related Information

Design Space Explorer II on page 12

1.5. Design Space Explorer II

The Design Space Explorer II tool (Tools ➤ Launch Design Space Explorer II)
allows you to find optimal project settings for resource, performance, or power
optimization goals. Design Space Explorer II (DSE II) processes a design using
combinations of settings and constraints, and reports the best settings for the design.
You can take advantage of the DSE II parallelization abilities to compile on multiple
computers.

If a design is close to meeting timing or area requirements, you can try different
seeds with the DSE II, and find one seed that meets timing or area requirements.

Figure 1. Design Space Explorer II User Interface

1. Design Optimization Overview

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

12

https://www.intel.com/content/www/us/en/docs/programmable/683283/current/compilation-time-advisor.html
https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#report/oaw/oaw_view_using_oaw.htm
https://www.intel.com/content/www/us/en/docs/programmable/683506/current/power-optimization-advisor.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can run DSE II at any step in the design process; however, because large changes
in a design can neutralize gains achieved from optimizing settings, Intel FPGA
recommends that you run DSE II late in the design cycle.

Related Information

• Design Space Explorer II Tool

• Using Design Space Explorer
21 Minute Online Course

1.5.1. How DSE II Works

In DSE II, an exploration point is a collection of Analysis & Synthesis, Fitter, and
placement settings, and a group of exploration points is a design exploration. A design
exploration can also include different fitter seeds.

DSE II compiles the design using the settings corresponding to each exploration point.
When the compilation finishes, DSE II evaluates the performance data against an
optimization goal that you specify. You can direct the DSE II to optimize for timing,
area, or power.

Related Information

Design Space Explorer II for Power-Driven Optimization

1.5.1.1. Use of Computing Resources

You can configure DSE II to take advantage of your computing resources to run the
design explorations. In the DSE II GUI, the Setup page contains the job launch
options, and the Status page allows you to monitor and control jobs.

DSE II supports running compilations on your local computer or a remote host through
LSF, SSH or Torque. For SSH, you can also define a comma-separated list of remote
hosts.

If you have a laptop or standard computer, you can use the single compilation feature
to compile your design on a workstation with higher computing performance and
memory capacity.

When running on a compute farm, you can direct the DSE II to safely exit after
submitting all the jobs while the compilations continue to run until completion.
Optionally, you can receive an e-mail when the compilations are complete.

If you launch jobs using SSH, the remote host must enable public and private key
authentication. For private keys encrypted with a pass phrase, the remote host must
run the ssh key agent to decrypt the private key, so the quartus_dse executable can
access the key.

Note: Windows remote hosts require Cygwin's sshd server and PuTTY.

Related Information

• Setup Page (Design Space Explorer II)

• Status Page (Design Space Explorer II)

1. Design Optimization Overview

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

13

http://quartushelp.altera.com/current/index.htm#mapIdTopics/jcc1519432181110.htm
https://www.altera.com/support/training/course/odse.html
https://www.intel.com/content/www/us/en/docs/programmable/683506/current/design-space-explorer-ii-for-power-driven.html
http://quartushelp.altera.com/current/index.htm#mapIdTopics/nfo1520894967918.htm
http://quartushelp.altera.com/current/index.htm#mapIdTopics/lij1521075717701.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.1.2. Optimization Parameters

DSE II provides a collection of predefined exploration spaces that focus on what you
want to optimize. Additionally, you can define a set of compilation seeds. The number
of explorations points is the number of seeds multiplied by the number of exploration
modes.

Note: The availability of predefined spaces depends on the device family that the design
targets.

In the DSE GUI, you specify these settings in the Exploration page.

Related Information

Exploration Page (Design Space Explorer II)

1.5.1.3. Result Management

DSE II compares the compilation results to determine the best Intel Quartus Prime
software settings for the design. The Report page displays a summary of results.

In an exploration, DSE II selects the best worst-case slack value from among all
timing corners across all exploration points. If you want to optimize for worst-case
setup slack or hold slack, specify timing constraints in the Intel Quartus Prime
software.

Disk Space

By default, DSE II saves all the compilation data. You can save disk space by limiting
the type of files that you want to save after a compilation finishes. These settings are
in the Exploration page, Results section.

Reports

DSE II has reporting tools that help you quickly determine important design metrics,
such as worse-case slack, across all exploration points.

DSE II provides a performance data report for all points it explores and saves the
information in a project-name.dse.rpt file in the project directory. DSE II archives the
settings of the exploration points in Intel Quartus Prime Archive Files (.qar).

Related Information

Report Page (Design Space Explorer II)

1.5.2. Performing a Design Exploration with the DSE II Utility

Note: Before running DSE II, specify the timing constraints for the design.

This description covers the type of settings that you need to define when you want to
run a design exploration. For details about all the options available in the GUI, refer to
the Intel Quartus Prime Help.

To perform a design exploration with the DSE II tool:

1. Start the DSE II tool.

1. Design Optimization Overview

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

14

http://quartushelp.altera.com/current/index.htm#mapIdTopics/gzx1519433954262.htm
http://quartushelp.altera.com/current/index.htm#mapIdTopics/whh1518655760413.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you have an open project in the Intel Quartus Prime software and launch DSE
II, a dialog box appears asking if you want to close the Intel Quartus Prime
software. Click Yes.

2. In the Project page, specify the project and revision that you want to explore.

3. In the Setup page, specify whether you want to perform a local or a remote
exploration, and set up the job launch.

4. In the Exploration page, specify optimization settings and goals.

5. When the configuration is complete, click Start.

Related Information

• Design Space Explorer II Tool

• Using Design Space Explorer
21 Minute Online Course

1.6. Design Optimization Overview Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.05.07 18.0.0 • General topic reorganization.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

• Updated DSE II content.

June 2014 14.0.0 Updated format.

November 2013 13.1.0 Minor changes for HardCopy.

May 2013 13.0.0 Added the information about initial compilation requirements. This section
was moved from the Area Optimization chapter of the Intel Quartus Prime
Handbook. Minor updates to delineate division of Timing and Area
optimization chapters.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.3 Template update.

December 2010 10.0.2 Changed to new document template. No change to content.

August 2010 10.0.1 Corrected link

July 2010 10.0.0 Initial release. Chapter based on topics and text in Section III of volume 2.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

1. Design Optimization Overview

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

15

http://quartushelp.altera.com/current/index.htm#mapIdTopics/jcc1519432181110.htm
https://www.altera.com/support/training/course/odse.html
https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Optimizing the Design Netlist
This chapter describes how you can use the Intel Quartus Prime Netlist Viewers to
analyze and debug your designs.

As FPGA designs grow in size and complexity, the ability to analyze, debug, optimize,
and constrain your design is critical. With today’s advanced designs, several design
engineers are involved in coding and synthesizing different design blocks, making it
difficult to analyze and debug the design. The Intel Quartus Prime RTL Viewer, State
Machine Viewer, and Technology Map Viewer provide powerful ways to view your initial
and fully mapped synthesis results during the debugging, optimization, and constraint
entry processes.

Related Information

• Intel Quartus Prime Design Flow with the Netlist Viewers on page 17

• State Machine Viewer Overview on page 20

• RTL Viewer Overview on page 18

• Technology Map Viewer Overview on page 20

• Filtering in the Schematic View on page 32

• Viewing a Timing Path on page 40

2.1. When to Use the Netlist Viewers: Analyzing Design Problems

You can use the Netlist Viewers to analyze and debug your design. The following
simple examples show how to use the RTL Viewer, State Machine Viewer, and
Technology Map Viewer to analyze problems encountered in the design process.

Using the RTL Viewer is a good way to view your initial synthesis results to determine
whether you have created the necessary logic, and that the logic and connections
have been interpreted correctly by the software. You can use the RTL Viewer and
State Machine Viewer to check your design visually before simulation or other
verification processes. Catching design errors at this early stage of the design process
can save you valuable time.

If you see unexpected behavior during verification, use the RTL Viewer to trace
through the netlist and ensure that the connections and logic in your design are as
expected. You can also view state machine transitions and transition equations with
the State Machine Viewer. Viewing your design helps you find and analyze the source
of design problems. If your design looks correct in the RTL Viewer, you know to focus
your analysis on later stages of the design process and investigate potential timing
violations or issues in the verification flow itself.

683230 | 2018.11.12

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

You can use the Technology Map Viewer to look at the results at the end of Analysis
and Synthesis. If you have compiled your design through the Fitter stage, you can
view your post-mapping netlist in the Technology Map Viewer (Post-Mapping) and your
post-fitting netlist in the Technology Map Viewer. If you perform only Analysis and
Synthesis, both the Netlist Viewers display the same post-mapping netlist.

In addition, you can use the RTL Viewer or Technology Map Viewer to locate the
source of a particular signal, which can help you debug your design. Use the
navigation techniques described in this chapter to search easily through your design.
You can trace back from a point of interest to find the source of the signal and ensure
the connections are as expected.

The Technology Map Viewer can help you locate post-synthesis nodes in your netlist
and make assignments when optimizing your design. This functionality is useful when
making a multicycle clock timing assignment between two registers in your design.
Start at an I/O port and trace forward or backward through the design and through
levels of hierarchy to find nodes of interest, or locate a specific register by visually
inspecting the schematic.

Throughout your FPGA design, debug, and optimization stages, you can use all of the
netlist viewers in many ways to increase your productivity while analyzing a design.

Related Information

• Intel Quartus Prime Design Flow with the Netlist Viewers on page 17

• State Machine Viewer Overview on page 20

• RTL Viewer Overview on page 18

• Technology Map Viewer Overview on page 20

2.2. Intel Quartus Prime Design Flow with the Netlist Viewers

When you first open one of the Netlist Viewers after compiling the design, a
preprocessor stage runs automatically before the Netlist Viewer opens.

Click the link in the preprocessor process box to go to the Settings ➤ Compilation
Process Settings page where you can turn on the Run Netlist Viewers
preprocessing during compilation option. If you turn this option on, the
preprocessing becomes part of the full project compilation flow and the Netlist Viewer
opens immediately without displaying the preprocessing dialog box.

2. Optimizing the Design Netlist

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Intel Quartus Prime Design Flow Including the RTL Viewer and Technology
Map Viewer

This figure shows how Netlist Viewers fit into the basic Intel Quartus Prime design flow.

HDL or Schematic
Design Files

VQM or EDIF
Netlist Files

Analysis and
Elaboration

State Machine Viewer Preprocessor
(Once per Analysis and Elaboration)

RTL Viewer Preprocessor
(Once per Analysis and Elaboration)

State Machine Viewer

RTL Viewer

Technology Map Viewer Preprocessor
(Once per Fitting)

Technology Map Viewer Preprocessor
(Once per Synthesis)

Technology Map Viewer

Technology Map Viewer and
Technology Map Viewer (Post-Mapping)

Technology Map Viewer Preprocessor
(Once per Timing Analysis)

Technology Map Viewer

Synthesis
(Logic Synthesis and

Technology Mapping)

Fitter
(Place and Route)

Timing Analyzer

Before the Netlist Viewer can run the preprocessor stage, you must compile your
design:

• To open the RTL Viewer or State Machine Viewer, first perform Analysis and
Elaboration.

• To open the Technology Map Viewer (Post-Fitting) or the Technology Map Viewer
(Post-Mapping), first perform Analysis and Synthesis.

The Netlist Viewers display the results of the last successful compilation.

• Therefore, if you make a design change that causes an error during Analysis and
Elaboration, you cannot view the netlist for the new design files, but you can still
see the results from the last successfully compiled version of the design files.

• If you receive an error during compilation and you have not yet successfully run
the appropriate compilation stage for your project, the Netlist Viewer cannot be
displayed; in this case, the Intel Quartus Prime software issues an error message
when you try to open the Netlist Viewer.

Note: If the Netlist Viewer is open when you start a new compilation, the Netlist Viewer
closes automatically. You must open the Netlist Viewer again to view the new design
netlist after compilation completes successfully.

2.3. RTL Viewer Overview

The RTL Viewer allows you to view a register transfer level (RTL) graphical
representation of Intel Quartus Prime integrated synthesis results or third-party netlist
files in the Intel Quartus Prime software.

2. Optimizing the Design Netlist

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can view results after Analysis and Elaboration for designs that use any supported
Intel Quartus Prime design entry method, including Verilog HDL Design Files (.v),
SystemVerilog Design Files (.sv), VHDL Design Files (.vhd), AHDL Text Design Files
(.tdf), or schematic Block Design Files (.bdf).

You can also view the hierarchy of atom primitives (such as device logic cells and I/O
ports) for designs that generate Verilog Quartus Mapping File (.vqm) or Electronic
Design Interchange Format (.edf) files through a synthesis tool.

The RTL Viewer displays a schematic view of the design netlist after Analysis and
Elaboration or after the Intel Quartus Prime software performs netlist extraction, but
before technology mapping and synthesis or fitter optimizations. This view a
preliminary pre-optimization design structure and closely represents the original
source design.

• For designs synthesized with Intel Quartus Prime integrated synthesis, this view
shows how the Intel Quartus Prime software interprets the design files.

• For designs synthesized with a third-party synthesis tool, this view shows the
netlist that the synthesis tool generates.

To run the RTL Viewer for a Intel Quartus Prime project, first analyze the design to
generate an RTL netlist. To analyze the design and generate an RTL netlist, click
Processing ➤ Start ➤ Start Analysis & Elaboration. You can also perform a full
compilation on any process that includes the initial Analysis and Elaboration stage of
the Intel Quartus Prime compilation flow.

To open the RTL Viewer, click Tools ➤ Netlist Viewers ➤ RTL Viewer.

Related Information

Netlist Viewer User Interface on page 21

2.3.1. Maximizing Readability in RTL Viewer

While displaying a design, the RTL Viewer optimizes the netlist to maximize
readability:

• Removes logic with no fan-out (unconnected output) or fan-in (unconnected
inputs) from the display.

• Hides default connections such as VCC and GND.

• Groups pins, nets, wires, module ports, and certain logic into buses where
appropriate.

• Groups constant bus connections.

• Displays values in hexadecimal format.

• Converts NOT gates into bubble inversion symbols in the schematic.

• Merges chains of equivalent combinational gates into a single gate; for example, a
2-input AND gate feeding a 2-input AND gate is converted to a single 3-input AND
gate.

• Converts state machine logic into a state diagram, state transition table, and state
encoding table, which appear in the State Machine Viewer.

Related Information

State Machine Viewer Overview on page 20

2. Optimizing the Design Netlist

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.2. Running the RTL Viewer

To run the RTL Viewer for an Intel Quartus Prime project:

1. Analyze the design to generate an RTL netlist by clicking Processing ➤ Start ➤
Start Analysis & Elaboration.

You can also perform a full compilation on any process that includes the initial
Analysis and Elaboration stage of the Intel Quartus Prime compilation flow.

2. Open the RTL Viewer by clicking Tools ➤ Netlist Viewers ➤ RTL Viewer.

2.4. State Machine Viewer Overview

The State Machine Viewer presents a high-level view of finite state machines in your
design. The State Machine Viewer provides a graphical representation of the states
and their related transitions, as well as a state transition table that displays the
condition equation for each of the state transitions, and encoding information for each
state.

To run the State Machine Viewer, on the Tools menu, point to Netlist Viewers and
click State Machine Viewer. To open the State Machine Viewer for a particular state
machine, double-click the state machine instance in the RTL Viewer.

2.5. Technology Map Viewer Overview

The Intel Quartus Prime Technology Map Viewer provides a technology-specific,
graphical representation of FPGA designs after Analysis and Synthesis or after the
Fitter maps the design into the target device.

The Technology Map Viewer shows the hierarchy of atom primitives (such as device
logic cells and I/O ports) in the design. For supported device families, you can also
view internal registers and look-up tables (LUTs) inside logic cells (LCELLs), and
registers in I/O atom primitives.

Where possible, the Intel Quartus Prime software maintains the port names of each
hierarchy throughout synthesis. However, the software may change or remove port
names from the design. For example, the software removes ports that are
unconnected or driven by GND or VCC during synthesis. If a port name changes, the
software assigns a related user logic name in the design or a generic port name such
as IN1 or OUT1.

You can view Intel Quartus Prime technology-mapped results after synthesis, fitting,
or timing analysis. To run the Technology Map Viewer for a Intel Quartus Prime
project, on the Processing menu, point to Start and click Start Analysis &
Synthesis to synthesize and map the design to the target technology. At this stage,
the Technology Map Viewer shows the same post-mapping netlist as the Technology
Map Viewer (Post-Mapping). You can also perform a full compilation, or any process
that includes the synthesis stage in the compilation flow.

For designs that completed the Fitter stage, the Technology Map Viewer shows how
the Fitter changed the netlist through physical synthesis optimizations, while the
Technology Map Viewer (Post-Mapping) shows the post-mapping netlist. If you have
completed the Timing Analysis stage, you can locate timing paths from the Timing
Analyzer report in the Technology Map Viewer.

2. Optimizing the Design Netlist

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To open the Technology Map Viewer, click Tools ➤ Netlist Viewers ➤ Technology
Map Viewer (Post-Fitting) or Technology Map Viewer (Post Mapping).

Related Information

• Viewing a Timing Path on page 40

• View Contents of Nodes in the Schematic View on page 33

• Netlist Viewer User Interface on page 21

2.6. Netlist Viewer User Interface

The Netlist Viewer is a graphical user-interface for viewing and manipulating nodes
and nets in the netlist.

The RTL Viewer and Technology Map Viewer each consist of these main parts:

• The Netlist Navigator pane—displays a representation of the project hierarchy.

• The Find pane—allows you to find and locate specific design elements in the
schematic view.

• The Properties pane displays the properties of the selected block when you select
Properties from the shortcut menu.

• The schematic view—displays a graphical representation of the internal structure
of the design.

Figure 3. RTL Viewer

2. Optimizing the Design Netlist

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Netlist Viewers also contain a toolbar that provides tools to use in the schematic view.

• Use the Back and Forward buttons to switch between schematic views. You can
go forward only if you have not made any changes to the view since going back.
These commands do not undo an action, such as selecting a node. The Netlist
Viewer caches up to ten actions including filtering, hierarchy navigation, netlist
navigation, and zoom actions.

• The Refresh button to restore the schematic view and optimizes the layout.
Refresh does not reload the database if you change the design and recompile.

• Click the Find button opens and closes the Find pane.

• Click the Selection Tool and Zoom Tool buttons to alternate between the
selection mode and zoom mode.

• Click the Fit in Page button resets the schematic view to encompass the entire
design.

• Use the Hand Tool to change the focus of the viewer without changing the
perspective.

• Click the Area Selection Tool to drag a selection box around ports, pins, and
nodes in an area.

• Click the Netlist Navigator button to open or close the Netlist Navigator pane.

• Click the Color Settings button to open the Colors pane where you can
customize the Netlist Viewer color scheme.

2. Optimizing the Design Netlist

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Click the Display Settings button to open the Display pane where you can
specify the following settings:

— Show full name or Show only <n> characters. You can specify this
separately for Node name, Port name, Pin name, or Bus name.

— Turn Show timing info on or off.

— Turn Show node type on or off.

— Turn Show constant value on or off.

— Turn Show flat nets on or off.

Figure 4. Display Settings

• The Bird's Eye View button opens the Bird's Eye View window which displays a
miniature version of the design and allows you to navigate within the design and
adjust the magnification in the schematic view quickly.

• The Show/Hide Instance Pins button can alternate the display of instance pins
not displayed by functions such as cross-probing between a Netlist Viewer and
Timing Analyzer. You can also use this button to hide unconnected instance pins
when filtering a node results in large numbers of unconnected or unused pins. The
Netlist Viewer hides Instance pins by default.

• If the Netlist Viewer display encompasses several pages, the Show Netlist on
One Page button resizes the netlist view to a single page. This action can make
netlist tracing easier.

You can have only one RTL Viewer, one Technology Map Viewer (Post-Fitting), one
Technology Map Viewer (Post-Mapping), and one State Machine Viewer window open
at the same time, although each window can show multiple pages, each with multiple
tabs. For example, you cannot have two RTL Viewer windows open at the same time.

2. Optimizing the Design Netlist

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• RTL Viewer Overview on page 18

• Technology Map Viewer Overview on page 20

• Netlist Navigator Pane on page 24

• Netlist Viewers Find Pane on page 26

• Properties Pane on page 24

2.6.1. Netlist Navigator Pane

The Netlist Navigator pane displays the entire netlist in a tree format based on the
hierarchical levels of the design. Each level groups similar elements into
subcategories.

The Netlist Navigator pane allows you to traverse through the design hierarchy to
view the logic schematic for each level. You can also select an element in the Netlist
Navigator to highlight in the schematic view.

Note: The Netlist Navigator pane does not list nodes inside atom primitives.

For each module in the design hierarchy, the Netlist Navigator pane displays the
applicable elements listed in the following table. Click the “+” icon to expand an
element.

Table 3. Netlist Navigator Pane Elements

Elements Description

Instances Modules or instances in the design that can be expanded to lower hierarchy levels.

State Machines State machine instances in the design that can be viewed in the State Machine Viewer.

Primitives Low-level nodes that cannot be expanded to any lower hierarchy level. These primitives
include:
• Registers and gates that you can view in the RTL Viewer when using Intel Quartus Prime

integrated synthesis.
• Logic cell atoms in the Technology Map Viewer or in the RTL Viewer when using a VQM

or EDIF from third-party synthesis software
In the Technology Map Viewer, you can view the internal implementation of certain atom
primitives, but you cannot traverse into a lower-level of hierarchy.

Ports The I/O ports in the current level of hierarchy.
• Pins are device I/O pins when viewing the top hierarchy level and are I/O ports of the

design when viewing the lower-levels.
• When a pin represents a bus or an array of pins, expand the pin entry in the list view to

see individual pin names.

2.6.2. Properties Pane

You can view the properties of an instance or primitive with the Properties pane.

2. Optimizing the Design Netlist

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. Properties Pane
To view the properties of an instance or primitive in the RTL Viewer or Technology Map Viewer, right-click the
node and click Properties.

The Properties pane contains tabs with the following information about the selected
node:

• The Fan-in tab displays theInput port and Fan-in Node.

• The Fan-out tab displays theOutput port and Fan-out Node.

• The Parameters tab displays the Parameter Name and Values of an instance.

• The Ports tab displays the Port Name and Constant value (for example, VCC or
GND). The following table lists the possible values of a port:

Table 4. Possible Port Values

Value Description

VCC The port is not connected and has VCC value (tied to VCC)

GND The port is not connected and has GND value (tied to GND)

-- The port is connected and has value (other than VCC or GND)

Unconnected The port is not connected and has no value (hanging)

If the selected node is an atom primitive, the Properties pane displays a schematic of
the internal logic.

2. Optimizing the Design Netlist

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.3. Netlist Viewers Find Pane

You can narrow the range of the search process by setting the following options in the
Find pane:

• Click Browse in the Find pane to specify the hierarchy level of the search. In the
Select Hierarchy Level dialog box, select the particular instance you want to
search.

• Turn on the Include subentities option to include child hierarchies of the parent
instance during the search.

• Click Options to open the Find Options dialog box. Turn on Instances, Nodes,
Ports, or any combination of the three to further refine the parameters of the
search.

When you click the List button, a progress bar appears below the Find box.

All results that match the criteria you set are listed in a table. When you double-click
an item in the table, the related node is highlighted in red in the schematic view.

2.7. Schematic View

The schematic view is shown on the right side of the RTL Viewer and Technology Map
Viewer. The schematic view contains a schematic representing the design logic in the
netlist. This view is the main screen for viewing your gate-level netlist in the RTL
Viewer and your technology-mapped netlist in the Technology Map Viewer.

The RTL Viewer and Technology Map Viewer attempt to display schematic in a single
page view by default. If the schematic crosses over to several pages, you can highlight
a net and use connectors to trace the signal in a single page.

2.7.1. Display Schematics in Multiple Tabbed View

The RTL Viewer and Technology Map Viewer support multiple tabbed views.

With multiple tabbed view, schematics can be displayed in different tabs. Selection is
independent between tabbed views, but selection in the tab in focus is synchronous
with the Netlist Navigator pane.

To create a new blank tab, click the New Tab button at the end of the tab row . You
can now drag a node from the Netlist Navigator pane into the schematic view.

Right-click in a tab to see a shortcut menu to perform the following actions:

• Create a blank view with New Tab

• Create a Duplicate Tab of the tab in focus

• Choose to Cascade Tabs

• Choose to Tile Tabs

• Choose Close Tab to close the tab in focus

• Choose Close Other Tabs to close all tabs except the tab in focus

2. Optimizing the Design Netlist

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.7.2. Schematic Symbols

The symbols for nodes in the schematic represent elements of your design netlist.
These elements include input and output ports, registers, logic gates, Intel primitives,
high-level operators, and hierarchical instances.

Note: The logic gates and operator primitives appear only in the RTL Viewer. Logic in the
Technology Map Viewer is represented by atom primitives, such as registers and
LCELLs.

Table 5. Symbols in the Schematic View
This table lists and describes the primitives and basic symbols that you can display in the schematic view of the
RTL Viewer and Technology Map Viewer.

Symbol Description

I/O Ports

CLK_SEL[1:0]

RESET_N

An input, output, or bidirectional port in the current level of
hierarchy. A device input, output, or bidirectional pin when
viewing the top-level hierarchy. The symbol can also represent
a bus. Only one wire is shown connected to the bidirectional
symbol, representing the input and output paths.
Input symbols appear on the left-most side of the schematic.
Output and bidirectional symbols appear on the right-most side
of the schematic.

I/O Connectors

MEM_OE_N
[1,15]

[1,3]

An input or output connector, representing a net that comes
from another page of the same hierarchy. To go to the page
that contains the source or the destination, double-click the
connector to jump to the appropriate page.

OR, AND, XOR Gates

always1

always0

C

An OR, AND, or XOR gate primitive (the number of ports can
vary). A small circle (bubble symbol) on an input or output port
indicates the port is inverted.

MULTIPLEXER

A multiplexer primitive with a selector port that selects between
port 0 and port 1. A multiplexer with more than two inputs is
displayed as an operator.

continued...

2. Optimizing the Design Netlist

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Symbol Description

Mux5
SEL[2:0]

DATA[7:0] OUT

BUFFER

OE

DATAIN OUT0

A buffer primitive. The figure shows the tri-state buffer, with an
inverted output enable port. Other buffers without an enable
port include LCELL, SOFT, CARRY, and GLOBAL. The NOT gate
and EXP expander buffers use this symbol without an enable
port and with an inverted output port.

LATCH

PRE
D
ENA

Q

latch

CLR

A latch/DFF (data flipflop) primitive. A DFF has the same ports
as a latch and a clock trigger. The other flipflop primitives are
similar:
• DFFEA (data flipflop with enable and asynchronous load)

primitive with additional ALOAD asynchronous load and
ADATA data signals

• DFFEAS (data flipflop with enable and synchronous and
asynchronous load), which has ASDATA as the secondary
data port

Atom Primitive

DATAA
DATABCOMBOUT
DATAC

F

LOGIC_CELL_COMB (7F7F7F7F7F7F7F7F)

An atom primitive. The symbol displays the atom name, the
port names, and the atom type. The blue shading indicates an
atom primitive for which you can view the internal details.

Other Primitive

PADIO

PADOUT

CPU_D[10]

BIDIR

PADIN

Any primitive that does not fall into the previous categories.
Primitives are low-level nodes that cannot be expanded to any
lower hierarchy. The symbol displays the port names, the
primitive or operator type, and its name.

Instance

speed_ch:speed

get_ticket
accel_in

clk
reset

An instance in the design that does not correspond to a
primitive or operator (a user-defined hierarchy block). The
symbol displays the port name and the instance name.

Encrypted Instance

A user-defined encrypted instance in the design. The symbol
displays the instance name. You cannot open the schematic for
the lower-level hierarchy, because the source design is
encrypted.

continued...

2. Optimizing the Design Netlist

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Symbol Description

streaming_cont
OUT0
OUT1
OUT2
OUT3
OUT4
OUT5

IN0
IN1
IN2
IN3
IN4
IN5
IN6
IN7
IN8

State Machine Instance

speed

warning
accel_in
clk
reset

A finite state machine instance in the design.

RAM

my_20k_sdp

PORTBDATAOUT[35:0]

RAM

CLK0
CLK1
CLR0
PORTAADDRSTALL
PORTAADDR[8:0]
PORTABYTEENMASK[3:0]
PORTADATAIN[35:0]
PORTAWE
PORTBADDRSTALL
PORTBADDR[8:0]
PORTBRE

A synchronous memory instance with registered inputs and
optionally registered outputs. The symbol shows the device
family and the type of memory block. This figure shows a true
dual-port memory block in a Stratix M-RAM block.

Constant

8’h80

A constant signal value that is highlighted in gray and displayed
in hexadecimal format by default throughout the schematic.

2. Optimizing the Design Netlist

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 6. Symbol Available Only in the State Machine Viewer
The following table lists and describes the symbol open only in the State Machine Viewer.

Symbol Description

State Node

The node representing a state in a finite state machine. State transitions are indicated with arcs between
state nodes. The double circle border indicates the state connects to logic outside the state machine, and a
single circle border indicates the state node does not feed outside logic.

Table 7. Operator Symbols in the RTL Viewer Schematic View
The following lists and describes the additional higher level operator symbols in the RTL Viewer schematic view.

Symbol Description

Add0
A[3:0]

B[3:0]
OUT[3:0]

An adder operator:
OUT = A + B

Mult0
A[0]

B[0]
OUT[0]

A multiplier operator:
OUT = A ¥ B

Div0
A[0]

B[0]
OUT[0]

A divider operator:
OUT = A / B

Equal3
A[1:0]

B[1:0]
OUT

Equals

ShiftLeft0
A[0]

COUNT[0]
OUT[0]

A left shift operator:
OUT = (A << COUNT)

ShiftRight0
A[0]

COUNT[0]
OUT[0]

A right shift operator:
OUT = (A >> COUNT)

continued...

2. Optimizing the Design Netlist

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Symbol Description

Mod0
A[0]

B[0]
OUT[0]

A modulo operator:
OUT = (A%B)

LessThan0
A[0]

B[0]
OUT

A less than comparator:
OUT = (A<:B:A>B)

Mux5
SEL[2:0]

DATA[7:0] OUT

A multiplexer:
OUT = DATA [SEL]

The data range size is 2sel range size

Selector1
SEL[2:0]

DATA[2:0] OUT

A selector:
A multiplexer with one-hot select input and more than two input signals

Decoder0

IN[5:0] OUT[63:0]

A binary number decoder:
OUT = (binary_number (IN) == x)
for x = 0 to

x = 2 n + 1 − 1

Related Information

• Partition the Schematic into Pages on page 36

• Follow Nets Across Schematic Pages on page 37

2.7.3. Select Items in the Schematic View

To select an item in the schematic view, ensure that the Selection Tool is enabled in
the Netlist Viewer toolbar. Click an item in the schematic view to highlight in red.

Select multiple items by pressing the Shift key while selecting with the mouse.

Items selected in the schematic view are automatically selected in the Netlist
Navigator pane. The folder then expands automatically if it is required to show the
selected entry; however, the folder does not collapse automatically when you
deselected the entries.

When you select a hierarchy box, node, or port in the schematic view, the Schematic
View highlights the item in red, but not the connecting nets. When you select a net
(wire or bus) in the schematic view, the Schematic View highlights all connected nets
in red.

2. Optimizing the Design Netlist

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Once you select an item, you can perform different actions on it based on the contents
of the shortcut menu which appears when you right-click your selection.

Related Information

Netlist Navigator Pane on page 24

2.7.4. Shortcut Menu Commands in the Schematic View

When you right-click a selected instance or primitive in the schematic view, the Netlist
Viewer displays a shortcut menu.

If the selected item is a node, you see the following options:

• Click Expand to Upper Hierarchy to displays the parent hierarchy of the node in
focus.

• Click Copy ToolTip to copy the selected item name to the clipboard. This
command does not work on nets.

• Click Hide Selection to remove the selected item from the schematic view. This
command does not delete the item from the design, merely masks it in the current
view.

• Click Filtering to display a sub-menu with options for filtering your selection.

2.7.5. Filtering in the Schematic View

Filtering allows you to filter out nodes and nets in a netlist to view only the logic
elements of interest to you.

You can filter a netlist by selecting hierarchy boxes, nodes, ports of a node, or states
in a state machine that are part of the path you want to see. The following filter
commands are available:

• Sources—displays the sources of the selection.

• Destinations—displays the destinations of the selection.

• Sources & Destinations—displays the sources and destinations of the selection.

• Selected Nodes—displays only the selected nodes.

• Between Selected Nodes—displays nodes and connections in the path between
the selected nodes.

• Bus Index—Displays the sources or destinations for one or more indexes of an
output or input bus port.

• Filtering Options—Displays the Filtering Options dialog box:

— Stop filtering at register—Turning on this option directs the Netlist Viewer to
filter out to the nearest register boundary.

— Filter across hierarchies—Turning on this option directs the Netlist Viewer to
filter across hierarchies.

— Maximum number of hierarchy levels—Sets the maximum number of
hierarchy levels that the schematic view can display.

To filter a netlist, select a hierarchy box, node, port, net, or state node, right-click in
the window, point to Filter and click the appropriate filter command. The Netlist
Viewer generates a new page showing the netlist that remains after filtering.

2. Optimizing the Design Netlist

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When filtering in a state diagram in the State Machine Viewer, sources and
destinations refer to the previous and next transition states or paths between
transition states in the state diagram. The transition table and encoding table also
reflect the filtering.

2.7.6. View Contents of Nodes in the Schematic View

In the RTL Viewer and the Technology Map Viewer, you can view the contents of nodes
to see their underlying implementation details.

You can view LUTs, registers, and logic gates. You can also view the implementation of
RAM and DSP blocks in certain devices in the RTL Viewer or Technology Map Viewer. In
the Technology Map Viewer, you can view the contents of primitives to see their
underlying implementation details.

Figure 6. Wrapping and Unwrapping Objects
If you can unwrap the contents of an instance, a plus symbol appears in the upper right corner of the object in
the schematic view. To wrap the contents (and revert to the compact format), click the minus symbol in the
upper right corner of the unwrapped instance.

Note: In the schematic view, the internal details in an atom instance cannot be selected as
individual nodes. Any mouse action on any of the internal details is treated as a
mouse action on the atom instance.

Figure 7. Nodes with Connections Outside the Hierarchy
In some cases, the selected instance connects to something outside the visible level of the hierarchy in the
schematic view. In this case, the net appears as a dotted line. Double-click the dotted line to expand the view
to display the destination of the connection .

2. Optimizing the Design Netlist

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8. Display Nets Across Hierarchies
In cases where the net connects to an instance outside the hierarchy, you can select the net, and unwrap the
node to see the destination ports.

Figure 9. Show Connectivity Details
You can select a bus port or bus pin and click Connectivity Details in the context menu for that object.

You can double-click objects in the Connectivity Details window to navigate to them
quickly. If the plus symbol appears, you can further unwrap objects in the view. This
can be very useful when tracing a signal in a complex netlist.

2.7.7. Moving Nodes in the Schematic View

Rearrange items in the schematic view by dragging to destination.

To move a node from one area of the netlist to another, select the node and hold down
the Shift key. Legal placements appear as shaded areas within the hierarchy. Click to
drop the selected node.

2. Optimizing the Design Netlist

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10. Legal Placement when Moving Nodes

To restore the schematic view to its default arrangement, right-click and click
Refresh.

2.7.8. View LUT Representations in the Technology Map Viewer

You can view different representations of a LUT by right-clicking the selected LUT and
clicking Properties.

You can view the LUT representations in the following three tabs in the Properties
dialog box:

• The Schematic tab—the equivalent gate representations of the LUT.

• The Truth Table tab—the truth table representations.

Related Information

Properties Pane on page 24

2.7.9. Zoom Controls

Use the Zoom Tool in the toolbar, or mouse gestures, to control the magnification of
your schematic on the View menu.

By default, the Netlist Viewer displays most pages sized to fit in the window. If the
schematic page is very large, the schematic is displayed at the minimum zoom level,
and the view is centered on the first node. Click Zoom In to view the image at a
larger size, and click Zoom Out to view the image (when the entire image is not
displayed) at a smaller size. The Zoom command allows you to specify a
magnification percentage (100% is considered the normal size for the schematic
symbols).

You can use the Zoom Tool on the Netlist Viewer toolbar to control magnification in the
schematic view. When you select the Zoom Tool in the toolbar, clicking in the
schematic zooms in and centers the view on the location you clicked. Right-click in the
schematic to zoom out and center the view on the location you clicked. When you

2. Optimizing the Design Netlist

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

select the Zoom Tool, you can also zoom into a certain portion of the schematic by
selecting a rectangular box area with your mouse cursor. The schematic is enlarged to
show the selected area.

Within the schematic view, you can also use the following mouse gestures to zoom in
on a specific section:

• zoom in—Dragging a box around an area starting in the upper-left and dragging
to the lower right zooms in on that area.

• zoom -0.5—Dragging a line from lower-left to upper-right zooms out 0.5 levels of
magnification.

• zoom 0.5—Dragging a line from lower-right to upper-left zooms in 0.5 levels of
magnification.

• zoom fit—Dragging a line from upper-right to lower-left fits the schematic view in
the page.

Related Information

Filtering in the Schematic View on page 32

2.7.10. Navigating with the Bird's Eye View

To open the Bird’s Eye View, on the View menu, click Bird’s Eye View, or click the
Bird’s Eye View icon in the toolbar.

Viewing the entire schematic can be useful when debugging and tracing through a
large netlist. The Intel Quartus Prime software allows you to quickly navigate to a
specific section of the schematic using the Bird’s Eye View feature, which is available
in the RTL Viewer and Technology Map Viewer.

The Bird’s Eye View shows the current area of interest:

• Select an area by clicking and dragging the indicator or right-clicking to form a
rectangular box around an area.

• Click and drag the rectangular box to move around the schematic.

• Resize the rectangular box to zoom-in or zoom-out in the schematic view.

2.7.11. Partition the Schematic into Pages

For large design hierarchies, the RTL Viewer and Technology Map Viewer partition your
netlist into multiple pages in the schematic view.

When a hierarchy level is partitioned into multiple pages, the title bar for the
schematic window indicates which page is displayed and how many total pages exist
for this level of hierarchy. The schematic view displays this as Page <current page
number> of <total number of pages>.

Related Information

Netlist Viewer User Interface on page 21

2. Optimizing the Design Netlist

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.7.12. Follow Nets Across Schematic Pages

Input and output connector symbols indicate nodes that connect across pages of the
same hierarchy. Double-click a connector to trace the net to the next page of the
hierarchy.

Note: After you double-click to follow a connector port, the Netlist Viewer opens a new page,
which centers the view on the particular source or destination net using the same
zoom factor as the previous page. To trace a specific net to the new page of the
hierarchy, Intel recommends that you first select the necessary net, which highlights it
in red, before you double-click to navigate across pages.

Related Information

Schematic Symbols on page 27

2.8. State Machine Viewer

The State Machine Viewer displays a graphical representation of the state machines in
your design.

You can open the State Machine Viewer in any of the following ways:

• On the Tools menu, point to Netlist Viewers and click State Machine Viewer.

• Double-click a state machine instance in the RTL Viewer

Figure 11. The State Machine Viewer

The following figure shows an example of the State Machine Viewer for a simple state machine and lists the
components of the viewer.

State Machine Selection Box

State Diagram View

State Machine
Viewer Toolbar

Back/Forward Display
Toolbar

Highlight
Fan-in/Fan-out

Toolbar

View
Toolbar

Tool
Toolbar

State Transition Tab

State Encoding Table Tab

2. Optimizing the Design Netlist

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.8.1. State Diagram View

The state diagram view appears at the top of the State Machine Viewer. It contains a
diagram of the states and state transitions.

The nodes that represent each state are arranged horizontally in the state diagram
view with the initial state (the state node that receives the reset signal) in the
left-most position. Nodes that connect to logic outside of the state machine instance
are represented by a double circle. The state transition is represented by an arc with
an arrow pointing in the direction of the transition.

When you select a node in the state diagram view, and turn on the Highlight Fan-in
or Highlight Fan-out command from the View menu or the State Machine Viewer
toolbar, the respective fan-in or fan-out transitions from the node are highlighted in
red.

Note: An encrypted block with a state machine displays encoding information in the state
encoding table, but does not display a state transition diagram or table.

2.8.2. State Transition Table

The state transition table on the Transitions tab at the bottom of the State Machine
Viewer displays the condition equation for each state transition.

Each row in the table represents a transition (each arc in the state diagram view). The
table has the following columns:

• Source State—the name of the source state for the transition

• Destination State—the name of the destination state for the transition

• Condition—the condition equation that causes the transition from source state to
destination state

To see all of the transitions to and from each state name, click the appropriate column
heading to sort on that column.

The text in each column is left-aligned by default; to change the alignment and to
make it easier to see the relevant part of the text, right-click the column and click
Align Right. To revert to left alignment, click Align Left.

Click in any cell in the table to select it. To select all cells, right-click in the cell and
click Select All; or, on the Edit menu, click Select All. To copy selected cells to the
clipboard, right-click the cells and click Copy Table; or, on the Edit menu, point to
Copy and click Copy Table. You can paste the table into any text editor as
tab-separated columns.

2.8.3. State Encoding Table

The state encoding table on the Encoding tab at the bottom of the State Machine
Viewer displays encoding information for each state transition.

To view state encoding information in the State Machine Viewer, you must synthesize
your design with the Start Analysis & Synthesis command. If you have only
elaborated your design with the Start Analysis & Elaboration command, the
encoding information is not displayed.

2. Optimizing the Design Netlist

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.8.3.1. Select Items in the State Machine Viewer

You can select and highlight each state node and transition in the State Machine
Viewer. To select a state transition, click the arc that represents the transition.

When you select a node or transition arc in the state diagram view, the matching state
node or equation conditions in the state transition table are highlighted; conversely,
when you select a state node or equation condition in the state transition table, the
corresponding state node or transition arc is highlighted in the state diagram view.

2.8.4. Switch Between State Machines

A design may contain multiple state machines. To choose which state machine to view,
use the State Machine selection box located at the top of the State Machine Viewer.
Click in the drop-down box and select the necessary state machine.

2.9. Cross-Probing to a Source Design File and Other Intel Quartus
Prime Windows

The RTL Viewer, Technology Map Viewer, and State Machine Viewer allow you to
cross-probe to the source design file and to various other windows in the Intel Quartus
Prime software.

You can select one or more hierarchy boxes, nodes, state nodes, or state transition
arcs that interest you in the Netlist Viewer and locate the corresponding items in
another applicable Intel Quartus Prime software window. You can then view and make
changes or assignments in the appropriate editor or floorplan.

To locate an item from the Netlist Viewer in another window, right-click the items of
interest in the schematic or state diagram, point to Locate, and click the appropriate
command. The following commands are available:

• Locate in Assignment Editor

• Locate in Pin Planner

• Locate in Chip Planner

• Locate in Resource Property Editor

• Locate in Technology Map Viewer

• Locate in RTL Viewer

• Locate in Design File

The options available for locating an item depend on the type of node and whether it
exists after placement and routing. If a command is enabled in the menu, it is
available for the selected node. You can use the Locate in Assignment Editor
command for all nodes, but assignments might be ignored during placement and
routing if they are applied to nodes that do not exist after synthesis.

The Netlist Viewer automatically opens another window for the appropriate editor or
floorplan and highlights the selected node or net in the newly opened window. You can
switch back to the Netlist Viewer by selecting it in the Window menu or by closing,
minimizing, or moving the new window.

2. Optimizing the Design Netlist

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10. Cross-Probing to the Netlist Viewers from Other Intel Quartus
Prime Windows

You can cross-probe to the RTL Viewer and Technology Map Viewer from other
windows in the Intel Quartus Prime software. You can select one or more nodes or
nets in another window and locate them in one of the Netlist Viewers.

You can locate nodes between the RTL Viewer, State Machine Viewer, and Technology
Map Viewer, and you can locate nodes in the RTL Viewer and Technology Map Viewer
from the following Intel Quartus Prime software windows:

• Project Navigator

• Timing Closure Floorplan

• Chip Planner

• Resource Property Editor

• Node Finder

• Assignment Editor

• Messages Window

• Compilation Report

• Timing Analyzer (supports the Technology Map Viewer only)

To locate elements in the Netlist Viewer from another Intel Quartus Prime window,
select the node or nodes in the appropriate window; for example, select an entity in
the Entity list on the Hierarchy tab in the Project Navigator, or select nodes in the
Timing Closure Floorplan, or select node names in the From or To column in the
Assignment Editor. Next, right-click the selected object, point to Locate, and click
Locate in RTL Viewer or Locate in Technology Map Viewer. After you click this
command, the Netlist Viewer opens, or is brought to the foreground if the Netlist
Viewer is open.

Note: The first time the window opens after a compilation, the preprocessor stage runs
before the Netlist Viewer opens.

The Netlist Viewer shows the selected nodes and, if applicable, the connections
between the nodes. The display is similar to what you see if you right-click the object,
then click Filter ➤ Selected Nodes using Filter across hierarchy. If the nodes
cannot be found in the Netlist Viewer, a message box displays the message: Can’t
find requested location.

2.11. Viewing a Timing Path

After completing a full design compilation, including the timing analyzer stage, you
can see a visual representation of a timing path cross-probe from a timing report. For
details about generating the timing report, refer to the Intel Quartus Prime Standard
Edition User Guide: Timing Analyzer.

When you locate the timing path from the Timing Analyzer to the Technology Map
Viewer, the interconnect and cell delay associated with each node appears on top of
the schematic symbols. The total slack of the selected timing path appears in the Page
Title section of the schematic.

2. Optimizing the Design Netlist

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. To open the report from the Compilation Report Table of Contents, click Timing
Analyzer GUI ➤ Report Timing, and double-click the timing corner.

2. To open the report from the Timing Analyzer, open the Report Timing folder in
the Report pane, and double-click the timing corner.

3. In the Summary of Paths tab, right-click a row in the table and select Locate
Path ➤ Locate in Technology Map Viewer. In the Technology Map Viewer, the
schematic page displays the nodes along the timing path with a summary of the
total delay.

Related Information

Report Timing (Dialog Box)
In Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

2.12. Optimizing the Design Netlist Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.
• Added link to Viewing a Timing Path.

2016.05.03 16.0.0 Removed Schematic Viewer topic.

2015.11.02 15.1.0 Added information for the following new features and feature updates:
• Nets visible across hierarchies
• Connection Details
• Display Settings
• Hand Tool
• Area Selection Tool
• New default behavior for Show/Hide Instance Pins (default is now off)

2014.06.30 14.0.0 Added Show Netlist on One Page and show/Hide Instance Pins commands.

November 2013 13.1.0 Removed HardCopy device information.
Reorganized and migrated to new template.
Added support for new Netlist viewer.

November 2012 12.1.0 Added sections to support Global Net Routing feature.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 • Updated screenshots
• Updated chapter for the Intel Quartus Prime software version 10.0,

including major user interface changes

November 2009 9.1.0 • Updated devices
• Minor text edits

continued...

2. Optimizing the Design Netlist

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

41

https://www.intel.com/content/www/us/en/docs/programmable/683230.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

March 2009 9.0.0 • Chapter 13 was formerly Chapter 12 in version 8.1.0
• Updated Figure 13–2, Figure 13–3, Figure 13–4, Figure 13–14, and

Figure 13–30
• Added “Enable or Disable the Auto Hierarchy List” on page 13–15
• Updated “Find Command” on page 13–44

November 2008 8.1.0 Changed page size to 8.5” × 11”

May 2008 8.0.0 • Added Arria GX support
• Updated operator symbols
• Updated information about the radial menu feature
• Updated zooming feature
• Updated information about probing from schematic to Signal Tap

Analyzer
• Updated constant signal information
• Added .png and .gif to the list of supported image file formats
• Updated several figures and tables
• Added new sections “Enabling and Disabling the Radial Menu”,

“Changing the Time Interval”, “Changing the Constant Signal Value
Formatting”, “Logic Clouds in the RTL Viewer”, “Logic Clouds in the
Technology Map Viewer”, “Manually Group and Ungroup Logic Clouds”,
“Customizing the Shortcut Commands”

• Renamed several sections
• Removed section “Customizing the Radial Menu”
• Moved section “Grouping Combinational Logic into Logic Clouds”
• Updated document content based on the Intel Quartus Prime software

version 8.0

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

2. Optimizing the Design Netlist

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

42

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Timing Closure and Optimization
This chapter describes techniques to improve timing performance when designing for
Intel devices. The application techniques vary between designs. Applying each
technique does not always improve results.

Default settings and options in the Intel Quartus Prime software provide the best
trade-off between compilation time, resource utilization, and timing performance. You
can adjust these settings to determine whether other settings provide better results
for your design.

3.1. Optimize Multi Corner Timing

Process variations and changes in operating conditions can result in path delays that
are significantly smaller than those in the slow corner timing model. As a
consequence, the design can present hold time violations on those paths, and in rare
cases, additional setup time violations.

In addition, designs targeting newer device families (with smaller process geometry)
do not always present the slowest circuit performance at the highest operating
temperature. The temperature at which the circuit is slowest depends on the selected
device, the design, and the compilation results. The Intel Quartus Prime software
manages this new dependency by providing newer device families with three different
timing corners—Slow 85°C corner, Slow 0°C corner, and Fast 0°C corner. For other
device families, two timing corners are available—Fast 0°C and Slow 85°C corner.

The Optimize multi-corner timing option directs the Fitter to meet timing
requirements at all process corners and operating conditions. The resulting design
implementation is more robust across process, temperature, and voltage variations.
This option is on by default, and increases compilation time by approximately 10%.

When this option is off, the Fitter optimizes designs considering only slow-corner
delays from the slow-corner timing model (slowest manufactured device for a given
speed grade, operating in low-voltage conditions).

3.2. Critical Paths

Critical paths are timing paths in your design that have a negative slack. These timing
paths can span from device I/Os to internal registers, registers to registers, or from
registers to device I/Os.

The slack of a path determines its criticality; slack appears in the timing analysis
report, which you can generate using the Timing Analyzer.

Design analysis for timing closure is a fundamental requirement for optimal
performance in highly complex designs. The analytical capability of the Chip Planner
helps you close timing on complex designs.

683230 | 2018.11.12

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Related Information

• Reducing Critical Path Delay on page 9

• Displaying Path Reports with the Timing Analyzer on page 60

3.2.1. Viewing Critical Paths

Viewing critical paths in the Chip Planner shows why a specific path is failing. You can
see if any modification in the placement can reduce the negative slack. To display
paths in the floorplan, perform a timing analysis and display results on the Timing
Analyzer.

3.3. Design Evaluation for Timing Closure

Follow the guidelines in this section when you encounter timing failures in a design.
The guidelines show you how to evaluate compilation results of a design and how to
address problems. While the guideline does not cover specific examples of
restructuring RTL to improve design speed, the analysis techniques help you to
evaluate changes to RTL that can help you to close timing.

3.3.1. Review Compilation Results

3.3.1.1. Review Messages

After compiling your design, review the messages in each section of the compilation
report.

Most designs that fail timing start out with other problems that the Fitter reports as
warning messages during compilation. Determine what causes a warning message,
and whether to fix or ignore the warning.

After reviewing the warning messages, review the informational messages. Take note
of anything unexpected, for example, unconnected ports, ignored constraints, missing
files, and assumptions or optimizations that the software made.

3.3.1.2. Evaluate Physical Synthesis Results

If you enable physical synthesis options, the Compiler can duplicate and retime
registers, and modify combinatorial logic during synthesis. After compilation, review
the Optimization Results reports in the Analysis & Synthesis section. The reports list
the optimizations performed by the physical synthesis optimizations, such as register
duplication, retiming, and removal. These reports can be found in the Compilation
Report panel.

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. Optimization Results Reports

When you enable physical synthesis, the compilation messages include a information
about the physical synthesis algorithm performance improvement. The reported
improvement is the sum of the largest improvement in each timing-critical clock
domain. Although typically similar, the values for the slack improvements vary per
compilation due to the random starting point of compilation algorithms.

3.3.1.3. Evaluate Fitter Netlist Optimizations

The Fitter can also perform optimizations to the design netlist. Major changes include
register packing, duplicating or deleting logic cells, inverting signals, or modifying
nodes in a general way such as moving an input from one logic cell to another. Find
and review these reports in the Netlist Optimizations results of the Fitter section.

3.3.1.4. Evaluate Optimization Results

After checking what optimizations were done and how they improved performance,
evaluate the runtime it took to get the extra performance. To reduce compilation time,
review the physical synthesis and netlist optimizations over a couple of compilations,
and edit the RTL to reflect the changes that physical synthesis performed. If a
particular set of registers consistently get retimed, edit the RTL to retime the registers
the same way. If the changes are made to match what the physical synthesis
algorithms did, the physical synthesis options can be turned off to save compile time
while getting the same type of performance improvement.

3.3.1.5. Evaluate Resource Usage

Evaluate a variety of resources used in the design, including global and non-global
signal usage, routing utilization, and clustering difficulty.

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.3.1.5.1. Global and Non-Global Usage

For designs that contain many clocks, evaluate global and non-global signals to
determine whether global resources are used effectively, and if not, consider making
changes. You can find these reports in the Resource section under Fitter in the
Compilation Report panel.

The figure shows an example of inefficient use of a global clock. The highlighted line
has a single fan-out from a global clock.

Figure 13. Inefficient Use of a Global Clock

If you assign these resources to a Regional Clock, the Global Clock becomes available
for another signal. You can ignore signals with an empty value in the Global Line
Name column as the signal uses dedicated routing, and not a clock buffer.

The Non-Global High Fan-Out Signals report lists the highest fan-out nodes not routed
on global signals.

Reset and enable signals appear at the top of the list.

If there is routing congestion in the design, and there are high fan-out non-global
nodes in the congested area, consider using global or regional signals to fan-out the
nodes, or duplicate the high fan-out registers so that each of the duplicates can have
fewer fan-outs.

Use the Chip Planner to locate high fan-out nodes, to report routing congestion, and to
determine whether the alternatives are viable.

3.3.1.5.2. Routing Usage

Review routing usage reported in the Fitter Resource Usage Summary report.

Figure 14. Fitter Resource Usage Summary Report

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Average interconnect usage reports the average amount of interconnect that is
used, out of what is available on the device. Peak interconnect usage reports the
largest amount of interconnect used in the most congested areas.

Designs with an average value below 50% typically do not have any problems with
routing. Designs with an average between 50-65% may have difficulty routing.
Designs with an average over 65% typically have difficulty meeting timing unless the
RTL tolerates a highly utilized chip. Peak values at or above 90% are likely to have
problems with timing closure; a 100% peak value indicates that all routing in an area
of the device has been used, so there is a high possibility of degradation in timing
performance.

The figure shows the Report Routing Utilization report.

Figure 15. Report Routing Utilization Report

3.3.1.5.3. Wires Added for Hold

During routing the Fitter may add wire between register paths to increase delay to
meet hold time requirements. The Fitter reports how much routing delay was added in
the Estimated Delay Added for Hold Timing report. Excessive additional wire can
indicate an error with the constraint. The cause of such errors is typically incorrect
multicycle transfers between multi-rate clocks, and between different clock networks.

Review the specific register paths in the Estimated Delay Added for Hold Timing
report to determine whether the Fitter adds excessive wire to meet hold timing.

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 16. Estimated Delay Added for Hold Timing Report

An example of an incorrect constraint which can cause the router to add wire for hold
requirements is when there is data transfer from 1x to 2x clocks. Assume the design
intent is to allow two cycles per transfer. Data can arrive any time in the two
destination clock cycles by adding a multicycle setup constraint as shown in the
example:

set_multicycle_path -from 1x -to 2x -setup -end 2

The timing requirement is relaxed by one 2x clock cycle, as shown in the black line in
the waveform in the figure.

Figure 17. Timing Requirement Relaxed Waveform

The default hold requirement, shown with the dashed blue line, can force the router to
add wire to guarantee that data is delayed by one cycle. To correct the hold
requirement, add a multicycle constraint with a hold option.

set_multicycle_path -from 1x -to 2x -setup -end 2
set_multicycle_path -from 1x -to 2x -hold -end 1

The orange dashed line in the figure above represents the hold relationship, and no
extra wire is required to delay the data.

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The router can also add wire for hold timing requirements when data transfers in the
same clock domain, but between clock branches that use different buffering.
Transferring between clock network types happens more often between the periphery
and the core. The following figure shows data is coming into a device, a periphery
clock drives the source register, and a global clock drives the destination register. A
global clock buffer has larger insertion delay than a periphery clock buffer. The clock
delay to the destination register is much larger than to the source register, hence
extra delay is necessary on the data path to ensure that it meets its hold requirement.

Figure 18. Clock Delay

Fitter may add routing delay to meet
hold requirement

Periphery clock buffer with small
insertion delay

Global clock buffer with large insertion delay

To identify cases where a path has different clock network types, review the path in
the Timing Analyzer, and check nodes along the source and destination clock paths.
Also, check the source and destination clock frequencies to see whether they are the
same, or multiples, and whether there are multicycle exceptions on the paths. Finally,
ensure that all cross-domain paths that are false by intent have an associated false
path exception.

If you suspect that routing is added to fix real hold problems, you can disable the
Optimize hold timing advanced Fitter setting (Assignments ➤ Settings ➤
Compiler Settings ➤ Advanced Settings (Fitter) ➤ Optimize hold timing).
Recompile the design with Optimize hold timing disabled, and then rerun timing
analysis to identify and correct any paths that fail hold time requirements.

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 19. Optimize Hold Timing Option

Note: Disable the Optimize hold timing option only when debugging your design. Ensure
to enable the option (default state) during normal compiles. Wire added for hold is a
normal part of timing optimization during routing and is not always a problem.

3.3.1.6. Evaluate Other Reports and Adjust Settings Accordingly

3.3.1.6.1. Difficulty Packing Design

In the Fitter Resource Section, under the Resource Usage Summary, review the
Difficulty Packing Design report. The Difficulty Packing Design report details the
effort level (low, medium, or high) of the Fitter to fit the design into the device,
partition, and Logic Lock (Standard) region.

As the effort level of Difficulty Packing Design increases, timing closure gets harder.
Going from medium to high can result in significant drop in performance or increase in
compile time. Consider reducing logic to reduce packing difficulty.

3.3.1.6.2. Review Ignored Assignments

The Compilation Report includes details of any assignments ignored by the Fitter.
Assignments typically get ignored if design names change, but assignments are not
updated. Make sure any intended assignments are not being ignored.

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.3.1.6.3. Review Non-Default Settings

The reports from Synthesis and Fitter show non-default settings used in a compilation.
Review the non-default settings to ensure the design benefits from the change.

3.3.1.6.4. Review Floorplan

Use the Chip Planner for reviewing placement. You can use the Chip Planner to locate
hierarchical entities, using colors for each located entity in the floorplan. Look for logic
that seems out of place, based on where you expect it to be

For example, logic that interfaces with I/Os should be close to the I/Os, and logic that
interfaces with an IP or memory should be close to the IP or memory.

Figure 20. Floorplan with Color-Coded Entities

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following notes describe how you can use the visualization in Floorplan with Color-
Coded Entities to check timing paths:

• The green block is spread apart. Check to see if those paths are failing timing, and
if so, what connects to that module that could affect placement.

• The blue and aqua blocks are spread out and mixed together. Check if connections
between the two modules contribute to this.

• The pink logic at the bottom must interface with I/Os at the bottom edge. Check
fan-in and fan-out of a highlighted module by using the buttons on the task bar.

Look for signals that go a long way across the chip and see if they are contributing
to timing failures.

• Check global signal usage for signals that affect logic placement, and verify if the
Fitter placed logic feeding a global buffer close to the buffer and away from related
logic. Use settings like high fan-out on non-global resource to pull logic together.

• Check for routing congestion. The Fitter spreads out logic in highly congested
areas, making the design harder to route.

3.3.1.6.5. Evaluate Placement and Routing

Review duration of parts of compile time in Fitter messages. If routing takes much
more time than placement, then meeting timing may be more difficult than the placer
predicted.

3.3.1.6.6. Adjust Placement Effort

You can increase the Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced
Settings (Fitter) ➤ Placement Effort Multiplier value to spend additional
compilation time and effort in Place stage of the Fitter.

Adjust the multiplier after reviewing and optimizing other settings and RTL. Try an
increased value, up to 4, and reset to default if performance or compile time does not
improve.

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 21. Placement Effort Multiplier

3.3.1.6.7. Adjust Fitter Effort

Fitter Optimization mode settings allow you to specify whether the Compiler focuses
optimization efforts for performance, resource utilization, power, or compile times.

By default, the Fitter Optimization mode is set to Balanced (Normal flow), which
reduces Fitter effort once timing requirements are met. You can optionally select
another Optimization mode to target performance, power, or resource usage.

To increase Fitter effort further, you can also enable the Assignments ➤ Settings ➤
Compiler Settings ➤ Advanced Settings (Fitter) ➤ Fitter Effort option. The
default Auto Fit setting reduces Fitter effort once timing requirements are met.
Standard Fit (highest effort) setting uses maximum effort regardless of the
design's requirements, leading to higher compilation time and more timing margin.

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 22. Fitter Effort

3.3.1.6.8. Review Timing Constraints

Ensure that clocks are constrained with the correct frequency requirements. Using the
derive_pll_clocks assignment keeps generated clock settings updated. Timing
Analyzer can be useful in reviewing SDC constraints. For example, under Diagnostic
in the Task panel, the Report Ignored Constraints report shows any incorrect
names in the design, most commonly caused by changes in the design hierarchy. Use
the Report Unconstrained Paths report to locate unconstrained paths. Add
constraints as necessary so that the design can be optimized.

3.3.1.7. Evaluate Clustering Difficulty

You can evaluate clustering difficulty to help reach timing closure.

You can monitor clustering difficulty whenever you add logic and recompile. Use the
clustering information to gauge how much timing closure difficulty is inherent in your
design:

• If your design is full but clustering difficulty is low or medium, your design itself,
rather than clustering, is likely the main cause of congestion.

• Conversely, congestion occurring after adding a small amount of logic to the
design, can be due to clustering. If clustering difficulty is high, this contributes to
congestion regardless of design size.

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.3.2. Review Details of Timing Paths

3.3.2.1. Show Timing Path Routing

Showing routing for a path can help uncover unusual routing delays.

In the Timing Analyzer Report Timing dialog box, enable the Report panel name
and Show routing options, and click Report Timing.

Figure 23. Report Pane and Show Routing Options

The Extra Fitter Information tab shows a miniature floorplan with the path
highlighted.

You can also locate the path in the Chip Planner to examine routing congestion, and to
view whether nodes in a path are placed close together or far apart.

Related Information

Exploring Paths in the Chip Planner on page 110

3.3.2.2. Global Network Buffers

Routing paths allow you to identify global network buffers that fail timing. Buffer
locations are named according to the network they drive.

• CLK_CTRL_Gn—for Global driver

• CLk_CTRL_Rn—for Regional driver

Buffers to access the global networks are located in the center of each side of the
device. Buffering to route a core logic signal on a global signal network causes
insertion delay. Tradeoffs to consider for global and non-global routing are source
location, insertion delay, fan-out, distance a signal travels, and possible congestion if
the signal is demoted to local routing.

3.3.2.2.1. Source Location

If the register feeding the global buffer cannot be moved closer, then consider
changing either the design logic or the routing type.

3.3.2.2.2. Insertion Delay

If a global signal is required, consider adding half a cycle to timing by using a
negative-edge triggered register to generate the signal (top figure) and use a
multicycle setup constraint (bottom figure).

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 24. Negative-Edge Triggered Register

Figure 25. Multicycle Setup Constraint

set_multicycle_path -from <generating_register> -setup -end 2

3.3.2.2.3. Fan-Out

Nodes with very high fan-out that use local routing tend to pull logic that they drive
close to the source node. This can make other paths fail timing. Duplicating registers
can help reduce the impact of high fan-out paths. Consider manually duplicating and
preserving these registers. Using a MAX_FANOUT assignment may make arbitrary
groups of fan-out nodes, whereas a designer can make more intelligent fan-out
groups.

3.3.2.2.4. Global Networks

You can use the Global Signal assignment to control the global signal usage on a per-
signal basis. For example, if a signal needs local routing, you set the Global Signal
assignment to OFF.

Figure 26. Global Signal Assignment

3.3.2.3. Resets and Global Networks

Reset signals are often routed on global networks. Sometimes, the use of a global
network causes recovery failures. Consider reviewing the placement of the register
that generates the reset and the routing path of the signal.

3.3.2.4. Suspicious Setup

Suspicious setup failures include paths with very small or very large requirements.

One typical cause is math precision error. For example, 10Mhz/3 = 33.33 ns per
period. In three cycles, the time is 99.999 ns vs 100.000 ns. Setting a maximum
delay can provide an appropriate setup relationship.

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Another cause of failure are paths that must be false by design intent, such as:

• Asynchronous paths handled through FIFOs, or

• Slow asynchronous paths that rely on handshaking for data that remain available
for multiple clock cycles.

To prevent the Fitter from having to meet unnecessarily restrictive timing
requirements, consider adding false or multicycle path statements.

3.3.2.5. Logic Depth

The Statistics tab in the Timing Analyzer path report shows the levels of logic in a
path. If the path fails timing and the number of logic levels is high, consider adding
pipelining in that part of the design.

3.3.2.6. Auto Shift Register Replacement

During Synthesis, the Compiler can convert shift registers or register chains into RAMs
to save area. However, conversion to RAM often reduces speed. The names of the
converted registers include "altshift_taps".

• If paths that fail timing begin or end in shift registers, consider disabling the Auto
Shift Register Replacement option. Do not convert registers that are intended
for pipelining.

• For shift registers that are converted to a chain, evaluate area/speed trade off of
implementing in RAM or logic cells.

• If a design is close to full, you can save area by shifting register conversion to
RAM, benefiting non-critical clock domains. You can change the settings from the
default AUTO to OFF globally, or on a register or hierarchy basis.

3.3.2.7. Clocking Architecture

For better timing results, place registers driven by a regional clock in one quadrant of
the chip. You can review the clock region boundaries using the Chip Planner.

Timing failure can occur when the I/O interface at the top of the device connects to
logic driven by a regional clock which is in one quadrant of the device, and placement
restrictions force long paths to and from I/Os to logic across quadrants.

Use a different type of clock source to drive the logic - global, which covers the whole
device, or dual-regional which covers half the device. Alternatively, you can reduce the
frequency of the I/O interface to accommodate the long path delays. You can also
redesign the pinout of the device to place all the specified I/Os adjacent to the
regional clock quadrant. This issue can happen when register locations are restricted,
such as with Logic Lock (Standard) regions, clocking resources, or hard blocks
(memories, DSPs, IPs).

The Extra Fitter Information tab in the Timing Analyzer timing report informs you
when placement is restricted for nodes in a path.

Related Information

Viewing Available Clock Networks in the Device on page 105

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.3.2.8. Timing Closure Recommendations

The Report Timing Closure Recommendations task in the Timing Analyzer analyzes
paths and provides specific recommendations based on path characteristics.

3.3.3. Adjusting and Recompiling

Look for obvious problems that you can fix with minimal effort. To identify where the
Compiler had trouble meeting timing, perform seed sweeping with about five
compiles. Doing so shows consistently failing paths. Consider recoding or redesigning
that part of the design.

To reach timing closure, a well written RTL can be more effective than changing your
compilation settings. Seed sweeping can also be useful if the timing failure is very
small, and the design has already been optimized for performance improvements and
is close to final release. Additionally, seed sweeping can be used for evaluating
changes to compilation settings. Compilation results vary due to the random nature of
fitter algorithms. If a compilation setting change produces lower average performance,
undo the change.

Sometimes, settings or constraints can cause more problems than they fix. When
significant changes to the RTL or design architecture have been made, compile
periodically with default settings and without Logic Lock (Standard) regions, and re-
evaluate paths that fail timing.

Partitioning often does not help timing closure, and must be done at the beginning of
the design process. Adding partitions can increase logic utilization if it prevents cross-
boundary optimizations, making timing closure harder and increasing compile times.

3.3.3.1. Using Partitions to Achieve Timing Closure

One technique to achieve timing closure is confining failing paths within individual
design partitions, such that there are no failing paths passing between partitions. You
can then use incremental make changes as necessary to correct the failing paths, and
recompile only the affected partitions.

To use this technique:

1. In the Design Partition Planner, load timing data by clicking View ➤ Show Timing
Data.

Entities containing nodes on failing paths appear in red in the Design Partition
Planner.

2. Extract the entity containing failing paths by dragging it outside of the top-level
entity window.

— If there are no failing paths between the extracted entity and the top-level
entity, right-click the extracted entity, and then click Create Design Partition
to place that entity in its own partition.

3. Keep failing paths within a partition, so that there are no failing paths crossing
between partitions.

If you are unable to isolate the failing paths from an extracted entity so that none
are crossing partition boundaries, return the entity to its parent without creating a
partition.

4. Find the partition having the worst slack value. For all the other partitions,
preserve the contents and set as Empty.

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For information about preserving the contents of a partition, refer to Incremental
Block-Based Compilation Flow in the Intel Quartus Prime Pro Edition User Guide:
Block-Based Design.

5. Adjust the logic in the partition and rerun the Fitter as necessary until the partition
meets the timing requirements.

6. Repeat the process for all other design partitions with failing paths.

Related Information

• Using Block-Based Compilation

• Incremental Block-Based Compilation Flow

3.4. Design Analysis

The initial compilation establishes whether the design achieves a successful fit and
meets the specified timing requirements. This section describes how to analyze your
design results in the Intel Quartus Prime software.

3.4.1. Ignored Timing Constraints

The Intel Quartus Prime software ignores illegal, obsolete, and conflicting constraints.

You can view a list of ignored constraints in the Timing Analyzer GUI by clicking
Reports ➤ Report Ignored Constraints or by typing the following command to
generate a list of ignored timing constraints:

report_sdc -ignored -panel_name "Ignored Constraints"

Analyze any constraints that the Intel Quartus Prime software ignores. If necessary,
correct the constraints and recompile your design before proceeding with design
optimization.

You can view a list of ignored assignment in the Ignored Assignment Report
generated by the Fitter.

Related Information

Creating I/O Requirements

3.4.2. I/O Timing

Timing Analyzer supports the Synopsys* Design Constraints (SDC) format for
constraining your design. When using the Timing Analyzer for timing analysis, use the
set_input_delay constraint to specify the data arrival time at an input port with
respect to a given clock. For output ports, use the set_output_delay command to
specify the data arrival time at an output port’s receiver with respect to a given clock.
You can use the report_timing Tcl command to generate the I/O timing reports.

The I/O paths that do not meet the required timing performance are reported as
having negative slack and are highlighted in red in the Timing Analyzer Report pane.
In cases where you do not apply an explicit I/O timing constraint to an I/O pin, the
Intel Quartus Prime timing analysis software still reports the Actual number, which is
the timing number that must be met for that timing parameter when the device runs
in your system.

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

59

https://www.intel.com/content/www/us/en/docs/programmable/683283/current/using-block-based-compilation.html
https://www.intel.com/content/www/us/en/docs/programmable/683283.html
https://www.intel.com/content/www/us/en/docs/programmable/683068/current/creating-i-o-constraints.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Creating I/O Requirements

3.4.3. Register-to-Register Timing Analysis

Your design meets timing requirements when you do not have negative slack on any
register-to-register path on any of the clock domains. When timing requirements are
not met, a report on the failed paths can uncover more detail.

3.4.3.1. Displaying Path Reports with the Timing Analyzer

The Timing Analyzer generates reports with information about all valid register-to-
register paths. To view all timing summaries, double-click Report All Summaries in
the Tasks pane.

If any clock domains have failing paths (highlighted in red in the Report pane), right-
click the clock name listed in the Clocks Summary pane and select Report Timing
to get more details.

When you select a path in the Summary of Paths tab, the path detail pane displays
all the path information. The Extra Fitter Information tab offers visual
representation of the path location on the physical device. This can reveal whether the
timing failure is distance related, due to the source and destination node being too
close or too far.

The Data Path tab displays the Data Arrival Path and the Data Required Path. You can
determine the path segments contributing the most to the timing violations with the
incremental information. The Waveform tab shows the signals in the time domain,
and plots the slack between arrival data and required data.

The RTL Viewer or Technology Map Viewer provide schematic (gate-level or
technology-mapped) representations of the design netlist, and can help you to assess
which areas in a design can benefit from reducing the number of logic levels. To locate
a timing path in one of the viewers, right-click a path in the timing report, point to
Locate, and select either Locate in RTL Viewer or Locate in Technology Map
Viewer. You can also investigate the physical layout of a path in detail with the Chip
Planner.

Related Information

• When to Use the Netlist Viewers: Analyzing Design Problems

• Generating Timing Reports

3.4.3.2. Tips for Analyzing Failing Paths

When you are analyzing failing paths, examine the reports and waveforms to
determine if the correct constraints are being applied, and add timing exceptions as
appropriate. A multicycle constraint relaxes setup or hold relationships by the specified
number of clock cycles. A false path constraint specifies paths that can be ignored
during timing analysis. Both constraints allow the Fitter to work harder on affected
paths.

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

60

https://www.intel.com/content/www/us/en/docs/programmable/683068/current/creating-i-o-constraints.html
https://www.intel.com/content/www/us/en/docs/programmable/683230/current/when-to-use-the-netlist-viewers-analyzing.html
https://www.intel.com/content/www/us/en/docs/programmable/683068/current/step-4-run-timing-analysis.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Focus on improving the paths that show the worst slack. The Fitter works hardest
on paths with the worst slack. If you fix these paths, the Fitter might be able to
improve the other failing timing paths in the design.

• Check for nodes that appear in many failing paths. These nodes are at the top of
the list in a timing report panel, along with their minimum slacks. Look for paths
that have common source registers, destination registers, or common
intermediate combinational nodes. In some cases, the registers are not identical,
but are part of the same bus.

• In the timing analysis report panels, click the From or To column headings to sort
the paths by source or destination registers. If you see common nodes, these
nodes indicate areas of your design that might be improved through source code
changes or Intel Quartus Prime optimization settings. Constraining the placement
for just one of the paths might decrease the timing performance for other paths
by moving the common node further away in the device.

Related Information

• Exploring Paths in the Chip Planner on page 110

• Design Evaluation for Timing Closure on page 44

3.4.3.3. Tips for Analyzing Failing Clock Paths that Cross Clock Domains

When analyzing clock path failures:

• Check whether these paths cross two clock domains.

In paths that cross two clock domains, the From Clock and To Clock in the
timing analysis report are different.

Figure 27. Different Value in From Clock and To Clock Field

• Check if the design contains paths that involve a different clock in the middle of
the path, even if the source and destination register clock are the same.

• Check whether failing paths between these clock domains need to be analyzed
synchronously.

Set failing paths that are not to be analyzed synchronously as false paths.

• When you run report_timing on a design, the report shows the launch clock
and latch clock for each failing path. Check whether the relationship between the
launch clock and latch clock is realistic and what you expect from your knowledge
of the design

For example, the path can start at a rising edge and end at a falling edge, which
reduces the setup relationship by one half clock cycle.

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Review the clock skew that appears in the Timing Report:

A large skew may indicate a problem in the design, such as a gated clock, or a
problem in the physical layout (for example, a clock using local routing instead of
dedicated clock routing). When you have made sure the paths are analyzed
synchronously and that there is no large skew on the path, and that the
constraints are correct, you can analyze the data path. These steps help you fine
tune your constraints for paths across clock domains to ensure you get an
accurate timing report.

• Check if the PLL phase shift is reducing the setup requirement.

You might adjust this by using PLL parameters and settings.

• Ignore paths that cross clock domains for logic protected with synchronization
logic (for example, FIFOs or double-data synchronization registers), even if the
clocks are related.

• Set false path constraints on all unnecessary paths:

Attempting to optimize unnecessary paths can prevent the Fitter from meeting the
timing requirements on timing paths that are critical to the design.

Related Information

report_clock_transfers

3.4.3.4. Tips for Analyzing Paths from/to the Source and Destination of Critical
Path

When analyzing the failing paths in a design, it is often helpful to get a fuller picture of
the interactions around the paths.

To understand what may be pulling on a critical path, the following report_timing
command can be useful.

1. In the project directory, run the report_timing command to find the nodes in a
critical path.

2. Copy the code below in a .tcl file, and replace the first two variable with the
node names from the From Node and To Node columns of the worst path. The
script analyzes the path between the worst source and destination registers.

set wrst_src <insert_source_of_worst_path_here>
set wrst_dst <insert_destination_of_worst_path_here>
report_timing -setup -npaths 50 -detail path_only -from $wrst_src \
-panel_name "Worst Path||wrst_src -> *"
report_timing -setup -npaths 50 -detail path_only -to $wrst_dst \
-panel_name "Worst Path||* -> wrst_dst"
report_timing -setup -npaths 50 -detail path_only -to $wrst_src \
-panel_name "Worst Path||* -> wrst_src"
report_timing -setup -npaths 50 -detail path_only -from $wrst_dst \
-panel_name "Worst Path||wrst_dst -> *"

3. From the Script menu, source the .tcl file.

4. In the resulting timing panel, locate timing failed paths (highlighted in red) in the
Chip Planner, and view information such as distance between the nodes and large
fanouts.

The figure shows a simplified example of what these reports analyzed.

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

62

https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_report_clock_transfers.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 28. Timing Report

LUT

LUT

LUT
LUT

LUT LUT

LUTLUT

LUT

LUT

wrst_src -> *
* -> wrst_dst
* -> wrst_src
wrst_dst -> *
Critical Path

Legend

Source Register
of Worst Path

Destination
Register of
Worst Path

The critical path of the design is in red. The relation between the .tcl script and
the figure is:

• The first two lines show everything inside the two endpoints of the critical path
that are pulling them in different directions.

— The first report_timing command analyzes all paths the source is
driving, shown in green.

— The second report_timing command analyzes all paths going to the
destination, including the critical path, shown in orange.

• The last two report_timing commands show everything outside of the
endpoints pulling them in other directions.

If any of these neighboring paths have slacks near the critical path, the Fitter is
balancing these paths with the critical path, trying to achieve the best slack.

3.4.3.5. Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles

Many designs have the same critical paths show up after each compile. In other
designs, critical paths bounce around between different hierarchies, changing with
each compile.

This behavior happens in high speed designs where many register-to-register paths
have very little slack. Different placements can then result in timing failures in the
marginal paths.

1. In the project directory, create a script named TQ_critical_paths.tcl.

2. After compilation, review the critical paths and then write a generic
report_timing command to capture those paths.

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, if several paths fail in a low-level hierarchy, add a command such as:

report_timing –setup –npaths 50 –detail path_only \
 –to “main_system: main_system_inst|app_cpu:cpu|*” \
 –panel_name “Critical Paths||s: * -> app_cpu”

3. If there is a specific path, such as a bit of a state-machine going to other
count_sync registers, you can add a command similar to:

report_timing –setup –npaths 50 –detail path_only \
 –from “main_system: main_system_inst|egress_count_sm:egress_inst|
update” \
 –to “*count_sync*” –panel_name “Critical Paths||s: egress_sm|update -
> count_sync”

4. Execute this script in the Timing Analyzer after every compilation, and add new
report_timing commands as new critical paths appear.

This helps you monitor paths that consistently fail and paths that are only
marginal, so you can prioritize effectively

3.4.3.6. Global Routing Resources

Global routing resources are designed to distribute high fan-out, low-skew signals
(such as clocks) without consuming regular routing resources. Depending on the
device, these resources can span the entire chip or a smaller portion, such as a
quadrant. The Intel Quartus Prime software attempts to assign signals to global
routing resources automatically, but you might be able to make more suitable
assignments manually.

For details about the number and types of global routing resources available, refer to
the relevant device handbook.

Check the global signal utilization in your design to ensure that the appropriate signals
have been placed on the global routing resources. In the Compilation Report, open the
Fitter report and click Resource Section. Analyze the Global & Other Fast Signals and
Non-Global High Fan-out Signals reports to determine whether any changes are
required.

You might be able to reduce skew for high fan-out signals by placing them on global
routing resources. Conversely, you can reduce the insertion delay of low fan-out
signals by removing them from global routing resources. Doing so can improve clock
enable timing and control signal recovery/removal timing, but increases clock skew.
Use the Global Signal setting in the Assignment Editor to control global routing
resources.

3.5. Timing Optimization

Use the following guidelines if your design does not meet its timing requirements.

3.5.1. Displaying Timing Closure Recommendations for Failing Paths

Use the Timing Closure Recommendations report to get specific recommendations
about failing paths in your design and changes that you can make to potentially fix the
failing paths.

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In the Tasks pane of the Timing Analyzer, select the Report Timing Closure
Recommendations task to open the Report Timing Closure
Recommendations dialog box.

2. Select paths based on the clock domain, filter by nodes on path, and choose the
number of paths to analyze.

3. After running the Report Timing Closure Recommendations task in the Timing
Analyzer, examine the reports in the Report Timing Closure
Recommendations folder in the Report pane of the Timing Analyzer GUI. Each
recommendation has star symbols (*) associated with it. Recommendations with
more stars are more likely to help you close timing on your design.

The reports give you the most probable causes of failure for each analyzed path, and
show recommendations that may help you fix the failing paths.

The reports are organized into sections, depending on the type of issues found in the
design, such as large clock skew, restricted optimizations, unbalanced logic, skipped
optimizations, coding style that has too many levels of logic between registers, or
region or partition constraints specific to your project.

For detailed analysis of the critical paths, run the report_timing command on
specified paths. In the Extra Fitter Information tab of the Path report panel, you
can see detailed fitter-related information that may help you visualize the issue.

Related Information

• Displaying Timing Closure Recommendations for Failing Paths on page 64

• Report Timing Closure Recommendations Dialog Box

3.5.2. Timing Optimization Advisor

While the Timing Analyzer Report Timing Closure Recommendations task gives
specific recommendations to fix failing paths, the Timing Optimization Advisor gives
more general recommendations to improve timing performance for a design.

The Timing Optimization Advisor guides you in making settings that optimize your
design to meet your timing requirements. To run the Timing Optimization Advisor click
Tools ➤ Advisors ➤ Timing Optimization Advisor. This advisor describes many of
the suggestions made in this section.

When you open the Timing Optimization Advisor after compilation, you can find
recommendations to improve the timing performance of your design. If suggestions in
these advisors contradict each other, evaluate these options and choose the settings
that best suit the given requirements.

The example shows the Timing Optimization Advisor after compiling a design that
meets its frequency requirements, but requires setting changes to improve the timing.

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

65

https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#analyze/sta/sta_com_report_timing_closure_recommendations.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29. Timing Optimization Advisor

Click to Implement Change

Opens Related Settings

When you expand one of the categories in the Timing Optimization Advisor, such as
Maximum Frequency (fmax) or I/O Timing (tsu, tco, tpd), the recommendations
appear in stages. These stages show the order in which to apply the recommended
settings.

The first stage contains the options that are easiest to change, make the least drastic
changes to your design optimization, and have the least effect on compilation time.

Icons indicate whether each recommended setting has been made in the current
project. In the figure, the checkmark icons in the list of recommendations for Stage 1
indicates recommendations that are already implemented. The warning icons indicate
recommendations that are not followed for this compilation. The information icons
indicate general suggestions. For these entries, the advisor does not report whether
these recommendations were followed, but instead explains how you can achieve
better performance. For a legend that provides more information for each icon, refer
to the “How to use” page in the Timing Optimization Advisor.

Each recommendation provides a link to the appropriate location in the Intel Quartus
Prime GUI where you can change the settings. For example, consider the Synthesis
Netlist Optimizations page of the Settings dialog box or the Global Signals
category in the Assignment Editor. This approach provides the most control over
which settings are made and helps you learn about the settings in the software. When
available, you can also use the Correct the Settings button to automatically make
the suggested change to global settings.

For some entries in the Timing Optimization Advisor, a button allows you to further
analyze your design and see more information. The advisor provides a table with the
clocks in the design, indicating whether they have been assigned a timing constraint.

3.5.3. Optional Fitter Settings

This section focuses only on the optional timing-optimization Fitter settings, which are
the Optimize Hold Timing, Optimize Multi-Corner Timing, and Fitter Aggressive
Routability Optimization.

Caution: The settings that best optimize different designs might vary. The group of settings that
work best for one design does not necessarily produce the best result for another
design.

Related Information

Advanced Fitter Setting Dialog Box

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

66

https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#comp/comp/comp_tab_physical.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.3.1. Optimize Hold Timing

The Optimize Hold Timing option directs the Intel Quartus Prime software to
optimize minimum delay timing constraints. Check your device information to
determine whether the Intel Quartus Prime software optimizes hold timing for all
paths or only for I/O paths and minimum tPD paths.

When you turn on Optimize Hold Timing in the Advanced Fitter Settings dialog
box, the Intel Quartus Prime software adds delay to paths to ensure that your design
meets the minimum delay requirements. If you select I/O Paths and Minimum TPD
Paths, the Fitter works to meet the following criteria:

• Hold times (tH) from the device input pins to the registers

• Minimum delays from I/O pins to I/O registers or from I/O registers to I/O pins

• Minimum clock-to-out time (tCO) from registers to output pins

If you select All Paths, the Fitter also works to meet hold requirements from registers
to registers, as highlighted in blue in the figure, in which a derived clock generated
with logic causes a hold time problem on another register.

Figure 30. Optimize Hold Timing Option Fixing an Internal Hold Time Violation

clk
Logic

D Q

D Q

Derived Clock Hold-Time Violation

Fitter Adds Routing Delay Here

However, if your design still has internal hold time violations between registers, you
can manually add delays by instantiating LCELL primitives, or by making changes to
your design, such as using a clock enable signal instead of a derived or gated clock.

Related Information

Recommended Design Practices

3.5.3.2. Fitter Aggressive Routability Optimization

The Fitter Aggressive Routability Optimizations logic option allows you to specify
whether the Fitter aggressively optimizes for routability. Performing aggressive
routability optimizations may decrease design speed, but may also reduce routing wire
usage and routing time.

This option is useful if routing resources are resulting in no-fit errors, and you want to
reduce routing wire use.

The table lists the settings for the Fitter Aggressive Routability Optimizations
logic option.

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

67

https://www.intel.com/content/www/us/en/docs/programmable/683323/current/recommended-design-practices.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8. Fitter Aggressive Routability Optimizations Logic Option Settings

Settings Description

Always The Fitter always performs aggressive routability optimizations. If you set the Fitter Aggressive
Routability Optimizations logic option to Always, reducing wire utilization may affect the
performance of your design.

Never The Fitter never performs aggressive routability optimizations. If improving timing is more important
than reducing wire usage, then set this option to Automatically or Never.

Automatically The Fitter performs aggressive routability optimizations automatically, based on the routability and
timing requirements of the design. If improving timing is more important than reducing wire usage,
then set this option to Automatically or Never.

3.5.4. I/O Timing Optimization Techniques

This stage of design optimization focuses on I/O timing, including setup delay (tSU),
hold time (tH), and clock-to-output (tCO) parameters.

Before proceeding with I/O timing optimization, ensure that:

• The design's assignments follow the suggestions in the Initial Compilation:
Required Settings section of the Design Optimization Overview chapter.

• Resource utilization is satisfactory.

You can apply the suggestions this section to all Intel FPGA families and to the family
of CPLDs.

Note: Complete this stage before proceeding to the register-to-register timing optimization
stage. Changes to the I/O paths affect the internal register-to-register timing.

Summary of Techniques for Improving Setup and Clock-to-Output Times

The table lists the recommended order of techniques to reduce tSU and tCO times.
Reducing tSU times increases hold (tH) times.

Note: Verify which options are available to each device family

Table 9. Improving Setup and Clock-to-Output Times

Order Technique Affects tSU Affects tCO

1 Verify of that the appropriate constraints are set for the failing I/Os (refer to Initial
Compilation: Required Settings)

Yes Yes

2 Use timing-driven compilation for I/O (refer to Fast Input, Output, and Output
Enable Registers)

Yes Yes

3 Use fast input register (refer to Programmable Delays) Yes N/A

4 Use fast output register, fast output enable register, and fast OCT register (refer to
Programmable Delays)

N/A Yes

5 Decrease the value of Input Delay from Pin to Input Register or set Decrease
Input Delay to Input Register = ON

Yes N/A

6 Decrease the value of Input Delay from Pin to Internal Cells or set Decrease
Input Delay to Internal Cells = ON

Yes N/A

7 Decrease the value of Delay from Output Register to Output Pin or set
Increase Delay to Output Pin = OFF (refer to Fast Input, Output, and Output
Enable Registers)

N/A Yes

continued...

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Order Technique Affects tSU Affects tCO

8 Increase the value of Input Delay from Dual-Purpose Clock Pin to Fan-Out
Destinations (refer to Fast Input, Output, and Output Enable Registers)

Yes N/A

9 Use PLLs to shift clock edges Yes Yes

10 Use the Fast Regional Clock (refer to Change How Hold Times are Optimized for
MAX® II Devices)

N/A Yes

11 For MAX II or MAX V family devices, set Guarantee I/O Paths Have Zero Hold
Time at Fast Corner to OFF, or When TSU and TPD Constraints Permit (refer to
Change How Hold Times are Optimized for MAX II Devices)

Yes N/A

12 Increase the value of Delay to output enable pin or set Increase delay to
output enable pin (refer to Use PLLs to Shift Clock Edges)

N/A Yes

Optimize IOC Register Placement for Timing Logic Option on page 69

Fast Input, Output, and Output Enable Registers on page 70

Programmable Delays on page 70

Use PLLs to Shift Clock Edges on page 71

Use Fast Regional Clock Networks and Regional Clocks Networks on page 71

Spine Clock Limitations on page 72

Change How Hold Times are Optimized for Devices on page 72

Related Information

Required Settings for Initial Compilation on page 7

3.5.4.1. Optimize IOC Register Placement for Timing Logic Option

This option moves registers into I/O elements to meet tSU or tCO assignments,
duplicating the register if necessary (as in the case in which a register fans out to
multiple output locations). This option is turned on by default and is a global setting.

Note: The option does not apply to series devices because they do not contain I/O registers.

The Optimize IOC Register Placement for Timing logic option affects only pins
that have a tSU or tCO requirement. Using the I/O register is possible only if the
register directly feeds a pin or is fed directly by a pin. Therefore, this logic option does
not affect registers with any of the following characteristics:

Note: To optimize registers with these characteristics, use other Intel Quartus Prime Fitter
optimizations.

• Have combinational logic between the register and the pin

• Are part of a carry or cascade chain

• Have an overriding location assignment

• Use the asynchronous load port and the value is not 1 (in device families where
the port is available)

Related Information

Optimize IOC Register Placement for Timing Logic Option

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

69

https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#logicops/logicops/def_optimize_io_timing.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.4.2. Fast Input, Output, and Output Enable Registers

You can place individual registers in I/O cells manually by making fast I/O
assignments with the Assignment Editor. By default, with correct timing assignments,
the Fitter places the I/O registers in the correct I/O cell or in the core, to meet the
performance requirement.

In series devices, which have no I/O registers, these assignments lock the register
into the LAB adjacent to the I/O pin if there is a pin location assignment for that I/O
pin.

If the fast I/O setting is on, the register is always placed in the I/O element. If the fast
I/O setting is off, the register is never placed in the I/O element. This is true even if
the Optimize IOC Register Placement for Timing option is turned on. If there is
no fast I/O assignment, the Intel Quartus Prime software determines whether to place
registers in I/O elements if the Optimize IOC Register Placement for Timing
option is turned on.

You can also use the four fast I/O options (Fast Input Register, Fast Output
Register, Fast Output Enable Register, and Fast OCT Register) to override the
location of a register that is in a Logic Lock (Standard) region and force it into an I/O
cell. If you apply this assignment to a register that feeds multiple pins, the Fitter
duplicates the register and places it in all relevant I/O elements.

In series devices, the Fitter duplicates the register and places it in each distinct LAB
location that is next to an I/O pin with a pin location assignment.

For more information about the Fast Input Register option, Fast Output Register
option, Fast Output Enable Register option, and Fast OCT (on-chip termination)
Register option, refer to Intel Quartus Prime Help.

Related Information

• Fast Input Register logic option

• Fast Output Register logic option

• Fast Output Enable Register logic option

• Fast OCT Register logic option

3.5.4.3. Programmable Delays

You can use various programmable delay options to minimize the tSU and tCO times.
Programmable delays are advanced options that you use only after you compile a
project, check the I/O timing, and determine that the timing is unsatisfactory.

For Arria®, Cyclone®, MAX II, MAX V, and Stratix® series devices, the Intel Quartus
Prime software automatically adjusts the applicable programmable delays to help
meet timing requirements. For detailed information about the effect of these options,
refer to the device family handbook or data sheet.

After you have made a programmable delay assignment and compiled the design, you
can view the implemented delay values for every delay chain and every I/O pin in the
Delay Chain Summary section of the Compilation Report.

You can assign programmable delay options to supported nodes with the Assignment
Editor. You can also view and modify the delay chain setting for the target device with
the Chip Planner and Resource Property Editor. When you use the Resource Property

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

70

https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#logicops/logicops/def_input_register.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#logicops/logicops/def_output_register.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#logicops/logicops/def_output_enable_register.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#logicops/logicops/def_oct_register.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Editor to make changes after performing a full compilation, recompiling the entire
design is not necessary; you can save changes directly to the netlist. Because these
changes are made directly to the netlist, the changes are not made again
automatically when you recompile the design. The change management features allow
you to reapply the changes on subsequent compilations.

Although the programmable delays in newer devices are user-controllable, Intel
recommends their use for advanced users only. However, the Intel Quartus Prime
software might use the programmable delays internally during the Fitter phase.

For details about the programmable delay logic options available for Intel devices,
refer to the following Intel Quartus Prime Help topics:

Related Information

• Input Delay from Pin to Input Register logic option

• Input Delay from Pin to Internal Cells logic option

• Output Enable Pin Delay logic option

• Delay from Output Register to Output Pin logic option

• Input Delay from Dual-Purpose Clock Pin to Fan-Out Destinations logic option

3.5.4.4. Use PLLs to Shift Clock Edges

Using a PLL typically improves I/O timing automatically. If the timing requirements are
still not met, most devices allow the PLL output to be phase shifted to change the I/O
timing. Shifting the clock backwards gives a better tH at the expense of tSU, while
shifting it forward gives a better tSU at the expense of tH. You can use this technique
only in devices that offer PLLs with the phase shift option.

Figure 31. Shift Clock Edges Forward to Improve tSU at the Expense of tH

Original

With PLL

You can achieve the same type of effect in certain devices by using the programmable
delay called Input Delay from Dual Purpose Clock Pin to Fan-Out Destinations.

3.5.4.5. Use Fast Regional Clock Networks and Regional Clocks Networks

Regional clocks provide the lowest clock delay and skew for logic contained in a single
quadrant. In general, fast regional clocks have less delay to I/O elements than
regional and global clocks, and are used for high fan-out control signals. Placing clocks
on these low-skew and low-delay clock nets provides better tCO performance.

Intel devices have a variety of hierarchical clock structures. These include dedicated
global clock networks, regional clock networks, fast regional clock networks, and
periphery clock networks. The available resources differ between the various Intel
device families.

For the number of clocking resources available in your target device, refer to the
appropriate device handbook.

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

71

https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#logicops/logicops/def_pad_to_input_register_delay.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#logicops/logicops/def_pad_to_core_delay.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#logicops/logicops/def_output_enable_delay.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#logicops/logicops/def_clock_to_output_delay.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#logicops/logicops/def_dual_purpose_clock_pin_delay.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.4.6. Spine Clock Limitations

In projects with high clock routing demands, limitations in the Intel Quartus Prime
software can cause spine clock errors. These errors are often seen with designs using
multiple memory interfaces and high-speed serial interface (HSSI) channels, especially
PMA Direct mode.

Global clock networks, regional clock networks, and periphery clock networks have an
additional level of clock hierarchy known as spine clocks. Spine clocks drive the final
row and column clocks to their registers; thus, the clock to every register in the chip is
reached through spine clocks. Spine clocks are not directly user controllable.

To reduce these spine clock errors, constrain your design to use your regional clock
resources better:

• If your design does not use Logic Lock (Standard) regions, or if the Logic Lock
(Standard) regions are not aligned to your clock region boundaries, create
additional Logic Lock (Standard) regions and further constrain your logic.

• If Periphery features ignore Logic Lock (Standard) region assignment, possibly
because the global promotion process is not functioning properly. To ensure that
the global promotion process uses the correct locations, assign specific pins to the
I/Os using these periphery features.

• By default, some Intel FPGA IP functions apply a global signal assignment with a
value of dual-regional clock. If you constrain your logic to a regional clock region
and set the global signal assignment to Regional instead of Dual-Regional, you
can reduce clock resource contention.

Related Information

• Viewing Available Clock Networks in the Device on page 105

• Layers Settings and Editing Modes on page 103

• Report Spine Clock Utilization dialog box (Chip Planner)

3.5.4.7. Change How Hold Times are Optimized for Devices

For devices, you can use the Guarantee I/O Paths Have Zero Hold Time at Fast
Corner option to control how hold time is optimized by the Intel Quartus Prime
software.

3.5.5. Register-to-Register Timing Optimization Techniques

The next stage of design optimization seeks to improve register-to-register (fMAX)
timing. The following sections provide available options if the design does not meet
timing requirements after compilation.

Coding style affects the performance of a design to a greater extent than other
changes in settings. Always evaluate the code and make sure to use synchronous
design practices.

Note: In the context of the Timing Analyzer, register-to-register timing optimization is the
same as maximizing the slack on the clock domains in a design. The techniques in this
section can improve the slack on different timing paths in the design.

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

72

http://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#optimize/ace/acv_db_report_spine_clock_utilization.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Before performing design optimizations, understand the structure of the design as well
as the effects of techniques in different types of logic. Techniques that do not benefit
the logic structure can decrease performance.

Related Information

Recommended Design Practices

3.5.5.1. Optimize Source Code

In many cases, optimizing the design’s source code can have a very significant effect
on your design performance. In fact, optimizing your source code is typically the most
effective technique for improving the quality of your results and is often a better
choice than using Logic Lock (Standard) or location assignments.

Be aware of the number of logic levels needed to implement your logic while you are
coding. Too many levels of logic between registers might result in critical paths failing
timing. Try restructuring the design to use pipelining or more efficient coding
techniques. Also, try limiting high fan-out signals in the source code. When possible,
duplicate and pipeline control signals. Make sure the duplicate registers are protected
by a preserve attribute, to avoid merging during synthesis.

If the critical path in your design involves memory or DSP functions, check whether
you have code blocks in your design that describe memory or functions that are not
being inferred and placed in dedicated logic. You might be able to modify your source
code to cause these functions to be placed into high-performance dedicated memory
or resources in the target device. When using RAM/DSP blocks, enable the optional
input and output registers.

Ensure that your state machines are recognized as state machine logic and optimized
appropriately in your synthesis tool. State machines that are recognized are generally
optimized better than if the synthesis tool treats them as generic logic. In the Intel
Quartus Prime software, you can check the State Machine report under Analysis &
Synthesis in the Compilation Report. This report provides details, including state
encoding for each state machine that was recognized during compilation. If your state
machine is not recognized, you might have to change your source code to enable it to
be recognized.

Related Information

AN 584: Timing Closure Methodology for Advanced FPGA Designs

3.5.5.2. Improving Register-to-Register Timing

The choice of options and settings to improve the timing margin (slack) or to improve
register-to-register timing depends on the failing paths in the design. To achieve the
results that best approximate your performance requirements, apply the following
techniques and compile the design after each step:

1. Ensure that your timing assignments are complete and correct. For details, refer
to the Initial Compilation: Required Settings section in the Design Optimization
Overview chapter.

2. Review all warning messages from your initial compilation and check for ignored
timing assignments.

3. Apply netlist synthesis optimization options.

4. To optimize for speed, apply the following synthesis options:

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

73

https://www.intel.com/content/www/us/en/docs/programmable/683323/current/recommended-design-practices.html
https://www.intel.com/content/www/us/en/docs/programmable/683145/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

— Optimize Synthesis for Speed, Not Area

— Flatten the Hierarchy During Synthesis

— Set the Synthesis Effort to High

— Change State Machine Encoding

— Prevent Shift Register Inference

— Use Other Synthesis Options Available in Your Synthesis Tool

5. To optimize for performance using physical synthesis, apply the following options:

— Enable physical synthesis

— Perform automatic asynchronous signal pipelining

— Perform register duplication

— Perform register retiming

— Perform logic to memory mapping

6. Try different Fitter seeds. If only a small number of paths are failing by small
negative slack, then you can try with a different seed to find a fit that meets
constraints in the Fitter seed noise.

Note: Omit this step if a large number of critical paths are failing, or if the paths
are failing by a long margin.

7. To control placement, make Logic Lock (Standard) assignments.

8. Modify your design source code to fix areas of the design that are still failing
timing requirements by significant amounts.

9. Make location assignments, or as a last resort, perform manual placement by
back-annotating the design.

You can use Design Space Explorer II (DSE) to automate the process of running
different compilations with different settings.

If these techniques do not achieve performance requirements, additional design
source code modifications might be required.

Related Information

Initial Compilation: Required Settings

3.5.5.3. Physical Synthesis Optimizations

The Intel Quartus Prime software offers physical synthesis optimizations that can help
improve design performance regardless of the synthesis tool. You can apply physical
synthesis optimizations both during synthesis and during fitting.

During the synthesis stage of the Intel Quartus Prime compilation, physical synthesis
optimizations operate either on the output from another EDA synthesis tool, or as an
intermediate step in synthesis. These optimizations modify the synthesis netlist to
improve either area or speed, depending on the technique and effort level you select.

To view and modify the synthesis netlist optimization options, click Assignments ➤
Settings ➤ Compiler Settings ➤ Advanced Settings (Fitter).

If you use a third-party EDA synthesis tool and want to determine if the Intel Quartus
Prime software can remap the circuit to improve performance, use the Perform
WYSIWYG Primitive Resynthesis option. This option directs the Intel Quartus

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

74

https://www.intel.com/content/www/us/en/docs/programmable/683283.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Prime software to un-map the LEs in an atom netlist to logic gates, and then map the
gates back to Intel-specific primitives. Intel-specific primitives enable the Fitter to
remap the circuits using architecture-specific techniques.

The Intel Quartus Prime technology mapper optimizes the design to achieve maximum
speed performance, minimum area usage, or balances high performance and minimal
logic usage, according to the setting of the Optimization Technique option. Set this
option to Speed or Balanced.

During the Fitter stage of the Intel Quartus Prime compilation, physical synthesis
optimizations make placement-specific changes to the netlist that improve speed
performance results for the specific Intel device.

Note: If you want the performance gain from physical synthesis only on parts of your design,
you can apply the physical synthesis options on specific instances with the Assignment
Editor.

Related Information

• Perform WYSIWYG Primitive Resynthesis Logic Option

• Optimization Technique Logic Option

3.5.5.4. Turn Off Extra-Effort Power Optimization Settings

If power optimization settings are set to Extra Effort, your design performance can
be affected. If timing performance is more important than power, set the power
optimization setting to Normal.

Related Information

• Power Optimization

• Power Optimization Logic Option

3.5.5.5. Optimize Synthesis for Speed, Not Area

Design performance varies depending on coding style, synthesis tool used, and
options you specify when synthesizing. Change your synthesis options if a large
number of paths are failing, or if specific paths fail by a great margin and have many
levels of logic.

Identify the default optimization targets of your Synthesis tool, and set your device
and timing constraints accordingly. For example, if you do not specify a target
frequency, some synthesis tools optimize for area.

You can specify logic options for specific modules in your design with the Assignment
Editor while leaving the default Optimization Technique setting at Balanced (for
the best trade-off between area and speed for certain device families) or Area (if area
is an important concern). You can also use the Speed Optimization Technique for
Clock Domains option in the Assignment Editor to specify that all combinational logic
in or between the specified clock domains are optimized for speed.

To achieve best performance with push-button compilation, follow the
recommendations in the following sections for other synthesis settings. You can use
DSE II to experiment with different Intel Quartus Prime synthesis options to optimize
your design for the best performance.

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

75

https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#logicops/logicops/def_adv_netlist_opt_synth_wysiwyg_remap.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#logicops/logicops/def_optimization_technique.htm
https://www.intel.com/content/www/us/en/docs/programmable/683506/current/power-optimization.html
https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#logicops/logicops/def_optimize_power_during_synth.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Optimization Technique Logic Option

3.5.5.6. Flatten the Hierarchy During Synthesis

Synthesis tools typically let you preserve hierarchical boundaries, which can be useful
for verification or other purposes. However, the best optimization results generally
occur when the synthesis tool optimizes across hierarchical boundaries, because doing
so often allows the synthesis tool to perform the most logic minimization, which can
improve performance. Whenever possible, flatten your design hierarchy to achieve the
best results.

Note: If you are using Intel Quartus Prime incremental compilation, you cannot flatten your
design across design partitions. Incremental compilation always preserves the
hierarchical boundaries between design partitions. Follow Intel’s recommendations for
design partitioning, such as registering partition boundaries to reduce the effect of
cross-boundary optimizations.

3.5.5.7. Set the Synthesis Effort to High

Synthesis tools offer varying synthesis effort levels to trade off compilation time with
synthesis results. Set the synthesis effort to high to achieve best results when
applicable.

3.5.5.8. Change State Machine Encoding

State machines can be encoded using various techniques. One-hot encoding, which
uses one register for every state bit, usually provides the best performance. If your
design contains state machines, changing the state machine encoding to one-hot can
improve performance at the cost of area.

Related Information

State Machine Processing Logic Option online help

3.5.5.9. Duplicate Logic for Fan-Out Control

Oftentimes, timing failures occur not because of the high fan-out registers, but
because of the location of those registers. Duplicating registers, where source and
destination registers are physically close, can help improve slack on critical paths.

Synthesis tools support options or attributes that specify the maximum fan-out of a
register. When using Intel Quartus Prime integrated synthesis, you can set the
Maximum Fan-Out logic option in the Assignment Editor to control the number of
destinations for a node so that the fan-out count does not exceed a specified value.
You can also use the maxfan attribute in your HDL code. The software duplicates the
node as required to achieve the specified maximum fan-out.

Logic duplication using Maximum Fan-Out assignments normally increases resource
utilization, and can potentially increase compilation time, depending on the placement
and the total resource usage within the selected device.

The improvement in timing performance that results from Maximum Fan-Out
assignments is design-specific. This is because when you use the Maximum Fan-Out
assignment, the Fitter duplicates the source logic to limit the fan-out, but does not to

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

76

https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#logicops/logicops/def_optimization_technique.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_smp_process_type.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

control the destinations that each of the duplicated sources drive. Therefore, it is
possible for duplicated source logic to be driving logic located all around the device. To
avoid this situation, you can use the Manual Logic Duplication logic option.

If you are using Maximum Fan-Out assignments, benchmark your design with and
without these assignments to evaluate whether they give the expected improvement
in timing performance. Use the assignments only when you get improved results.

You can manually duplicate registers in the Intel Quartus Prime software regardless of
the synthesis tool used. To duplicate a register, apply the Manual Logic Duplication
logic option to the register with the Assignment Editor.

Note: Some Fitter optimizations may cause a small violation to the Maximum Fan-Out
assignments to improve timing.

3.5.5.10. Prevent Shift Register Inference

Turning off the inference of shift registers can increase performance. This setting
forces the software to use logic cells to implement the shift register, instead of using
the ALTSHIFT_TAPS IP core to implement the registers in memory block. If you
implement shift registers in logic cells instead of memory, logic utilization increases.

3.5.5.11. Use Other Synthesis Options Available in Your Synthesis Tool

With your synthesis tool, experiment with the following options if they are available:

• Turn on register balancing or retiming

• Turn on register pipelining

• Turn off resource sharing

These options can increase performance, but typically increase the resource utilization
of your design.

3.5.5.12. Fitter Seed

The Fitter seed affects the initial placement configuration of the design. Any change in
the initial conditions changes the Fitter results; accordingly, each seed value results in
a somewhat different fit. You can experiment with different seeds to attempt to obtain
better fitting results and timing performance.

Changes in the design impact performance between compilations. This random
variation is inherent in placement and routing algorithms—it is impossible to try all
seeds and get the absolute best result.

Note: Any design change that directly or indirectly affects the Fitter has the same type of
random effect as changing the seed value. This includes any change in source files,
Compiler Settings or Timing Analyzer Settings. The same effect can appear if you
use a different computer processor type or different operating system, because
different systems can change the way floating point numbers are calculated in the
Fitter.

If a change in optimization settings marginally affects the register-to-register timing
or number of failing paths, you cannot always be certain that your change caused the
improvement or degradation, or whether it is due to random effects in the Fitter. If
your design is still changing, running a seed sweep (compiling your design with
multiple seeds) determines whether the average result improved after an optimization

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

change, and whether a setting that increases compilation time has benefits worth the
increased time, such as with physical synthesis settings. The sweep also shows the
amount of random variation to expect for your design.

If your design is finalized you can compile your design with different seeds to obtain
one optimal result. However, if you subsequently make any changes to your design,
you might need to perform seed sweep again.

Click Assignments ➤ Compiler Settings to control the initial placement with the
seed. You can use the DSE II to perform a seed sweep easily.

To specify a Fitter seed use the following Tcl command :

set_global_assignment -name SEED <value>

Related Information

Design Space Explorer II on page 12

3.5.5.13. Set Maximum Router Timing Optimization Level

To improve routability in designs where the router did not pick up the optimal routing
lines, set the Router Timing Optimization Level to Maximum. This setting
determines how aggressively the router tries to meet the timing requirements. Setting
this option to Maximum can marginally increase design speed at the cost of increased
compilation time. Setting this option to Minimum can reduce compilation time at the
cost of marginally reduced design speed. The default value is Normal.

Related Information

Router Timing Optimization Level Logic Option

3.5.6. Logic Lock (Standard) Assignments

Using Logic Lock (Standard) assignments to improve timing performance is only
recommended for older devices, such as the MAX II family. For other device families,
especially for larger devices such as Arria and Stratix series devices, do not use Logic
Lock (Standard) assignments to improve timing performance. For these devices, use
the feature for performance preservation and to floorplan your design.

Logic Lock (Standard) assignments do not always improve the performance of the
design. In many cases, you cannot improve upon results from the Fitter by making
location assignments. If there are existing Logic Lock (Standard) assignments in your
design, remove the assignments if your design methodology permits it. Recompile the
design, and then check if the assignments are making the performance worse.

When making Logic Lock (Standard) assignments, it is important to consider how
much flexibility to give the Fitter. Logic Lock (Standard) assignments provide more
flexibility than hard location assignments. Assignments that are more flexible require
higher Fitter effort, but reduce the chance of design overconstraint.

The following types of Logic Lock (Standard) assignments are available, listed in the
order of decreasing flexibility:

• Auto size, floating location regions

• Fixed size, floating location regions

• Fixed size, locked location regions

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

78

https://www.intel.com/content/www/us/en/programmable/quartushelp/18.1/index.htm#logicops/logicops/def_router_timing_optimization_level.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you are unsure about the best size or location of a Logic Lock (Standard) region, the
Auto/Floating options are useful for your first pass. After you determine where a
Logic Lock (Standard) region must go, modify the Fixed/Locked regions, as Auto/
Floating Logic Lock (Standard) regions can hurt your overall performance. To
determine what to put into a Logic Lock (Standard) region, refer to the timing analysis
results and analyze the critical paths in the Chip Planner. The register-to-register
timing paths in the Timing Analyzer section of the Compilation Report help you
recognize patterns.

Related Information

Analyzing and Optimizing the Design Floorplan on page 102

3.5.6.1. Hierarchy Assignments

For a design with the hierarchy shown in the figure, which has failing paths in the
timing analysis results similar to those shown in the table, mod_A is probably a
problem module. In this case, a good strategy to fix the failing paths is to place the
mod_A hierarchy block in a Logic Lock (Standard) region so that all the nodes are
closer together in the floorplan.

Figure 32. Design Hierarchy

Top

mod_A mod_B

Table 10. Failing Paths in a Module Listed in Timing Analysis

From To

|mod_A|reg1 |mod_A|reg9

|mod_A|reg3 |mod_A|reg5

|mod_A|reg4 |mod_A|reg6

|mod_A|reg7 |mod_A|reg10

|mod_A|reg0 |mod_A|reg2

Hierarchical Logic Lock (Standard) regions are also important if you are using an
incremental compilation flow. Place each design partition for incremental compilation
in a separate Logic Lock (Standard) region to reduce conflicts and ensure good results
as the design develops. You can use the auto size and floating location regions to find
a good design floorplan, but fix the size and placement to achieve the best results in
future compilations.

Related Information

Analyzing and Optimizing the Design Floorplan on page 102

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.7. Location Assignments

If a small number of paths are failing to meet their timing requirements, you can use
hard location assignments to optimize placement.

Location assignments are less flexible for the Intel Quartus Prime Fitter than Logic
Lock (Standard) assignments. Additionally, if you are familiar with your design, you
can enter location constraints in a way that produces better results.

Note: Improving fitting results, especially for larger devices, such as Arria and Stratix series
devices, can be difficult. Location assignments do not always improve the performance
of the design. In many cases, you cannot improve upon the results from the Fitter by
making location assignments.

3.5.8. Metastability Analysis and Optimization Techniques

Metastability problems can occur when a signal is transferred between circuitry in
unrelated or asynchronous clock domains, because the designer cannot guarantee that
the signal meets its setup and hold time requirements. The mean time between
failures (MTBF) is an estimate of the average time between instances when
metastability could cause a design failure.

You can use the Intel Quartus Prime software to analyze the average MTBF due to
metastability when a design synchronizes asynchronous signals and to optimize the
design to improve the MTBF. These metastability features are supported only for
designs constrained with the Timing Analyzer, and for select device families.

If the MTBF of your design is low, refer to the Metastability Optimization section in the
Timing Optimization Advisor, which suggests various settings that can help optimize
your design in terms of metastability.

This chapter describes how to enable metastability analysis and identify the register
synchronization chains in your design, provides details about metastability reports,
and provides additional guidelines for managing metastability.

Related Information

• Understanding Metastability in FPGAs

• Managing Metastability with the Intel Quartus Prime Software
In Intel Quartus Prime Standard Edition User Guide: Design Recommendations

3.6. Periphery to Core Register Placement and Routing Optimization

The Periphery to Core Register Placement and Routing Optimization (P2C) option
specifies whether the Fitter performs targeted placement and routing optimization on
direct connections between periphery logic and registers in the FPGA core. P2C is an
optional pre-routing-aware placement optimization stage that enables you to more
reliably achieve timing closure.

Note: The Periphery to Core Register Placement and Routing Optimization option
applies in both directions, periphery to core and core to periphery.

Transfers between external interfaces (for example, high-speed I/O or serial
interfaces) and the FPGA often require routing many connections with tight setup and
hold timing requirements. When this option is turned on, the Fitter performs P2C

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

80

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01082-quartus-ii-metastability.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683323/current/managing-metastability-with-the-software-44819.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

placement and routing decisions before those for core placement and routing. This
reserves the necessary resources to ensure that your design achieves its timing
requirements and avoids routing congestion for transfers with external interfaces.

This option is available as a global assignment, or can be applied to specific instances
within your design.

Figure 33. Periphery to Core Register Placement and Routing Optimization (P2C) Flow
P2C runs after periphery placement, and generates placement for core registers on corresponding P2C/C2P
paths, and core routing to and from these core registers.

User Design

Synthesis

Periphery Placement

 P2C

Core Placement

Routing

Design Implementation

Generates periphery placement and routing.

Generates core register placement for periphery interfaces.
Generates core Routing to/from those registers.

Setting Periphery to Core Optimizations in the Advanced Fitter Setting Dialog Box on
page 81

Setting Periphery to Core Optimizations in the Assignment Editor on page 82

Viewing Periphery to Core Optimizations in the Fitter Report on page 82

3.6.1. Setting Periphery to Core Optimizations in the Advanced Fitter
Setting Dialog Box

The Periphery to Core Placement and Routing Optimization setting specifies
whether the Fitter optimizes targeted placement and routing on direct connections
between periphery logic and registers in the FPGA core.

You can optionally perform periphery to core optimizations by instance with settings in
the Assignment Editor.

1. In the Intel Quartus Prime software, click Assignments ➤ Settings ➤ Compiler
Settings ➤ Advanced Settings (Fitter).

2. In the Advanced Fitter Settings dialog box, for the Periphery to Core
Placement and Routing Optimization option, select one of the following
options depending on how you want to direct periphery to core optimizations in
your design:

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a. Select Auto to direct the software to automatically identify transfers with tight
timing windows, place the core registers, and route all connections to or from
the periphery.

b. Select On to direct the software to globally optimize all transfers between the
periphery and core registers, regardless of timing requirements.

Note: Setting this option to On in the Advanced Fitter Settings is not
recommended. The intended use for this setting is in the Assignment
Editor to force optimization for a targeted set of nodes or instance.

c. Select Off to disable periphery to core path optimization in your design.

3.6.2. Setting Periphery to Core Optimizations in the Assignment Editor

When you turn on the Periphery to Core Placement and Routing Optimization
(P2C/C2P) setting in the Assignment Editor, the Intel Quartus Prime software performs
periphery to core, or core to periphery optimizations on selected instances in your
design.

You can optionally perform periphery to core optimizations by instance with settings in
the Advanced Fitter Settings dialog box.

1. In the Intel Quartus Prime software, click Assignments ➤ Assignment Editor.

2. For the selected path, double-click the Assignment Name column, and then click
the Periphery to core register placement and routing optimization option in
the drop-down list.

3. In the To column, choose either a periphery node or core register node on a
P2C/C2P path you want to optimize. Leave the From column empty.
For paths to appear in the Assignments Editor, you must first run Analysis &
Synthesis on your design.

3.6.3. Viewing Periphery to Core Optimizations in the Fitter Report

The Intel Quartus Prime software generates a periphery to core placement and routing
optimization summary in the Fitter (Place & Route) report after compilation.

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Compile your Intel Quartus Prime project.

2. In the Tasks pane, select Compilation.

3. Under Fitter (Place & Route), double-click View Report.

4. In the Fitter folder, expand the Place Stage folder.

5. Double-click Periphery to Core Transfer Optimization Summary.

Table 11. Fitter Report - Periphery to Core Transfer Optimization (P2C) Summary

From Path To Path Status

Node 1 Node 2 Placed and Routed—Core register is locked. Periphery to core/core to periphery
routing is committed.

Node 3 Node 4 Placed but not Routed—Core register is locked. Routing is not committed. This
occurs when P2C is not able to optimize all targeted paths within a single group,
for example, the same delay/wire requirement, or the same control signals.
Partial P2C routing commitments may cause unresolvable routing congestion.

Node 5 Node 6 Not Optimized—This occurs when P2C is set to Auto and the path is not
optimized due to one of the following issues:
a. The delay requirement is impossible to achieve.
b. The minimum delay requirement (for hold timing) is too large. The P2C

algorithm cannot efficiently handle cases when many wires need to be added
to meet hold timing.

c. P2C encountered unresolvable routing congestion for this particular path.

3.7. Scripting Support

You can run procedures and make settings described in this manual in a Tcl script. You
can also run procedures at a command prompt. For detailed information about
scripting command options, refer to the Intel Quartus Prime command-line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp

You can specify many of the options described in this section either in an instance, or
at a global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <.qsf variable name> <value>

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <.qsf variable name> <value> -to <instance name>

Note: If the <value> field includes spaces (for example, ‘Standard Fit’), you must enclose
the value in straight double quotation marks.

Related Information

• Intel Quartus Prime Standard Edition Settings File Reference Manual
For information about all settings and constraints in the Intel Quartus Prime
software.

• Tcl Scripting

• Command Line Scripting

3.7.1. Initial Compilation Settings

Use the Intel Quartus Prime Settings File (.qsf) variable name in the Tcl assignment
to make the setting along with the appropriate value. The Type column indicates
whether the setting is supported as a global setting, an instance setting, or both.

The top table lists the .qsf variable name and applicable values for the settings
described in the Initial Compilation: Required Settings section in the Design
Optimization Overview chapter. The bottom table lists the advanced compilation
settings.

Table 12. Initial Compilation Settings

Setting Name .qsf File Variable Name Values Type

Optimize IOC Register Placement For
Timing

OPTIMIZE_IOC_REGISTER_
PLACEMENT_FOR_TIMING

ON, OFF Global

Optimize Hold Timing OPTIMIZE_HOLD_TIMING OFF, IO PATHS AND MINIMUM TPD
PATHS, ALL PATHS

Global

Table 13. Advanced Compilation Settings

Setting Name .qsf File Variable Name Values Type

Router Timing Optimization level ROUTER_TIMING_OPTIMIZATION_LEVEL NORMAL, MINIMUM, MAXIMUM Global

Related Information

Design Optimization Overview on page 6

3.7.2. I/O Timing Optimization Techniques

The table lists the .qsf file variable name and applicable values for the I/O timing
optimization settings.

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

84

https://www.intel.com/content/www/us/en/docs/programmable/683084/current/settings-file-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 14. I/O Timing Optimization Settings

Setting Name .qsf File Variable Name Values Type

Optimize IOC Register Placement For
Timing

OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR_TIMING ON, OFF Global

Fast Input Register FAST_INPUT_REGISTER ON, OFF Instance

Fast Output Register FAST_OUTPUT_REGISTER ON, OFF Instance

Fast Output Enable Register FAST_OUTPUT_ENABLE_REGISTER ON, OFF Instance

Fast OCT Register FAST_OCT_REGISTER ON, OFF Instance

3.7.3. Register-to-Register Timing Optimization Techniques

The table lists the .qsf file variable name and applicable values for the settings
described in Register-to-Register Timing Optimization Techniques.

Table 15. Register-to-Register Timing Optimization Settings

Setting Name .qsf File Variable Name Values Type

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Perform Physical
Synthesis for
Combinational Logic
(no Intel Arria 10
support)

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global,
Instance

Perform Register
Duplication (no Intel
Arria 10 support)

PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION ON, OFF Global,
Instance

Perform Register
Retiming (no Intel
Arria 10 support)

PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global,
Instance

Perform Automatic
Asynchronous Signal
Pipelining (no Intel
Arria 10 support)

PHYSICAL_SYNTHESIS_ASYNCHRONOUS_SIGNAL_PIPELINING ON, OFF Global,
Instance

Physical Synthesis
Effort (no Intel Arria
10 support)

PHYSICAL_SYNTHESIS_EFFORT NORMAL, EXTRA,
FAST

Global

Fitter Seed SEED <integer> Global

Maximum Fan-Out MAX_FANOUT <integer> Instance

Manual Logic
Duplication

DUPLICATE_ATOM <node name> Instance

Optimize Power
during Synthesis

OPTIMIZE_POWER_DURING_SYNTHESIS NORMAL, OFF
EXTRA_EFFORT

Global

Optimize Power
during Fitting

OPTIMIZE_POWER_DURING_FITTING NORMAL, OFF
EXTRA_EFFORT

Global

Related Information

Register-to-Register Timing Optimization Techniques on page 72

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.8. Timing Closure and Optimization Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.11.12 18.1.0 • Updated "Placement Effort Multiplier" figure and text descriptions in
"Adjust Placement Effort" topic.

• Updated "Fitter Effort" figure and text descriptions in "Adjust Fitter
Effort" topic.

• Updated "Optimize Hold Timing Option" screenshot in "Wires Added for
Hold" topic.

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.
• Removed duplicated topic: Resource Utilization Optimization

Techniques. The topic is now in the Area Optimization chapter.

2017.11.06 17.1.0 • Moved Topic: Design Evaluation for Timing Closure after Initial
Compilation: Optional Fitter Settings.

• Updated logic options about resource utilization optimization settings.

2017.05.08 17.0.0 • Added topic: Critical Paths.
• Updated Register-to-Register Timing and renamed to Register-to-

Register Timing Analysis.
• Renamed topic: Timing Analysis with the Timing Analyzer to Displaying

Path Reports with the Timing Analyzer.
• Removed (LUT-Based Devices) remark from topic titles.
• Renamed topic: Optimizing Timing (LUT-Based Devices) to Timing

Optimization.
• Renamed topic: Debugging Timing Failures in the Timing Analyzer to

Displaying Timing Closure Recommendations for Failing Paths.
• Renamed topic: Improving Register-to-Register Timing Summary to

Improving Register-to-Register Timing .

2016.05.02 16.0.0 • Stated limitations about deprecated physical synthesis options.
• Added information about monitoring clustering difficulty.

2015.11.02 15.1.0 • Added: Periphery to Core Register Placement and Routing Optimization.
• Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

• Updated DSE II content.

June 2014 14.0.0 • Dita conversion.
• Removed content about obsolete devices that are no longer supported

in QII software v14.0: Arria GX, Arria II, Cyclone III, Stratix II, Stratix
III.

• Replaced Megafunction content with IP core content.

November 2013 13.1.0 • Added Design Evaluation for Timing Closure section.
• Removed Optimizing Timing (Macrocell-Based CPLDs) section.
• Updated Optimize Multi-Corner Timing and Fitter Aggressive Routability

Optimization.
• Updated Timing Analysis with the Timing Analyzer to show how to

access the Report All Summaries command.
• Updated Ignored Timing Constraints to include a help link to Fitter

Summary Reports with the Ignored Assignment Report information.

continued...

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

May 2013 13.0.0 • Renamed chapter title from Area and Timing Optimization to Timing
Closure and Optimization.

• Removed design and area/resources optimization information.
• Added the following sections:

Fitter Aggressive Routability Optimization.
Tips for Analyzing Paths from/to the Source and Destination of Critical
Path.
Tips for Locating Multiple Paths to the Chip Planner.
Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles.

November 2012 12.1.0 • Updated “Initial Compilation: Optional Fitter Settings” on page 13–2,
“I/O Assignments” on page 13–2, “Initial Compilation: Optional Fitter
Settings” on page 13–2, “Resource Utilization” on page 13–9, “Routing”
on page 13–21, and “Resolving Resource Utilization Problems” on
page 13–43.

June 2012 12.0.0 • Updated “Optimize Multi-Corner Timing” on page 13–6, “Resource
Utilization” on page 13–10, “Timing Analysis with the Timing Analyzer”
on page 13–12, “Using the Resource Optimization Advisor” on page 13–
15, “Increase Placement Effort Multiplier” on page 13–22, “Increase
Router Effort Multiplier” on page 13–22 and “Debugging Timing Failures
in the Timing Analyzer” on page 13–24.

• Minor text edits throughout the chapter.

November 2011 11.1.0 • Updated the “Timing Requirement Settings”, “Standard Fit”, “Fast Fit”,
“Optimize Multi-Corner Timing”, “Timing Analysis with the Timing
Analyzer”, “Debugging Timing Failures in the Timing Analyzer”,
“LogicLock Assignments”, “Tips for Analyzing Failing Clock Paths that
Cross Clock Domains”, “Flatten the Hierarchy During Synthesis”, “Fast
Input, Output, and Output Enable Registers”, and “Hierarchy
Assignments” sections

• Updated Table 13–6
• Added the “Spine Clock Limitations” section
• Removed the Change State Machine Encoding section from page 19
• Removed Figure 13-5
• Minor text edits throughout the chapter

May 2011 11.0.0 • Reorganized sections in “Initial Compilation: Optional Fitter Settings”
section

• Added new information to “Resource Utilization” section
• Added new information to “Duplicate Logic for Fan-Out Control” section
• Added links to Help
• Additional edits and updates throughout chapter

continued...

3. Timing Closure and Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

December 2010 10.1.0 • Added links to Help
• Updated device support
• Added “Debugging Timing Failures in the Timing Analyzer” section
• Removed Classic Timing Analyzer references
• Other updates throughout chapter

August 2010 10.0.1 Corrected link

July 2010 10.0.0 • Moved Compilation Time Optimization Techniques section to new
Reducing Compilation Time chapter

• Removed references to Timing Closure Floorplan
• Moved Smart Compilation Setting and Early Timing Estimation sections

to new Reducing Compilation Time chapter
• Added Other Optimization Resources section
• Removed outdated information
• Changed references to DSE chapter to Help links
• Linked to Help where appropriate
• Removed Referenced Documents section

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

3. Timing Closure and Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

88

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Area Optimization
This chapter describes techniques to reduce resource usage when designing for Intel
devices.

4.1. Resource Utilization Information

Determining device utilization provides useful information regardless of whether the
design achieved a successful fit. If the compilation results in a no-fit error, resource
utilization information helps to analyze the fitting problems in the design. If the fitting
is successful, this information allows you to determine if design changes introduce
fitting difficulties. Additionally, you can determine the impact of the resource utilization
in the timing performance.

The Compilation Report provides information about resource usage.

4.1.1. Flow Summary Report

The Flow Summary section of the compilation report indicates whether the design
exceeds the available device resources, and reports resource utilization, including
pins, memory bits, digital signal processing (DSP) blocks, and phase-locked loops
(PLLs).

The Fitter can spread logic throughout the device, which may lead to higher overall
utilization.

As the device fills up, the Fitter automatically searches for logic functions with
common inputs to place in one ALM. The number of packed registers also increases.
Therefore, a design that has high overall utilization might still have space for extra
logic if the logic and registers can be packed together more tightly. In those cases,
you can benefit by a report that provides more details.

4.1.2. Fitter Reports

In the Fitter section of the compilation report, reports under Resource Section
provide detailed resource information.

The Fitter Resource Usage Summary report breaks down the logic utilization
information and provides additional resource information, including the number of bits
in each type of memory block. This panel also contains a summary of the usage of
global clocks, PLLs, DSP blocks, and other device-specific resources.

Related Information

Fitter Resources Reports

683230 | 2018.11.12

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_file_resource_usage.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

4.1.3. Analysis and Synthesis Reports

For designs synthesized with the Intel Quartus Prime synthesis engine, you can see
reports describing optimizations that occurred during compilation.

For example, in the Analysis & Synthesis section, Optimization Results folder, you
can find a list of registers removed during synthesis. With this report you can estimate
resource utilization for partial designs so you make sure that registers were not
removed due to missing connections with other parts of the design.

Related Information

Synthesis Optimization Results Reports

4.1.4. Compilation Messages

If the reports show routing resource usage lower than 100% but the design does not
fit, either routing resources are insufficient or the design contains invalid assignments.
In either case, the Compiler generates a message in the Processing tab of the
Messages window describing the problem.

If the Fitter finishes unsuccessfully and runs much faster than on similar designs, a
resource might be over-utilized or there might be an illegal assignment.

If the Intel Quartus Prime software takes too long to run when compared to similar
designs possibly the Compiler is not able to find valid placement or route. In the
Compilation Report, look for errors and warnings that indicate these types of
problems.

The Chip Planner can help you find areas of the device that have routing congestion
for specific types of routing resources. If you find areas with very high congestion,
analyze the cause of the congestion. Issues such as high fan-out nets not using global
resources, an improperly chosen optimization goal (speed versus area), very
restrictive floorplan assignments, or the coding style can cause routing congestion.
After you identify the cause, modify the source or settings to reduce routing
congestion.

Related Information

Viewing Messages

4.2. Optimizing Resource Utilization

The following lists the stages after design analysis:

1. Optimize resource utilization—Ensure that you have already set the basic
constraints

2. I/O timing optimization—Optimize I/O timing after you optimize resource
utilization and your design fits in the desired target device

3. Register-to-register timing optimization

Related Information

• Design Optimization Overview on page 6

• Timing Closure and Optimization on page 43

4. Area Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

90

http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_file_analys_optimize_results.htm
http://quartushelp.altera.com/current/index.htm#mapIdTopics/lro1403233177334.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2.1. Using the Resource Optimization Advisor

The Resource Optimization Advisor provides guidance in determining settings that
optimize resource usage. To run the Resource Optimization Advisor click Tools ➤
Advisors ➤ Resource Optimization Advisor.

The Resource Optimization Advisor provides step-by-step advice about how to
optimize resource usage (logic element, memory block, DSP block, I/O, and routing)
of your design. Some of the recommendations in these categories might conflict with
each other. Intel recommends evaluating the options and choosing the settings that
best suit your requirements.

Related Information

Resource Optimization Advisor Command Tools Menu

4.2.2. Resource Utilization Issues Overview

Resource utilization issues can be divided into three categories:

• Issues relating to I/O pin utilization or placement, including dedicated I/O blocks
such as PLLs or LVDS transceivers.

• Issues relating to logic utilization or placement, including logic cells containing
registers and LUTs as well as dedicated logic, such as memory blocks and DSP
blocks.

• Issues relating to routing.

4.2.3. I/O Pin Utilization or Placement

Resolve I/O resource problems with these guidelines.

4.2.3.1. Guideline: Use I/O Assignment Analysis

To help with pin placement, click Processing ➤ Start ➤ Start I/O Assignment
Analysis. The Start I/O Assignment Analysis command allows you to check your
I/O assignments early in the design process. You can use this command to check the
legality of pin assignments before, during, or after compilation of your design. If
design files are available, you can use this command to accomplish more thorough
legality checks on your design’s I/O pins and surrounding logic. These checks include
proper reference voltage pin usage, valid pin location assignments, and acceptable
mixed I/O standards.

Common issues with I/O placement relate to the fact that differential standards have
specific pin pairings and certain I/O standards might be supported only on certain I/O
banks.

If your compilation or I/O assignment analysis results in specific errors relating to I/O
pins, follow the recommendations in the error message. Right-click the message in the
Messages window and click Help to open the Intel Quartus Prime Help topic for this
message.

4. Area Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

91

http://quartushelp.altera.com/current/index.htm#report/oaw/oaw_com_roa_command.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2.3.2. Guideline: Modify Pin Assignments or Choose a Larger Package

If a design that has pin assignments fails to fit, compile the design without the pin
assignments to determine whether a fit is possible for the design in the specified
device and package. You can use this approach if an Intel Quartus Prime error
message indicates fitting problems due to pin assignments.

If the design fits when all pin assignments are ignored or when several pin
assignments are ignored or moved, you might have to modify the pin assignments for
the design or select a larger package.

If the design fails to fit because insufficient I/Os pins are available, a larger device
package (which can be the same device density) that has more available user I/O pins
can result in a successful fit.

Related Information

Managing Device I/O Pins
>In Intel Quartus Prime Standard Edition User Guide: Design Constraints

4.2.4. Logic Utilization or Placement

Resolve logic resource problems, including logic cells containing registers and LUTs, as
well as dedicated logic such as memory blocks and DSP blocks, with these guidelines.

4.2.4.1. Guideline: Optimize Source Code

If your design does not fit because of logic utilization, then evaluate and modify the
design at the source. You can often improve logic significantly by making design-
specific changes to your source code. This is typically the most effective technique for
improving the quality of your results.

If your design does not fit into available logic elements (LEs) or ALMs, but you have
unused memory or DSP blocks, check if you have code blocks in your design that
describe memory or DSP functions that are not being inferred and placed in dedicated
logic. You might be able to modify your source code to allow these functions to be
placed into dedicated memory or DSP resources in the target device.

Ensure that your state machines are recognized as state machine logic and optimized
appropriately in your synthesis tool. State machines that are recognized are generally
optimized better than if the synthesis tool treats them as generic logic. In the Intel
Quartus Prime software, you can check for the State Machine report under Analysis &
Synthesis in the Compilation Report. This report provides details, including the state
encoding for each state machine that was recognized during compilation. If your state
machine is not being recognized, you might have to change your source code to
enable it to be recognized.

Related Information

• AN 584: Timing Closure Methodology for Advanced FPGA Designs

• Recommended HDL Coding Styles
In Intel Quartus Prime Standard Edition User Guide: Design Recommendations

4.2.4.2. Guideline: Optimize Synthesis for Area, Not Speed

If the Fitter cannot resolve a design due to limitations in logic resources, resynthesize
the design to improve the area utilization.

4. Area Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

92

https://www.intel.com/content/www/us/en/docs/programmable/683492/current/managing-device-i-o-pins.html
http://www.altera.com/literature/an/an584.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683323/current/recommended-hdl-coding-styles.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

First, ensure that the device and timing constraints are set correctly in the synthesis
tool. Particularly when area utilization of the design is a concern, ensure that you do
not over-constrain the timing requirements for the design. Synthesis tools try to meet
the specified requirements, which can result in higher device resource usage if the
constraints are too aggressive.

If resource utilization is an important concern, you can optimize for area instead of
speed.

• If you are using Intel Quartus Prime integrated synthesis, click Assignments ➤
Settings ➤ Compiler Settings ➤ Advanced Settings (Synthesis) and select
Balanced or Area for the Optimization Technique.

• If you want to reduce area for specific modules in the design using the Area or
Speed setting while leaving the default Optimization Technique setting at
Balanced, use the Assignment Editor.

• You can also turn on the Speed Optimization Technique for Clock Domains
logic option to optimize for speed all combinational logic in or between the
specified clock domains.

• In some synthesis tools, not specifying an fMAX requirement can result in less
resource utilization.

Optimizing for area or speed can affect the register-to-register timing performance.

Note: In the Intel Quartus Prime software, the Balanced setting typically produces
utilization results that are very similar to those produced by the Area setting, with
better performance results. The Area setting can give better results in some cases.

The Intel Quartus Prime software provides additional attributes and options that can
help improve the quality of the synthesis results.

Related Information

Intel Quartus Prime Integrated Synthesis

4.2.4.3. Guideline: Restructure Multiplexers

Multiplexers form a large portion of the logic utilization in many FPGA designs. By
optimizing your multiplexed logic, you can achieve a more efficient implementation in
your Intel device.

Related Information

• Restructure Multiplexers logic option
For more information about the Restructure Multiplexers option

• Recommended HDL Coding Styles
For design guidelines to achieve optimal resource utilization for multiplexer
designs

4.2.4.4. Guideline: Perform WYSIWYG Primitive Resynthesis with Balanced or
Area Setting

The Perform WYSIWYG Primitive Resynthesis logic option specifies whether to
perform WYSIWYG primitive resynthesis during synthesis. This option uses the setting
specified in the Optimization Technique logic option. The Perform WYSIWYG
Primitive Resynthesis logic option is useful for resynthesizing some or all of the

4. Area Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

93

https://www.intel.com/content/www/us/en/docs/programmable/683283/current/integrated-synthesis.html
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_mux_restructure.htm
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#mwh1409959570946
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

WYSIWYG primitives in your design for better area or performance. However,
WYSIWYG primitive resynthesis can be done only when you use third-party synthesis
tools.

Note: The Balanced setting typically produces utilization results that are very similar to the
Area setting with better performance results. The Area setting can give better results
in some cases. Performing WYSIWYG resynthesis for area in this way typically reduces
register-to-register timing performance.

Related Information

Perform WYSIWYG Primitive Resynthesis logic option
For information about this logic option

4.2.4.5. Guideline: Use Register Packing

The Auto Packed Registers option implements the functions of two cells into one
logic cell by combining the register of one cell in which only the register is used with
the LUT of another cell in which only the LUT is used.

Related Information

Auto Packed Registers logic option
For more information about the Auto Packed Registers logic option

4.2.4.6. Guideline: Remove Fitter Constraints

A design with conflicting constraints or constraints that are difficult to meet may not fit
in the targeted device. For example, a design might fail to fit if the location or Logic
Lock (Standard) assignments are too strict and not enough routing resources are
available on the device.

To resolve routing congestion caused by restrictive location constraints or Logic Lock
(Standard) region assignments, use the Routing Congestion task in the Chip Planner
to locate routing problems in the floorplan, then remove any internal location or Logic
Lock (Standard) region assignments in that area. If your design still does not fit, the
design is over-constrained. To correct the problem, remove all location and Logic Lock
(Standard) assignments and run successive compilations, incrementally constraining
the design before each compilation. You can delete specific location assignments in the
Assignment Editor or the Chip Planner. To remove Logic Lock (Standard) assignments
in the Chip Planner, in the Logic Lock (Standard) Regions Window, or on the
Assignments menu, click Remove Assignments. Turn on the assignment categories
you want to remove from the design in the Available assignment categories list.

Related Information

Analyzing and Optimizing the Design Floorplan on page 102

4.2.4.7. Guideline: Flatten the Hierarchy During Synthesis

Synthesis tools typically provide the option of preserving hierarchical boundaries,
which can be useful for verification or other purposes. However, the Intel Quartus
Prime software optimizes across hierarchical boundaries so as to perform the most
logic minimization, which can reduce area in a design with no design partitions.

4. Area Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

94

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_adv_netlist_opt_synth_wysiwyg_remap.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_register_packing.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you are using Intel Quartus Prime incremental compilation, you cannot flatten your
design across design partitions. Incremental compilation always preserves the
hierarchical boundaries between design partitions, and the synthesis does not flatten it
across partitions. Follow Intel’s recommendations for design partitioning, such as
registering partition boundaries to reduce the effect of cross-boundary optimizations.

4.2.4.8. Guideline: Re-target Memory Blocks

If the Fitter cannot resolve a design due to memory resource limitations, the design
may require a type of memory that the device does not have.

For memory blocks created with the Parameter Editor, edit the RAM block type to
target a new memory block size.

The Compiler can also infer ROM and RAM memory blocks from the HDL code, and the
synthesis engine can place large shift registers into memory blocks by inferring the
Shift register (RAM-based) IP core. When you turn off this inference in the synthesis
tool, the synthesis engine places the memory or shift registers in logic instead of
memory blocks. Also, turning off this inference prevents registers from being moved
into RAM, improving timing performance,

Depending on the synthesis tool, you can also set the RAM block type for inferred
memory blocks. In Intel Quartus Prime synthesis, set the ramstyle attribute to the
desired memory type for the inferred RAM blocks. Alternatively, set the option to logic
to implement the memory block in standard logic instead of a memory block.

Consider the Resource Utilization by Entity report in the report file and determine
whether there is an unusually high register count in any of the modules. Some coding
styles prevent the Intel Quartus Prime software from inferring RAM blocks from the
source code because of the blocks’ architectural implementation, forcing the software
to implement the logic in flip-flops. For example, an asynchronous reset on a register
bank might make the register bank incompatible with the RAM blocks in the device
architecture, so Compiler implements the register bank in flip-flops. It is often possible
to move a large register bank into RAM by slight modification of associated logic.

Related Information

• Inferring Shift Registers in HDL Code

• Fitter Resource Utilization by Entity Report

4.2.4.9. Guideline: Use Physical Synthesis Options to Reduce Area

The physical synthesis options available at Assignments ➤ Settings ➤ Compiler
Settings ➤ Advanced Settings (Fitter) help you decrease resource usage. When
you enable physical synthesis, the Intel Quartus Prime software makes placement-
specific changes to the netlist that reduce resource utilization for a specific Intel
device.

Note: Physical synthesis increases compilation time. To reduce the impact on compilation
time, you can apply physical synthesis options to specific instances.

Related Information

Advanced Fitter Settings Dialog Box

4. Area Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

95

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#mwh1409959592244
http://quartushelp.altera.com/current/index.htm#mapIdTopics/mwh1465496452066.htm
http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_physical.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2.4.10. Guideline: Retarget or Balance DSP Blocks

A design might not fit because it requires too many DSP blocks. You can implement all
DSP block functions with logic cells, so you can retarget some of the DSP blocks to
logic to obtain a fit.

If the DSP function was created with the parameter editor, open the parameter editor
and edit the function so it targets logic cells instead of DSP blocks. The Intel Quartus
Prime software uses the DEDICATED_MULTIPLIER_CIRCUITRY IP core parameter to
control the implementation.

DSP blocks also can be inferred from your HDL code for multipliers, multiply-adders,
and multiply-accumulators. You can turn off this inference in your synthesis tool.
When you are using Intel Quartus Prime integrated synthesis, you can disable
inference by turning off the Auto DSP Block Replacement logic option for your
entire project. Click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced
Settings (Synthesis). Turn off Auto DSP Block Replacement. Alternatively, you
can disable the option for a specific block with the Assignment Editor.

The Intel Quartus Prime software also offers the DSP Block Balancing logic option,
which implements DSP block elements in logic cells or in different DSP block modes.
The default Auto setting allows DSP block balancing to convert the DSP block slices
automatically as appropriate to minimize the area and maximize the speed of the
design. You can use other settings for a specific node or entity, or on a project-wide
basis, to control how the Intel Quartus Prime software converts DSP functions into
logic cells and DSP blocks. Using any value other than Auto or Off overrides the
DEDICATED_MULTIPLIER_CIRCUITRY parameter used in IP core variations.

4.2.4.11. Guideline: Use a Larger Device

If a successful fit cannot be achieved because of a shortage of routing resources, you
might require a larger device.

4.2.5. Routing

Resolve routing resource problems with these guidelines.

4.2.5.1. Guideline: Set Auto Packed Registers to Sparse or Sparse Auto

The Auto Packed Registers option reduces LE or ALM count in a design. You can set
this option by clicking Assignment ➤ Settings ➤ Compiler Settings ➤ Advanced
Settings (Fitter).

Related Information

Auto Packed Registers logic option

4.2.5.2. Guideline: Set Fitter Aggressive Routability Optimizations to Always

The Fitter Aggressive Routability Optimization option is useful if your design does
not fit due to excessive routing wire utilization.

If there is a significant imbalance between placement and routing time (during the
first fitting attempt), it might be because of high wire utilization. Turning on the Fitter
Aggressive Routability Optimizations option can reduce your compilation time.

4. Area Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

96

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_register_packing.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

On average, this option can save up to 6% wire utilization, but can also reduce
performance by up to 4%, depending on the device.

Related Information

Fitter Aggressive Routability Optimizations logic option

4.2.5.3. Guideline: Increase Router Effort Multiplier

The Router Effort Multiplier controls how quickly the router tries to find a valid
solution. The default value is 1.0 and legal values must be greater than 0.

• Numbers higher than 1 help designs that are difficult to route by increasing the
routing effort.

• Numbers closer to 0 (for example, 0.1) can reduce router runtime, but usually
reduce routing quality slightly.

Experimental evidence shows that a multiplier of 3.0 reduces overall wire usage by
approximately 2%. Using a Router Effort Multiplier higher than the default value can
benefit designs with complex datapaths with more than five levels of logic. However,
congestion in a design is primarily due to placement, and increasing the Router Effort
Multiplier does not necessarily reduce congestion.

Note: Any Router Effort Multiplier value greater than 4 only increases by 10% for every
additional 1. For example, a value of 10 is actually 4.6.

4.2.5.4. Guideline: Remove Fitter Constraints

A design with conflicting constraints or constraints that are difficult to meet may not fit
in the targeted device. For example, a design might fail to fit if the location or Logic
Lock (Standard) assignments are too strict and not enough routing resources are
available on the device.

To resolve routing congestion caused by restrictive location constraints or Logic Lock
(Standard) region assignments, use the Routing Congestion task in the Chip Planner
to locate routing problems in the floorplan, then remove any internal location or Logic
Lock (Standard) region assignments in that area. If your design still does not fit, the
design is over-constrained. To correct the problem, remove all location and Logic Lock
(Standard) assignments and run successive compilations, incrementally constraining
the design before each compilation. You can delete specific location assignments in the
Assignment Editor or the Chip Planner. To remove Logic Lock (Standard) assignments
in the Chip Planner, in the Logic Lock (Standard) Regions Window, or on the
Assignments menu, click Remove Assignments. Turn on the assignment categories
you want to remove from the design in the Available assignment categories list.

Related Information

Analyzing and Optimizing the Design Floorplan on page 102

4.2.5.5. Guideline: Optimize Synthesis for Area, Not Speed

In some cases, resynthesizing the design to improve the area utilization can also
improve the routability of the design. First, ensure that you have set your device and
timing constraints correctly in your synthesis tool. Ensure that you do not over
constrain the timing requirements for the design, particularly when the area utilization

4. Area Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

97

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_fitter_aggressive_routability_optimization.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

of the design is a concern. Synthesis tools generally try to meet the specified
requirements, which can result in higher device resource usage if the constraints are
too aggressive.

If resource utilization is an important concern, you can optimize for area instead of
speed.

• If you are using Intel Quartus Prime integrated synthesis, click Assignments ➤
Settings ➤ Compiler Settings ➤ Advanced Settings (Synthesis) and select
Balanced or Area for the Optimization Technique.

• If you want to reduce area for specific modules in your design using the Area or
Speed setting while leaving the default Optimization Technique setting at
Balanced, use the Assignment Editor.

• You can also use the Speed Optimization Technique for Clock Domains logic
option to specify that all combinational logic in or between the specified clock
domain(s) is optimized for speed.

• In some synthesis tools, not specifying an fMAX requirement can result in lower
resource utilization.

Optimizing for area or speed can affect the register-to-register timing performance.

Note: In the Intel Quartus Prime software, the Balanced setting typically produces
utilization results that are very similar to those produced by the Area setting, with
better performance results. The Area setting can give better results in some cases.

The Intel Quartus Prime software provides additional attributes and options that can
help improve the quality of your synthesis results.

Related Information

Intel Quartus Prime Integrated Synthesis

4.2.5.6. Guideline: Optimize Source Code

If your design does not fit because of routing problems and the methods described in
the preceding sections do not sufficiently improve the routability of the design, modify
the design at the source to achieve the desired results. You can often improve results
significantly by making design-specific changes to your source code, such as
duplicating logic or changing the connections between blocks that require significant
routing resources.

4.2.5.7. Guideline: Use a Larger Device

If a successful fit cannot be achieved because of a shortage of routing resources, you
might require a larger device.

4.3. Scripting Support

You can run procedures and assign settings described in this chapter in a Tcl script.
You can also run procedures at a command prompt. For detailed information about
scripting command options, refer to the Intel Quartus Prime command-line and Tcl API
Help browser.

4. Area Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

98

https://www.intel.com/content/www/us/en/docs/programmable/683283/current/integrated-synthesis.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp

You can specify many of the options described in this section either in an instance,
or at a global level, or both.

2. Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF variable name> <value>

3. Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF variable name> <value> \ -to <instance
name>

Note: If the <value> field includes spaces (for example, ‘Standard Fit’), you must enclose
the value in straight double quotation marks.

Related Information

• Tcl Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

• Command Line Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

4.3.1. Initial Compilation Settings

Use the Intel Quartus Prime Settings File (.qsf) variable name in the Tcl assignment
to make the setting along with the appropriate value. The Type column indicates
whether the setting is supported as a global setting, an instance setting, or both.

Table 16. Advanced Compilation Settings

Setting Name .qsf File Variable Name Values Type

Placement Effort Multiplier PLACEMENT_EFFORT_MULTIPLIER Any positive, non-zero value Global

Router Effort Multiplier ROUTER_EFFORT_MULTIPLIER Any positive, non-zero value Global

Router Timing Optimization level ROUTER_TIMING_OPTIMIZATION_LEVEL NORMAL, MINIMUM, MAXIMUM Global

Final Placement Optimization FINAL_PLACEMENT_OPTIMIZATION ALWAYS, AUTOMATICALLY, NEVER Global

4. Area Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

99

https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.3.2. Resource Utilization Optimization Techniques

This table lists QSF assignments and applicable values for Resource Utilization
Optimization settings:

Table 17. Resource Utilization Optimization Settings

Setting Name .qsf File Variable Name Values Type

Auto Packed
Registers(1)

QII_AUTO_PACKED_REGISTERS AUTO, OFF, NORMAL,
MINIMIZE AREA,
MINIMIZE AREA WITH
CHAINS,SPARSE,
SPARSE AUTO

Global,
Instance

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Perform Physical
Synthesis for
Combinational Logic
for Reducing Area
(no Intel Arria 10
support)

PHYSICAL_SYNTHESIS_COMBO_LOGIC_FOR_AREA ON, OFF Global,
Instance

Perform Physical
Synthesis for
Mapping Logic to
Memory (no Intel
Arria 10 support)

PHYSICAL_SYNTHESIS_MAP_LOGIC_TO_MEMORY_FOR
AREA

ON, OFF Global,
Instance

Optimization
Technique

<device family name>_OPTIMIZATION_TECHNIQUE AREA, SPEED,
BALANCED

Global,
Instance

Speed Optimization
Technique for Clock
Domains

SYNTH_CRITICAL_CLOCK ON, OFF Instance

State Machine
Encoding

STATE_MACHINE_PROCESSING AUTO, ONE-HOT,
GRAY, JOHNSON,
MINIMAL BITS, ONE-
HOT, SEQUENTIAL,
USER-ENCODE

Global,
Instance

Auto RAM
Replacement

AUTO_RAM_RECOGNITION ON, OFF Global,
Instance

Auto ROM
Replacement

AUTO_ROM_RECOGNITION ON, OFF Global,
Instance

Auto Shift Register
Replacement

AUTO_SHIFT_REGISTER_RECOGNITION ON, OFF Global,
Instance

Auto Block
Replacement

AUTO_DSP_RECOGNITION ON, OFF Global,
Instance

Number of
Processors for
Parallel Compilation

NUM_PARALLEL_PROCESSORS Integer between 1 and
16 inclusive, or ALL

Global

(1) Allowed values for this setting depend on the device family that you select.

4. Area Optimization

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.4. Area Optimization Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.
• Divided topic: Resource Utilization into topics: Resource Utilization

Information, Flow Summary Report, Fitter Reports, Analysis and
Synthesis Reports, and Compilation Messages.

2018.07.03 18.0.0 Fixed typo and added links in topic Guideline: Retarget Memory Blocks.

2017.05.08 17.0.0 • Revised topics: Resolving Resource Utilization Issues, Guideline:
Optimize Synthesis for Area, Not Speed

2016.05.02 16.0.0 • Stated limitations about deprecated physical synthesis options.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

June 2014 14.0.0 • Removed Cyclone III and Stratix III devices references.
• Removed Macrocell-Based CPLDs related information.
• Updated template.

May 2013 13.0.0 Initial release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

4. Area Optimization

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

101

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Analyzing and Optimizing the Design Floorplan
As FPGA designs grow larger in density, the ability to analyze the design for
performance, routing congestion, and logic placement is critical to meet the design
requirements. This chapter discusses how the Chip Planner and Logic Lock (Standard)
regions help you improve your design's floorplan.

Design floorplan analysis helps to close timing, and ensures optimal performance in
highly complex designs. With analysis capability, the Intel Quartus Prime Chip Planner
helps you close timing quickly on your designs. You can use the Chip Planner together
with Logic Lock (Standard) regions to compile your designs hierarchically and assist
with floorplanning. Additionally, use partitions to preserve placement and routing
results from individual compilation runs.

You can perform design analysis, as well as create and optimize the design floorplan
with the Chip Planner. To make I/O assignments, use the Pin Planner.

Related Information

Managing Device I/O Pins

5.1. Design Floorplan Analysis in the Chip Planner

The Chip Planner simplifies floorplan analysis by providing visual display of chip
resources. With the Chip Planner, you can view post-compilation placement,
connections, and routing paths.

The Chip Planner allows you to:

• Make assignment changes, such as creating and deleting resource assignments.

• Perform post-compilation changes such as creating, moving, and deleting logic
cells and I/O atoms.

• Perform power and design analyses.

• Implement ECOs.

• Change connections between resources and make post-compilation changes to the
properties of logic cells, I/O elements, PLLs, RAMs, and digital signal processing
(DSP) blocks.

The Chip Planner showcases:

• Logic Lock (Standard) regions
• Relative resource usage
• Detailed routing information
• Fan-in and fan-out connections between nodes

• Timing paths between registers
• Delay estimates for paths
• Routing congestion information

683230 | 2018.11.12

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683492/current/managing-device-i-o-pins.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

5.1.1. Starting the Chip Planner

To start the Chip Planner, select Tools ➤ Chip Planner. You can also start the Chip
Planner by the following methods:

• Click the Chip Planner icon on the Intel Quartus Prime software toolbar.

• In the following tools, right-click any chip resource and select Locate ➤ Locate in
Chip Planner:

— Design Partition Planner

— Compilation Report

— Logic Lock (Standard) Regions Window

— Technology Map Viewer

— Project Navigator window

— RTL source code

— Node Finder

— Simulation Report

— RTL Viewer

— Report Timing panel of the Timing Analyzer

5.1.2. Chip Planner GUI Components

5.1.2.1. Chip Planner Toolbar

The Chip Planner toolbar provides powerful tools for visual design analysis. You can
access Chip Planner commands either from the View or the Shortcut menu, or by
clicking the icons in the toolbars.

5.1.2.2. Layers Settings and Editing Modes

The Chip Planner allows you to control the display of resources. To determine the
operations that you can perform, use the Editing Mode .

Layers Settings Pane

With the Layers Settings pane, you can manage the graphic elements that the Chip
Planner displays.

You open the Layers Settings pane by clicking View ➤ Layers Settings. The
Layers Settings pane offers layer presets, which group resources that are often used
together. The Basic, Detailed, and Floorplan Editing default presets are useful for
general assignment-related activities. You can also create custom presets tailored to
your needs. The Design Partition Planner preset is optimized for specific activities.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Editing Mode

The Chip Planner's Editing Mode determines the operations that you can perform.
The Assignment editing mode allows you to make assignment changes that are
applied by the Fitter during the next place and route operation. The ECO editing mode
allows you to make post-compilation changes, commonly referred to as engineering
change orders (ECOs).

Select the editing mode appropriate for the work that you want to perform, and a
preset that displays the resources that you want to view, in a level of detail
appropriate for your design.

Related Information

• Viewing Architecture-Specific Design Information on page 105

• Layers Settings Dialog Box

5.1.2.3. Locate History Window

As you optimize your design floorplan, you might have to locate a path or node in the
Chip Planner more than once. The Locate History window lists all the nodes and
paths you have displayed using a Locate in Chip Planner command, providing easy
access to the nodes and paths of interest to you.

If you locate a required path from the Timing Analyzer Report Timing pane, the
Locate History window displays the required clock path. If you locate an arrival path
from the Timing Analyzer Report Timing pane, the Locate History window
displays the path from the arrival clock to the arrival data. Double-clicking a node or
path in the Locate History window displays the selected node or path in the Chip
Planner.

5.1.2.4. Chip Planner Floorplan Views

The Chip Planner uses a hierarchical zoom viewer that shows various abstraction levels
of the targeted Intel device. As you zoom in, the level of abstraction decreases,
revealing more details about your design.

Bird’s Eye View

The Bird’s Eye View displays a high-level picture of resource usage for the entire chip
and provides a fast and efficient way to navigate between areas of interest in the Chip
Planner.

The Bird’s Eye View is particularly useful when the parts of your design that you want
to view are at opposite ends of the chip, and you want to quickly navigate between
resource elements without losing your frame of reference.

Properties Window

The Properties window displays detailed properties of the objects (such as atoms,
paths, Logic Lock (Standard) regions, or routing elements) currently selected in the
Chip Planner. To display the Properties window, right-click the object and select View
➤ Properties.

Related Information

Bird's Eye View Window

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

104

http://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#optimize/ace/acv_db_layers_settings.htm
http://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#optimize/ace/acv_com_birds_eye.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.3. Viewing Architecture-Specific Design Information

The Chip Planner allows you to view architecture-specific information related to your
design. By enabling the options in the Layers Settings pane, you can view:

• Device routing resources used by your design—View how blocks are
connected, as well as the signal routing that connects the blocks.

• LE configuration—View logic element (LE) configuration in your design. For
example, you can view which LE inputs are used; whether the LE utilizes the
register, the look-up table (LUT), or both; as well as the signal flow through the
LE.

• ALM configuration—View ALM configuration in your design. For example, you
can view which ALM inputs are used; whether the ALM utilizes the registers, the
upper LUT, the lower LUT, or all of them. You can also view the signal flow through
the ALM.

• I/O configuration—View device I/O resource usage. For example, you can view
which components of the I/O resources are used, whether the delay chain settings
are enabled, which I/O standards are set, and the signal flow through the I/O.

• PLL configuration—View phase-locked loop (PLL) configuration in your design.
For example, you can view which control signals of the PLL are used with the
settings for your PLL.

• Timing—View the delay between the inputs and outputs of FPGA elements. For
example, you can analyze the timing of the DATAB input to the COMBOUT output.

In addition, you can modify the following device properties with the Chip Planner:

• LEs and ALMs

• I/O cells

• PLLs

• Registers in RAM and DSP blocks

• Connections between elements

• Placement of elements

For more information about LEs, ALMs, and other resources of an FPGA device,
refer to the relevant device handbook.

Related Information

• Layers Settings and Editing Modes on page 103

• Layers Settings Dialog Box

5.1.4. Viewing Available Clock Networks in the Device

When you enable a clock region layer in the Layers Settings pane, you display the
areas of the chip that are driven by global and regional clock networks. When the
selected device does not contain a given clock region, the option for that category is
unavailable in the dialog box.

This global clock display feature is available for Arria V, Intel Arria 10, Cyclone V,
Stratix IV, and Stratix V device families.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

105

http://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#optimize/ace/acv_db_layers_settings.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 34. Clock Regions

• Depending on the clock layers that you activate in the Layers Settings pane, the
Chip Planner displays regional and global clock regions in the device, and the
connectivity between clock regions, pins, and PLLs.

• Clock regions appear as rectangular overlay boxes with labels indicating the clock
type and index. Select a clock network region by clicking the clock region. The
clock-shaped icon at the top-left corner indicates that the region represents a
clock network region.

• Spine/sector clock regions have a dotted vertical line in the middle. This dotted
line indicates where two columns of row clocks meet in a sector clock.

• To change the color in which the Chip Planner displays clock regions, select Tools
➤ Options ➤ Colors ➤ Clock Regions.

Related Information

• Spine Clock Limitations on page 72

• Layers Settings and Editing Modes on page 103

• Report Spine Clock Utilization dialog box (Chip Planner)

5.1.5. Viewing Routing Congestion

The Report Routing Utilization task allows you to determine the percentage of
routing resources in use following a compilation. This feature can identify zones with
lack of routing resources, helping you to make design changes to meet routing
congestion design requirements.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

106

http://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#optimize/ace/acv_db_report_spine_clock_utilization.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To view the routing congestion in the Chip Planner:

1. In the Tasks pane, double-click the Report Routing Utilization command to
launch the Report Routing Utilization dialog box.

2. Click Preview in the Report Routing Utilization dialog box to preview the
default congestion display.

3. Change the Routing Utilization Type to display congestion for specific
resources.
The default display uses dark blue for 0% congestion (blue indicates zero
utilization) and red for 100%. You can adjust the slider for Threshold
percentage to change the congestion threshold level.

The congestion map helps you determine whether you can modify the floorplan, or
modify the RTL to reduce routing congestion. Consider:

• The routing congestion map uses the color and shading of logic resources to
indicate relative resource utilization; darker shading represents a greater
utilization of routing resources. Areas where routing utilization exceeds the
threshold value that you specify in the Report Routing Utilization dialog box
appear in red.

• To identify a lack of routing resources, you must investigate each routing
interconnect type separately by selecting each interconnect type in turn in the
Routing Utilization Settings dialog box.

• The Compiler's messages contain information about average and peak
interconnect usage. Peak interconnect usage over 75%, or average interconnect
usage over 60%, can indicate difficulties fitting your design. Similarly, peak
interconnect usage over 90%, or average interconnect usage over 75%, show
increased chances of not getting a valid fit.

Related Information

Viewing Routing Resources on page 111

5.1.6. Viewing I/O Banks

To view the I/O bank map of the device in the Chip Planner, double-click Report All
I/O Banks in the Tasks pane.

5.1.7. Viewing High-Speed Serial Interfaces (HSSI)

For selected device families, tThe Chip Planner displays a detailed block view of the
receiver and transmitter channels of the high-speed serial interfaces. To display the
HSSI block view, double-click Report HSSI Block Connectivity in the Tasks pane.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 35. Intel Arria 10 HSSI Channel Blocks

5.1.8. Viewing the Source and Destination of Placed Nodes

The Chip Planner allows you to view the registered fan-in or fan-outs of nodes in
compiled designs with the Report Registered Connections task. This report is
different from the Generate Fanin/Fanout connections report in that the source
and destination nodes appear without connection lines, which may obscure the view.

1. In the Chip Planner, select one or more nodes.

2. In the Task pane, double-click Report Registered Connections.

3. Select the options from the dialog box, and click OK.

The Reports pane displays the registered source and destination nodes. Turn on or off
to switch visibility in the graphic view.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 36. Report Registered Connections

Turn on or off

Related Information

• Viewing Fan-In and Fan-Out Connections of Placed Resources on page 109

• Expand Connections Command (View Menu)

5.1.9. Viewing Fan-In and Fan-Out Connections of Placed Resources

Displays the atoms that fan-in to or fan-out from a resource, including connectivity
lines.

To display the fan-in or fan-out connections from a resource you selected,

1. In the Chip Planner toolbar, click the Generate Fan-In Connections icon or

the Generate Fan-Out Connections icon.

2. To remove other connections that appear on the Chip Planner view, click the Clear

Unselected Connections icon.

You can also perform this actions from the Chip Planner View menu.

Related Information

• Viewing the Source and Destination of Placed Nodes on page 108

• Expand Connections Command (View Menu)

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

109

http://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#mapIdTopics/kpc1534270770249.htm
http://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#mapIdTopics/kpc1534270770249.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.10. Generating Immediate Fan-In and Fan-Out Connections

Displays the immediate fan-in or fan-out connection for the selected atom.

For example, when you view the immediate fan-in for a logic resource, you see the
routing resource that drives the logic resource. You can generate immediate fan-ins
and fan-outs for all logic resources and routing resources.

• To display the immediate fan-in or fan-out connections, click View ➤ Generate
Immediate Fan-In Connections or View ➤ Generate Immediate Fan-Out
Connections.

• To remove the connections displayed, use the Clear Unselected Connections

icon in the Chip Planner toolbar.

5.1.11. Exploring Paths in the Chip Planner

Use the Chip Planner to explore paths between logic elements. The following examples
use the Chip Planner to traverse paths from the Timing Analysis report.

5.1.11.1. Analyzing Connections for a Path

To determine the elements forming a selected path or connection in the Chip Planner,

click the Expand Connections icon in the Chip Planner toolbar.

Related Information

Expand Connections Command (View Menu)

5.1.11.2. Locate Path from the Timing Analysis Report to the Chip Planner

To locate a path from the Timing Analysis report to the Chip Planner, perform the
following steps:

1. Select the path you want to locate in the Timing Analysis report.

2. Right-click the path and point to Locate Path ➤ Locate in Chip Planner.
The path appears in the Locate History window of the Chip Planer.

Figure 37. Path List in the Locate History Window

Related Information

Displaying Path Reports with the Timing Analyzer on page 60

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

110

http://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#optimize/ace/acv_com_expand.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.11.3. Show Delays

With the Show Delays feature, you can view timing delays for paths appearing in
Timing Analyzer reports. To access this feature, click View ➤ Show Delays in the

main menu. Alternatively click the Show Delays icon in the Chip Planner toolbar. To
see the partial delays on the selected path, click the “+” sign next to the path delay
displayed in the Locate History window.

For example, you can view the delay between two logic resources or between a logic
resource and a routing resource.

Figure 38. Show Delays Associated in a Timing Analyzer Path

5.1.11.4. Viewing Routing Resources

With the Chip Planner and the Locate History window, you can view the routing
resources that a path or connection uses. You can also select and display the Arrival
Data path and the Arrival Clock path.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 39. Show Physical Routing

In the Locate History window, right-click a path and select Show Physical Routing
to display the physical path. To adjust the display, right-click and select Zoom to
Selection.

Figure 40. Highlight Routing

To see the rows and columns where the Fitter routed the path, right-click a path and
select Highlight Routing.

Related Information

Viewing Routing Congestion on page 106

5.1.12. Viewing Assignments in the Chip Planner

You can view location assignments in the Chip Planner by using the Assignment
editing mode and the Floorplan Editing preset in the Layers Settings pane.

The Chip Planner displays assigned resources in a predefined color (gray, by default).

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 41. Viewing Assignments in the Chip Planner

To create or move an assignment, or to make node and pin location assignments to
Logic Lock (Standard) regions, drag the selected resource to a new location. The Fitter
applies the assignments that you create during the next place-and-route operation.

5.1.13. Viewing High-Speed and Low-Power Tiles in the Chip Planner

Some Intel devices have ALMs that can operate in either high-speed mode or low-
power mode. The power mode is set during the fitting process in the Intel Quartus
Prime software. These ALMs are grouped together to form larger blocks, called “tiles”.

To view a power map, double-click Tasks ➤ Core Reports ➤ Report High-Speed/
Low-Power Tiles after running the Fitter. The Chip Planner displays low-power and
high-speed tiles in contrasting colors; yellow tiles operate in a high-speed mode, while
blue tiles operate in a low-power mode.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 42. Viewing High-Speed and Low Power Tiles in a Stratix Device

Yellow Tiles Operate in
High Speed Mode

Related Information

AN 514: Power Optimization in Stratix IV FPGAs

5.1.14. Viewing Design Partition Placement

With the Report Design Partitions command, you can view the physical placement
of design partitions using the same color map as the Design Partition Planner.

The Report Design Partitions Advanced command opens the Report Design
Partitions Advanced dialog box that allows you to select a partition and generate a
report of the pins belonging to the partition. It highlights the selected partition's
boundary ports and pins in the Chip Planner, and optionally reports the routing
utilization and routing element details.

5.2. Logic Lock (Standard) Regions

Logic Lock (Standard) regions are floorplan location constraints. When you assign
instances or nodes to a Logic Lock (Standard) region, you direct the Fitter to place
those instances or nodes within the region. A floorplan can contain multiple Logic Lock
(Standard) regions.

You can use the Design Partition Planner in conjunction with Logic Lock (Standard)
regions to create a floorplan for your design.

Related Information

Creating Logic Lock (Standard) Regions on page 115

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

114

http://www.altera.com/literature/an/an514.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.2.1. Attributes of a Logic Lock (Standard) Region

The following table lists the attributes of a Logic Lock (Standard) region. In the Intel
Quartus Prime software, the Logic Lock (Standard) Regions window displays the
attributes of all the Logic Lock (Standard) regions in the design.

Table 18. Attributes of Logic Lock (Standard) Regions

Name Value Behavior

Size Auto | Fixed Auto allows the Intel Quartus Prime software to determine the
appropriate size of a region given its contents.
Fixed regions have a shape and size that you define.

Width Number of columns Specifies the width of the Logic Lock (Standard) region.

Height Number of rows Specifies the height of the Logic Lock (Standard) region.

State Floating | Locked Floating allows the Intel Quartus Prime software to determine the
location of the region on the device. Floating regions appear with a
dashed boundary in the floorplan.
Locked allows you to specify the location of the region. Locked
regions appear with a solid boundary in the floorplan. A Locked
region must have a Fixed size.

Origin Any Floorplan Location |
Undetermined

Specifies the location of the Logic Lock (Standard) region on the
floorplan. The origin is at the lower left corner of the Logic Lock
(Standard) region.

Reserved Off | On Prevents the Fitter from placing other logic in the region.

Related Information

Logic Lock (Standard) Regions Window on page 124

5.2.2. Creating Logic Lock (Standard) Regions

You can define a Logic Lock (Standard) region by its height, width, and location;
Alternatively, you can specify the size or location of a region, or both, or the Intel
Quartus Prime software can generate these properties automatically. The Intel Quartus
Prime software bases the size and location of a region on the contents of the region
and the timing requirements of the module.

The Intel Quartus Prime software displays Logic Lock (Standard) regions with colors
indicating the percentage of resources available in the region. An orange Logic Lock
(Standard) region indicates a nearly full Logic Lock (Standard) region.

Intel Quartus Prime software cannot automatically define the size of a region if the
location is Locked. Therefore, if you want to specify the exact location of the region,
you must also specify the size.

5.2.2.1. Creating Logic Lock (Standard) Regions with the Chip Planner

1. Click View ➤ Logic Lock (Standard) Regions ➤ Create Logic Lock
(Standard) Region

2. Click and drag on the Chip Planner floorplan to create a region of your preferred
location and size

After you create the region, you can define the region shape and then assign a single
entity to the region. The order that you assign the entity or define the shape does not
matter.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.2.2.2. Creating Logic Lock (Standard) Regions with the Project Navigator

1. Perform either a full compilation or analysis and elaboration on the design.

2. If the Project Navigator is not already open, click View ➤ Utility Windows ➤
Project Navigator. The Project Navigator displays the hierarchy of the design.

3. With the design hierarchy fully expanded, right-click any design entity, and click
Create New Logic Lock (Standard) Region.

4. Assign the entity to the new region.

The new region has the same name as the entity.

5.2.2.3. Creating Logic Lock (Standard) Regions with the Logic Lock (Standard)
Regions Window

1. Click Assignments ➤ Logic Lock (Standard) Regions Window.

2. In the Logic Lock (Standard) Regions window, click <<new>>.

After you create the region, you can define the region shape and then assign a single
entity to the region. The order that you assign the entity or define the shape does not
matter.

Related Information

Logic Lock (Standard) Regions Window on page 124

5.2.2.4. Defining Routing Regions

A routing region is an element of a Logic Lock region that specifies the routing area. A
routing region must encompass the existing Logic Lock placement region. Routing
regions cannot be set as reserved. To define the routing region, double-click the
Routing Region cell in the Logic Lock (Standard) Regions window, and select an
option from the drop-down menu.

Valid routing region options are:

Table 19. Routing Region Options

Option Description

Unconstrained (default) Allows the fitter to use any available routes on the device.

Whole Chip Same as Unconstrained, but writes the constraint in the Intel Quartus Prime settings file
(.qsf).

Fixed with Expansion Follows the outline of the placement region. The routing region scales by a number of
rows/cols larger than the placement region.

Custom Allows you to make a custom shape routing region around the Logic Lock region. When
you select the Custom option, the placement and routing regions move independently
in the Chip Planner. In this case, move the placement and routing regions by selecting
both using the Shift key.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 43. Routing Regions

Fixed with Expansion
+2

Custom Routing

5.2.2.5. Noncontiguous Logic Lock (Standard) Regions

You can create disjointed regions by using the Logic Lock (Standard) region
manipulation tools. Noncontiguous regions act as a single Logic Lock (Standard)
region for all Logic Lock (Standard) region attributes.

Figure 44. Noncontiguous Logic Lock (Standard) Region

Related Information

Merging Logic Lock (Standard) Regions on page 118

5.2.2.6. Considerations on Using Auto Sized Regions

If you use Auto Sized Logic Lock (Standard) regions, take into account:

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Auto/Floating regions cannot be reserved.

• Verify that your Logic Lock (Standard) region is not empty. If you do not assign
any instance to the region, the Fitter reduces the size to 0 by 0, making the region
invalid.

• The region may or may not be associated with a partition. When you combine
partitions with Auto Sized Logic Lock (Standard) regions, you get flexibility to
solve your particular fitting challenges. However, every constraint that you add
reduces the solutions available, and too many constraints can result in the Fitter
not finding a solution. Some cases are:

— If a partition is preserved at synthesis or not preserved, the Logic Lock
(Standard) region confines the logic to a specific area, allowing the Fitter to
optimize the logic within the partition, and optimize the placement within the
Logic Lock (Standard) region.

— If a partition is preserved at placement, routed, or final; a Logic Lock
(Standard) region is not an effective placement boundary, because the
location of the partition's logic is fixed.

— However, if the Logic Lock (Standard) region is reserved, the Fitter avoids
placing other logic in the area, which can help you reduce resource
congestion.

• Once the outcome of the Logic Lock (Standard) region meets your specification,
you can:

— Convert the Logic Lock (Standard) region to Fixed Size.

— Leave the Logic Lock (Standard) region with Auto Sized attribute and use the
region as a “keep together” type of function.

— If the Logic Lock (Standard) region is also a partition, you can preserve the
place and route through the partition and remove the Logic Lock (Standard)
region entirely.

5.2.3. Customizing the Shape of Logic Lock Regions

To create custom shaped Logic Lock regions, you can perform logic operations. Non-
rectangular Logic Lock (Standard) regions can help you exclude certain resources, or
place parts of your design around specific device resources to improve performance.

Attention: There is no undo feature for the Logic Lock (Standard) shapes for 17.1.

5.2.3.1. Merging Logic Lock (Standard) Regions

To merge two or more Logic Lock (Standard) regions, perform the following steps:

1. Ensure that no more than one of the regions that you intend to merge has logic
assignments.

2. Arrange the regions into the locations where you want the resultant region.

3. Select all the individual regions that you want to merge by clicking each of them
while pressing the Shift key.

4. Right-click the title bar of any of the selected Logic Lock (Standard) regions and
select Logic Lock (Standard) Regions ➤ Merge Logic Lock (Standard)
Region. The individual regions that you select merge to create a single new
region.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

118

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: By default, the new Logic Lock (Standard) region has the same name as the
component region containing the greatest number of resources; however, you can
rename the new region. In the Logic Lock (Standard) Regions Window, the new
region is shown as having a Custom Shape.

Figure 45. Using the Merge Logic Lock (Standard) Region command

Related Information

Creating Logic Lock (Standard) Regions on page 115

5.2.3.2. Noncontiguous Logic Lock (Standard) Regions

You can create disjointed regions by using the Logic Lock (Standard) region
manipulation tools. Noncontiguous regions act as a single Logic Lock (Standard)
region for all Logic Lock (Standard) region attributes.

Figure 46. Noncontiguous Logic Lock (Standard) Region

Related Information

Merging Logic Lock (Standard) Regions on page 118

5.2.4. Placing Logic Lock (Standard) Regions

A fixed region must contain all resources required by the design block assigned to the
region. Although the Intel Quartus Prime software can automatically place and size
Logic Lock (Standard) regions to meet resource and timing requirements, you can
manually place and size regions to meet your design requirements.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you manually place or size a Logic Lock (Standard) region:

• Logic Lock (Standard) regions with pin assignments must be placed on the
periphery of the device, adjacent to the pins. You must also include the I/O block
within the Logic Lock (Standard) Region.

• Floating Logic Lock (Standard) regions can overlap with their ancestors or
descendants, but not with other floating Logic Lock (Standard) regions.

5.2.5. Placing Device Resources into Logic Lock (Standard) Regions

You can assign an entity in the design to only one Logic Lock (Standard) region, but
the entity can inherit regions by hierarchy. This hierarchy allows a reserved region to
have a sub region without reserving the resources in the sub region.

If a Logic Lock (Standard) region boundary includes part of a device resource, the
Intel Quartus Prime software allocates the entire resource to that Logic Lock
(Standard) region. When the Intel Quartus Prime software places a floating auto-sized
region, it places the region in an area that meets the requirements of the contents of
the Logic Lock (Standard) region.

To add an instance using the Logic Lock Region window, right-click the region and
select Logic Lock Properties ➤ Add. Alternatively, in the Intel Quartus Prime
software you can drag entities from the Hierarchy viewer into a Logic Lock (Standard)
region's name field in the Logic Lock (Standard) Regions Window.

5.2.5.1. Empty Logic Lock Regions

Intel Quartus Prime allows you to have Logic Lock regions with no members. Empty
regions are a tool to manage space in the FPGA for future logic. This technique only
works when you set the regions to Reserved

Some reasons to use empty Logic Lock regions are:

• Preliminary floorplanning.

• Complex incremental builds.

• Team based design and interconnect logic.

• Confining logic placements.

Since Logic Lock regions do not reserve any routing resources, the Fitter may use the
area for routing purposes.

Use the Core Only attribute for empty Logic Lock regions. When you include
periphery resources in empty regions, you restrict the periphery component
placement, which can result in a no fit design. After you name the empty region, you
can perform the same manipulations as with any populated Logic Lock Region.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 47. Logic Placed Outside of an Empty region

The figure shows an empty Logic Lock region and the logic around it. However, some
IOs, HSSIO, and PLLs are in the empty region. This placement happens because the
output port connects to the IO, and the IO is always part of the root_partition (top-
level partition).

5.2.5.2. Pin Assignment

A Logic Lock (Standard) region incorporates all device resources within its boundaries,
including memory and pins. The Intel Quartus Prime Standard Edition software
automatically includes pins when you assign an instance to a region. You can manually
exclude pins with a Core Only assignment.

Note: Pin assignments to Logic Lock (Standard) regions are effective only in fixed and locked
regions. Pin assignments to floating regions do not influence the placement of the
region.

You can assign an entity in the design to only one Logic Lock (Standard) region, but
the entity can inherit regions by hierarchy. This hierarchy allows a reserved region to
have a subregion without reserving the resources in the subregion.

When the Intel Quartus Prime software places a floating auto-sized region, it places
the region in an area that meets the requirements of the contents of the Logic Lock
(Standard) region.

5.2.5.3. Reserved Logic Lock (Standard) Regions

The Reserved attribute instructs the Fitter to only place the entities and nodes that
you specifically assigned to the Logic Lock (Standard) region in the Logic Lock
(Standard) region.

The Intel Quartus Prime software honors all entity and node assignments to Logic Lock
(Standard) regions. Occasionally entities and nodes do not occupy an entire region,
which leaves some of the region’s resources unoccupied.

To increase the region’s resource utilization and performance, Intel Quartus Prime
software by default fills the unoccupied resources with other nodes and entities that
have not been assigned to another region. To prevent this behavior, turn on Reserved
on theLogic Lock (Standard) Region Properties ➤ General tab.

5.2.5.4. Excluded Resources

The Excluded Resources feature allows you to easily exclude specific device resources
such as DSP blocks or M4K memory blocks from a Logic Lock (Standard) region.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, you can assign a specific entity to a Logic Lock (Standard) region but
allow the DSP blocks of that entity to be placed anywhere on the device. Use the
Excluded Resources feature on a per-Logic Lock (Standard) region member basis.

To exclude certain device resources from an entity, in the Logic Lock (Standard)
Region Properties dialog box, highlight the entity in the Design Element column,
and click Edit. In the Edit Node dialog box, under Excluded Element Types, click
the Browse button. In the Excluded Resources Element Types dialog box, you can
select the device resources you want to exclude from the entity. When you have
selected the resources to exclude, the Excluded Resources column is updated in the
Logic Lock (Standard) Region Properties dialog box to reflect the excluded
resources.

Note: The Excluded Resources feature prevents certain resource types from being included
in a region, but it does not prevent the resources from being placed inside the region
unless you set the region’s Reserved property to On. To indicate to the Fitter that
certain resources are not required inside a Logic Lock (Standard) region, define a
resource filter.

5.2.5.5. Logic Lock (Standard) Assignment Precedence

You can encounter conflicts during the assignment of entities and nodes to Logic Lock
(Standard) regions. For example, an entire top-level entity might be assigned to one
region and a node within this top-level entity assigned to another region.

To resolve conflicting assignments, the Intel Quartus Prime software maintains an
order of precedence for Logic Lock (Standard) assignments. The following order of
precedence, from highest to lowest, applies:

1. Exact node-level assignments

2. Path-based and wildcard assignments

3. Hierarchical assignments

Note: To open the Priority dialog box, select Logic Lock (Standard) Regions Properties
➤ General ➤ Priority. You can change the priority of path-based and wildcard
assignments with the Up and Down buttons in the Priority dialog box. To prioritize
assignments between regions, you must select multiple Logic Lock (Standard) regions
and then open the Priority dialog box from the Logic Lock (Standard) Regions
Properties dialog box.

5.2.5.6. Virtual Pins

A virtual pin is an I/O element that the Compiler temporarily maps to a logic element,
and not to a pin during compilation. The software implements virtual pins as LUTs. To
assign a Virtual Pin, use the Assignment Editor. You can create virtual pins by
assigning the Virtual Pin logic option to an I/O element.

When you apply the Virtual Pin assignment to an input pin, the pin no longer appears
as an FPGA pin; the Compiler fixes the virtual pin to GND in the design. The virtual pin
is not a floating node.

Use virtual pins only for I/O elements in lower-level design entities that become nodes
after you import the entity to the top-level design; for example, when compiling a
partial design.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Virtual Pin logic option must be assigned to an input or output pin. If you assign
this option to a bidirectional pin, tri-state pin, or registered I/O element, Analysis &
Synthesis ignores the assignment. If you assign this option to a tri-state pin, the Fitter
inserts an I/O buffer to account for the tri-state logic; therefore, the pin cannot be a
virtual pin. You can use multiplexer logic instead of a tri-state pin if you want to
continue to use the assigned pin as a virtual pin. Do not use tri-state logic except for
signals that connect directly to device I/O pins.

In the top-level design, you connect these virtual pins to an internal node of another
module. By making assignments to virtual pins, you can place those pins in the same
location or region on the device as that of the corresponding internal nodes in the top-
level module. You can use the Virtual Pin option when compiling a Logic Lock
(Standard) module with more pins than the target device allows. The Virtual Pin
option can enable timing analysis of a design module that more closely matches the
performance of the module after you integrate it into the top-level design.

To display all assigned virtual pins in the design with the Node Finder, you can set
Filter Type to Pins: Virtual. To access the Node Finder from the Assignment Editor,
double-click the To field; when the arrow appears on the right side of the field, click
and select Node Finder.

Related Information

• Assigning Virtual Pins with a Tcl command on page 128

• Managing Device I/O Pins

• Node Finder Command (View Menu)

5.2.6. Hierarchical (Parent and Child) Logic Lock (Standard) Regions

To further constrain module locations, you can define a hierarchy for a group of
regions by declaring parent and child regions.

The Intel Quartus Prime software places a child region completely within the
boundaries of its parent region; a child region must be placed entirely within the
boundary of its parent. Additionally, parent and child regions allow you to further
improve the performance of a module by constraining nodes in the critical path of a
module.

To make one Logic Lock (Standard) region a child of another Logic Lock (Standard)
region, in the Logic Lock (Standard) Regions window, select the new child region and
dragging the new child region into its new parent region.

Note: The Logic Lock (Standard) region hierarchy does not have to be the same as the
design hierarchy.

You can create both auto-sized and fixed-sized Logic Lock (Standard) regions within a
parent Logic Lock (Standard) region; however, the parent of a fixed-sized child region
must also be fixed-sized. The location of a locked parent region is locked relative to
the device; the location of a locked child region is locked relative to its parent region.
If you change the parent’s location, the locked child’s origin changes, but maintains
the same placement relative to the origin of its parent. The location of a floating child
region can float within its parent. Complex region hierarchies might result in some
LABs not being used, effectively increasing the resource utilization in the device. Do
not create more levels of hierarchy than you need.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

123

https://www.intel.com/content/www/us/en/docs/programmable/683492/current/managing-device-i-o-pins.html
http://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#assign/unb/unb_com_node_finder.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.2.7. Additional Intel Quartus Prime Logic Lock (Standard) Design
Features

To complement the Logic Lock (Standard) Regions Window, the Intel Quartus
Prime software has additional features to help you design with Logic Lock (Standard)
regions.

5.2.7.1. Analysis and Synthesis Resource Utilization by Entity

The Compilation Report contains an Analysis and Synthesis Resource Utilization
by Entity section, which reports resource usage statistics, including entity-level
information. You can use this feature to verify that any Logic Lock (Standard) region
you manually create contains enough resources to accommodate all the entities you
assign to it.

5.2.7.2. Intel Quartus Prime Revisions Feature

When you evaluate different Logic Lock (Standard) regions in your design, you might
want to experiment with different configurations to achieve your desired results. The
Intel Quartus Prime Revisions feature allows you to organize the same project with
different settings until you find an optimum configuration.

To use the Revisions feature, choose Project ➤ Revisions. You can create a revision
from the current design or any previously created revisions. Each revision can have an
associated description. You can use revisions to organize the placement constraints
created for your Logic Lock (Standard) regions.

5.2.8. Logic Lock (Standard) Regions Window

The Logic Lock (Standard) Regions Window provides a summary of all Logic Lock
(Standard) regions defined in your design. Use the Logic Lock (Standard) Regions
Window to create, assign elements, and modify properties of a Logic Lock (Standard)
region.

Open the Logic Lock (Standard) Regions Window in the Chip Planner by clicking View
➤ Logic Lock (Standard) Window, and in Intel Quartus Prime by clicking
Assignments ➤ Logic Lock (Standard) Window.

Figure 48. Logic Lock (Standard) Regions Window

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Logic Lock (Standard) Regions Window also has a recommendations toolbar;
select a Logic Lock (Standard) region from the drop-down list in the recommendations
toolbar to display the relevant suggestions to optimize that Logic Lock (Standard)
region.

The Intel Quartus Prime software automatically creates a Logic Lock (Standard) region
that encompasses the entire device. This default region is labeled Root_Region, and
is locked and fixed.

You can customize the Logic Lock (Standard) Regions Window by dragging and
dropping the columns to change their order; you can also show and hide optional
columns by right-clicking any column heading and then selecting the appropriate
columns in the shortcut menu.

Logic Lock (Standard) Regions Properties Dialog Box

Use the Logic Lock (Standard) Regions Properties dialog box to view and modify
detailed information about your Logic Lock (Standard) region, such as which entities
and nodes are assigned to your region, and which resources are required.

To open the Logic Lock (Standard) Regions Properties dialog box, right-click the
region and select Logic Lock (Standard) Regions Properties....

Related Information

• Attributes of a Logic Lock (Standard) Region on page 115

• Creating Logic Lock (Standard) Regions with the Logic Lock (Standard) Regions
Window on page 116

• Logic Lock (Standard) Regions Window

5.3. Using Logic Lock (Standard) Regions in the Chip Planner

You can easily create Logic Lock (Standard) regions in the Chip Planner and assign
resources to them.

5.3.1. Viewing Connections Between Logic Lock (Standard) Regions in the
Chip Planner

You can view and edit Logic Lock (Standard) regions using the Chip Planner. To view
and edit Logic Lock (Standard) regions, use Floorplan Editing in the Layers
Settings window, or any layers setting mode that has the User-assigned Logic
Lock (Standard) regions setting enabled.

The Chip Planner shows the connections between Logic Lock (Standard) regions. By
default, you can view each connection as an individual line. You can choose to display
connections between two Logic Lock (Standard) regions as a single bundled
connection rather than as individual connection lines. To use this option, open the Chip
Planner and on the View menu, click Inter-region Bundles.

Related Information

Inter-region Bundles Dialog Box
For more information about the Inter-region Bundles dialog box, refer to Intel
Quartus Prime Help.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

125

http://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#optimize/lock/lock_db_logiclock_regions_window.html
http://quartushelp.altera.com/current/index.htm#optimize/ace/acv_db_generate_interregion_bundles.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.2. Using Logic Lock (Standard) Regions with the Design Partition
Planner

You can optimize timing in a design by placing entities that share significant logical
connectivity close to each other on the device.

By default, the Fitter usually places closely connected entities in the same area of the
device; however, you can use Logic Lock (Standard) regions, together with the Design
Partition Planner and the Chip Planner, to help ensure that logically connected entities
retain optimal placement from one compilation to the next.

You can view the logical connectivity between entities with the Design Partition
Planner, and the physical placement of those entities with the Chip Planner. In the
Design Partition Planner, you can identify entities that are highly interconnected, and
place those entities in a partition. In the Chip Planner, you can create Logic Lock
(Standard) regions and assign each partition to a Logic Lock (Standard) region,
thereby preserving the placement of the entities.

5.4. Scripting Support

You can run procedures and specify the settings described in this chapter in a Tcl
script. You can also run some procedures at a command prompt.

Related Information

• Tcl Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

• Command Line Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

5.4.1. Initializing and Uninitializing a Logic Lock (Standard) Region

You must initialize the Logic Lock (Standard) data structures before creating or
modifying any Logic Lock (Standard) regions and before executing any of the Tcl
commands listed below.

Use the following Tcl command to initialize the Logic Lock (Standard) data structures:

initialize_logiclock

Use the following Tcl command to uninitialize the Logic Lock (Standard) data
structures before closing your project:

uninitialize_logiclock

5.4.2. Creating or Modifying Logic Lock (Standard) Regions

Use the following Tcl command to create or modify a Logic Lock (Standard) region:

set_logiclock -auto_size true -floating true -region <my_region-name>

Note: The command in the above example sets the size of the region to auto and the state
to floating.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

126

https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you specify a region name that does not exist in the design, the command creates
the region with the specified properties. If you specify the name of an existing region,
the command changes all properties you specify and leaves unspecified properties
unchanged.

Related Information

Creating Logic Lock (Standard) Regions on page 115

5.4.3. Obtaining Logic Lock (Standard) Region Properties

Use the following Tcl command to obtain Logic Lock (Standard) region properties. This
example returns the height of the region named my_region:

get_logiclock -region my_region -height

5.4.4. Assigning Logic Lock (Standard) Region Content

Use the following Tcl commands to assign or change nodes and entities in a Logic Lock
(Standard) region. This example assigns all nodes with names matching fifo* to the
region named my_region.

set_logiclock_contents -region my_region -to fifo*

You can also make path-based assignments with the following Tcl command:

set_logiclock_contents -region my_region -from fifo -to ram*

5.4.5. Save a Node-Level Netlist for the Entire Design into a Persistent
Source File

Make the following assignments to cause the Intel Quartus Prime Fitter to save a
node-level netlist for the entire design into a .vqm file:

set_global_assignment-name LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON
set_global_assignment-name LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

Any path specified in the file name is relative to the project directory. For example,
specifying atom_netlists/top.vqm places top.vqm in the atom_netlists
subdirectory of your project directory.

A .vqm file is saved in the directory specified at the completion of a full compilation.

Note: The saving of a node-level netlist to a persistent source file is not supported for
designs targeting newer devices such as MAX V , Stratix IV, or Stratix V.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.6. Setting Logic Lock (Standard) Assignment Priority

Use the following Tcl code to set the priority for a Logic Lock (Standard) region’s
members. This example reverses the priorities of the Logic Lock (Standard) region in
your design.

set reverse [list]
for each member [get_logiclock_member_priority] {
 set reverse [insert $reverse 0 $member]
{
set_logiclock_member_priority $reverse

5.4.7. Assigning Virtual Pins with a Tcl command

Use the following Tcl command to turn on the virtual pin setting for a pin called
my_pin:

set_instance_assignment -name VIRTUAL_PIN ON -to my_pin

Related Information

• Virtual Pins on page 122

• Managing Device I/O Pins

• Node Finder Command (View Menu)

5.5. Analyzing and Optimizing the Design Floorplan Revision
History

The following revision history applies to this chapter:

Table 20. Document Revision History

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.
• Renamed topic: Generating Fan-In and Fan-Out Connections to Viewing

Fan-In and Fan-Out Connections of Placed Resources.

2018.05.07 18.0.0 • Added recommendations for using iterative methods for floorplanning.

2017.11.06 17.1.0 • Changed instances of LogicLock to Logic Lock (Standard).

2017.05.08 17.0.0 • Chapter reorganization and content update.
• Added figures: Clock Regions, Creating a Hole in a LogicLock Region,

Noncontiguous LogicLock Region, Routing Regions, Logic Placed Outside
of an Empty Region.

• Moved topic: Viewing Critical Paths to Timing Closure and Optimization
chapter and renamed to Critical Paths.

• Renamed topic: Creating Non-Rectangular LogicLock Plus Regions to
Merging LogicLock Plus Regions.

• Renamed topic: Chip Planner Overview to Design Floorplan Analysis in
the Chip Planner.

• Renamed chapter from Analyzing and Optimizing the Design Floorplan
with the Chip Planner to Analyzing and Optimizing the Design Floorplan.

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.

continued...

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

128

https://www.intel.com/content/www/us/en/docs/programmable/683492/current/managing-device-i-o-pins.html
http://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#assign/unb/unb_com_node_finder.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2015.05.04 15.0.0 Added information about color coding of LogicLock regions.

2014.12.15 14.1.0 Updated description of Virtual Pins assignment to clarify that assigned
input is not available.

June 2014 14.0.0 Updated format

November 2013 13.1.0 Removed HardCopy device information.

May 2013 13.0.0 Updated “Viewing Routing Congestion” section
Updated references to Quartus UI controls for the Chip Planner

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 • Updated for the 11.0 release.
Edited “LogicLock Regions”
Updated “Viewing Routing Congestion”
Updated “Locate History”
Updated Figures 15-4, 15-9, 15-10, and 15-13
Added Figure 15-6

December 2010 10.1.0 • Updated for the 10.1 release.

July 2010 10.0.0 • Updated device support information
• Removed references to Timing Closure Floorplan; removed “Design

Analysis Using the Timing Closure Floorplan” section
• Added links to online Help topics
• Added “Using LogicLock Regions with the Design Partition Planner”

section
• Updated “Viewing Critical Paths” section
• Updated several graphics
• Updated format of Document revision History table

November 2009 9.1.0 • Updated supported device information throughout
• Removed deprecated sections related to the Timing Closure Floorplan

for older device families. (For information on using the Timing Closure
Floorplan with older device families, refer to previous versions of the
Quartus Prime Handbook, available in the Documentation Archive.)

• Updated “Creating Nonrectangular LogicLock Regions” section
• Added “Selected Elements Window” section
• Updated table 12-1

May 2008 8.0.0 • Updated the following sections:
“Chip Planner Tasks and Layers”
“LogicLock Regions”
“Back-Annotating LogicLock Regions”
“LogicLock Regions in the Timing Closure Floorplan”

• Added the following sections:
“Reserve LogicLock Region”
“Creating Nonrectangular LogicLock Regions”
“Viewing Available Clock Networks in the Device”

• Updated Table 10–1
• Removed the following sections:

Reserve LogicLock Region Design Analysis Using the Timing Closure
Floorplan

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

5. Analyzing and Optimizing the Design Floorplan

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

130

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Netlist Optimizations and Physical Synthesis
The Intel Quartus Prime software offers netlist and physical synthesis optimizations
that improve performance of your design. Click to enable physical synthesis options
during fitting. This chapter also provides guidelines for applying netlist and physical
synthesis options, and for preserving compilation results through back-annotation.

Table 21. Netlist Optimization and Physical Synthesis Options

Options Location/Description

Enable physical synthesis options. Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings (Fitter).
Physical synthesis optimizations apply at different stages of the compilation flow,
either during synthesis, fitting, or both.

Enable netlist optimization options. Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis). Netlist optimizations operate with the atom netlist of your design,
which describes a design in terms of specific primitives. An atom netlist file can be an
Electronic Design Interchange Format (.edf) file or a Verilog Quartus Mapping
(.vqm) file generated by a third-party synthesis tool. Intel Quartus Prime synthesis
generates and internally uses the atom netlist internally

Note: Because the node names for primitives in the design can change when you use
physical synthesis optimizations, you should evaluate whether your design depends on
fixed node names. If you use a verification flow that might require fixed node names,
such as the Signal Tap Logic Analyzer, formal verification, or the Logic Lock (Standard)
based optimization flow (for legacy devices), disable physical synthesis options.

6.1. Physical Synthesis Optimizations

The Intel Quartus Prime Fitter places and routes the logic cells to ensure critical
portions of logic are close together and use the fastest possible routing resources.
However, routing delays are often a significant part of the typical critical path delay.
Physical synthesis optimizations take into consideration placement information,
routing delays, and timing information to determine the optimal placement. The Fitter
then focuses timing-driven optimizations at those critical parts of the design. The tight
integration of the synthesis and fitting processes is known as physical synthesis.

Some physical synthesis options affect only registered logic, while others affect only
combinational logic. Select options based on whether you want to keep the registers
intact. For example, if your verification flow involves formal verification, you might
want to keep the registers intact.

The following sections describe the physical synthesis optimizations available in the
Intel Quartus Prime software, and how they can help improve performance and fitting
for the selected device.

Related Information

Compiler Settings Page (Settings Dialog Box)

683230 | 2018.11.12

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_physical.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

6.1.1. Enabling Physical Synthesis Optimization

Physical synthesis optimization improves circuit performance by performing
combinational and sequential optimization and register duplication.

To enable physical synthesis options:

1. Click Assignments ➤ Settings ➤ Compiler Settings.

2. To enable physical synthesis, click Advanced Settings (Fitter), and then enable
Perform Physical Synthesis for Combinational Logic for Performance and
Perform Physical Synthesis for Combinational Logic for Fitting.

3. View physical synthesis results in the Netlist Optimizations report.

6.1.2. Physical Synthesis Options

The Intel Quartus Prime software provides physical synthesis optimization options to
improve fitting results. To access these options, click Assignments ➤ Settings ➤
Compiler Settings ➤ Advanced Settings (Fitter).

Note: To disable global physical synthesis optimizations for specific elements of your design,
assign the Netlist Optimizations logic option to Never Allow to the specific nodes
or entities.

Table 22. Physical Synthesis Options

Option Description

Perform asynchronous signal
pipelining (no Intel Arria 10
support)

Automatically inserts pipeline stages for asynchronous clear and asynchronous load
signals during fitting to increase circuit performance. This option is useful for
asynchronous signals that are failing recovery and removal timing because they feed
registers using a high-speed clock. You can use this option if asynchronous control signal
recovery and removal times are not achieving requirements. This option adds registers
and potential latency to nets driving the asynchronous clear or asynchronous load ports
of registers. The additional register delays can change the behavior of the signal in the
design; therefore, you should use this option only if additional latency on the reset
signals does not violate any design requirements. This option also prevents the
promotion of signals to global routing resources.

Perform Register Duplication for
Performance (no Intel Arria 10
support)

Duplicates registers based on Fitter placement information to reduce the delay of one
path without degrading the delay of another. You can also duplicate combinational logic
when you enable this option. The Fitter can place the new logic cell closer to critical logic
without affecting the other fan-out paths of the original logic cell. This setting does not
apply to logic cells that are part of a chain, drive global signals, are constrained to a
single LAB, or the Netlist Optimizations option set to Never Allow.

Perform Register Retiming for
Performance (no Arria 10
support)

Enables the movement of registers across combinational logic, allowing the Quartus
Prime software to trade off the delay between timing-critical paths and non-critical
paths.

Perform Physical synthesis for
combinational logic for
Performance (no Intel Arria 10
support)

Performs physical synthesis optimizations on combinational logic during synthesis and
fitting to increase circuit performance. Swaps the look-up table (LUT) ports within LEs so
that the critical path has fewer layers through which to travel. Also allows the
duplication of LUTs to enable further optimizations on the critical path.

Physical Synthesis for
Combinational Logic for Fitting
(no Intel Arria 10 support)

Reduces delay along critical paths. This option swaps the look-up table (LUT) ports
within LEs so that the critical path has fewer layers through which to travel. The option
also allows the duplication of LUTs to enable further optimizations on the critical path.
The option causes registers that do not have a Power-Up Level logic option setting to
power up with a don't care logic level (X). When the Power-Up Don't Care option is
turned on, the Compiler determines when it is beneficial to change the power-up level of
a register to minimize the area of the design. A power-up state of zero is maintained
unless there is an immediate area advantage. The registers contained in the affected
logic cells are not modified. Inputs into memory blocks, DSP blocks, and I/O elements

continued...

6. Netlist Optimizations and Physical Synthesis

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

(IOEs) are not swapped. This setting does not apply to logic cells that are part of a
chain, drive global signals, are constrained to a single LAB, or the Netlist
Optimizations option set to Never Allow.

Perform WYSIWYG Primitive
Resynthesis

Specifies whether to perform WYSIWYG primitive resynthesis during synthesis. This
option uses the setting specified in the Optimization Technique logic option.

Physical Synthesis Effort Level
(no Intel Arria 10 support)

Specifies the amount of effort, in terms of compile time, physical synthesis should use.
Compared to the Default setting, a setting of Extra uses extra compile time to try to
gain extra circuit performance. Conversely, a setting of Fast uses less compile time but
may reduce the performance gain that physical synthesis is able to achieve.

Netlist Optimizations You can use the Assignment Editor to apply the Netlist Optimizations logic option. Use
this option to disable physical synthesis optimizations for parts of your design.

Allow Register Duplication Allows the Compiler to duplicate registers to improve design performance. When you
enable this option, the Compiler copies registers and moves some fan-out to this new
node. This optimization improves routability and can reduce the total routing wire in
nets with many fan-outs.
If you disable this option, this disables optimizations that retime registers.
This setting affects Analysis & Synthesis and the Fitter.

Allow Register Merging Allows the Compiler to remove registers that are identical to other registers in the
design. When you enable this option, in cases where two registers generate the same
logic, the Compiler deletes one register, and the remaining registers fan-out to the
deleted register's destinations. This option is useful if you want to prevent the Compiler
from removing intentional use of duplicate registers.
If you disable register merging, the Compiler disables optimizations that retime
registers.
This setting affects Analysis & Synthesis and the Fitter.

6.1.3. Perform Register Retiming for Performance

The Perform Register Retiming for Performance option enables the movement of
registers across combinational logic, allowing the Intel Quartus Prime software to
trade off the delay between timing-critical paths and non-critical paths. Register
retiming can be done during Intel Quartus Prime integrated synthesis or during the
Fitter stages of design compilation.

Figure 49. Reducing Critical Delay by Moving the Register Relative to Combinational
Logic

Retiming can create multiple registers at the input of a combinational block from a
register at the output of a combinational block. In this case, the new registers have
the same clock and clock enable. The asynchronous control signals and power-up level

6. Netlist Optimizations and Physical Synthesis

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

are derived from previous registers to provide equivalent functionality. Retiming can
also combine multiple registers at the input of a combinational block to a single
register.

Figure 50. Combining Registers with Register Retiming

To move registers across combinational logic to balance timing, click Assignments ➤
Settings ➤ Compiler Settings ➤ Advanced Settings (Fitter). Specify your
preferred option under Optimize for performance (physical synthesis) and Effort
level .

6.1.4. Preventing Register Movement During Retiming

If you want to prevent register movement during register retiming, you can set the
Netlist Optimizations logic option to Never Allow. You can apply this option to
either individual registers or entities in the design using the Assignment Editor.

In digital circuits, synchronization registers are instantiated on cross clock domain
paths to reduce the possibility of metastability. The Intel Quartus Prime software
detects such synchronization registers and does not move them, even if register
retiming is turned on.

The following sets of registers are not moved during register retiming:

• Both registers in a direct connection from input pin-to-register-to-register if both
registers have the same clock and the first register does not fan-out to anywhere
else. These registers are considered synchronization registers.

• Both registers in a direct connection from register-to-register if both registers
have the same clock, the first register does not fan out to anywhere else, and the
first register is fed by another register in a different clock domain (directly or
through combinational logic). These registers are considered synchronization
registers.

The Intel Quartus Prime software does not perform register retiming on logic cells that
have the following properties:

• Are part of a cascade chain

• Contain registers that drive asynchronous control signals on another register

• Contain registers that drive the clock of another register

• Contain registers that drive a register in another clock domain

• Contain registers that are driven by a register in another clock domain

6. Netlist Optimizations and Physical Synthesis

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Intel Quartus Prime software does not usually retime registers across different
clock domains; however, if you use the Classic Timing Analyzer and specify a global
fMAX requirement, the Intel Quartus Prime software interprets all clocks as related.
Consequently, the Intel Quartus Prime software might try to retime register-to-register
paths associated with different clocks.

To avoid this circumstance, provide individual fMAX requirements to each clock when
using Classic Timing Analysis. When you constrain each clock individually, the Intel
Quartus Prime software assumes no relationship between different clock domains and
considers each clock domain to be asynchronous to other clock domains; hence no
register-to-register paths crossing clock domains are retimed.

When you use the Timing Analyzer, register-to-register paths across clock domains are
never retimed, because the Timing Analyzer treats all clock domains as asynchronous
to each other unless they are intentionally grouped.

• Contain registers that are constrained to a single LAB location

• Contain registers that are connected to SERDES

• Are considered virtual I/O pins

• Registers that have the Netlist Optimizations logic option set to Never Allow

The Intel Quartus Prime software assumes that a synchronization register chain
consists of two registers. If your design has synchronization register chains with more
than two registers, you must indicate the number of registers in your synchronization
chains so that they are not affected by register retiming. To do this, perform the
following steps:

1. Click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis).

2. Modify the Synchronization Register Chain Length setting to match the
synchronization register length used in your design. If you set a value of 1 for the
Synchronization Register Chain Length, it means that any registers connected
to the first register in a register-to-register connection can be moved during
retiming. A value of n > 1 means that any registers in a sequence of length 1, 2,…
n are not moved during register retiming.

If you want to consider logic cells that meet any of these conditions for physical
synthesis, you can override these rules by setting the Netlist Optimizations logic
option to Always Allow on a given set of registers.

Related Information

Analyzing and Optimizing the Design Floorplan on page 102

6.2. Applying Netlist Optimizations

The improvement in performance when using netlist optimizations is design
dependent. If you have restructured your design to balance critical path delays, netlist
optimizations might yield minimal improvement in performance.

You may have to experiment with available options to see which combination of
settings works best for a particular design. Refer to the messages in the compilation
report to see the magnitude of improvement with each option, and to help you decide
whether you should turn on a given option or specific effort level.

6. Netlist Optimizations and Physical Synthesis

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

135

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Turning on more netlist optimization options can result in more changes to the node
names in the design; bear this in mind if you are using a verification flow, such as the
Signal Tap Logic Analyzer or formal verification that requires fixed or known node
names.

Applying all the physical synthesis options at the Extra effort level generally produces
the best results for those options, but adds significantly to the compilation time. You
can also use the Physical synthesis effort level options to decrease the compilation
time. The WYSIWYG primitive resynthesis option does not add much compilation time
relative to the overall design compilation time.

To find the best results, you can use the Intel Quartus Prime Design Space Explorer II
(DSE) to apply various sets of netlist optimization options.

Related Information

Design Space Explorer II on page 12

6.2.1. WYSIWYG Primitive Resynthesis

For designs synthesized with a third-party tool, the Perform WYSIWYG primitive
resynthesis option allows you to apply optimizations to the synthesized netlist.

The Perform WYSIWYG primitive resynthesis option directs the Intel Quartus
Prime software to un-map the logic elements (LEs) in an atom netlist to logic gates,
and then re-map the gates back to Intel-specific primitives. Third-party synthesis tools
generate either an .edf or .vqm atom netlist file using Intel-specific primitives. When
you turn on the Perform WYSIWYG primitive resynthesis option, the Intel
Quartus Prime software uses device-specific techniques during the re-mapping
process. This feature re-maps the design using the Optimization Technique
specified for your project (Speed, Area, or Balanced).

The Perform WYSIWYG primitive resynthesis option unmaps and remaps only
logic cells, also referred to as LCELL or LE primitives, and regular I/O primitives (which
may contain registers). Double data rate (DDR) I/O primitives, memory primitives,
digital signal processing (DSP) primitives, and logic cells in carry/cascade chains are
not remapped. This process does not process logic specified in an encrypted .vqm file
or an .edf file, such as third-party intellectual property (IP).

The Perform WYSIWYG primitive resynthesisoption can change node names in
the .vqm file or .edf file from your third-party synthesis tool, because the primitives
in the atom netlist are broken apart and then re-mapped by the Intel Quartus Prime
software. The re-mapping process removes duplicate registers. Registers that are not
removed retain the same name after re-mapping.

Any nodes or entities that have the Netlist Optimizations logic option set to Never
Allow are not affected during WYSIWYG primitive resynthesis. You can use the
Assignment Editor to apply the Netlist Optimizations logic option. This option
disables WYSIWYG resynthesis for parts of your design.

Note: Primitive node names are specified during synthesis. When netlist optimizations are
applied, node names might change because primitives are created and removed. HDL
attributes applied to preserve logic in third-party synthesis tools cannot be maintained
because those attributes are not written into the atom netlist, which the Intel Quartus
Prime software reads.

6. Netlist Optimizations and Physical Synthesis

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

136

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you use the Intel Quartus Prime software to synthesize your design, you can use the
Preserve Register (preserve) and Keep Combinational Logic (keep) attributes
to maintain certain nodes in the design.

Figure 51. Intel Quartus Prime Flow for WYSIWYG Primitive Resynthesis

6.2.2. Saving a Node-Level Netlist

For non-Intel Arria 10 designs, you can preserve a node-level netlist in Verilog Quartus
Mapping File (.vqm) format. You might need to preserve nodes if you use the Logic
Lock (Standard) flow to back-annotate placement, import one design into another, or
both. For all device families that support incremental compilation, you can use this
feature to preserve compilation results.

Note: This feature does not support Intel Arria 10 devices.

Use the Export version-compatible database option to save synthesis results as an
atom-based netlist in .vqm file format. By default, the Intel Quartus Prime software
places the .vqm in the atom_netlists directory under the current project directory.

If you use the physical synthesis optimizations and want to lock down the location of
all LEs and other device resources in the design with the Back-Annotate
Assignments command, a .vqm file netlist is required. The .vqm file preserves the
changes that you made to your original netlist. Because the physical synthesis
optimizations depend on the placement of the nodes in the design, back-annotating
the placement changes the results from physical synthesis. Changing the results
means that node names are different, and your back-annotated locations are no
longer valid.

You should not use an Intel Quartus Prime-generated .vqm file or back-annotated
location assignments with physical synthesis optimizations unless you have finalized
the design. Making any changes to the design invalidates your physical synthesis
results and back-annotated location assignments. If you require changes later, use the
new source HDL code as your input files, and remove the back-annotated assignments
corresponding to the Intel Quartus Prime-generated .vqm file.

To back-annotate logic locations for a design that was compiled with physical synthesis
optimizations, first create a .vqm file. When recompiling the design with the hard logic
location assignments, use the new .vqm file as the input source file and turn off the
physical synthesis optimizations for the new compilation.

6. Netlist Optimizations and Physical Synthesis

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

137

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you are importing a .vqm file and back-annotated locations into another project that
has any Netlist Optimizations turned on, you must apply the Never Allow
constraint to make sure node names don’t change; otherwise, the back-annotated
location or Logic Lock (Standard) assignments are invalid.

To preserve the nodes from Intel Quartus Prime physical synthesis optimization
options for devices that do not support incremental compilation, perform the following
steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Compilation Process Settings. The Compilation
Process Settings page appears.

3. Turn onExport version-compatible database. This setting is not available for
some devices.

4. Click OK.

6.3. Viewing Synthesis and Netlist Optimization Reports

Physical synthesis optimizations performed during synthesis write results to the
synthesis report. To access this report, perform the following steps:

1. On the Processing menu, click Compilation Report.

2. In the Compilation Report list, open the Analysis & Synthesis. folder to view
synthesis results.

3. In the Compilation Report list, open the Fitter folder to view the Netlist
Optimizations table.

6.4. Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script. You
can also run some procedures at a command prompt. For detailed information about
scripting command options, refer to the Intel Quartus Prime Command-Line and Tcl
API Help browser. To run the Help browser, type the following command at the
command prompt:

quartus_sh --qhelp

You can specify many of the options described in this section on either an instance or
global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF variable name> <value>

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF variable name> <value> \
-to <instance name>

Related Information

• Command Line Scripting

• Tcl Scripting

6. Netlist Optimizations and Physical Synthesis

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

138

https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• API Functions for Tcl

• Intel Quartus Prime Standard Edition Settings File Reference Manual
For information about all settings and constraints in the Intel Quartus Prime
software.

6.4.1. Synthesis Netlist Optimizations

The project .qsf file preserves the settings that you specify in the GUI. Alternatively,
you can edit the .qsf directly. The .qsf file supports the following synthesis netlist
optimization commands. The Type column indicates whether the setting is supported
as a global setting, an instance setting, or both.

Table 23. Synthesis Netlist Optimizations and Associated Settings

Setting Name Intel Quartus Prime Settings File Variable
Name

Values Type

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_
REMAP

ON, OFF Global, Instance

Optimization Mode OPTIMIZATION_MODE BALANCEDHIGH
PERFORMANCE EFFOR
AGGRESSIVE
PERFORMANCE

Global, Instance

Power-Up Don’t Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global

Save a node-level
netlist into a
persistent source file

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMEN
T

ON, OFF Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

Allow Netlist
Optimizations

ADV_NETLIST_OPT_ALLOWED "ALWAYS ALLOW",
DEFAULT, "NEVER
ALLOW"

Instance

6.4.2. Physical Synthesis Optimizations

The project .qsf file preserves the settings that you specify in the GUI. Alternatively,
you can edit the .qsf directly. The .qsf file supports the following synthesis netlist
optimization commands. The Type column indicates whether the setting is supported
as a global setting, an instance setting, or both.

Table 24. Physical Synthesis Optimizations and Associated Settings

Setting Name Intel Quartus Prime Settings File Variable Name Values Type

Perform Physical
Synthesis for
Combinational Logic
for Performance (no
Arria 10 support)

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global

Perform Physical
Synthesis for
Combinational Logic
for Fitting (no Intel
Arria 10 support)

PHYSICAL_SYNTHESIS_COMBO_LOGIC_FOR_AREA ON, OFF Global

Advanced Physical
Synthesis

ADVANCED_PHYSICAL_SYNTHESIS ON, OFF Global

continued...

6. Netlist Optimizations and Physical Synthesis

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

139

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_list_of_packages.htm
https://www.intel.com/content/www/us/en/docs/programmable/683084/current/settings-file-reference-manual.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Name Intel Quartus Prime Settings File Variable Name Values Type

Automatic
Asynchronous Signal
Pipelining

PHYSICAL_SYNTHESIS_ASYNCHRONOUS_SIGNAL_PI
PELINING

ON, OFF Global

Perform Register
Duplication for
Performance (no Intel
Arria 10 support)

PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION ON, OFF Global

Perform Register
Retiming for
Performance (no Intel
Arria 10 support)

PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global

Power-Up Don’t Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global, Instance

Power-Up Level POWER_UP_LEVEL HIGH,LOW Instance

Allow Netlist
Optimizations

ADV_NETLIST_OPT_ALLOWED "ALWAYS
ALLOW",
DEFAULT,
"NEVER
ALLOW"

Instance

Save a node-level
netlist into a
persistent source file
(no Intel Arria 10
support)

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON, OFF Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

6.4.3. Back-Annotating Assignments

You can use the logiclock_back_annotate Tcl command to back-annotate
resources in your design. This command can back-annotate resources in Logic Lock
(Standard) regions, and resources in designs without Logic Lock (Standard) regions.

The following Tcl command back-annotates all registers in your design:

logiclock_back_annotate -resource_filter "REGISTER"

The logiclock_back_annotate command is in the backannotate package.

6.5. Netlist Optimizations and Physical Synthesis Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.05.07 18.0.0 Removed topic: Isolating a Partition Netlist.

2017.11.06 17.1.0 • Added topic: Isolating a Partition Netlist.

2016.10.31 16.1.0 • Updated physical synthesis options and procedure.

2016.05.02 16.0.0 • Stated limitations about deprecated physical synthesis options.

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

continued...

6. Netlist Optimizations and Physical Synthesis

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

140

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations Settings to Compiler Settings.

• Updated DSE II content.

June 2014 14.0.0 Updated format.

November 2013 13.1.0 Removed HardCopy device information.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Template update.

July 2010 10.0.0 • Added links to Intel Quartus Prime Help in several sections.
• Removed Referenced Documents section.
• Reformatted Document Revision History

November 2009 9.1.0 • Added information to “Physical Synthesis for Registers—Register
Retiming”

• Added information to “Applying Netlist Optimization Options”
• Made minor editorial updates

March 2009 9.0.0 • Was chapter 11 in the 8.1.0 release.
• Updated the “Physical Synthesis for Registers—Register Retiming” and

“Physical Synthesis Options for Fitting”
• Updated “Performing Physical Synthesis Optimizations”
• Deleted Gate-Level Register Retiming section.
• Updated the referenced documents

November 2008 8.1.0 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0.0 • Updated “Physical Synthesis Optimizations for Performance on page
11-9

• Added Physical Synthesis Options for Fitting on page 11-16

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

6. Netlist Optimizations and Physical Synthesis

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

141

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Engineering Change Orders with the Chip Planner
Programmable logic can accommodate changes to a system specification late in the
design cycle. In a typical engineering project development cycle, the specification of
the programmable logic portion is likely to change after engineering begins or while
integrating all system elements. Last-minute design changes, commonly referred to as
engineering change orders (ECOs), are small targeted changes to the functionality of a
design after the design has been fully compiled.

The Chip Planner supports ECOs by allowing quick and efficient changes to your logic
late in the design cycle for supported devices. The Chip Planner provides a visual
display of your post-place-and-route design mapped to the device architecture of your
chosen FPGA and allows you to create, move, and delete logic cells and I/O atoms.

Note: The Intel Quartus Prime Standard Edition ECO feature does not support Intel Arria 10
devices.

In addition to making ECOs, the Chip Planner allows you to perform detailed analysis
on routing congestion, relative resource usage, logic placement, Logic Lock (Standard)
regions, fan-ins and fan-outs, paths between registers, and delay estimates for paths.

ECOs directly apply to atoms in the supported target device. As such, performing an
ECO relies on your understanding of the device architecture of the target device.

Related Information

• Analyzing and Optimizing the Design Floorplan on page 102
For more information about using the Chip Planner for design analysis

• Literature
For more information about the architecture of your device

7.1. Engineering Change Orders

In the context of an FPGA design, you can apply an ECO directly to a physical resource
on the device to modify its behavior. ECOs are typically made during the verification
stage of a design cycle. When a small change is required on a design (such as
modifying a PLL for a different clock frequency or routing a signal out to a pin for
analysis) recompilation of the entire design can be time consuming, especially for
larger designs.

Because several iterations of small design changes can occur during the verification
cycle, recompilation times can quickly add up. Furthermore, a full recompilation due to
a small design change can result in the loss of previous design optimizations. Making
ECOs, instead of performing a full recompilation on your design, limits the change only
to the affected portions of logic.

683230 | 2018.11.12

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://www.altera.com/literature/lit-index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

7.1.1. Performance Preservation

You can preserve the results of previous design optimizations when you make changes
to an existing design with one of the following methods:

• Incremental compilation

• Rapid recompile

• ECOs

Choose the method to modify your design based on the scope of the change. The
methods above are arranged from the larger scale change to the smallest targeted
change to a compiled design.

The incremental compilation feature allows you to preserve compilation results at an
RTL component or module level. After the initial compilation of your design, you can
assign modules in your design hierarchy to partitions. Upon subsequent compilations,
incremental compilation recompiles changed partitions based on the chosen
preservation levels.

The rapid recompilation feature leverages results from the latest post-fit netlist to
determine the changes required to honor modifications you have made to the source
code. If you run a rapid recompilation, the Compiler refits only changed portion of the
netlist.

ECOs provide a finer granularity of control compared to the incremental compilation
and the rapid recompilation feature. All modifications are performed directly on the
architectural elements of the device. You should use ECOs for targeted changes to the
post-fit netlist.

Note: In the Intel Quartus Prime software versions 10.0 and later, the software does not
preserve ECO modifications to the netlist when you recompile a design with the
incremental compilation feature turned on. You can reapply ECO changes made during
a previous compilation with the Change Manager.

Related Information

Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

7.1.2. Compilation Time

In the traditional programmable logic design flow, a small change in the design
requires a complete recompilation of the design. A complete recompilation of the
design consists of synthesis and place-and-route. Making small changes to the design
to reach the final implementation on a board can be a long process. Because the Chip
Planner works only on the post-place-and-route database, you can implement your
design changes in minutes without performing a full compilation.

7.1.3. Verification

After you make a design change, you can verify the impact on your design. To verify
that your changes do not violate timing requirements, perform static timing analysis
with the Intel Quartus Prime Timing Analyzer after you check and save your netlist
changes in the Chip Planner.

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

143

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#mwh1409958382198
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Additionally, you can perform a gate-level or timing simulation of the ECO-modified
design with the post-place-and-route netlist generated by the Intel Quartus Prime
software.

Related Information

Intel Quartus Prime Timing Analyzer User Guide

7.1.4. Change Modification Record

All ECOs made with the Chip Planner are logged in the Change Manager to track all
changes. With the Change Manager, you can easily revert to the original post-fit netlist
or you can pick and choose which ECOs to apply.

Additionally, the Intel Quartus Prime software provides support for multiple
compilation revisions of the same project. You can use ECOs made with the Chip
Planner in conjunction with revision support to compare several different ECO changes
and revert back to previous project revisions when required.

7.2. ECO Design Flow

For iterative verification cycles, implementing small design changes at the netlist level
can be faster than making an RTL code change. As such, making ECO changes are
especially helpful when you debug the design on silicon and require a fast turnaround
time to generate a programming file for debugging the design.

Note: The Intel Quartus Prime Standard Edition ECO feature does not support Intel Arria 10
devices.

The figure shows the design flow for making ECOs.

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

144

https://www.intel.com/content/www/us/en/docs/programmable/683068/.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 52. Design Flow to Support ECOs
Verilog HDL

(.v)
VHDL

(.vhdl)
AHDL
(.tdf)

Block Design
File (.bdf)

EDIF Netlist
(.edf)

VQM Netlist
(.vqm)

Partition Top

Partition 1

Partition 2

Analysis & Synthesis

Partition Merge
Create complete netlist using

appropriate source netlists for each
partition (post-fit or post-synthesis)

Fitter

Assembler

Timing Analyzer

Program/Configuration Device

System Test and Verify

Requirements
Satisfied?

yes

no

Recreate Programming File

Change Manager
Stores netlist

modification details

Modify
Logic cells, I/O cells,

PLL, Floorplan location
assignments in Chip Planner

Analysis and Synthesis Changes

Analysis and Synthesis Changes

Make design change
in your HDL

Make ECO
at Netlist level

no

Design Partition Assignment

ECO performs
partial refit

A typical ECO application occurs when you uncover a problem on the board and isolate
the problem to the appropriate nodes or I/O cells on the device. You must be able to
correct the functionality quickly and generate a new programming file. By making
small changes with the Chip Planner, you can modify the post-place-and-route netlist
directly without having to perform synthesis and logic mapping, thus decreasing the
turnaround time for programming file generation during the verification cycle. If the

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

145

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

change corrects the problem, no modification of the HDL source code is necessary. You
can use the Chip Planner to perform the following ECO-related changes to your
design:

• Document the changes made with the Change Manager

• Easily recreate the steps taken to produce design changes

• Generate EDA simulation netlists for design verification

Note: For more complex changes that require HDL source code modifications, the
incremental compilation feature can help reduce recompilation time.

7.3. The Chip Planner Overview

The Chip Planner provides a visual display of device resources. It shows the
arrangement and usage of the resource atoms in the device architecture that you are
targeting. Resource atoms are the building blocks for your device, such as ALMs, LEs,
PLLs, DSP blocks, memory blocks, or I/O elements.

The Chip Planner also provides an integrated platform for design analysis and for
making ECOs to your design after place-and-route. The toolset consists of the Chip
Planner (providing a device floorplan view of your mapped design) and two integrated
subtools—the Resource Property Editor and the Change Manager.

For analysis, the Chip Planner can show logic placement, Logic Lock (Standard)
regions, relative resource usage, detailed routing information, routing congestion, fan-
ins and fan-outs, paths between registers, and delay estimates for paths. Additionally,
the Chip Planner allows you to create location constraints or resource assignment
changes, such as moving or deleting logic cells or I/O atoms with the device floorplan.
For ECO changes, the Chip Planner enables you to create, move, or delete logic cells in
the post-place-and-route netlist for fast programming file generation. Additionally, you
can open the Resource Property Editor from the Chip Planner to edit the properties of
resource atoms or to edit the connections between resource atoms. All changes to
resource atoms and connections are logged automatically with the Change Manager.

7.3.1. Opening the Chip Planner

To open the Chip Planner, on the Tools menu, click Chip Planner. Alternatively, click
the Chip Planner icon on the Intel Quartus Prime software toolbar.

Optionally, you can open the Chip Planner by cross-probing from the shortcut menu in
the following tools:

• Design Partition Planner

• Compilation Report

• Logic Lock (Standard) Regions window

• Technology Map Viewer

• Project Navigator window

• RTL source code

• Node Finder

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

146

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Simulation Report

• RTL Viewer

• Report Timing panel of the Timing Analyzer

7.3.2. The Chip Planner Tasks and Layers

The Chip Planner allows you to set up tasks to quickly implement ECO changes or
manipulate assignments for the floorplan of the device. Each task consists of an
editing mode and a set of customized layer settings.

Related Information

• Performing ECOs in the Resource Property Editor on page 147

• Analyzing and Optimizing the Design Floorplan on page 102

7.4. Performing ECOs with the Chip Planner (Floorplan View)

You can manipulate resource atoms in the Chip Planner when you select the ECO
editing mode.

The following ECO changes can be made with the Chip Planner Floorplan view:

• Create atoms

• Delete atoms

• Move existing atoms

Note: To configure the properties of atoms, such as managing the connections between
different LEs/ALMs, use the Resource Property Editor.

To select the ECO editing mode in the Chip Planner, in the Editing Mode list at the top
of the Chip Planner, select the ECO editing mode.

Related Information

Performing ECOs in the Resource Property Editor on page 147

7.4.1. Creating, Deleting, and Moving Atoms

You can use the Chip Planner to create, delete, and move atoms in the post-
compilation design.

7.4.2. Check and Save Netlist Changes

After making all the ECOs, you can run the Fitter to incorporate the changes by
clicking the Check and Save Netlist Changes icon in the Chip Planner toolbar. The
Fitter compiles the ECO changes, performs design rule checks on the design, and
generates a programming file.

7.5. Performing ECOs in the Resource Property Editor

You can view and edit the following resources with the Resource Property Editor.

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

147

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.5.1. Logic Elements

An Altera® LE contains a four-input LUT, which is a function generator that can
implement any function of four variables. In addition, each LE contains a register fed
by the output of the LUT or by an independent function generated in another LE.

You can use the Resource Property Editor to view and edit any LE in the FPGA. To open
the Resource Property Editor for an LE, on the Project menu, point to Locate, and
then click Locate in Resource Property Editor in one of the following views:

• RTL Viewer

• Technology Map Viewer

• Node Finder

• Chip Planner

For more information about LE architecture for a particular device family, refer to
the device family handbook or data sheet.

You can use the Resource Property Editor to change the following LE properties:

• Data input to the LUT

• LUT mask or LUT

7.5.1.1. Logic Element Properties

To view logic element properties, on the View menu, click View Properties.

Figure 53. LE Properties in the Resource Property Editor

7.5.1.2. Modes of Operation

LUTs in an LE can operate in either normal or arithmetic mode.

When an LE is configured in normal mode, the LUT in the LE can implement a function
of four inputs.

When the LE is configured in arithmetic mode, the LUT in the LE is divided into two 3-
input LUTs. The first LUT generates the signal that drives the output of the LUT, while
the second LUT generates the carry-out signal. The carry-out signal can drive only a
carry-in signal of another LE.

For more information about LE modes of operation, refer to volume 1 of the
appropriate device handbook.

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.5.1.3. Sum and Carry Equations

You can change the logic function implemented by the LUT by changing the sum and
carry equations. When the LE is configured in normal mode, you can change only the
sum equation. When the LE is configured in arithmetic mode, you can change both the
sum and the carry equations.

The LUT mask is the hexadecimal representation of the LUT equation output. When
you change the LUT equation, the Intel Quartus Prime software automatically changes
the LUT mask. Conversely, when you change the LUT mask, the Intel Quartus Prime
software automatically computes the LUT equation.

7.5.1.4. sload and sclr Signals

Each LE register contains a synchronous load (sload) signal and a synchronous clear
(sclr) signal. You can invert either the sload or sclr signal feeding into the LE.

If the design uses the sload signal in an LE, the signal and its inversion state must be
the same for all other LEs in the same LAB. For example, if two LEs in a LAB have the
sload signal connected, both LEs must have the sload signal set to the same value.
This is also true for the sclr signal.

7.5.1.5. Register Cascade Mode

When register cascade mode is enabled, the cascade-in port feeds the input to the
register. The register cascade mode is used most often when the design implements
shift registers.

You can change the register cascade mode by connecting (or disconnecting) the
cascade in the port. However, if you create this port, you must ensure that the source
port LE is directly above the destination LE.

7.5.1.6. Cell Delay Table

The cell delay table describes the propagation delay from all inputs to all outputs for
the selected LE.

7.5.1.7. Logic Element Connections

To view the connections that feed in and out of an LE, on the View menu, click View
Port Connections.

Figure 54. View LE Connections in the Connectivity Window

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

149

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.5.1.8. Deleting a Logic Element

To delete an LE, follow these steps:

1. Right-click the desired LE in the Chip Planner, point to Locate, and click Locate in
Resource Property Editor.

2. You must remove all fan-out connections from an LE prior to deletion. To delete
fan-out connections, right-click each connected output signal, point to Remove,
and click Fanouts. Select all of the fan-out signals in the Remove Fan-outs
dialog box and click OK.

3. To delete an atom after all fan-out connections are removed, right-click the atom
in the Chip Planner and click Delete Atom.

7.5.2. Adaptive Logic Modules

Each ALM contains LUT-based resources that can be divided between two adaptive
LUTs (ALUTs).

With up to eight inputs to the two ALUTs, each ALM can implement various
combinations of two functions. This adaptability allows the ALM to be completely
backward-compatible with four-input LUT architectures. One ALM can implement any
function with up to six inputs and certain seven-input functions. In addition to the
ALUT-based resources, each ALM contains two programmable registers, two dedicated
full adders, a carry chain, a shared arithmetic chain, and a register chain. The ALM can
efficiently implement various arithmetic functions and shift registers with these
dedicated resources.

You can implement the following types of functions in a single ALM:

• Two independent 4-input functions

• An independent 5-input function and an independent 3-input function

• A 5-input function and a 4-input function, if they share one input

• Two 5-input functions, if they share two inputs

• An independent 6-input function

• Two 6-input functions, if they share four inputs and share the same functions

• Certain 7-input functions

You can use the Resource Property Editor to change the following ALM properties:

• Data input to the LUT

• LUT mask or LUT equation

7.5.2.1. Adaptive Logic Module Schematic

You can view and edit any ALM atom with the Resource Property Editor by right-
clicking the ALM in the RTL Viewer, the Node Finder, or the Chip Planner, and clicking
Locate in Resource Property Editor.

For a detailed description of the ALM, refer to the device handbooks of devices based
on an ALM architecture.

By default, the Intel Quartus Prime software displays the used resources in blue and
the unused in gray. For the figure, the used resources are in blue and the unused
resources are in gray.

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

150

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 55. Adaptive Logic Module

7.5.2.2. Adaptive Logic Module Properties

The properties that you can display for the ALM include an equations table that shows
the name and location of each of the two combinational nodes and two register nodes
in the ALM, the individual LUT equations for each of the combinational nodes, and the
combout, sumout, carryout, and shareout equations for each combinational
node.

7.5.2.3. Adaptive Logic Module Connections

Click View > View Connectivity to view the input and output connections for the
ALM.

7.5.3. FPGA I/O Elements

Altera FPGAs that have high-performance I/O elements, including up to six registers,
are equipped with support for a number of I/O standards that allow you to run your
design at peak speeds. Use the Resource Property Editor to view, change connectivity,
and edit the properties of the I/O elements. Use the Chip Planner (Floorplan view) to
change placement, delete, and create new I/O elements.

For a detailed description of the device I/O elements, refer to the applicable device
handbook.

You can change the following I/O properties:

• Delay chain

• Bus hold

• Weak pull up

• Slow slew rate

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• I/O standard

• Current strength

• Extend OE disable

• PCI I/O

• Register reset mode

• Register synchronous reset mode

• Register power up

• Register mode

7.5.3.1. Stratix V I/O Elements

The I/O elements in Stratix® V devices contain a bidirectional I/O buffer and I/O
registers to support a complete embedded bidirectional single data rate (SDR) or
double data rate (DDR) transfer.

I/O registers are composed of the input path for handling data from the pin to the
core, the output path for handling data from the core to the pin, and the output
enable path for handling the output enable signal to the output buffer. These registers
allow faster source-synchronous register-to-register transfers and resynchronization.
The input path consists of the DDR input registers, alignment and synchronization
registers, and half data rate blocks; you can bypass each block in the input path. The
input path uses the deskew delay to adjust the input register clock delay across
process, voltage, and temperature (PVT) variations.

By default, the Intel Quartus Prime software displays the used resources in blue and
the unused resources in gray.

Figure 56. Stratix V Device I/O Element Structure

Related Information

Stratix V Device Handbook

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

152

http://www.altera.com/literature/hb/stratix-v/stx5_core.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.5.3.2. Stratix IV I/O Elements

The I/O elements in Stratix IV devices contain a bidirectional I/O buffer and I/O
registers to support a complete embedded bidirectional SDR or DDR transfer.

The I/O registers are composed of the input path for handling data from the pin to the
core, the output path for handling data from the core to the pin, and the output
enable path for handling the output enable signal for the output buffer. Each path
consists of a set of delay elements that allow you to fine-tune the timing
characteristics of each path for skew management. By default, the Intel Quartus Prime
software displays the used resources in blue and the unused resources in gray.

Figure 57. Stratix IV I/O Element and Structure

Related Information

Literature
For more information about I/O elements in Stratix IV devices

7.5.3.3. Arria V I/O Elements

The I/O elements in Arria® V devices contain a bidirectional I/O buffer and I/O
registers to support a complete embedded bidirectional SDR or DDR transfer.

The I/O registers are composed of the input path for handling data from the pin to the
core, the output path for handling data from the core to the pin, and the output
enable path for handling the output enable signal for the output buffer. Each path
consists of a set of delay elements that allow you to fine-tune the timing
characteristics of each path for skew management. By default, the Intel Quartus Prime
software displays the used resources in blue and the unused resources in gray.

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

153

http://www.altera.com/literature/lit-index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 58. Arria V Device I/O Element and Structure

7.5.3.4. Cyclone V I/O Elements

The I/O elements in Cyclone V devices contain a bidirectional I/O buffer and registers
for complete embedded bidirectional single data rate transfer. The I/O element
contains three input register, two output registers, and two output-enable registers.
The two output registers and two output-enable registers are utilized for double-data
rate (DDR) applications.

You can use the input registers for fast setup times and the output registers for fast
clock-to-output times. Additionally, you can use the output-enable (OE) registers for
fast clock-to-output enable timing. You can use I/O elements for input, output, or
bidirectional data paths. By default, the Intel Quartus Prime software displays the
used resources in blue and the unused resources in gray.

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

154

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 59. Cyclone V Device I/O Elements and Structure

7.5.3.5. MAX V I/O Elements

The I/O elements in MAX® V devices contain a bidirectional I/O buffer. You can drive
registers from adjacent LABs to or from the bidirectional I/O buffer of the I/O element.
By default, the Intel Quartus Prime software displays the used resources in blue and
the unused resources in gray.

Figure 60. MAX V Device I/O Elements and Structure

7.5.4. FPGA RAM Blocks

With the Resource Property Editor, you can view the architecture of different RAM
blocks in the device, modify the input and output registers to and from the RAM
blocks, and modify the connectivity of the input and output ports. By default, the Intel
Quartus Prime software displays the used resources in blue and the unused resources
in gray.

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

155

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 61. M9K RAM View in a Stratix V Device

7.5.5. FPGA DSP Blocks

Dedicated hardware DSP circuit blocks in Altera devices provide performance benefits
for the critical DSP functions in your design.

The Resource Property Editor allows you to view the architecture of DSP blocks in the
Resource Property Editor for the Cyclone and Stratix series of devices. The Resource
Property Editor also allows you to modify the signal connections to and from the DSP
blocks and modify the input and output registers to and from the DSP blocks. By
default, theIntel Quartus Prime software displays the used resources in blue and the
unused resources in gray.

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

156

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 62. DSP Block View in a Stratix V Device

7.6. Change Manager

The Change Manager maintains a record of every change you perform with the Chip
Planner, the Resource Property Editor, the Signal Probe feature, or a Tcl script. Each
row of data in the Change Manager represents one ECO.

The Change Manager allows you to apply changes, roll back changes, delete changes,
and export change records to a Text File (.txt), a Comma-Separated Value File
(.csv), or a Tcl Script File (.tcl). The Change Manager tracks dependencies between
changes, so that when you apply, roll back, or delete a change, any prerequisite or
dependent changes are also applied, rolled back, or deleted.

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

157

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.6.1. Complex Changes in the Change Manager

Certain changes in the Change Manager (including creating or deleting atoms and
changing connectivity) can appear to be self-contained, but are actually composed of
multiple actions. The Change Manager marks such complex changes with a plus icon
in the Index column.

You can click the plus icon to expand the change record and show all the component
actions preformed as part of that complex change.

Related Information

Example of Managing Changes With the Change Manager

7.6.2. Managing Signal Probe Signals

The Signal Probe pins that you create from the Signal Probe Pins dialog box are
recorded in the Change Manager. After you have made a Signal Probe assignment, you
can use the Change Manager to quickly disable Signal Probe assignments by selecting
Revert to Last Saved Netlist on the shortcut menu in the Change Manager.

Related Information

Quick Design Debugging Using Signal Probe

7.6.3. Exporting Changes

You can export changes to a .txt, a .csv, or a .tcl. Tcl scripts allow you to reapply
changes that were deleted during compilation.

Related Information

Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

7.7. Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script. You
can also run some procedures at a command prompt. The Tcl commands for
controlling the Chip Planner are located in the chip_planner package of the
quartus_cdb executable.

Related Information

• About Intel Quartus Prime Scripting

• Tcl Scripting

• Intel Quartus Prime Settings File Manual

• Command Line Scripting

7.8. Common ECO Applications

You can use an ECO to make a post-compilation change to your design.

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

158

http://quartushelp.altera.com/current/index.htm#optimize/ace/eco_ex_change_manager_usage.htm
https://www.intel.com/content/www/us/en/docs/programmable/683552/current/quick-design-debugging-using.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#mwh1409958382198
http://quartushelp.altera.com/current/index.htm#reference/scripting/tcl_view_using_tcl_scripts.htm
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683084.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To help build your system quickly, you can use Chip Planner functions to perform the
following activities:

• Adjust the drive strength of an I/O with the Chip Planner

• Modify the PLL properties with the Resource Property Editor, see “Modify the PLL
Properties With the Chip Planner”

• Modify the connectivity between new resource atoms with the Chip Planner and
Resource Property Editor

Related Information

Modify the PLL Properties With the Chip Planner on page 160

7.8.1. Adjust the Drive Strength of an I/O with the Chip Planner

To adjust the drive strength of an I/O, follow these steps to incorporate the ECO
changes into the netlist of the design.

1. In the Editing Mode list at the top of the Chip Planner, select the ECO editing
mode.

2. Locate the I/O in the Resource Property Editor.

3. In the Resource Property Editor, point to the Current Strength option in the
Properties pane and double-click the value to enable the drop-down list.

4. Change the value for the Current Strength option.

5. Right-click the ECO change in the Change Manager and click Check & Save All
Netlist Changes to apply the ECO change.

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

159

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 63. I/O in the Resource Property Editor

Note: You can change the pin locations of input or output ports with the ECO flow. You can
drag and move the signal from an existing pin location to a new location while in the
Post Compilation Editing (ECO) task in the Chip Planner. You can then click Check &
Save All Netlist Changes to compile the ECO.

7.8.2. Modify the PLL Properties With the Chip Planner

You use PLLs to modify and generate clock signals to meet design requirements.
Additionally, you can use PLLs to distribute clock signals to different devices in a
design, reducing clock skew between devices, improving I/O timing, and generating
internal clock signals.

The Resource Property Editor allows you to view and modify PLL properties to meet
your design requirements.

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

160

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 64. PLL View in the Resource Property Editor of a Stratix Device

7.8.3. PLL Properties

The Resource Property Editor allows you to modify PLL options, such as phase shift,
output clock frequency, and duty cycle.

You can also change the following PLL properties with the Resource Property Editor:

• Input frequency

• M VCO tap

• M initial

• M value

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

161

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• N value

• M counter delay

• N counter delay

• M2 value

• N2 value

• SS counter

• Charge pump current

• Loop filter resistance

• Loop filter capacitance

• Counter delay

• Counter high

• Counter low

• Counter mode

• Counter initial

• VCO tap

You can also view post-compilation PLL properties in the Compilation Report. To do so,
in the Compilation Report, select Fitter and then select Resource Section.

7.8.3.1. Adjusting the Duty Cycle

Use the equation to adjust the duty cycle of individual output clocks.

High % =
Counter High

(Counter High + Counter Low)

7.8.3.2. Adjusting the Phase Shift

Use the equation to adjust the phase shift of an output clock of a PLL.

Phase Shift = (Period VCO × 0.125 × Tap VCO) + (Initial VCO × Period VCO)

For normal mode, Tap VCO, Initial VCO, and Period VCO are governed by the following
settings:

Tap VCO= Counter Delay- M Tap VCO

Initial VCO= Counter Delay- M Initial

Period VCO= In Clock Period x N÷M

For external feedback mode, Tap VCO, Initial VCO, and Period VCO are governed by the
following settings:

Tap VCO= Counter Delay- M Tap VCO

Initial VCO= Counter Delay- M Initial

Period VCO= In Clock Period x N

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

162

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

(M+ Counter High+Counter Low)

Related Information

Stratix Device Handbook

7.8.3.3. Adjusting the Output Clock Frequency

Use the equation to adjust the PLL output clock in normal mode.

Output Clock Frequency = Input Frequency •
M Value

N Value + Counter High + Counter Low

Use the equation to adjust the PLL output clock in external feedback mode.

OUTCLK =
M Value + External Feedback Counter High + External Feedback Counter Low

N Value + Counter High + Counter Low

7.8.3.4. Adjusting the Spread Spectrum

Use the equation to adjust the spread spectrum for your PLL.

% Spread =
M2N1
M1N2

7.8.4. Modify the Connectivity between Resource Atoms

The Chip Planner and Resource Property Editor allow you to create new resource
atoms and manipulate the existing connection between resource atoms in the post-fit
netlist. These features are useful for small changes when you are debugging a design,
such as manually inserting pipeline registers into a combinational path that fails
timing, or routing a signal to a spare I/O pin for analysis.

Use the following procedure to create a new register in a Cyclone V device and route
register output to a spare I/O pin. This example illustrates how to create a new
resource atom and modify the connections between resource atoms.

To create new resource atoms and manipulate the existing connection between
resource atoms in the post-fit netlist, follow these steps:

1. Create a new register in the Chip Planner.

2. Locate the atom in the Resource Property Editor.

3. To assign a clock signal to the register, right-click the clock input port for the
register, point to Edit connection, and click Other. Use the Node Finder to assign
a clock signal from your design.

4. To tie the SLOAD input port to VCC, right-click the clock input port for the register,
point to Edit connection, and click VCC.

5. Assign a data signal from your design to the SDATA port.

6. In the Connectivity window, under the output port names, copy the port name of
the register.

7. In the Chip Planner, locate a free I/O resource and create an output buffer.

8. Locate the new I/O atom in the Resource Property Editor.

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

163

http://www.altera.com/literature/hb/stx/stratix_handbook.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9. On the input port to the output buffer, right-click, point to Edit connection, and
click Other.

10. In the Edit Connection dialog box, type the output port name of the register you
have created.

11. Run the ECO Fitter to apply the changes by clicking Check and Save Netlist
Changes.

Note: A successful ECO connection is subject to the available routing resources.
You can view the relative routing utilization by selecting Routing
Utilization as the Background Color Map in the Layers Settings dialog box
of the Chip Planner. Also, you can view individual routing channel utilization
from local, row, and column interconnects with the tooltips created when
you position your mouse pointer over the appropriate resource. Refer to the
device data sheet for more information about the architecture of the routing
interconnects of your device.

7.9. Post ECO Steps

After you make an ECO change with the Chip Planner, you must perform static timing
analysis of your design with the Timing Analyzer to ensure that your changes did not
adversely affect the timing performance of your design.

For example, when you turn on one of the delay chain settings for a specific pin, you
change the I/O timing. Therefore, to ensure that the design still meets all timing
requirements, you should perform static timing analysis.

Related Information

Intel Quartus Prime Timing Analyzer User Guide
For more information about performing a static timing analysis of your design

7.10. Engineering Change Orders with the Chip Planner Revision
History

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.05.07 18.0.0 Added statement indicating no Chip Planner ECO support for Intel Arria 10
devices.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

June 2014 14.0.0 • Updated formatting.
• Removed references to Stratix, Stratix II, Stratix III, Arria GX, Arria II

GX, Cyclone, Cyclone II, Cyclone III, and MAX II devices.
• Added MAX V, Cyclone V, Arria V I/O elements

June 2012 12.0.0 Removed survey link.

November 2011 10.1.1 Template update.

December 2010 10.1.0 • Updated chapter to new template
• Removed “The Chip Planner FloorPlan Views” section
• Combined “Creating Atoms”, “Deleting Atoms”, and “Moving Atoms”

sections, and linked to Help.
• Added Stratix V I/O elements in “FPGA I/O Elements”.

continued...

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Intel Quartus Prime Standard Edition User Guide: Design Optimization Send Feedback

164

https://www.intel.com/content/www/us/en/docs/programmable/683068/.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

July 2010 10.0.0 • Added information to page 17–1.
• Added information to “Engineering Change Orders” on page 17–2.
• Changed heading from “Performance” to “Performance Preservation” on

page 7–2.
• Updated information in “Performance Preservation” on page 17–2.
• Changed heading from “Documentation” to “Change Modification

Record” on page 17–3.
• Changed heading from “Resource Property Editor” to “Performing ECOs

in the Resource Property Editor” on page 17–15.
• Removed “Using Incremental Compilation in the ECO Flow” section.

Preservation support for ECOs with the incremental compilation flow
has been removed in the Quartus II software version 10.0.

• Removed “Referenced Documents” section.

November 2009 9.1.0 • Updated device support list
• Made minor editorial updates

March 2009 9.0.0 • Updated Figure 17–17.
• Made minor editorial updates.
• Chapter 15 was previously Chapter 13 in the 8.1.0 release.

November 2008 8.1.0 • Corrected preservation attributes for ECOs in the section “Using
Incremental Compilation in the ECO Flow” on page15–32.

• Minor editorial updates.
• Changed to 8½” x 11” page size.

May 2008 8.0.0 • Updated device support list
• Modified description for ECO support for block RAMs and DSP blocks
• Corrected Stratix PLL ECO example
• Added an application example to show modifying the connectivity

between resource atoms

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

7. Engineering Change Orders with the Chip Planner

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

165

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683230 | 2018.11.12

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics*, and Synopsys. Includes design flow steps,
generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor
Graphics* and Cadence*. Also includes information about signal integrity
analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

A. Intel Quartus Prime Standard Edition User Guides

683230 | 2018.11.12

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Optimization

167

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Optimization%20(683230%202018.11.12)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Standard
Edition User Guide
Programmer

Updated for Intel® Quartus® Prime Design Suite: 18.1

This document is part of a collection - Intel® Quartus® Prime Standard Edition User Guides -
Combined PDF link

Online Version

Send Feedback UG-20178

683528

2018.09.24

https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683528.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Programming Intel FPGA Devices... 3
1.1. Programming Flow...3

1.1.1. Stand-Alone Intel Quartus Prime Programmer..3
1.1.2. Optional Programming or Configuration Files... 4
1.1.3. Secondary Programming Files..5

1.2. Intel Quartus Prime Programmer Window..5
1.2.1. Editing the Details of an Unknown Device..6
1.2.2. Setting Up the Hardware.. 6
1.2.3. Setting the JTAG Hardware... 6
1.2.4. Using the JTAG Chain Debugger Tool.. 7

1.3. Programming and Configuration Modes...7
1.4. Design Security Keys... 7
1.5. Verifying if Programming Files Correspond to a Compilation of the Same Source Files..... 7

1.5.1. Obtaining Project Hash for Arria V, Stratix V, Cyclone V and Intel MAX 10
Devices.. 8

1.5.2. Obtaining Project Hash for Intel Arria 10 Devices.. 8
1.6. Convert Programming Files Dialog Box... 9

1.6.1. Debugging Your Configuration..10
1.6.2. Converting Programming Files for Partial Reconfiguration.............................. 12

1.7. Flash Loaders..14
1.8. JTAG Debug Mode for Partial Reconfiguration... 14

1.8.1. Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode................. 15
1.9. Scripting Support...21

1.9.1. The jtagconfig Debugging Tool... 21
1.9.2. Generating a Partial-Mask SRAM Object File using a Mask Settings File and

a SRAM Object File...22
1.9.3. Generating Raw Binary File for Partial Reconfiguration using a .pmsf............... 22

1.10. Programming Intel FPGA Devices Revision History.. 22

A. Intel Quartus Prime Standard Edition User Guides..24

Contents

Intel Quartus Prime Standard Edition User Guide: Programmer Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Programming Intel FPGA Devices
The Intel® Quartus® Prime Programmer allows you to program and configure Intel
FPGA CPLD, FPGA, and configuration devices. After compiling your design, use the
Intel Quartus Prime Programmer to program or configure your device, to test the
functionality of the design on a circuit board.

1.1. Programming Flow

In the FPGA flow, device programming requires a fully compiled design that includes
the programming or configuration files that the Assembler generates.

To program a device:

1. Convert the programming or configuration file to target the configuration device
and, optionally, create secondary programming files.

Table 1. Programming and Configuration File Format

File Format FPGA CPLD Configuration
Device

Serial
Configuration

Device

SRAM Object File (.sof) Yes — — —

Programmer Object File (.pof) — Yes Yes Yes

JEDEC JESD71 STAPL Format File (.jam) Yes Yes Yes —

Jam Byte Code File (.jbc) Yes Yes Yes —

2. In the Intel Quartus Prime Programmer, program and configure the FPGA, CPLD,
or configuration device with the appropriate programming or configuration files.

The FPGA now contains the design that you specified in the Intel Quartus Prime
project.

1.1.1. Stand-Alone Intel Quartus Prime Programmer

Intel FPGA offers the free stand-alone Programmer, which has the same full
functionality as the Intel Quartus Prime Programmer in the Intel Quartus Prime
software. The stand-alone Programmer is useful when programming your devices with
another workstation, so you do not need two full licenses. You can download the
stand-alone Programmer from the Download Center on the Altera website.

683528 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Stand-Alone Programmer Memory Limitations

The stand-alone Programmer may use significant memory during the following
operations:

• During auto-detect operations

• When the programming file is added to the flash

• During manual attachment of the flash into the Programmer window

The 32-bit stand-alone Programmer can only use a limited amount of memory when
launched in 32-bit Windows. Note the following specific limitations of 32-bit stand-
alone Programmer:

Table 2. Stand-Alone Programmer Memory Limitations

Application Maximum Flash Device Size Flash Device Operation
Using PFL

32-bit Stand-Alone Programmer Up to 512 Mb Single Flash Device

64-bit Stand-Alone Programmer Up to 2 Gb Multiple Flash Device

The stand-alone Programmer supports combination and/or conversion of Intel Quartus
Prime programming files using the Convert Programming Files dialog box. You can
convert programming files, such as Mask Settings File (.msf), Partial-Mask SRAM
Object File (.pmsf), SRAM Object Files (.sof), or Programmer Object Files (.pof)
into other file formats that support device configuration schemes for Intel FPGA
devices.

Note the following device-specific file conversion limitations with use of the 32-bit
stand-alone Programmer:

Table 3. Stand-Alone Programmer File Conversion Limitations

Programming File Conversion Device Support

32-bit Programming File Conversion All Supported Intel FPGA Devices Except Intel
Arria® 10

64-bit Programming File Conversion All Supported Intel FPGA Devices

Related Information

Download Center

1.1.2. Optional Programming or Configuration Files

The Intel Quartus Prime software can generate optional programming or configuration
files in various formats that you can use with programming tools other than the Intel
Quartus Prime Programmer. When you compile a design in the Intel Quartus Prime
software, the Assembler automatically generates either a .sof or .pof. The
Assembler also allows you to convert FPGA configuration files to programming files for
configuration devices.

Related Information

AN 425: Using Command-Line Jam STAPL Solution for Device Programming

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Programmer Send Feedback

4

https://www.altera.com/downloads/download-center.html
http://www.altera.com/literature/an/AN425.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.1.3. Secondary Programming Files

The Intel Quartus Prime software generates programming files in various formats for
use with different programming tools.

Table 4. File Types Generated by the Intel Quartus Prime Software and Supported by
the Intel Quartus Prime Programmer

File Type Generated by the Intel Quartus
Prime Software

Supported by the Intel Quartus
Prime Programmer

.sof Yes Yes

.pof Yes Yes

.jam Yes Yes

.jbc Yes Yes

JTAG Indirect Configuration File (.jic) Yes Yes

Serial Vector Format File (.svf) Yes —

Hexadecimal (Intel-Format) Output File (.hexout) Yes —

Raw Binary File (.rbf) Yes Yes (1)

Raw Binary File for Partial Reconfiguration (.rbf) Yes Yes (2)

Tabular Text File (.ttf) Yes —

Raw Programming Data File (.rpd) Yes —

1.2. Intel Quartus Prime Programmer Window

The Intel Quartus Prime Programmer window allows you to:

• Add your programming and configuration files.

• Specify programming options and hardware.

• Start the programming or configuration of the device.

To open the Programmer window, click Tools ➤ Programmer. As you proceed
through the programming flow, the Intel Quartus Prime Message window reports the
status of each operation.

Related Information

Programmer Page (Options Dialog Box)
In Intel Quartus Prime Help

(1) Raw Binary File (.rbf) is supported by the Intel Quartus Prime Programmer in Passive Serial
(PS) configuration mode.

(2) Raw Binary File for Partial Reconfiguration (.rbf) is supported by the Intel Quartus Prime
Programmer in JTAG debug mode.

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Programmer

5

http://quartushelp.altera.com/current/index.htm#program/pgm/pgm_com_options_tab.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.1. Editing the Details of an Unknown Device

When the Intel Quartus Prime Programmer automatically detects devices with shared
JTAG IDs, the Programmer prompts you to specify the device in the JTAG chain. If the
Programmer does not prompt you to specify the device, you must manually add each
device in the JTAG chain to the Programmer, and define the instruction register length
of each device.

To edit the details of an unknown device, follow these steps:

1. Double-click the unknown device listed under the device column.

2. Click Edit.

3. Change the device Name.

4. Specify the Instruction register Length.

5. Click OK.

6. Save the .cdf file.

1.2.2. Setting Up the Hardware

Before you can program or configure the device, you must have the correct hardware
setup. The Intel Quartus Prime Programmer provides the flexibility to choose a
download cable or programming hardware.

1.2.3. Setting the JTAG Hardware

The JTAG server allows the Intel Quartus Prime Programmer to access the JTAG
hardware. You can also access the JTAG download cable or programming hardware
connected to a remote computer through the JTAG server of that computer. With the
JTAG server, you can control the programming or configuration of devices from a
single computer through other computers at remote locations. The JTAG server uses
the TCP/IP communications protocol.

1.2.3.1. Running JTAG Daemon with Linux

The JTAGD daemon allows a remote machine to program or debug a board that is
connected to a Linux host over the network. The JTAGD daemon also allows multiple
programs to use JTAG resources at the same time. The JTAGD daemon is the Linux
version of a JTAG server.

Run the JTAGD daemon to avoid:

• The JTAGD server from exiting after two minutes of idleness.

• The JTAGD server from not accepting connections from remote machines, which
might lead to an intermittent failure.

To run JTAGD as a daemon, follow these steps:

1. Create an /etc/jtagd directory.

2. Set the permissions of this directory and the files in the directory to allow you to
have the read/write access.

3. Run jtagd (with no arguments) from your quartus/bin directory.

The JTAGD daemon is now running and does not terminate when you log off.

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Programmer Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.4. Using the JTAG Chain Debugger Tool

The JTAG Chain Debugger tool allows you to test the JTAG chain integrity and detect
intermittent failures of the JTAG chain. In addition, the tool allows you to shift in JTAG
instructions and data through the JTAG interface, and step through the test access
port (TAP) controller state machine for debugging purposes. You access the tool by
clicking Tools ➤ JTAG Chain Debugger on the Intel Quartus Prime software.

1.3. Programming and Configuration Modes

The following table lists the programming and configuration modes supported by Intel
FPGA devices.

Table 5. Programming and Configuration Modes

Configuration Mode Supported
by the Intel Quartus Prime

Programmer

FPGA CPLD Configuration
Device

Serial Configuration
Device

JTAG Yes Yes Yes —

Passive Serial (PS) Yes — — —

Active Serial (AS) Programming — — — Yes

Configuration via Protocol (CvP) Yes — — —

In-Socket Programming — Yes (except for
MAX® II CPLDs)

Yes Yes

Related Information

Configuration via Protocol (CvP) Implementation in V-series Intel FPGAs Devices User
Guide

Describes the CvP configuration mode.

1.4. Design Security Keys

The Intel Quartus Prime Programmer supports the generation of encryption key
programming files and encrypted configuration files for Intel FPGAs that support the
design security feature. You can also use the Intel Quartus Prime Programmer to
program the encryption key into the FPGA.

Related Information

AN 556: Using the Design Security Features in Intel FPGAs

1.5. Verifying if Programming Files Correspond to a Compilation of
the Same Source Files

The project hash feature allows you to verify if two programming files correspond to a
compilation of the same set of source files. During compilation, the Intel Quartus
Prime software generates a unique project hash and embeds this value in
programming files (.sof). The project hash is available for Arria V, Stratix® V,
Cyclone® V, Intel MAX 10, and Intel Arria 10 device families.

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Programmer

7

https://www.intel.com/content/www/us/en/docs/programmable/683889/current/overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683889/current/overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683269/current/using-the-design-security-features-in-fpgas.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The project hash doesn't change for different builds of the Intel Quartus Prime
software, or when you install a software patch. However, if you upgrade any IP with a
different build or patch, the project hash changes.

1.5.1. Obtaining Project Hash for Arria V, Stratix V, Cyclone V and Intel
MAX 10 Devices

To obtain the project hash value of a .sof programming file for a design targeted to
Arria V, Stratix V, Cyclone V, and Intel MAX 10 devices, use the following command,
which dumps out metadata information that includes the project hash.

quartus_cpf --info <sof-file-name>

Example 1. Output of Project Hash Extraction

In this example, the programming file name is cb_intosc.sof.

File: cb_intosc.sof
 File CRC: 0x0000
 Creator: Quartus Prime Compiler
 Version 17.0.0 Internal Build 565 02/09/2017 SJ Standard Edition
 Comment: UNIX
 Device: 5SGSMD5K2F40
 Data checksum: 0x02534E5A
 JTAG usercode: 0x02534E5A
 Project Hash: 0x556e737065636966696564

1.5.2. Obtaining Project Hash for Intel Arria 10 Devices

To obtain the project hash value of a .sof programming file for a design targeted to
Intel Arria 10 devices, create a file named project_hash.tcl. In your file, copy and
paste the following code:

##
Begin project_hash.tcl
#
##
@copyright Intel 2017
##
proc main_run {} {
global quartus
set qargs $quartus(args)
set nargs [llength $qargs]
load_package asm2
load_devices
set handle -1
set sof_file [lindex $qargs 0]
if [file exists $sof_file] {
set handle [open_sof $sof_file]
}
print "/metadata/0/project_hash"
if { $handle != -1 } {
close_handle $handle
}
}
###
main_run
End of project_hash.tcl
###

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Programmer Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Save the project_hash.tcl file in the same directory that contains your
programming file, and type in the command line:

quartus_asm -t project_hash.tcl <sof-file>

The script prints the project hash value to the command line output.

Example 2. Output of Project Hash Extraction:

In this example, the programming file is one_and.sof.

Info: ***
Info: Running Quartus Prime Assembler
Info: Version 17.0.0 Build 594 04/18/2017 SJ Standard Edition
Info: Copyright (C) 2017 Intel Corporation. All rights reserved.
Info: Your use of Intel Corporation's design tools, logic functions
Info: and other software and tools, and its AMPP partner logic
Info: functions, and any output files from any of the foregoing
Info: (including device programming or simulation files), and any
Info: associated documentation or information are expressly subject
Info: to the terms and conditions of the Intel Program License
Info: Subscription Agreement, the Intel Quartus Prime License Agreement,
Info: the Intel MegaCore Function License Agreement, or other
Info: applicable license agreement, including, without limitation,
Info: that your use is for the sole purpose of programming logic
Info: devices manufactured by Intel and sold by Intel or its
Info: authorized distributors. Please refer to the applicable
Info: agreement for further details.
Info: Processing started: Sat Apr 22 00:44:19 2017
Info: Command: quartus_asm -t project_hash.tcl one_and.sof
Info: Quartus(args): one_and.sof
Info: Using INI file /data/msandova/qmap/quartus.ini
0x16cc7e6773644d398b740451aa0b26e3
Info (23030): Evaluation of Tcl script project_hash.tcl was successful
Info: Quartus Prime Assembler was successful. 0 errors, 0 warnings
Info: Peak virtual memory: 1111 megabytes
Info: Processing ended: Sat Apr 22 00:44:27 2017
Info: Elapsed time: 00:00:08

1.6. Convert Programming Files Dialog Box

The Convert Programming Files dialog box in the Programmer allows you to
convert programming files from one file format to another. To access the Convert
Programming Files dialog box, click File ➤ Convert Programming Files... on the
Intel Quartus Prime software.

For example, to store the FPGA data in configuration devices, you can convert
the .sof data to another format, such as .pof, .hexout, .rbf, .rpd, or .jic, and
then program the configuration device.

You can also configure multiple devices with an external host, such as a
microprocessor or CPLD. For example, you can combine multiple .sof files into
one .pof file. To save time in subsequent conversions, click Save Conversion Setup
to save your conversion specifications in a Conversion Setup File (.cof). Click Open
Conversion Setup Data to load your .cof setup in the Convert Programming
Files dialog box.

Example 3. Conversion Setup File Contents

<?xml version="1.0" encoding="US-ASCII" standalone="yes"?>
<cof>
 <output_filename>output_file.pof</output_filename>

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Programmer

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 <n_pages>1</n_pages>
 <width>1</width>
 <mode>14</mode>
 <sof_data>
 <user_name>Page_0</user_name>
 <page_flags>1</page_flags>
 <bit0>
 <sof_filename>/users/jbrossar/template/output_files/
template_test.sof</sof_filename>
 </bit0>
 </sof_data>
 <version>7</version>
 <create_cvp_file>0</create_cvp_file>
 <create_hps_iocsr>0</create_hps_iocsr>
 <auto_create_rpd>0</auto_create_rpd>
 <options>
 <map_file>1</map_file>
 </options>
 <MAX10_device_options>
 <por>0</por>
 <io_pullup>1</io_pullup>
 <auto_reconfigure>1</auto_reconfigure>
 <isp_source>0</isp_source>
 <verify_protect>0</verify_protect>
 <epof>0</epof>
 <ufm_source>0</ufm_source>
 </MAX10_device_options>
 <advanced_options>
 <ignore_epcs_id_check>0</ignore_epcs_id_check>
 <ignore_condone_check>2</ignore_condone_check>
 <plc_adjustment>0</plc_adjustment>
 <post_chain_bitstream_pad_bytes>-1</post_chain_bitstream_pad_bytes>
 <post_device_bitstream_pad_bytes>-1</post_device_bitstream_pad_bytes>
 <bitslice_pre_padding>1</bitslice_pre_padding>
 </advanced_options>
</cof>

Related Information

Convert Programming Files Dialog Box
In Intel Quartus Prime Help

1.6.1. Debugging Your Configuration

Use the Advanced option in the Convert Programming Files dialog box to debug
your configuration. You must choose the advanced settings that apply to your Intel
FPGA device. You can direct the Intel Quartus Prime software to enable or disable an
advanced option by turning the option on or off in the Advanced Options dialog box.
When you change settings in the Advanced Options dialog box, the change
affects .pof, .jic, .rpd, and .rbf files.

The following table lists the Advanced Options settings in more detail:

Table 6. Advanced Options Settings

Option Setting Description

Disable EPCS ID check FPGA skips the EPCS silicon ID verification.
Default setting is unavailable (EPCS ID check is enabled).
Applies to the single- and multi-device AS configuration
modes on all FPGA devices.

Disable AS mode CONF_DONE error check FPGA skips the CONF_DONE error check.

continued...

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Programmer Send Feedback

10

http://quartushelp.altera.com/current/program/pgm/pgm_com_convert.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Setting Description

Default setting is unavailable (AS mode CONF_DONE error
check is enabled).
Applies to single- and multi-device (AS) configuration
modes on all FPGA devices.
The CONF_DONE error check is disabled by default for
Stratix V, Arria V, and Cyclone V devices for AS-PS multi
device configuration mode.

Program Length Count adjustment Specifies the offset you can apply to the computed PLC of
the entire bitstream.
Default setting is 0. The value must be an integer.
Applies to single- and multi-device (AS) configuration
modes on all FPGA devices.

Post-chain bitstream pad bytes Specifies the number of pad bytes appended to the end of
an entire bitstream.
Default value is set to 0 if the bitstream of the last device is
uncompressed. Set to 2 if the bitstream of the last device is
compressed.

Post-device bitstream pad bytes Specifies the number of pad bytes appended to the end of
the bitstream of a device.
Default value is 0. No negative integer.
Applies to all single-device configuration modes on all FPGA
devices.

Bitslice padding value Specifies the padding value used to prepare bitslice
configuration bitstreams, such that all bitslice configuration
chains simultaneously receive their final configuration data
bit.
Default value is 1. Valid setting is 0 or 1.
Use only in 2, 4, and 8-bit PS configuration mode, when you
use an EPC device with the decompression feature enabled.
Applies to all FPGA devices that support enhanced
configuration devices.

The following table lists the symptoms you may encounter if a configuration fails, and
describes the advanced options you must use to debug your configuration.

Failure Symptoms Disable EPCS
ID Check

Disable AS
Mode

CONF_DONE
Error Check

PLC Settings Post-Chain
Bitstream Pad

Bytes

Post-Device
Bitstream Pad

Bytes

Bitslice
Padding Value

Configuration
failure occurs after
a configuration
cycle.

— Yes Yes
Yes
(3)

Yes (4) —

Decompression
feature is enabled.

— Yes Yes Yes (3) Yes (4) —

Encryption feature
is enabled.

— Yes Yes Yes (3) Yes (4) —

continued...

(3) Use only for multi-device chain

(4) Use only for single-device chain

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Programmer

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Failure Symptoms Disable EPCS
ID Check

Disable AS
Mode

CONF_DONE
Error Check

PLC Settings Post-Chain
Bitstream Pad

Bytes

Post-Device
Bitstream Pad

Bytes

Bitslice
Padding Value

CONF_DONE stays
low after a
configuration cycle.

— Yes Yes (5) Yes (3) Yes (4) —

CONF_DONE goes
high momentarily
after a
configuration cycle.

— Yes Yes (6) — — —

FPGA does not
enter user mode
even though
CONF_DONE goes
high.

— — — Yes (3) Yes (4) —

Configuration
failure occurs at
the beginning of a
configuration cycle.

Yes — — — — —

Newly introduced
EPCS, such as
EPCS128.

Yes — — — — —

Failure in .pof
generation for EPC
device using Intel
Quartus Prime
Convert
Programming File
Utility when the
decompression
feature is enabled.

— — — — — Yes

1.6.2. Converting Programming Files for Partial Reconfiguration

The Convert Programming File dialog box supports the following programming file
generation and option for Partial Reconfiguration:

• Partial-Masked SRAM Object File (.pmsf) output file generation, with .msf
and .sof as input files.

• .rbf for Partial Reconfiguration output file generation, with a .pmsf as the input
file.

Note: The .rbf for Partial Reconfiguration file is only for Partial Reconfiguration.

• Providing the Enable decompression during Partial Reconfiguration option to
enable the option bit for bitstream decompression during Partial Reconfiguration,
when converting a full design .sof to any supported file type.

Related Information

• Design Planning for Partial Reconfiguration
In Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

(5) Start with positive offset to the PLC settings

(6) Start with negative offset to the PLC settings

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Programmer Send Feedback

12

https://www.intel.com/content/www/us/en/docs/programmable/683499/current/design-planning-for-partial-reconfiguration.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Design Planning for Partial Reconfiguration

1.6.2.1. Generating .pmsf using a .msf and a .sof

To generate the .pmsf in the Convert Programming Files dialog box:

1. In the Convert Programming Files dialog box, under the Programming file
type field, select Partial-Masked SRAM Object File (.pmsf).

2. In File name, specify the necessary output file name.

3. In the Input files to convert field, add necessary input files to convert. You can
add only a .msf and .sof.

4. Click Generate.

1.6.2.2. Generating a .rbf for Partial Reconfiguration from a .pmsf file

After generating the .pmsf file, you convert the .pmsf file into a .rbf file with the
Convert Programming Files dialog box.

To generate the .rbf for Partial Reconfiguration:

1. In the Convert Programming Files dialog box, in the Programming file type
field, select Raw Binary File for Partial Reconfiguration (.rbf).

2. In the File name field, specify the output file name.

3. In the Input files to convert field, add input files to convert.

You can add only one .pmsf file.

4. Select the .pmsf, and click Properties.
The PMSF File Properties dialog box appears.

5. Make your selection either by turning on or turning off the following options:

— Compression option—This option enables compression on Partial
Reconfiguration bitstream. If you turn on this option, then you must turn on
the Enable decompression during Partial Reconfiguration option.

— Enable SCRUB mode option—The default of this option is based on AND/OR
mode. This option is valid only when Partial Reconfiguration masks in your
design are not overlapped vertically. Otherwise, you cannot generate the .rbf
for Partial Reconfiguration.

— Write memory contents option—This option is a workaround for initialized
RAM/ROM in a Partial Reconfiguration region.

For more information about these options refer to Design Planning for Partial
Reconfiguration in Intel Quartus Prime Standard Edition User Guide: Partial
Reconfiguration.

6. Click OK.

7. Click Generate.

Related Information

Design Planning for Partial Reconfiguration
In Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Programmer

13

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#mwh1409958516629
https://www.intel.com/content/www/us/en/docs/programmable/683499/current/design-planning-for-partial-reconfiguration.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.2.3. Enable Decompression During Partial Reconfiguration Option

You can turn on the Enable decompression during Partial Reconfiguration option
in the SOF File Properties: Bitstream Encryption dialog box, which you can access
from the Convert Programming File dialog box. This option is available when
converting a .sof to any supported programming file types listed in Secondary
Programming Files.

This option is hidden for other targeted devices that do not support Partial
Reconfiguration. To view this option in the SOF File Properties: Bitstream
Encryption dialog box, the .sof must be targeted on an Intel FPGA device that
supports Partial Reconfiguration.

If you turn on the Compression option when generating the .rbf for Partial
Reconfiguration, then you must turn on the Enable decompression during Partial
Reconfiguration option.

Related Information

Secondary Programming Files on page 5

1.7. Flash Loaders

Parallel and serial configuration devices do not support the JTAG interface. However,
you can use a flash loader to program configuration devices in-system via the JTAG
interface. You can use an FPGA as a bridge between the JTAG interface and the
configuration device. The Intel Quartus Prime software supports parallel and serial
flash loaders.

1.8. JTAG Debug Mode for Partial Reconfiguration

The JTAG debug mode allows you to configure partial reconfiguration bitstream
through the JTAG interface. Use this feature to debug PR bitstream and eventually
helping you in your PR design prototyping. This feature is available for internal and
external host. Using the JTAG debug mode forces the Data Source Controller to be in
x16 mode.

During JTAG debug operation, the JTAG command sent from the Intel Quartus Prime
Programmer ignores and overrides most of the Partial Reconfiguration IP core
interface signals (clk, pr_start, double_pr, data[], data_valid, and
data_read).

Note: The TCK is the main clock source for PR IP core during this operation.

You can view the status of Partial Reconfiguration operation in the messages box and
the Progress bar in the Intel Quartus Prime Programmer. The PR_DONE, PR_ERROR,
and CRC_ERROR signals will be monitored during PR operation and reported in the
Messages box at the end of the operation.

The Intel Quartus Prime Programmer can detect the number of PR_DONE instruction(s)
in plain or compressed PR bitstream and, therefore, can handle single or double PR
cycle accordingly. However, only single PR cycle is supported for encrypted Partial
Reconfiguration bitstream in JTAG debug mode (provided that the specified device is
configured with the encrypted base bitstream which contains the PR IP core in the
design).

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Programmer Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Configuring an incompatible PR bitstream to the specified device may corrupt your
design, including the routing path and the PR IP core placed in the static region. When
this issue occurs, the PR IP core stays in an undefined state, and the Intel Quartus
Prime Programmer is unable to reset the IP core. As a result, the Intel Quartus Prime
Programmer generates the following error when you try to configure a new PR
bitstream:

Error (12897): Partial Reconfiguration status: Can't reset the PR megafunction.
This issue occurred because the design was corrupted by an incompatible PR
bitstream in the previous PR operation. You must reconfigure the device with a
good design.

1.8.1. Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode

To configure the Partial Reconfiguration bitstream in JTAG debug mode, follow these
steps:

1. In the Intel Quartus Prime Programmer GUI, right click a highlighted base
bitstream (in .sof) and then click Add PR Programming File to add the PR
bitstream (.rbf).

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Programmer

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1. Adding PR Programming File

2. After adding the PR bitstream, you can change or delete the Partial
Reconfiguration programming file by clicking Change PR Programming File or
Delete PR Programming File.

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Programmer Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Change PR Programming File or Delete PR Programming File

3. Click Start to configure the PR bitstream. The Intel Quartus Prime Programmer
generates an error message if the specified device does not contain the PR IP core
in the design (you must instantiate the Partial Reconfiguration IP core in your
design to use the JTAG debug mode).

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Programmer

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3. Starting PR Bitstream Configuration

4. Configure the valid .rbf in JTAG debug mode with the Intel Quartus Prime
Programmer.

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Programmer Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4. Configuring Valid .rbf

5. The JTAG debug mode is also supported if the PR IP core is pre-programmed on
the specified device.

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Programmer

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. Partial Reconfiguration IP Core Successfully Pre-programmed

6. The Intel Quartus Prime Programmer reports error when you try to configure the
corrupted .rbf in JTAG debug mode.

Figure 6. Configuring Corrupted .rbf

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Programmer Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.9. Scripting Support

In addition to the Intel Quartus Prime Programmer GUI, you can use the Intel Quartus
Prime command-line executable quartus_pgm.exe (or quartus_pgm in Linux) to
access programmer functionality from the command line and from scripts. The
programmer accepts .pof, .sof, and .jic programming or configuration files
and .cdf files.

The following example shows a command that programs a device:

quartus_pgm –c byteblasterII –m jtag –o bpv;design.pof ←

Where:

• -c byteblasterII specifies the Intel FPGA Intel FPGA Parallel Port Cable
download cable

• -m jtag specifies the JTAG programming mode

• -o bpv represents the blank-check, program, and verify operations

• design.pof represents the .pof used for the programming

The Programmer automatically executes the erase operation before programming the
device.

For Linux terminal, use:

quartus_pgm –c byteblasterII –m jtag –o bpv\;design.pof

Related Information

Intel Quartus Prime Scripting
In Intel Quartus Prime Help

1.9.1. The jtagconfig Debugging Tool

You can use the jtagconfig command-line utility to check the devices in a JTAG
chain and the user-defined devices. The jtagconfig command-line utility is similar
to the auto detect operation in the Intel Quartus Prime Programmer.

For more information about the jtagconfig utility, use the help available at the
command prompt:

jtagconfig [–h | --help]

Note: The help switch does not reference the -n switch. The jtagconfig -n command
shows each node for each JTAG device.

Related Information

Command Line Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Programmer

21

http://quartushelp.altera.com/current/reference/scripting/tcl_view_using_tcl_scripts.htm
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.9.2. Generating a Partial-Mask SRAM Object File using a Mask Settings
File and a SRAM Object File

You can generate a .pmsf with the quartus_cpf command by typing the following
command:

quartus_cpf -p <pr_revision.msf> <pr_revision.sof> <new_filename.pmsf>

1.9.3. Generating Raw Binary File for Partial Reconfiguration using
a .pmsf

You can generate a .rbf for Partial Reconfiguration with the quartus_cpf command
by typing the following command:

quartus_cpf –o foo.txt –c <pr_revision.pmsf> <pr_revision.rbf>

Note: You must run this command in the same directory where the files are located.

1.10. Programming Intel FPGA Devices Revision History

Document Revision History

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.
• Renamed topic: Project Hash to Verifying if Programming Files

Correspond to a Compilation of the Same Source Files.

2017.05.08 17.0.0 • Added Project Hash feature.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Added Conversion Setup File (.cof) description and example.

December 2014 14.1.0 Updated the Scripting Support section to include a Linux command to
program a device.

June 2014 14.0.0 • Added Running JTAG Daemon.
• Removed Cyclone III and Stratix III devices references.
• Removed MegaWizard Plug-In Manager references.
• Updated Secondary Programming Files section to add notes about the

Quartus II Programmer support for .rbf files.

November 2013 13.1.0 • Converted to DITA format.
• Added JTAG Debug Mode for Partial Reconfiguration and Configuring

Partial Reconfiguration Bitstream in JTAG Debug Mode sections.

November 2012 12.1.0 • Updated Table 18–3 on page 18–6, and Table 18–4 on page 18–8.
• Added “Converting Programming Files for Partial Reconfiguration” on

page 18–10, “Generating .pmsf using a .msf and a .sof” on page 18–
10, “Generating .rbf for Partial Reconfiguration Using a .pmsf” on page
18–12, “Enable Decompression during Partial Reconfiguration Option”
on page 18–14

• Updated “Scripting Support” on page 18–15.

June 2012 12.0.0 • Updated Table 18–5 on page 18–8.
• Updated “Quartus II Programmer GUI” on page 18–3.

continued...

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Programmer Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

November 2011 11.1.0 • Updated “Configuration Modes” on page 18–5.
• Added “Optional Programming or Configuration Files” on page 18–6.
• Updated Table 18–2 on page 18–5.

May 2011 11.0.0 • Added links to Quartus II Help.
• Updated “Hardware Setup” on page 21–4 and “JTAG Chain Debugger

Tool” on page 21–4.

December 2010 10.1.0 • Changed to new document template.
• Updated “JTAG Chain Debugger Example” on page 20–4.
• Added links to Quartus II Help.
• Reorganized chapter.

July 2010 10.0.0 • Added links to Quartus II Help.
• Deleted screen shots.

November 2009 9.1.0 No change to content.

March 2009 9.0.0 • Added a row to Table 21–4.
• Changed references from “JTAG Chain Debug” to “JTAG Chain

Debugger”.
• Updated figures.

Related Information

Altera Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the Altera
documentation archives.

1. Programming Intel FPGA Devices

683528 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Programmer

23

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683528 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys* that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics*, and Synopsys*. Includes design flow steps,
generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor
Graphics* and Cadence*. Also includes information about signal integrity
analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

A. Intel Quartus Prime Standard Edition User Guides

683528 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Programmer

25

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Programmer%20(683528%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Standard
Edition User Guide
Partial Reconfiguration

Updated for Intel® Quartus® Prime Design Suite: 18.1

This document is part of a collection - Intel® Quartus® Prime Standard Edition User Guides -
Combined PDF link

Online Version

Send Feedback UG-20179

683499

2018.09.24

https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683499.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Design Planning for Partial Reconfiguration..3
1.1. Terminology..3

1.1.1. Determining Resources for Partial Reconfiguration..5
1.2. An Example of a Partial Reconfiguration Design..6
1.3. Partial Reconfiguration Modes..6

1.3.1. SCRUB Mode...7
1.3.2. AND/OR Mode... 8
1.3.3. Programming File Sizes for a Partial Reconfiguration Project............................ 9

1.4. Partial Reconfiguration Design Flow.. 10
1.4.1. Design Partitions for Partial Reconfiguration..12
1.4.2. Incremental Compilation Partitions for Partial Reconfiguration........................ 12
1.4.3. Partial Reconfiguration Controller Instantiation in the Design..........................13
1.4.4. Wrapper Logic for PR Regions.. 16

1.5. Freeze Logic for PR Regions...18
1.5.1. Clocks and Other Global Signals for a PR Design.. 20
1.5.2. Floorplan Assignments for PR Designs...21

1.6. Implementation Details for Partial Reconfiguration..22
1.6.1. Interface with the PR Control Block through a PR Host.................................. 22
1.6.2. Partial Reconfiguration Pins... 23
1.6.3. PR Control Signals Interface.. 24
1.6.4. Reconfiguring a PR Region...25
1.6.5. Partial Reconfiguration Cycle Waveform...27

1.7. Example of a Partial Reconfiguration Design with an External Host..............................29
1.7.1. Example of Using an External Host with Multiple Devices...............................29

1.8. Example Partial Reconfiguration with an Internal Host...30
1.9. Partial Reconfiguration Project Management.. 31

1.9.1. Create Reconfigurable Revisions...31
1.9.2. Compiling Reconfigurable Revisions.. 32
1.9.3. Timing Closure for a Partial Reconfiguration Project...................................... 32
1.9.4. PR Bitstream Compression and Encryption (Intel Arria® 10 Designs)...............32

1.10. Programming Files for a Partial Reconfiguration Project... 33
1.10.1. Generating Required Programming Files.. 36
1.10.2. Generate PR Programming Files with the Convert Programming Files

Dialog Box.. 36
1.11. On-Chip Debug for PR Designs...39
1.12. Partial Reconfiguration Known Limitations..40

1.12.1. Memory Blocks Initialization Requirement for PR Designs.............................40
1.12.2. M20K RAM Blocks in PR Designs...40
1.12.3. MLAB Blocks in PR designs.. 42
1.12.4. Implementing Memories with Initialized Content...43
1.12.5. Initializing M20K Blocks with a Double PR Cycle..45

1.13. Document Revision History..45

A. Intel Quartus Prime Standard Edition User Guides..46

Contents

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Design Planning for Partial Reconfiguration
The Partial Reconfiguration (PR) feature in the Intel® Quartus® Prime software allows
you to reconfigure a portion of the FPGA dynamically, while the remainder of the
device continues to operate.

This chapter assumes a basic knowledge of Altera’s FPGA design flow, incremental
compilation, and LogicLock™ region features available in the Intel Quartus Prime
software. It also assumes knowledge of the internal FPGA resources such as logic
array blocks (LABs), memory logic array blocks (MLABs), memory types (RAM and
ROM), DSP blocks, clock networks.

The Intel Quartus Prime software supports the PR feature for the Intel Stratix® V
device family and Cyclone® V devices whose part number ends in "SC", for example,
5CGXFC9E6F35I8NSC.

Related Information

• Terminology on page 3

• An Example of a Partial Reconfiguration Design on page 6

• Partial Reconfiguration Design Flow on page 10

• Implementation Details for Partial Reconfiguration on page 22

• Example of a Partial Reconfiguration Design with an External Host on page 29

• Example Partial Reconfiguration with an Internal Host on page 30

• Partial Reconfiguration Project Management on page 31

• Programming Files for a Partial Reconfiguration Project on page 33

• Partial Reconfiguration Known Limitations on page 40

• mySupport

1.1. Terminology

The following terms are commonly used in this chapter.

683499 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://www.altera.com/mysupport
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• project: A Intel Quartus Prime project contains the design files, settings, and
constraints files required for the compilation of your design.

• revision: In the Intel Quartus Prime software, a revision is a set of assignments
and settings for one version of your design. A Intel Quartus Prime project can
have several revisions, and each revision has its own set of assignments and
settings. A revision helps you to organize several versions of your design into a
single project.

• incremental compilation: This is a feature of the Intel Quartus Prime software
that allows you to preserve results of previous compilations of unchanged parts of
the design, while changing the implementation of the parts of your design that
you have modified since your previous compilation of the project. The key benefits
include timing preservation and compile time reduction by only compiling the logic
that has changed.

• partition: You can partition your design along logical hierarchical boundaries.
Each design partition is independently synthesized and then merged into a
complete netlist for further stages of compilation. With the Intel Quartus Prime
incremental compilation flow, you can preserve results of unchanged partitions at
specific preservation levels. For example, you can set the preservation levels at
post-synthesis or post-fit, for iterative compilations in which some part of the
design is changed. A partition is only a logical partition of the design, and does not
necessarily refer to a physical location on the device. However, you may associate
a partition with a specific area of the FPGA by using a floorplan assignment.

For more information on design partitions, refer to the Best Practices for
Incremental Compilation Partitions and Floorplan Assignments chapter in the Intel
Quartus Prime Handbook.

• LogicLock region: A LogicLock region constrains the placement of logic in your
design. You can associate a design partition with a LogicLock region to constrain
the placement of the logic in the partition to a specific physical area of the FPGA.

For more information about LogicLock regions, refer to the Analyzing and
Optimizing the Design Floorplan chapter in the Intel Quartus Prime Handbook
Volume 2.

• PR project: Any Intel Quartus Prime design project that uses the PR feature.

• PR region: A design partition with an associated contiguous LogicLock region in a
PR project. A PR project can have one or more PR regions that can be partially
reconfigured independently. A PR region may also be referred to as a PR partition.

• static region: The region outside of all the PR regions in a PR project that cannot
be reprogrammed with partial reconfiguration (unless you reprogram the entire
FPGA). This region is called the static region, or fixed region.

• persona: A PR region has multiple implementations. Each implementation is
called a persona. PR regions can have multiple personas. In contrast, static
regions have a single implementation or persona.

• PR control block: Dedicated block in the FPGA that processes the PR requests,
handshake protocols, and verifies the CRC.

• PR IP Core: Altera soft IP that can be used to configure the PR control block in
the FPGA to mange the PR bitstream source.

Related Information

Analyzing and Optimizing the Design Floorplan

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

4

https://www.intel.com/content/www/us/en/docs/programmable/683774.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.1.1. Determining Resources for Partial Reconfiguration

You can use partial reconfiguration to configure only the resources such as LABs,
embedded memory blocks, and DSP blocks in the FPGA core fabric that are controlled
by configuration RAM (CRAM).

The functions in the periphery, such as GPIOs or I/O Registers, are controlled by I/O
configuration bits and therefore cannot be partially reconfigured. Clock multiplexers
for GCLK and QCLK are also not partially reconfigurable because they are controlled by
I/O periphery bits.

Figure 1. Partially Reconfigurable Resources

These are the types of resource blocks in a Stratix V device.

I/O, I/O Registers & Part-Hard Memory PHY

Transceivers,
PCIe HIP

I/O, I/O Registers & Part-Hard Memory PHY

Transceivers,
PCIe HIP

Core
Fabric

PLL
CLK

PLL
CLK

Periphery Core Fabric

Table 1. Reconfiguration Modes of the FPGA Resource Block
The following table describes the reconfiguration type supported by each FPGA resource block, which are
shown in the figure.

Hardware Resource Block Reconfiguration Mode

Logic Block Partial Reconfiguration

Digital Signal Processing Partial Reconfiguration

Memory Block Partial Reconfiguration

Transceivers Dynamic Reconfiguration ALTGX_Reconfig

PLL Dynamic Reconfiguration ALTGX_Reconfig

continued...

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Hardware Resource Block Reconfiguration Mode

Core Routing Partial Reconfiguration

Clock Networks Clock network sources cannot be changed, but a PLL driving a clock network can be
dynamically reconfigured

I/O Blocks and Other Periphery Not supported

The transceivers and PLLs in Altera FPGAs can be reconfigured using dynamic
reconfiguration. For more information on dynamic reconfiguration, refer to the
Dynamic Reconfiguration in Stratix V Devices chapter in the Stratix V Handbook.

Related Information

Dynamic Reconfiguration in Stratix V Devices

1.2. An Example of a Partial Reconfiguration Design

A PR design is divided into two parts. The static region where the design logic does not
change, and one or more PR regions.

Each PR region can have different design personas, that change with partial
reconfiguration.

PR Region A has three personas associated with it; A1, A2, and A3. PR Region B has
two personas; B1 and B2. Each persona for the two PR regions can implement
different application specific logic, and using partial reconfiguration, the persona for
each PR region can be modified without interrupting the operation of the device in the
static or other PR region.

Figure 2. Partial Reconfiguration Project Structure

The following figure shows the top-level of a PR design, which includes a static region and two PR regions.

Chip_top

PR Region A

PR Region B

PR Persona A1

PR Persona A2

PR Persona A3

PR Persona B1

PR Persona B2

Static
Region

1.3. Partial Reconfiguration Modes

When you implement a design on an Altera FPGA device, your design implementation
is controlled by bits stored in CRAM inside the FPGA.

You can use partial reconfiguration in the SCRUB mode or the AND/OR mode. The
mode you select affects your PR flow in ways detailed later in this chapter.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

6

https://www.intel.com/content/www/us/en/docs/programmable/683779/current/dynamic-reconfiguration-in-devices.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The CRAM bits control individual LABs, MLABs, M20K memory blocks, DSP blocks, and
routing multiplexers in a design. The CRAM bits are organized into a frame structure
representing vertical areas that correspond to specific locations on the FPGA. If you
change a design and reconfigure the FPGA in a non-PR flow, the process reloads all
the CRAM bits to a new functionality.

Configuration bitstreams used in a non-PR flow are different than those used in a PR
flow. In addition to standard data and CRC check bits, configuration bitstreams for
partial reconfiguration also include instructions that direct the PR control block to
process the data for partial reconfiguration.

The configuration bitstream written into the CRAM is organized into configuration
frames. If a LAB column passes through multiple PR regions, those regions share
some programming frames.

1.3.1. SCRUB Mode

When using SCRUB mode in partial reconfiguration, the unchanging CRAM bits from
the static region are "scrubbed" back to their original values.

The static regions controlled by the CRAM bits from the same programming frame as
the PR region continue to operate. All the CRAM bits corresponding to a PR region are
overwritten with new data, regardless of what was previously contained in the region.

The SCRUB mode of partial reconfiguration involves re-writing all the bits in an entire
LAB column of the CRAM, including bits controlling any part of the static region above
and below the PR region boundary being reconfigured. You can choose to scrub the
values of the CRAM bits to 0, and then rewrite them by turning on the Use clear/set
method along with Enable SCRUB mode. The Use clear/set method is the more
reliable option, but can increase the size of your bitstream. You can also choose to
simply Enable SCRUB mode.

Note: You must turn on Enable SCRUB mode to use Use clear/set method.

Figure 3. Enable SCRUB mode and Use clear/set method

If there are more than one PR regions along a LAB column, and you are trying to
reconfigure one of the PR regions, it is not not possible to correctly determine the bits
associated with the PR region that is not changing. For this reason, you can not use
the SCRUB mode when you have two PR regions that have a vertically overlapping
column in the device. This restriction does not apply to the static bits because they
never change and you can rewrite them with the same value of the configuration bit.

If you turn on Enable SCRUB mode and do not turn on Use clear/set method, then
the scrub is done in a single pass, writing new values of the CRAM without clearing all
the bits first. The advantage of using the SCRUB mode is that the programming file
size is much smaller than the AND/OR mode.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4. SCRUB Mode

This is the floorplan of a FPGA using SCRUB mode, with two PR regions, whose columns do not overlap.

PR1
Region

Programming Frame(s)
(No Vertical Overlap)

PR2
Region

1.3.2. AND/OR Mode

The AND/OR mode refers to how the bits are rewritten. Partial reconfiguration with
AND/OR uses a two-pass method.

Simplistically, this can be compared to bits being ANDed with a MASK, and ORed with
new values, allowing multiple PR regions to vertically overlap a single column. In the
first pass, all the bits in the CRAM frame for a column passing through a PR region are
ANDed with '0's while those outside the PR region are ANDed with '1's. After the first
pass, all the CRAM bits corresponding to the PR region are reset without modifying the
static region. In the second pass for each CRAM frame, new data is ORed with the
current value of 0 inside the PR region, and in the static region, the bits are ORed with
'0's so they remain unchanged. The programming file size of a PR region using the
AND/OR mode could be twice the programming file size of the same PR region using
SCRUB mode.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. AND/OR Mode
This is the floorplan of a FPGA using AND/OR mode, with two PR regions, with columns that overlap.

PR1
Region

Programming Frame(s)
(Vertical Overlap)

PR2
Region

Note: If you have overlapping PR regions in your design, you must use AND/OR mode to
program all PR regions, including PR regions with no overlap. The Intel Quartus Prime
software will not permit the use of SCRUB mode when there are overlapping regions.
If none of your regions overlap, you can use AND/OR, SCRUB, or a mixture of both.

1.3.3. Programming File Sizes for a Partial Reconfiguration Project

The programming file size for a partial reconfiguration bitstream is proportional to the
area of the PR region.

A partial reconfiguration programming bitstream for AND/OR mode makes two passes
on the PR region; the first pass clears all relevant bits, and the second pass sets the
necessary bits. Due to this two-pass sequence, the size of a partial bitstream can be
larger than a full FPGA programming bitstream depending on the size of the PR region.

When using the AND/OR mode for partial reconfiguration, the formula which describes
the approximate file size within ten percent is:
PR bitstream size = ((Size of region in the horizontal
direction) /(full horizontal dimension of the part)) * 2 * (size
of full bitstream)

The way the Fitter reserves routing for partial reconfiguration increases the effective
size for small PR regions from a bitstream perspective. PR bitstream sizes in designs
with a single small PR region will not match the file size computed by this equation.

Note: The PR bitstream size is approximately half of the size computed above when using
single-pass SCRUB mode. When you use the SCRUB mode with Use clear/set
method turned on, the bitstream size is comparable to the size calculated for the
AND/OR mode.

You can limit expansion of the routing regions in the LogicLock Regions Properties
dialog box. Alt+L opens the LogicLock Regions Window, then right-click on a
LogicLock region and click LogicLock Region Properties.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. LogicLock Regions Properties dialog box

Turn on Partial reconfiguration, Reserved, Enabled, and Constrain routing to
stay within region boundaries.

You can also control expansion of the routing regions by adding the following two
assignments to your Intel Quartus Prime Settings file (.qsf):
set_global_assignment -name LL_ROUTING_REGION Expanded -
section_id <region name> set_global_assignment -name
LL_ROUTING_REGION_EXPANSION_SIZE 0 -section_id <region name>

Adding these to your .qsf disables expansion and minimizes the bitstream size.

1.4. Partial Reconfiguration Design Flow

Partial reconfiguration is based on the revision feature in the Intel Quartus Prime
software. Your initial design is the base revision, where you define the boundaries of
the static region and reconfigurable regions on the FPGA. From the base revision, you
create multiple revisions, which contain the static region and describe the differences
in the reconfigurable regions.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Two types of revisions are specific to partial reconfiguration: reconfigurable and
aggregate. Both import the persona for the static region from the base revision. A
reconfigurable revision generates personas for PR regions. An aggregate revision is
used to combine personas from multiple reconfigurable revisions to create a complete
design suitable for timing analysis.

The design flow for partial reconfiguration also utilizes the Intel Quartus Prime
incremental compilation flow. To take advantage of incremental compilation for partial
reconfiguration, you must organize your design into logical and physical partitions for
synthesis and fitting. The partitions for which partial reconfiguration is enabled (PR
partitions) must also have associated LogicLock assignments.

Revisions make use of personas, which are subsidiary archives describing the
characteristics of both static and reconfigurable regions, that contain unique logic
which implements a specific set of functions to reconfigure a PR region of the FPGA.
Partial reconfiguration uses personas to pass this logic from one revision to another.

Figure 7. Partial Reconfiguration Design Flow

Plan Your System for Partial
Reconfiguration

Identify the Design Blocks Designated
to be Partially Reconfigured

Code the Design Using HDL

Develop the Personas for the
Partial Blocks

Simulate the Design Functionality

Functionality is
Verified?

yesno

Designate All Partial Block(s) as Design
Partition(s) for the Use with Incremental Compilation

Assign All PR Partition(s) to
LogicLock Regions

Create Revisions and
Compile the Design

for Each Revision

yes

no

Generate
Configuration Files

Debug the Timing Failure
& Revise the Appropriate Step

Program the Device

Is Timing Met
for Each Revision?

The PR design flow requires more initial planning than a standard design flow.
Planning requires setting up the design logic for partitioning, and determining
placement assignments to create a floorplan. Well-planned partitions can help improve
design area utilization and performance, and make timing closure easier. You should
also decide whether your system requires partial reconfiguration to originate from the
FPGA pins or internally, and which mode you are using; the AND/OR mode or the
SCRUB mode, because this influences some of the planning steps described in this
section.

You must structure your source code or design hierarchy to ensure that logic is
grouped correctly for optimization. Implementing the correct logic grouping early in
the design cycle is more efficient than restructuring the code later. The PR flow

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

requires you to be more rigorous about following good design practices. The guidelines
for creating partitions for incremental compilation also include creating partitions for
partial reconfiguration.

Use the following best practice guidelines for designing in the PR flow, which are
described in detail in this section:

• Determining resources for partial reconfiguration

• Partitioning the design for partial reconfiguration

• Creating incremental compilation partitions for partial reconfiguration

• Instantiating the PR IP core in the design

• Creating wrapper logic for PR regions

• Creating freeze logic for PR regions

• Planning clocks and other global signals for the PR design

• Creating floorplan assignments for the PR design

1.4.1. Design Partitions for Partial Reconfiguration

You must create design partitions for each PR region that you want to partially
reconfigure. Optionally, you can also create partitions for the static parts of the design
for timing preservation and/or for reducing compilation time.

There is no limit on the number of independent partitions or PR regions you can create
in your design. You can designate any partition as a PR partition by enabling that
feature in the LogicLock Regions window in the Intel Quartus Prime software.

Partial reconfiguration regions do not support the following IP blocks that require a
connection to the JTAG controller:

• In-System Memory Content EditorI

• In-System Signals & Probes

• Virtual JTAG

• Nios II with debug module

• Signal Tap tap or trigger sources

Note: PR partitions can contain only FPGA core resources, they cannot contain I/O or
periphery elements.

1.4.2. Incremental Compilation Partitions for Partial Reconfiguration

Use the following best practices guidelines when creating partitions for PR regions in
your design:

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Register all partition boundaries; register all inputs and outputs of each partition
when possible. This practice prevents any delay penalties on signals that cross
partition boundaries and keeps each register-to-register timing path within one
partition for optimization.

• Minimize the number of paths that cross partition boundaries.

• Minimize the timing-critical paths passing in or out of PR regions. If there are
timing-critical paths that cross PR region boundaries, rework the PR regions to
avoid these paths.

• The Intel Quartus Prime software can optimize some types of paths between
design partitions for non-PR designs. However, for PR designs, such inter-partition
paths are strictly not optimized.

1.4.3. Partial Reconfiguration Controller Instantiation in the Design

Normally you would use the Altera PR IP core to configure the PR process. When you
instantiate the PR IP within your PR design, the Stratix V PR control block and the
Stratix V CRC block are automatically instantiated in your design. However, you can
also write your own custom logic to do the function of the PR IP. In case you are
creating your own control logic, or if you are using the PR IP in the external host mode
(where in the logic that controls PR process is outside the FPGA undergoing PR
operation) , you must instantiate the Stratix V PR control block and the Stratix V CRC
block in your design in order to use the PR feature in external host mode. Please refer
to the Partial Reconfiguration with an External Host topic for more details.

If you perform PR in internal host mode, you do not have to instantiate the PR control
block and the CRC block, since they are are instantiated for you by the PR IP core.
Instantiation of the partial reconfiguration controller is required only if your design
includes partial reconfiguration in external host mode. Please refer to the Partial
Reconfiguration with an External Host topic for more details.

When you are manually instantiating the Stratix V Control Block and CRC block, you
may want to add the PR control and CRC blocks at the top level of the design.

For example, in a design named Core_Top, all the logic is contained under the
Core_Top module hierarchy. Create a wrapper (Chip_Top) at the top-level of the
hierarchy that instantiates this Core_Top module, the Stratix V PR control block, and
the Stratix V CRC check modules.

If you are performing partial reconfiguration from pins, then the required pins should
be on the I/O list for the top-level (Chip_Top) of the project, as shown in the code in
the following examples. If you are performing partial reconfiguration from within the
core, you may choose another configuration scheme, such as Active Serial, to transmit
the reconfiguration data into the core, and then assemble it to 16-bit wide data inside
the FPGA within your logic. In such cases, the PR pins are not part of the FPGA I/O.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.3.1. Component Declaration of the PR Control Block and CRC Block in VHDL

To instantiate the PR control block and the CRC block in your design manually, use this
code sample containing the component declaration in VHDL. The PR function is
performed from within the core (code located in Core_Top) and you must add
additional ports to Core_Top to connect to both components. This example is in VHDL
but you can create a similar instantiation in Verilog as well.

-- The Stratix V control block interface

component stratixv_prblock is
 port(
 clk: in STD_LOGIC := '0';
 corectl: in STD_LOGIC := '0';
 data: in STD_LOGIC_VECTOR(15 downto 0) := (others => '0');
 done: out STD_LOGIC;
 error: out STD_LOGIC;
 externalrequest: out STD_LOGIC;
 prrequest: in STD_LOGIC := '0';
 ready: out STD_LOGIC
);
end component;

-- The Stratix V CRC block for diagnosing CRC errors

component stratixv_crcblock is
 port(
 shiftnld: in STD_LOGIC ;
 clk: in STD_LOGIC ;
 crcerror: out STD_LOGIC
);
end component;

The following rules apply when connecting the PR control block to the rest of your
design:

• The corectl signal must be set to ‘1’ (when using partial reconfiguration from
core) or to ‘0’ (when using partial reconfiguration from pins).

• The corectl signal has to match the Enable PR pins option setting in the
Device and Pin Options dialog box on the Setting page; if you have turned on
Enable PR pins, then the corectl signal on the PR control block instantiation
must be toggled to ‘0’.

• When performing partial reconfiguration from pins the Intel Quartus Prime
software automatically assigns the PR unassigned pins. If you so choose, you can
make pin assignments to all the dedicated PR pins in Pin Planner or Assignment
Editor.

• When performing partial reconfiguration from core, you can connect the prblock
signals to either core logic or I/O pins, excluding the dedicated programming pin
such as DCLK.

1.4.3.2. Instantiating the PR Control Block and CRC Block in VHDL

This code example instantiates a PR control block in VHDL, inside your top-level
project, Chip_Top:

entity Chip_Top is port (
 --User I/O signals (excluding PR related signals)
 ..
 ..
);

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

end Chip_Top;

-- Following shows the architecture behavior of Chip_Top

m_pr : stratixv_prblock
 port map(
 clk => dclk,
 corectl =>'0', --1 - when using PR from inside
 --0 - for PR from pins; You must also enable
 -- the appropriate option in Intel Quartus Prime settings
 prrequest => pr_request,
 data => pr_data,
 error => pr_error,
 ready => pr_ready,
 done => pr_done
);
m_crc : stratixv_crcblock
 port map(
 shiftnld => '1', --If you want to read the EMR register
when
 clk => dummy_clk, --error occurrs, refer to AN539 for the
 --connectivity forthis signal. If you only want
 --to detect CRC errors, but plan to take no
 --further action, you can tie the shiftnld
 --signal to logical high.
 crcerror => crc_error
);

For more information on port connectivity for reading the Error Message Register
(EMR), refer to the following application note.

Related Information

AN539: Test Methodology of Error Detection and Recovery using CRC in Altera FPGA
Devices

1.4.3.3. Instantiating the PR Control Block and CRC Block in Verilog HDL

The following example instantiates a PR control block in Verilog HDL, inside your top-
level project, Chip_Top:

module Chip_Top (
 //User I/O signals (excluding PR related signals)
 ..
 ..
 //PR interface & configuration signals
 pr_request,
 pr_ready,
 pr_done,
 crc_error,
 dclk,
 pr_data,
 init_done
);

//user I/O signal declaration
..
..
//PR interface and configuration signals declaration
 input pr_request;
 output pr_ready;
 output pr_done;
 output crc_error;
 input dclk;
 input [15:0] pr_data;
 output init_done

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

15

http://www.altera.com/literature/an/an539.pdf
http://www.altera.com/literature/an/an539.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

stratixv_prblock stratixv_prblock_inst
 (
 .clk (dclk),
 .corectl (1'b0),
 .prrequest(pr_request),
 .data (pr_data),
 .error (pr_error),
 .ready (pr_ready),
 .done (pr_done)
);

stratixv_crcblock stratixv_crcblock_inst
 (
 .clk (clk),
 .shiftnld (1'b1),
 .crcerror (crc_error)
);
endmodule

For more information on port connectivity for reading the Error Message Register
(EMR), refer to the following application note.

Related Information

AN539: Test Methodology of Error Detection and Recovery using CRC in Altera FPGA
Devices

1.4.4. Wrapper Logic for PR Regions

Each persona of a PR region must implement the same input and output boundary
ports. These ports act as the boundary between static and reconfigurable logic.

Implementing the same boundary ports ensures that all ports of a PR region remain
stationary regardless of the underlying persona, so that the routing from the static
logic does not change with different PR persona implementations.

Figure 8. Wire-LUTs at PR Region Boundary
The Intel Quartus Prime software automatically instantiates a wire-LUT for each port of the PR region to lock
down the same location for all instances of the PR persona.

Partial 1 Static Region

If one persona of your PR region has a different number of ports than others, then you
must create a wrapper so that the static region always communicates with this
wrapper. In this wrapper, you can create dummy ports to ensure that all of the PR
personas of a PR region have the same connection to the static region.

The sample code below each create two personas; persona_1 and persona_2 are
different functions of one PR region. Note that one persona has a few dummy ports.
The first example creates partial reconfiguration wrapper logic in Verilog HDL:

// Partial Reconfiguration Wrapper in Verilog HDL
module persona //this module is persona_1
 (
 input reset,
 input [2:0] a,

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

16

http://www.altera.com/literature/an/an539.pdf
http://www.altera.com/literature/an/an539.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 input [2:0] b,
 input [2:0] c,
 output [3:0] p,
 output [7:0] q
);
reg [3:0] p, q;
always@(a or b)
 begin
 p = a + b ;
 end

always@(a or b or c or p)
 begin
 q = (p*a - b*c)
 end
endmodule

module persona //this module is persona_2
(
 input reset,
 input [2:0] a,
 input [2:0] b,
 input [2:0] c, //never used in this persona
 output [3:0] p,
 output [7:0] q //never assigned in this persona
);
reg [3:0] p, q;
always@(a or b)
 begin
 p = a * b; // note q is not assigned value in this persona
 end
endmodule

The following example creates partial reconfiguration wrapper logic in VHDL.

-- Partial Reconfiguration Wrapper in VHDL
-- this module is persona_1
entity persona is
 port(
 a:in STD_LOGIC_VECTOR (2 downto 0);
 b:in STD_LOGIC_VECTOR (2 downto 0);
 c:in STD_LOGIC_VECTOR (2 downto 0);
 p: out STD_LOGIC_VECTOR (3 downto 0);
 q: out STD_LOGIC_VECTOR (7 downto 0)
);
end persona;

architecture synth of persona is
 begin
 process(a,b)
 begin
 p <= a + b;
 end process;

 process (a, b, c, p)
 begin
 q <= (p*a - b*c);
 end process;
end synth;

-- this module is persona_2
entity persona is
 port(
 a:in STD_LOGIC_VECTOR (2 downto 0);
 b:in STD_LOGIC_VECTOR (2 downto 0);
 c:in STD_LOGIC_VECTOR (2 downto 0); --never used in this persona
 p:out STD_LOGIC_VECTOR (3 downto 0);
 q:out STD_LOGIC_VECTOR (7 downto 0) --never used in this persona
);
end persona_2;

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

architecture synth of persona_2 is
 begin
 process(a, b)
 begin
 p <= a *b; --note q is not assigned a value in this persona
 end process;
end synth;

1.5. Freeze Logic for PR Regions

When you use partial reconfiguration, you must freeze all non-global inputs of a PR
region except global clocks. Locally routed signals are not considered global signals,
and must also be frozen during partial reconfiguration. Freezing refers to driving a '1'
on those PR region inputs. When you start a partial reconfiguration process, the chip is
in user mode, with the device still running.

When you instantiate the Altera PR IP core in your design, the IP incudes a freeze port
which you can use to freeze the non-global inputs of the PR region. In case your
design has multiple PR regions, you must create decoding logic to freeze only the
inputs of the PR region being partially reconfigured.

If you are not using the Altera PR IP, you must include logic to freeze the inputs of the
PR regions in the design as required for proper operation.

Freezing all non-global inputs for the PR region ensures there is no contention
between current values that may result in unexpected behavior of the design after
partial reconfiguration is complete. Global signals going into the PR region should not
be frozen to high. The Intel Quartus Prime software freezes the outputs from the PR
region; therefore the logic outside of the PR region is not affected.

Figure 9. Freezing at PR Region Boundary

PR Region

Data1

Data2
User PR_in_freeze

“1”

Hardware-Generated
Freeze

Global
Clocks

During partial reconfiguration, the static region logic should not depend on the outputs
from PR regions to be at a specific logic level for the continued operation of the static
region.

The easiest way to control the inputs to PR regions is by creating a wrapper around
the PR region in RTL. In addition to freezing all inputs high, you can also drive the
outputs from the PR block to a specific value, if required by your design. For example,

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

if the output drives a signal that is active high, then your wrapper could freeze the
output to GND. The idea is to make sure the static region will not stall or go to
indeterminate state, when the PR region is getting a new persona through PR.

The following example implements a freeze wrapper in Verilog HDL, on a module
named pr_module.

module freeze_wrapper
(
 input reset, // global reset signal
 input freeze, // PR process active, generated by user logic
 input clk1, // global clock signal
 input clk2, // non-global clock signal
 input [3:0] control_mode,
 input [3:0] framer_ctl,
 output [15:0] data_out
);
wire [3:0]control_mode_wr, framer_ctl_wr;
wire clk2_to_wr;
//instantiate pr_module
pr_module pr_module
(
 .reset (reset), //input
 .clk1 (clk1), //input, global clock
 .clk2 (clk2_to_wr), // input, non-global clock
 .control_mode (control_mode_wr), //input
 .framer_ctl (framer_ctl_wr), //input
 .pr_module_out (data_out) // collection of outputs from pr_module
);

// Freeze all inputs

assign control_mode_wr = freeze ? 4'hF: control_mode;
assign framer_ctl_wr = freeze ? 4'hF: framer_ctl;
assign clk2_to_wr = freeze ? 1'b1 : clk2;

endmodule

The following example implements a freeze wrapper in VHDL, on a module named
pr_module.

entity freeze_wrapper is
port(
 reset:in STD_LOGIC; -- global reset signal
 freeze:in STD_LOGIC;
 clk1: in STD_LOGIC; -- global signal
 clk2: in STD_LOGIC; -- non-global signal
 control_mode: in STD_LOGIC_VECTOR (3 downto 0);
 framer_ctl: in STD_LOGIC_VECTOR (3 downto 0);
 data_out: out STD_LOGIC_VECTOR (15 downto 0)
);
end freeze_wrapper;

architecture behv of freeze_wrapper is

 component pr_module
 port(
 reset:in STD_LOGIC;
 clk1:in STD_LOGIC;
 clk2:in STD_LOGIC;
 control_mode:in STD_LOGIC_VECTOR (3 downto 0);
 framer_ctl:in STD_LOGIC_VECTOR (3 downto 0);
 pr_module_out:out STD_LOGIC_VECTOR (15 downto 0)
);
 end component

 signal control_mode_wr: in STD_LOGIC_VECTOR (3 downto 0);
 signal framer_ctl_wr : in STD_LOGIC_VECTOR (3 downto 0);

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 signal clk2_to_wr : STD_LOGIC;
 signal data_out_temp : STD_LOGIC_VECTOR (15 downto 0);
 signal logic_high : STD_LOGIC_VECTOR (3 downto 0):="1111";

 begin
 data_out(15 downto 0) <= data_out_temp(15 downto 0);

 m_pr_module: pr_module
 port map (
 reset => reset,
 clk1 => clk1,
 clk2 => clk2_to_wr,
 control_mode =>control_mode_wr,
 framer_ctl => framer_ctl_wr,
 pr_module_out => data_out_temp);
 -- freeze all inputs

 control_mode_wr <= logic_high when (freeze ='1') else control_mode;
 framer_ctl_wr <= logic_high when (freeze ='1') else framer_ctl;
 clk2_to_wr <= logic_high(0) when (freeze ='1') else clk2;

end architecture;

1.5.1. Clocks and Other Global Signals for a PR Design

For non-PR designs, the Intel Quartus Prime software automatically promotes high
fan-out signals onto dedicated clocks or other forms of global signals during the pre-
fitter stage of design compilation using a process called global promotion. For PR
designs, however, automatic global promotion is disabled by default for PR regions,
and you must assign the global clock resources necessary for PR partitions. Clock
resources can be assigned by making Global Signal assignments in the Intel Quartus
Prime Assignment Editor, or by adding Clock Control Block (altclkctrl) IP core blocks in
the design that drive the desired global signals.

There are 16 global clock networks in a Stratix V device. However, only six unique
clocks can drive a row clock region limiting you to a maximum of six global signals in
each PR region. The Intel Quartus Prime software must ensure that any global clock
can feed every location in the PR region.

The limit of six global signals to a PR region includes the GCLK, QCLK and PCLKs used
inside of the PR region. Make QSF assignments for global signals in your project's Intel
Quartus Prime Settings File (.qsf), based on the clocking requirements for your
design. In designs with multiple clocks that are external to the PR region, it may be
beneficial to align the PR region boundaries to be within the global clock boundary
(such as QCLK or PCLK).

If your PR region requires more than six global signals, modify the region architecture
to reduce the number of global signals within this to six or fewer. For example, you
can split a PR region into multiple regions, each of which uses only a subset of the
clock domains, so that each region does not use more than six.

Every instance of a PR region that uses the global signals (for example, PCLK, QCLK,
GCLK, ACLR) must use a global signal for that input.

Global signals can only be used to route certain secondary signals into a PR region and
the restrictions for each block are listed in the following table. Data signals and other
secondary signals not listed in the table, such as synchronous clears and clock enables
are not supported.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 2. Supported Signal Types for Driving Clock Networks in a PR Region

Block Types Supported Signals for Global/Periphery/Quadrant Clock Networks

LAB Clock, ACLR

RAM Clock, ACLR, Write Enable(WE), Read Enable(RE)

DSP Clock, ACLR

Note: PR regions are allowed to contain output ports that are used outside of the PR region
as global signals.

• If a global signal feeds both static and reconfigurable logic, the restrictions in the
table also apply to destinations in the static region. For example, the same global
signal cannot be used as an SCLR in the static region and an ACLR in the PR
region.

• A global signal used for a PR region should only feed core blocks inside and
outside the PR region. In particular you should not use a clock source for a PR
region and additionally connect the signal to an I/O register on the top or bottom
of the device. Doing so may cause the Assembler to give an error because it is
unable to create valid programming mask files.

1.5.2. Floorplan Assignments for PR Designs

You must create a LogicLock region so the interface of the PR region with the static
region is the same for any persona you implement. If different personas of a PR region
have different area requirements, you must make a LogicLock region assignment that
contains enough resources to fit the largest persona for the region. The static regions
in your project do not necessarily require a floorplan, but depending on any other
design requirement, you may choose to create a floorplan for a specific static region.
If you create multiple PR regions, and are using SCRUB mode, make sure you have
one column or row of static region between each PR region.

There is no minimum or maximum size for the LogicLock region assigned for a PR
region. Because wire-LUTs are added on the periphery of a PR region by the Intel
Quartus Prime software, the LogicLock region for a PR region must be slightly larger
than an equivalent non-PR region. Make sure the PR regions include only the
resources that can be partially reconfigured; LogicLock regions for PR can only contain
only LABs, DSPs, and RAM blocks. When creating multiple PR regions, make sure there
is at least one static region column between each PR region. When multiple PR regions
are present in a design, the shape and alignment of the region determines whether
you use the SCRUB or AND/OR PR mode.

You can use the default Auto size and Floating location LogicLock region properties
to estimate the preliminary size and location for the PR region.

You can also define regions in the floorplan that match the general location and size of
the logic in each partition. You may choose to create a LogicLock region assignment
that is non-rectangular, depending on the design requirements, but disjoint LogicLock
regions are not allowed for PR regions in your first compilation of the project.

After compilation, use the Fitter-determined size and origin location as a starting point
for your design floorplan. Check the quality of results obtained for your floorplan
location assignments and make changes to the regions as needed.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Alternatively, you can perform Analysis and Synthesis, and then set the regions to the
required size based on resource estimates. In this case, use your knowledge of the
connections between partitions to place the regions in the floorplan.

1.6. Implementation Details for Partial Reconfiguration

This section describes implementation details that help you create your PR design.

1.6.1. Interface with the PR Control Block through a PR Host

During partial reconfiguration, a PR bitstream stored outside the FPGA being partially
reconfigured must be sent to the PR Control Block in the FPGA. This enables the
control block to update the CRAM bits necessary to configure the PR region in the
FPGA.

Two scenarios are possible, depending on whether the control logic to transfer the
bitstream is located within the FPGA or outside the FPGA being reconfigured.

• If the PR IP core is instantiated inside the FPGA being reconfigured, it is termed PR
with an internal host; the Altera PR IP core helps you perform the transfer of the
PR bitstream.

• When the PR IP is instantiated outside the FPGA being reconfigured, it is termed
as PR with an external host.

There is a well-defined interface and a specific protocol to transfer the PR bitstream
from the external bitstream source to the PR control block. When you use the Altera
PR IP core, the protocol requirements are automatically met by the IP.

It is also possible to write your own control logic, or use a Nios® processor to do this
PR bitstream transfer. Note that when create your own control logic for the PR Host,
you must make sure to meet the interface requirements described later in this
chapter.

Figure 10. Managing Partial Reconfiguration with an Internal or External Host

The figure shows how these blocks should be connected to the PR control block (CB). In your system, you will
have either the External Host or the Internal Host, but not both. The external host can be implemented by
instantiating the PR IP core outside the FPGA being reconfigured, may be in another Altera FPGA, or
processor/PC (PR over PCIe) , or can be implemented by user logic.

PR IP Core

PR
Region

External Memory
Containing PR

 Bitstream (.rbf) PR Control
Block (CB)

External
Host

PR
Region

External HostInternal Host

PR Control Block

CRC Block

External Memory
Containing PR

 Bitstream (.rbf)

FPGA FPGA

PR
 Pi

ns

The PR mode is independent of the full chip programming mode. You can use any of
the supported full chip configuration modes for configuring the full FPGA for your PR
design.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you are creating your own custom logic for implementing a PR internal host, you
can use any interface to load the PR bitstream data to the FPGA; for example, from a
serial or a parallel flash device; and then format the PR bitstream data to match the
FPPx16 interface on the PR Control Block.

When using an external host, you must implement the control logic for managing
system aspects of partial reconfiguration on an external device. To use the external
host for your design, turn on the Enable PR Pins option in the Device and Pin
Options dialog box in the Intel Quartus Prime software when you compile your
design. If this setting is turned off, then you must use an internal host. Also, you must
tie the corectl port on the PR control block instance in the top-level of the design to
the appropriate level for the selected mode.

Related Information

Partial Reconfiguration Pins on page 23
Partial Reconfiguration Dedicated Pins Table

1.6.2. Partial Reconfiguration Pins

Partial reconfiguration can be performed through external pins or from inside the core
of the FPGA.

When using PR from pins, some of the I/O pins are dedicated for implementing partial
reconfiguration functionality. If you perform partial reconfiguration from pins, then you
must use the passive parallel with 16 data bits (FPPx16) configuration mode. All dual-
purpose pins should also be specified to Use as regular I/O.

To enable partial reconfiguration from pins in the Intel Quartus Prime software,
perform the following steps:

1. From the Assignments menu, click Device, then click Device and Pin Options.

2. In the Device and Pin Options dialog box, select Partial Reconfiguration in
the Category list and turn on Enable PR pins from the Options list.

3. Click Configuration in the Category list and select Passive Parallel x16 from
the Configuration scheme list.

4. Click Dual-Purpose Pins in the Category list and verify that all pins are set to
Use as regular I/O rather than Use as input tri-stated.

5. Click OK, or continue to modify other settings in the Device and Pin Options
dialog box.

6. Click OK.

Note: You can enable open drain on PR pins from the Device and Pin Options dialog box in
the Partial Reconfiguration dialog box.

Table 3. Partial Reconfiguration Dedicated Pins Description

Pin Name Pin Type Pin Description

PR_REQUEST Input Dedicated input when Enable PR pins is turned on; otherwise, available as user I/O.
Logic high on pin indicates the PR host is requesting partial reconfiguration.

PR_READY Output Dedicated output when Enable PR pins is turned on; otherwise, available as user I/O.
Logic high on this pin indicates the Stratix V control block is ready to begin partial
reconfiguration.

continued...

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Pin Name Pin Type Pin Description

PR_DONE Output Dedicated output when Enable PR pins is turned on; otherwise, available as user I/O.
Logic high on this pin indicates that partial reconfiguration is complete.

PR_ERROR Output Dedicated output when Enable PR pins is turned on; otherwise, available as user I/O.
Logic high on this pin indicates the device has encountered an error during partial
reconfiguration.

DATA[15:0] Input Dedicated input when Enable PR pins is turned on; otherwise available as user I/O. These
pins provide connectivity for PR_DATA to transfer the PR bitstream to the PR Controller.

DCLK Bidirectional Dedicated input when Enable PR pins is turned on; PR_DATA is sent synchronous to this
clock.

For more information on different configuration modes for Stratix V devices, and
specifically about FPPx16 mode, refer to the Configuration, Design Security, and
Remote System Upgrades in Stratix V Devices chapter of the Stratix V Handbook.

Related Information

Configuration, Design Security, and Remote System Upgrades in Stratix V Devices

1.6.3. PR Control Signals Interface

You can use the Intel Quartus Prime Assembler and the Convert Programming File
utilities to generate the different bitstreams necessary for full chip configuration and
for partial reconfiguration. The programming bit-stream for partial reconfiguration
contains the instructions (opcodes) as well as the configuration bits, necessary for
reconfiguring each of the partial regions. When using an external host, the interface
ports on the control block are mapped to FPGA pins. When using an internal host,
these signals are within the core of the FPGA. When using the PR IP core as an
internal host, connect the signals on the PR IP core appropirately as described in the
Partial Reconfiguration IP Core User Guide and follow the instructions to start the PR
process on the FPGA. If you are not using the PR IP core, make sure you understand
these PR interface signals.

Figure 11. Partial Reconfiguration Interface Signals

These handshaking control signals are used for partial reconfiguration.

PR Control Block (CB)

PR_Data[15:0]
PR_done
PR_ready
CRC_error

PR_error
PR_request

Clk

From Pins or
FPGA Core

corectl

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

24

https://www.intel.com/content/www/us/en/docs/programmable/683665/current/configuration-design-security-and-remote-21015.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• PR_DATA: The configuration bitstream is sent on PR_ DATA[15:0], synchronous
to the Clk.

• PR_DONE: Sent from CB to control logic indicating the PR process is complete.

• PR_READY: Sent from CB to control logic indicating the CB is ready to accept PR
data from the control logic.

• CRC_Error: The CRC_Error generated from the device’s CRC block, is used to
determine whether to partially reconfigure a region again, when encountering a
CRC_Error.

• PR_ERROR: Sent from CB to control logic indicating an error during partial
reconfiguration.

• PR_REQUEST: Sent from your control logic to CB indicating readiness to begin the
PR process.

• corectl: Determines whether partial reconfiguration is performed internally or
through pins.

1.6.4. Reconfiguring a PR Region

The figure below shows an internal host for PR, where the PR IP core is implemented
inside the FPGA. However, these principles are also applicable for partial
reconfiguration with an external host.

The PR control block (CB) represents the Stratix V PR controller inside the FPGA. PR1
and PR2 are two PR regions in a user design. In addition to the four control signals
(PR_REQUEST, PR_READY, PR_DONE, PR _ERROR) and the data/clock signals
interfacing with the PR control block, your PR Control IP should also send a control
signal (PR_CONTROL) to each PR region. This signal implements the freezing and
unfreezing of the PR Interface signals. This is necessary to avoid contention on the
FPGA routing fabric. In a case such as this, you need to add some decoding logic in
the design, in addition to instantiating the PR IP core.

Figure 12. Example of a PR System with Two PR Regions

Implementation of PR Control logic in the FPGA.

PR_Request

PR_Ready, PR_Error,
PR_Done, CRC_Error Partial Reconfiguration

Data/Clock via FPPx16

PR1_Control PR2_Control

PR Control
Block (CB)

PR1
Region

PR2
Region

PR with additional
user logic

Static Region

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

After the FPGA device has been configured with a full chip configuration at least once,
the INIT_DONE signal is released, and the signal is asserted high due to the external
resistor on this pin. The INIT_DONE signal must be assigned to a pin to monitor it
externally. When a full chip configuration is complete, and the device is in user mode,
the following steps describe the PR sequence:

1. Begin a partial reconfiguration process from your PR Control logic, which initiates
the PR process for one or more of the PR regions (asserting PR1_Control or
PR2_Control in the figure). The wrapper HDL described earlier freezes (pulls high)
all non-global inputs of the PR region before the PR process.

2. If you are using the PR IP core, use the PR_START signal to start reconfiguring the
PR region. When you are not using the PR IP core, your control logic should send
the PR_REQUEST signal from your control logic to the PR Control Block (CB). If
your design uses an external controller, monitor INIT_DONE to verify that the chip
is in user mode before asserting the PR_START or PR_REQUEST signal. The CB
initializes itself to accept the PR data and clock stream. After that, the CB asserts
a PR_READY signal to indicate it can accept PR data. If you are using the PR IP,
the timing relationsips between the control and data signals is managed by the IP
core. Data and clock signals are sent to the PR control block to partially
reconfigure the PR region interface.

Note: If you write your own controller logic, specify that exactly four clock-cycles
must occur before sending the PR data to make sure the PR process
progresses correctly.

• When there are multiple PR personas for the PR region, your control logic
must determine the programming file data for partial reconfiguration and
specify the correct file.

• When there are multiple PR regions in the design, then your control logic
determines which regions require reconfiguration based on system
requirements.

• At the end of the PR process, the PR control block asserts a PR_DONE signal
and deasserts the PR_READY signal. The Altera PR IP core further processes
these signals to assert a 3-bit status signal. If you are not using the Altera PR
IP, your design must take approcpriate action as defined by the timing
diagrams when PR_DONE is asserted.

• If you want to suspend sending data, you can implement logic to pause the
clock at any point.

3. When you are not using the PR IP core, your custom control logic must deassert
the PR_REQUEST signal within eight clock cycles after the PR_DONE signal goes
high. If your logic does not deassert the PR_REQUEST signal within eight clock
cycles, a new PR cycle starts.

4. If your design includes additional PR regions, repeat steps 2 – 3 for each region.
Otherwise, proceed to step 5.

5. When you are not using the PR IP core, your custom control logic must deassert
the PR_CONTROL signal(s) to the PR region. The freeze wrapper releases all input
signals of the PR region, thus the PR region is ready for normal user operation.

6. You must perform a reset cycle to the PR region to bring all logic in the region to a
known state. After partial reconfiguration is complete for a PR region, the states in
which the logic in the region come up is unknown.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The PR event is now complete, and you can resume operation of the FPGA with the
newly configured PR region.

At any time after the start of a partial reconfiguration cycle, the PR host can suspend
sending the PR_DATA, but the host must suspend sending the PR_CLK at the same
time. If the PR_CLK is suspended after a PR process, there must be at least 20 clock
cycles after the PR_DONE or PR_ERROR signal is asserted to prevent incorrect
behavior.

For an overview of different reset schemes in Altera devices, refer to the
Recommended Design Practices chapter in the Intel Quartus Prime Handbook.

Related Information

Partial Reconfiguration Cycle Waveform on page 27
For more information on clock requirements for partial reconfiguration.

1.6.5. Partial Reconfiguration Cycle Waveform

When you are using the Altera PR IP in the internal host mode, all the timing relations
between various interface signals are met by default, and you can skip reading this
section. If you are using PR with an external host or implementing your own custom
PR internal host logic, pay attention to these timing relationships when designing your
logic. The PR host initiates the PR request, transfers the data to the FPGA device when
it is ready, and monitors the PR process for any errors or until it is done.

A PR cycle is initiated by the host (internal or external) by asserting the PR_REQUEST
signal high. When the FPGA device is ready to begin partial reconfiguration, it
responds by asserting the PR_READY signal high. The PR host responds by sending
configuration data on DATA [15:0]. The data is sent synchronous to PR_CLK. When
the FPGA device receives all PR data successfully, it asserts the PR_DONE high, and
de-asserts PR_READY to indicate the completion of the PR cycle. The PR host must
monitor the PR process until either the successful completion of PR (indicated by
PR_DONE), or an error condition is asserted.

Figure 13. Partial Reconfiguration Timing Diagram

D0LSW D0MSW D1LSW D1MSW Dn-1MSW DnLSW DnLSW

PR_REQUEST

PR_CLK

PR_DATA[15:0]

PR_READY

PR_DONE

READY_to_FIRST_DATA

DONE_to_REQ_low

DONE_to_LAST_CLK

PR_ERROR

CRC_ERROR

If there is an error encountered during partial reconfiguration, the FPGA device asserts
the PR_ERROR signal high and de-asserts the PR_READY signal low.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Whenever either of these two signals are asserted, the host must de-assert
PR_REQUEST within eight PR_CLK cycles. As a response to PR_ERROR error, the host
can optionally request another partial reconfiguration or perform a full FPGA
configuration.

To prevent incorrect behavior, the PR_CLK signal must be active a minimum of twenty
clock cycles after PR_DONE or PR_ERROR signal is asserted high. Once PR_DONE is
asserted, PR_REQUEST must be de-asserted within eight clock cycles. PR_DONE is de-
asserted by the device within twenty PR_CLK cycles. The host can assert PR_REQUEST
again after the 20 clocks after PR_DONE is de-asserted.

Table 4. Partial Reconfiguration Clock Requirements
Signal timing requirements for partial reconfiguration.

Timing Parameters Value (clock cycles)

PR_READY to first data 4 (exact)

PR_ERROR to last clock 20 (minimum)

PR_DONE to last clock 20 (minimum)

DONE_to_REQ_low 8 (maximum)

Compressed PR_READY to first data 4 (exact)

Encrypted PR_READY to first data (when using double PR) 8 (exact)

Encrypted and Compressed PR_READY to first data (when using double PR) 12 (exact)

At any time during partial reconfiguration, to pause sending PR_DATA, the PR host can
stop toggling PR_CLK. The clock can be stopped either high or low.

At any time during partial reconfiguration, the PR host can terminate the process by
de-asserting the PR request. A partially completed PR process results in a PR error.
You can have the PR host restart the PR process after a failed process by sending out
a new PR request 20 cycles later.

If you terminate a PR process before completion, and follow it up with a full FPGA
configuration by asserting nConfig, then you must toggle PR_CLK for an additional
20 clock cycles prior to asserting nConfig to flush the PR_CONTROL_BLOCK and avoid
lock up.

During these steps, the PR control block might assert a PR_ERROR or a CRC_ERROR
signal to indicate that there was an error during the partial reconfiguration process.
Assertion of PR_ERROR indicates that the PR bitstream data was corrupt, and the
assertion of CRC error indicates a CRAM CRC error either during or after completion of
PR process. If the PR_ERROR or CRC_ERROR signals are asserted, you must plan
whether to reconfigure the PR region or reconfigure the whole FPGA, or leave it
unconfigured.

Important: The PR_CLK signal has different a nominal maximum frequency for each device. Most
Stratix V devices have a nominal maximum frequency of at least 62.5 MHz.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7. Example of a Partial Reconfiguration Design with an External
Host

For partial reconfiguration using an external host, you must set the MSEL [4:0] pins
for FPPx16 configuration scheme.

You can use Altera PR IP implemented by another supported Altera FPGA device,
implement your own control logic in an FPGA or CPLD, or use a microcontroller to
implement the configuration and PR controller. In this setup, shown in the following
figure, the Stratix V device configures in FPPx16 mode during power-up. Alternatively,
you can use a JTAG interface to configure the Stratix V device.

At any time during user-mode, the external host can initiate partial reconfiguration
and monitor the status using the external PR dedicated pins: PR_REQUEST,
PR_READY, PR_DONE, and PR_ERROR. In this mode, the external host must respond
appropriately to the hand-shaking signals for a successful partial reconfiguration. This
includes acquiring the data from the flash memory and loading it into the Stratix V
device on DATA[15:0].

Figure 14. Connecting to an External Host

The connection setup for partial reconfiguration with an external host in the FPPx16 configuration scheme.

External Host
(MAX V Device or
Microprocessor)

Stratix V Device
CONF_DONE
nSTATUS
nCONFIG
nCE

DATA[15:0]
DCLK
PR_REQUEST
PR_DONE
PR_READY
PR_ERROR
PR_CONTROL
PR_RESET
CRC_ERROR

10 K W10 K W10 K W

MSEL[4:0]

Memory
ADDR DATA[15:0]

VCCPGM VCCPGM VCCPGM

Note: If you don't care to write an external host controller, you can implement an external
host with the Partial Reconfiguration IP core on a MAX 10 or other FPGA device.

1.7.1. Example of Using an External Host with Multiple Devices

You must design the external host to accommodate the arbitration scheme that is
required for your system, as well as the partial reconfiguration interface requirement
for each device.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15. Connecting Multiple FPGAs to an External Host

An example of an external host controlling multiple Stratix V devices on a board.

DATA[15:0]

PR_REQUEST1
PR_DONE1

PR_READY1
PR_ERROR1

PR_REQUEST2
PR_DONE2

PR_READY2
PR_ERROR2

PR_REQUEST5
PR_DONE5

PR_READY5
PR_ERROR5

DATA[15:0]
nCE

PR_REQUEST
PR_DONE
PR_READY
PR_ERROR FPGA1

Address

DATA[15:0]
nCE

PR_REQUEST
PR_DONE
PR_READY
PR_ERROR FPGA2

DATA[15:0]
nCE

PR_REQUEST
PR_DONE
PR_READY
PR_ERROR FPGA5

External
Host

Memory

DATA[7:0]

1.8. Example Partial Reconfiguration with an Internal Host

You can create PR internal host logic with the PR IP core. If your design uses an
internal host, the PR IP core handles the required hand-shaking protocol with the PR
control block.

The PR programming bitstream(s) stored in an external flash device can be routed
through the regular I/Os of the FPGA device, or received through the high speed
transceiver channel (PCI Express, SRIO or Gigabit Ethernet), for processing by the
internal host.

The PR dedicated pins (PR_REQUEST, PR_READY, PR_DONE, and PR_ERROR) can be
used as regular I/Os when performing partial reconfiguration with an internal host. For
the full FPGA configuration upon power-up, you can set the MSEL[4:0] pins to match
the configuration scheme, for example, Active Serial, Passive Serial, FPPx8, FPPx16, or
FPPx32. Alternatively, you can use the JTAG interface to configure the FPGA device. At
any time during user-mode, you can initiate partial reconfiguration through the FPGA
core fabric using the PR internal host.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the following figure, the programming bitstream for partial reconfiguration is
received through the PCI Express link, and your logic converts the data to the FPPx16
mode.

Figure 16. Connecting to an Internal Host

An example of the configuration setup when performing partial reconfiguration using the internal host.

EPCS

Stratix V Device

AS_DATA1
DCLK
nCSO
ASDO

10 KW10 KW10 KW

MSEL[4:0]

PR
 IP Core

Partial Reconfiguration Data
Received through PCI Express Link

VCCPGM VCCPGM VCCPGM

DATA
DCLK

nCS
ASDI

nSTATUS
CONF_DONE
nCONFIG
nCE

1.9. Partial Reconfiguration Project Management

When compiling your PR project, you must create a base revision, and one or more
reconfigurable revisions. The project revision you start out is termed the base
revision.

1.9.1. Create Reconfigurable Revisions

To create a reconfigurable revision, use the Revisions tab of the Project Navigator
window in the Intel Quartus Prime software. When you create a reconfigurable
revision, the Intel Quartus Prime software adds the required assignments to associate
the reconfigurable revision with the base revision of the PR project. You can add the
necessary files to each revision with the Add/Remove Files option in the Project
option under the Project menu in the Intel Quartus Prime software. With this step,
you can associate the right implementation files for each revision of the PR project.

Important: You must use the Revisions tab of the Project Navigator window in the Intel
Quartus Prime software when creating revisions for partial reconfiguration. Revisions
created using Project ➤ Revisions cannot be reconfigured.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.9.2. Compiling Reconfigurable Revisions

Altera recommends that you use the largest persona of the PR region for the base
compilation so that the Intel Quartus Prime software can automatically budget
sufficient routing.

Here are the typical steps involved in a PR design flow.

1. Compile the base revision with the largest persona for each PR region.

2. Create reconfigurable revisions for other personas of the PR regions by right-
clicking in the Revisions tab in the Project Navigator.

3. Compile your reconfigurable revisions.

4. Analyze timing on each reconfigurable revision to make sure the design performs
correctly to specifications.

5. Create aggregate revisions as needed.

6. Create programming files.

For more information on compiling a partial reconfiguration project, refer to
Performing Partial Reconfiguration in Intel Quartus Prime Help.

1.9.3. Timing Closure for a Partial Reconfiguration Project

As with any other FPGA design project, simulate the functionality of various PR
personas to make sure they perform to your system specifications. You must also
make sure there are no timing violations in the implementation of any of the personas
for every PR region in your design project.

In the Intel Quartus Prime software, this process is manual, and you must run
multiple timing analyses, on the base, reconfigurable, and aggregate revisions. The
different timing requirements for each PR persona can be met by using different SDC
constraints for each of the personas.

The interface between the partial and static partitions remains identical for each
reconfigurable and aggregate revision in the PR flow. If all the interface signals
between the static and the PR regions are registered, and there are no timing
violations within the static region as well as within the PR regions, the reconfigurable
and aggregate revisions should not have any timing violations.

However, you should perform timing analysis on the reconfigurable and aggregate
revisions, in case you have any unregistered signals on the interface between partial
reconfiguration and static regions.

1.9.4. PR Bitstream Compression and Encryption (Intel Arria® 10
Designs)

You can compress and encrypt the base bitstream and the PR bitstream for your PR
project using options available in the Intel Quartus Prime software.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Compress the base and PR programming bitstreams independently, based on your
design requirements. When encrypting only the base image, specify whether or not to
encrypt the PR images. The following guidelines apply to PR bitstream compression
and encryption:

• You can encrypt the PR images only when the base image is encrypted.

• The Encryption Key Programming (.ekp) file generates when encrypting the base
image and must be used for encrypting the PR bitstream.

• When you compress the bitstream, present each PR_DATA[15:0] word for
exactly four clock cycles.

For partial reconfiguration with the PR Controller IP core, specify enhanced
compression by turning on the Enhanced compression option when specifying the
parameters in the IP Catalog or Platform Designer parameter editors.

Note: You cannot use encryption with enhanced compression simultaneously.

Table 5. Partial Reconfiguration Clock Requirements for Bitstream Compression

Timing Parameters Value (clock cycles)

PR_READY to first data 4 (exact)

PR_ERROR to last clock 80 (minimum)

PR_DONE to last clock 80 (minimum)

DONE_to_REQ_low 8 (maximum)

Related Information

• Enable Partial Reconfiguration Bitstream Decompression when Configuring Base
Design SOF file in JTAG mode on page 38

• Enable Bitstream Decryption Option on page 39

• Generate PR Programming Files with the Convert Programming Files Dialog Box on
page 36

1.10. Programming Files for a Partial Reconfiguration Project

You must generate PR bitstream(s) based on the designs and send them to the control
block for partial reconfiguration.

Compile the PR project, including the base revision and at least one reconfigurable
revision before generating the PR bitstreams. The Intel Quartus Prime Programmer
generates PR bitstreams. This generated bitstream can be sent to the PR ports on the
control block for partial reconfiguration.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17. PR Project with Three Revisions

Consider a partial reconfiguration design that has three revisions and one PR region, a base revision with
persona a, one PR revision with persona b, and a second PR revision with persona c.

Base
Revision with

Persona a

Revision b

Revision c

pr_region.msf
static.msf
base.sof

b.sof
b.msf

c.sof
c.msf

Partial
Reconfiguration

Design

When these individual revisions are compiled in the Intel Quartus Prime software, the
assembler produces Masked SRAM Object Files (.msf) and the SRAM Object Files
(.sof) for each revision. The .sof files are created as before (for non-PR designs).
Additionally, .msf files are created specifically for partial reconfiguration, one for each
revision. The pr_region.mfsf file is the one of interest for generating the PR
bitstream. It contains the mask bits for the PR region. Similarly, the static.msf file
has the mask bits for the static region. The .sof files have the information on how to
configure the static region as well as the corresponding PR region. The
pr_region.msf file is used to mask out the static region so that the bitstream can
be computed for the PR region. The default file name of the pr region .msf
corresponds to the LogicLock region name, unless the name is not alphanumeric. In
the case of a non-alphanumeric region name, the .msf file is named after the location
of the lower left most coordinate of the region.

Note: Altera recommends naming all LogicLock regions to enhance documenting your
design.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Generation of Partial-Masked SRAM Object Files (.pmsf)

You can convert files in the Convert Programming Files window or run the quartus_cpf -p command to
process the pr_region.msf and .sof files to generate the Partial-Masked SRAM Object File (.pmsf).

base.sof

pr_region.msf

a.pmsf+

b.sof

b_pr_region
.msf

b.pmsf+

c.sof

c_pr_region
.msf

c.pmsf+

The .msf file helps determine the PR region from each of the .sof files during the PR
bitstream computation.

Once all the .pmsf files are created, process the PR bitstreams by running the
quartus_cpf -o command to produce the raw binary .rbf files for reconfiguration.

If one wishes to partially reconfigure the PR region with persona a, use the a.rbf
bitstream file, and so on for the other personas.

Figure 19. Generating PR Bitstreams

This figure shows how three bitstreams can be created to partially reconfigure the region with persona a,
persona b, or persona c as desired.

a.rbfa.pmsf b.rbfb.pmsf c.rbfc.pmsf

In the Intel Quartus Prime software, the Convert Programming Files window supports
the generation of the required programming bitstreams. When using the
quartus_cpf from the command line, the following options for generating the
programming files are read from an option text file, for example, option.txt.

• If you want to use SCRUB mode, before generating the bitstreams create an
option text file, with the following line:

use_scrub=on

• If you have initialized M20K blocks in the PR region (ROM/Initialized RAM), then
add the following line in the option text file, before generating the bitstreams:

write_block_memory_contents=on

• If you want to compress the programming bitstream files, add the following line in
the option text file. This option is available when converting base .sof to any
supported programming file types, such as .rbf, .pof and JTAG Indirect
Configuration File (. jic).

bitstream_compression=on

Related Information

Generate PR Programming Files with the Convert Programming Files Dialog Box on
page 36

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.10.1. Generating Required Programming Files

1. Generate .sof and .msf files (part of a full compilation of the base and PR
revisions).

2. Generate a Partial-Masked SRAM Object File (.pmsf) using the following
commands:

quartus_cpf -p <pr_revision>.msf <pr_revision>.sof
<new_filename>.pmsf

for example:
quartus_cpf -p x7y48.msf switchPRBS.sof x7y48_new.pmsf

3. Convert the .pmsf file for every PR region in your design to .rbf file format.
The .rbf format is used to store the bitstream in an external flash memory. This
command should be run in the same directory where the files are located:

quartus_cpf -o scrub.txt -c <pr_revision >.pmsf
<pr_revision>.rbf

for example:
quartus_cpf -o scrub.txt -c x7y48_new.pmsf x7y48.rbf

When you do not have an option text file such as scrub.txt, the files generated
would be for AND/OR mode of PR, rather than SCRUB mode.

1.10.2. Generate PR Programming Files with the Convert Programming
Files Dialog Box

In the Intel Quartus Prime software, the flow to generate PR programming files is
supported in the Convert Programming Files dialog box. You can specify how the Intel
Quartus Prime software processes file types such as .msf, .pmsf, and .sof to
create .rbf and merged .msf and .pmsf files.

You can create

• A .pmsf output file, from .msf and .sof input files

• A .rbf output file from a .pmsf input file

• A merged .msf file from two or more .msf input files

• A merged .pmsf file from two or more .pmsf input files

Convert Programming Files dialog box also allows you to enable the option bit for
bitstream decompression during partial reconfiguration, when converting the
base .sof (full design .sof) to any supported file type.

1.10.2.1. Generating a .pmsf File from a .msf and .sof Input File

Perform the following steps in the Intel Quartus Prime software to generate the .pmsf
file in the Convert Programming Files dialog box.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Open the Convert Programming Files dialog box.

2. Specify the programming file type as Partial-Masked SRAM Object File
(.pmsf).

3. Specify the output file name.

4. Select input files to convert (only a single .msf and .sof file are allowed). Click
Add.

5. Click Generate to generate the .pmsf file.

1.10.2.2. Generating a .rbf File from a .pmsf Input File

Perform the following steps in the Intel Quartus Prime software to generate the partial
reconfiguration .rbf file in the Convert Programming Files dialog box.

1. From the File menu, click Convert Programming Files.

2. Specify the programming file type as Raw Binary File for Partial
Reconfiguration (.rbf).

3. Specify the output file name.

4. Select input file to convert. Only a single .pmsf input file is allowed. Click Add.

5. Select the new .pmsf and click Properties.

6. Turn the Compression, Enable SCRUB mode, Write memory contents, and
Generate encrypted bitstream options on or off depending on the requirements
of your design. Click Generate to generate the .rbf file for partial
reconfiguration.

• Compression: Enables compression on the PR bitstream.

• Enable SCRUB mode: Default is based on AND/OR mode. This option is valid
only when your design does not contain vertically overlapped PR masks. The .rbf
generation fails otherwise.

• Write memory contents: Turn this on when you have a .mif that was used
during compilation. Otherwise, turning this option on forces you to use double PR
in AND/OR mode.

• Generate encrypted bitstream: If this option is enabled, you must specify the
Encrypted Key Programming (.ekp) file, which generated when converting a
base .sof to an encrypted bitstream. The same .ekp must be used to encrypt
the PR bitstream.

When you turn on Compression, you must present each PR_DATA[15:0] word for
exactly four clock cycles.

Turn on the Write memory contents option only if you are using AND/OR mode and
have M20K blocks in your PR design that need to be initialized. When you check this
box, you must to perform double PR for regions with initialized M20K blocks.

Related Information

Initializing M20K Blocks with a Double PR Cycle on page 45

1.10.2.3. Create a Merged .msf File from Multiple .msf Files

You can merge two or more .msf files in the Convert Programming Files window.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Open the Convert Programming Files window.

2. Specify the programming file type as Merged Mask Settings File (.msf).

3. Specify the output file name.

4. Select MSF Data in the Input files to convert window.

5. Click Add File to add input files. You must specify two or more files for merging.

6. Click Generateto generate the merged file.

To merge two or more .msf files from the command line, type:

quartus_cpf --merge_msf=<number of merged files>
<msf_input_file_1> <msf_input_file_2> <msf_input_file_etc>
<msf_output_file>

For example, to merge two .msf files, type:

quartus_cpf --merge_msf=<2> <msf_input_file_1> <msf_input_file_2>
<msf_output_file>

1.10.2.4. Generating a Merged .pmsf File from Multiple .pmsf Files

You can merge two or more .pmsf files in the Convert Programming Files window.

1. Open the Convert Programming Files window.

2. Specify the programming file type as Merged Partial-Mask SRAM Object
File (.pmsf).

3. Specify the output file name.

4. Select PMSF Data in the Input files to convert window.

5. Click Add File to add input files. You must specify two or more files for merging.

6. Click Generate to generate the merged file.

To merge two or more .pmsf files from the command line, type:

quartus_cpf --merge_pmsf=<number of merged files>
<pmsf_input_file_1> <pmsf_input_file_2> <pmsf_input_file_etc>
<pmsf_output_file>

For example, to merge two .pmsf files, type:

quartus_cpf --merge_pmsf=<2> <pmsf_input_file_1>
<pmsf_input_file_2> <pmsf_output_file>

The merge operation checks for any bit conflict on the input files, and the operation
fails with error message if a bit conflict is detected. In most cases, a successful file
merge operation indicates input files do not have any bit conflict.

1.10.2.5. Enable Partial Reconfiguration Bitstream Decompression when
Configuring Base Design SOF file in JTAG mode

In the Intel Quartus Prime software, the Convert Programming Files window
provides the option in the .sof file properties to enable bitstream decompression
during partial reconfiguration.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This option is available when converting base .sof to any supported programming file
types, such as .rbf, .pof, and .jic.

In order to view this option, the base .sof must be targeted on Stratix V devices in
the .sof File Properties. This option must be turned on if you turned on the
Compression option during .pmsf to .rbf file generation.

1.10.2.6. Enable Bitstream Decryption Option

The Convert Programming Files window provides the option in the .sof file
properties to enable bitstream decryption during partial reconfiguration.

This option is available when converting base .sof to any supported programming file
types, such as .rbf, .pof, and .jic.

The base .sof must have partial reconfiguration enabled and the base .sof
generated from a design that has a PR Control Block instantiated, to view this option
in the .sof File Properties. This option must be turned on if you wants to turn on
the Generate encrypted bitstream option during .pmsf to .rbf file generation.

1.11. On-Chip Debug for PR Designs

You cannot instantiate a Signal Tap block inside a PR region. If you must monitor
signals within a PR region for debug purposes, bring those signals to the ports of the
PR region.

The Intel Quartus Prime software does not support the Incremental Signal Tap feature
for PR designs. After you instantiate the Signal Tap block inside the static region, you
must recompile your design. When you recompile your design, the static region may
have a modified implementation and you must also recompile your PR revisions. If you
modify an existing Signal Tap instance you must also recompile your entire design;
base revision and reconfigurable revisions.

Figure 20. Using Signal Tap with a PR Design
You can instantiate the SignalTap II block in the static region of the design and probe the signals you want to
monitor.

SignalTap II
Module

PR Region
with Signals to

Be Probed
Brought Out
on the Ports

Static Region

You can use other on-chip debug features in the Intel Quartus Prime software, such as
the In-System Sources and Probes or Signal Probe, to debug a PR design. As in the
case of SignalTap, In-System Sources and Probes can only be instantiated within the
static region of a PR design. If you have to probe any signal inside the PR region, you
must bring those signals to the ports of the PR region in order to monitor them within
the static region of the design.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.12. Partial Reconfiguration Known Limitations

There are restrictions that derive from hardware limitations in specific Stratix V
devices.

The restrictions in the following sections apply only if your design uses M20K blocks as
RAMs or ROMs in your PR project.

1.12.1. Memory Blocks Initialization Requirement for PR Designs

For a non-PR design, the power up value for the contents of a M20K RAM or a MLAB
RAM are all set at zero. However, at the end of performing a partial reconfiguration,
the contents of a M20K or MLAB memory block are unknown. You must intentionally
initialize the contents of all the memory to zero, if required by the functionality of the
design, and not rely upon the power on values.

1.12.2. M20K RAM Blocks in PR Designs

When your PR design uses M20K RAM blocks in Stratix V devices, there are some
restrictions which limit how you utilize the respective memory blocks as ROMs or as
RAMs with initial content.

Related Information

Implementing Memories with Initialized Content on page 43
If your design requires initialized memory content either as a ROM or a RAM inside
a PR region, you must follow these guidelines.

1.12.2.1. Limitations When Using Stratix V Production Devices

These workarounds allow your design to use M20K blocks with PR.

Figure 21. Limitations for Using M20Ks in PR Regions

If you implement a M20K block in your PR region as a ROM or a RAM with initialized content, when the PR
region is reconfigured, any data read from the memory blocks in static regions in columns that cross the PR
region is incorrect.

PR
Region

Static
Region

Stratix V Device

No Restrictions for RAM/ROM
Implementation in These M20K Columns

RAM/ROM Implementation in These M20K
Columns Has Restrictions

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the functionality of the static region depends on any data read out from M20K RAMs
in the static region, the design will malfunction.

Use one of the following workarounds, which are applicable to both AND/OR and
SCRUB modes of partial reconfiguration:

• Do not use ROMs or RAMs with initialized content inside PR regions.

• If this is not possible for your design, you can program the memory content for
M20K blocks with a .mif using the suggested workarounds.

• Make sure your PR region extends vertically all the way through the device, in
such a way that the M20K column lies entirely inside a PR region.

Figure 22. Workaround for Using M20Ks in PR Regions

This figure shows the LogicLock region extended as a rectangle reducing the area available for the static
region. However, you can create non-rectangular LogicLock regions to allocate the resources required for the
partition more optimally. If saving area is a concern, extend the LogicLock region to include M20K columns
entirely.

PR
Region

Static
Region

Stratix V Device

Workaround: Extend the LogicLock Region
to Include the Entire M20K Column

M20K as Uninitialized RAM

M20K as Initialized RAM/ROM

•

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 23. Alternative Workaround for Using M20Ks in PR Region

Using Reserved LogicLock Regions, block all the M20K columns that are not inside a PR region, but that are in
columns above or below a PR region. In this case, you may choose to under-utilize M20K resources, in order to
gain ROM functionality within the PR region.

PR
Region

Static
Region

Stratix V Device

M20K as Uninitialized RAM

M20K as Initialized RAM/ROM

Workaround: Reserved LogicLock Region
No RAM/ROM In These Areas

For more information including a list of the Stratix V production devices, refer to the
Errata Sheet for Stratix V Devices.

1.12.3. MLAB Blocks in PR designs

Stratix V devices include dual-purpose blocks called MLABs, which can be used to
implement RAMs or LABs for user logic.

This section describes the restrictions while using MLAB blocks (sometimes also
referred to as LUT-RAM) in Stratix V devices for your PR designs.

If your design uses MLABS as LUT RAM, you must use all available MLAB bits within
the region.

Table 6. RAM Implementation Restrictions Summary
The following table shows a summary of the LUT-RAM Restrictions.

PR Mode Type of memory in PR region Stratix V Production

SCRUB mode LUT RAM (no initial content) OK

LUT ROM and LUT RAM with your initial
content

OK

AND/OR mode LUT RAM (no initial content) While design is running: Write 1s to all locations before
partial reconfiguration
At compile time: Explicitly initialize all memory locations
in each new persona to 1 via initialization file (. mif).

LUT ROM and LUT RAM with your initial
content

No

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If your design does not use any MLAB blocks as RAMs, the following discussion does
not apply. The restrictions listed below are the result of hardware limitations in specific
devices.

Limitations with Stratix V Production Devices

When using SCRUB mode:

• LUT-RAMs without initialized content, LUT-RAMs with initialized content, and LUT-
ROMs can be implemented in MLABs within PR regions without any restriction.

When using AND/OR mode:

• LUT-RAMs with initialized content or LUT-ROMs cannot be implemented in a PR
region.

• LUT-RAMs without initialized content in MLABs inside PR regions are supported
with the following restrictions.

• MLAB blocks contain 640 bits of memory. The LUT RAMs in PR regions in your
design must occupy all MLAB bits, you should not use partial MLABs.

• You must include control logic in your design with which you can write to all MLAB
locations used inside PR region.

• Using this control logic, write '1' at each MLAB RAM bit location in the PR region
before starting the PR process. This is to work around a false EDCRC error during
partial reconfiguration.

• You must also specify a .mif that sets all MLAB RAM bits to '1' immediately after
PR is complete.

• ROMs cannot be implemented in MLABs (LUT-ROMs).

• There are no restrictions to using MLABs in the static region of your PR design.

For more information, refer to the following documents in the Stratix V Handbook:

1.12.4. Implementing Memories with Initialized Content

If your Stratix V PR design implements ROMs, RAMs with initialization, or ROMs within
the PR regions, using either M20K blocks or LUT-RAMs, then you must follow the
following design guidelines to determine what is applicable in your case.

Table 7. Implementing Memory with Initialized Content in PR Designs

Mode Production Devices

AND/OR SCRUB

LUT-RAM without
initialization

Suggested Method While design is running: Write ‘1’ to all
locations before partial reconfiguration.
At compile time: Explicitly initialize all
memory locations in each new persona to
‘1’ via initialization file (.mif)

No special method
required

continued...

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Mode Production Devices

AND/OR SCRUB

Make sure no spurious write on PR entry
(1)

Without Suggested
Method

CRC Error No special method
required

LUT-RAM with
initialization

Suggested Method Not supported Make sure no spurious
write on PR exit (1)

Without Suggested
Method

Incorrect results

M20K without
initialization

Suggested Method No special method required

Without Suggested
Method

No special method required

M20K with initialization Suggested Method Use double PR cycle (2)

Make sure no spurious write on PR exit (1)
No special method

required

Without Suggested
Method

Incorrect results No special method
required

Figure 24. M20K/LUTRAM
To avoid spurious writes during PR entry and exit, implement the following clock enable circuit in the same PR
region as the RAM.

CLR

SETD Q

Q

CLR

SETD Q

QCLR

SETD Q

Q

CE

M20K/LUTRAM

1

Clock Enable
Logic

Clear Signal to
Safely Exit PR

The circuit depends on an active- high clear signal from the static region. Before
entering PR, freeze this signal in the same manner as all PR inputs. Your host control
logic should de-assert the clear signal as the final step in the PR process.

(1) Use the circuit shown in the M20K/LUTRAM figure to create clock enable logic to safely exit
partial reconfiguration without spurious writes.

(2) Double partial reconfiguration is described in Initializing M20K Blocks with a Double PR Cycle

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Initializing M20K Blocks with a Double PR Cycle on page 45

1.12.5. Initializing M20K Blocks with a Double PR Cycle

When a PR region in your PR design contains an initialized M20K block and is
reconfigured via AND/OR mode, your host logic must complete a double PR cycle,
instead of a single PR cycle.

The PR IP has a double_pr input port, that must be asserted high when your PR
region contains RAM blocks that must be initialized. The PR IP core handles the timing
relations between the first and the second PR cycles of a Double PR operation. From
your user logic, assert the double_pr signal when you assert the pr_start signal,
and you deassert the double_pr signal when the freeze signal is deasserted by the
PR IP. This method is also applicable in cases when the programming bitstream is
compressed or encryted.

1.13. Document Revision History

Table 8. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Updated PR Bitstream Compression and Encryption topic to clarify FPGA family differences.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2015.05.04 15.0.0 • Correct Verilog HDL partial reconfiguration instantiation code example.
• Added clear/set method to SCRUB mode option.

2015.12.15 14.1.0 Minor revisions to some topics to resolve design refinements:
• Implementing Memories with Initialized Content
• Instantiating the PR Control Block and CRC Block in Verilog HDL
• Partial Reconfiguration Pins

June 2014 14.0.0 Minor updates to "Programming File Sizes for a Partial Reconfiguration Project" and code
samples in "Freeze Logic for PR Regions" sections.

November 2013 13.1.0 Added support for merging multiple .msf and .pmsf files.
Added support for PR Megafunction.
Updated for revisions on timing requirements.

May 2013 13.0.0 Added support for encrypted bitstreams.
Updated support for double PR.

November 2012 12.1.0 Initial release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

1. Design Planning for Partial Reconfiguration

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

45

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683499 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys* that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics*, and Synopsys*. Includes design flow steps,
generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor
Graphics* and Cadence*. Also includes information about signal integrity
analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

A. Intel Quartus Prime Standard Edition User Guides

683499 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration

47

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Partial%20Reconfiguration%20(683499%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Standard
Edition User Guide
Third-party Simulation

Updated for Intel® Quartus® Prime Design Suite: 23.1

Answers to Top FAQs:
Q What do I need for simulation?
A Simulation Essential Elements on page 4

Q What simulators do you support?
A Supported Simulators on page 19

Q What are the simulation stages?
A Overview of Simulation Tool Flow on page 6

Q What are logical libraries?
A Specifying Logical Libraries on page 9

Q How do I compile into libraries?
A Compiling Files Into Library Directories on page 9

Q What is the simulation workflow?
A Generic Simulation Workflow on page 16

Q What are the known issues and limitations?
A Intel FPGA Support Forums: Simulation

Q Do you have training on simulation?
A Intel FPGA Simulation Training

Online Version

Send Feedback UG-20180

683080

2024.02.05

https://community.intel.com/t5/forums/searchpage/tab/message?advanced=false&allow_punctuation=false&filter=location&location=forum-board:quartus-prime-software&q=simulation
https://www.intel.com/content/www/us/en/programmable/support/training/catalog.html?keywords=simulation
https://www.intel.com/content/www/us/en/docs/programmable/683080.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Intel FPGA Simulation Basics.. 4
1.1. Intel FPGA Simulation Essential Elements..4
1.2. Overview of Simulation Tool Flow...6

1.2.1. Compilation Stage... 6
1.2.2. Elaboration Stage.. 7
1.2.3. Simulation Stage... 8

1.3. Simulation Tool Flow.. 8
1.3.1. Specifying Logical Libraries... 9
1.3.2. Compiling Files Into Library Directories...9
1.3.3. The Intel Quartus Prime Simulation Library..11
1.3.4. Understanding Elaboration.. 13
1.3.5. Commands To Configure and Run Simulation... 15
1.3.6. Intel FPGA Simulation Generic Workflow..16

1.4. Supported Simulation Types.. 17
1.5. Supported Simulation Flows.. 17
1.6. Supported Hardware Description Languages.. 18
1.7. Supported Simulators...19
1.8. Using NativeLink Simulation (Intel Quartus Prime Standard Edition)............................19

1.8.1. Setting Up NativeLink Simulation (Intel Quartus Prime Standard Edition).........20
1.8.2. Running RTL Simulation (NativeLink Flow)...20
1.8.3. Running Gate-Level Simulation (NativeLink Flow)... 20

1.9. Intel FPGA Simulation Basics Revision History..21

2. Siemens EDA QuestaSim Simulator Support ...22
2.1. Quick Start Example (QuestaSim with Verilog)...22
2.2. QuestaSim Simulator Guidelines.. 23

2.2.1. Passing Parameter Information from Verilog HDL to VHDL............................. 23
2.2.2. Viewing Simulation Messages.. 23
2.2.3. Generating Signal Activity Data for Power Analysis....................................... 24
2.2.4. Viewing Simulation Waveforms.. 26

2.3. QuestaSim Simulation Setup Script Example... 27
2.4. Sourcing QuestaSim Simulator Setup Scripts... 27
2.5. Unsupported Features.. 28
2.6. Siemens EDA QuestaSim Simulator Support Revision History..................................... 29

3. Synopsys VCS and VCS MX Support...30
3.1. Quick Start Example (VCS with Verilog).. 30
3.2. VCS and VCS MX Guidelines.. 30

3.2.1. Simulating Transport Delays.. 31
3.2.2. Disabling Timing Violation on Registers... 31
3.2.3. Generating Power Analysis Files... 32

3.3. VCS Simulation Setup Script Example...32
3.4. Sourcing Synopsys VCS MX Simulator Setup Scripts... 33
3.5. Sourcing Synopsys VCS Simulator Setup Scripts.. 34
3.6. Synopsys VCS and VCS MX Support Revision History.. 36

4. Cadence Xcelium Parallel Simulator Support...37
4.1. Generating Simulator Setup Script Templates.. 37

Contents

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2. Sourcing Cadence Xcelium Simulator Setup Scripts.. 37
4.3. Cadence Xcelium Parallel Simulator Support Revision History..................................... 40

5. Aldec Active-HDL and Riviera-PRO Support...41
5.1. Quick Start Example (Active-HDL VHDL)... 41
5.2. Aldec Active-HDL and Riviera-PRO Guidelines.. 42

5.2.1. Compiling SystemVerilog Files... 42
5.2.2. Disabling Timing Violation on Registers... 42

5.3. Using Simulation Setup Scripts.. 42
5.4. Sourcing Aldec ActiveHDL* or Riviera Pro* Simulator Setup Scripts............................ 43
5.5. Aldec Active-HDL and Riviera-PRO * Support Revision History....................................46

A. Intel Quartus Prime Standard Edition User Guides..47

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel FPGA Simulation Basics
This chapter is a high-level explanation of Intel FPGA simulation basic concepts and
workflows for all simulators that the Intel® Quartus® Prime software supports. An
understanding of these basic concepts provides a foundation for performing simulation
using your supported simulator of choice.

While the details of using a particular simulator vary, the basic foundational concepts
and tasks of FPGA design simulation are common to all supported simulators.

Related Information

Supported Simulators on page 19

1.1. Intel FPGA Simulation Essential Elements

The following describes the essential elements required for Intel FPGA design
simulation.

Design

An Intel Quartus Prime design typically consists of a top-level design module
containing a hierarchy of module instances, defined in one or more HDL files. The
design that you intend to simulate is known as the Design Under Test (DUT).

Testbench

To simulate the DUT (that is, a design), you must also provide a separate HDL module
(referred to as the testbench module) that instantiates the DUT and additional logic to
stimulate the DUT and to capture the output from the DUT. The testbench module can
include a hierarchy of module instances related to the testbench, but that are not part
of the design. You define the testbench modules in one or more HDL files.

Top-Level Testbench

A top level testbench module is the testbench module that instantiates all other design
and testbench related modules. This is the module you simulate.

HDL Design and Testbench Files

Simulating a design requires HDL design files, and one or more HDL testbench files.
Intel Quartus Prime designs typically consist of several modules that you define in
multiple HDL files. These files can include HDL files generated by Intel Quartus Prime
tool, such as Intel Quartus Prime Platform Designer.

Some of the modules instantiated in the design may be common to many designs.
Examples of some common modules are low-level primitives, like AND and OR gates,
and more complex blocks, such as multipliers and FIFOs.

683080 | 2024.02.05

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The low level modules common to many designs are known as simulation library
modules, and the files defining those modules are known as simulation library files.
The Intel Quartus Prime software installation provides various simulation library files,
as The Intel Quartus Prime Simulation Library describes.

The combination of design and testbench files includes all the modules that are
instantiated in the top-level testbench module hierarchy, including all of the modules
for the design, because the design is instantiated within the testbench hierarchy.

Executable Simulation Model

In order to simulate a design you must first generate an executable simulation model
of the top-level testbench by running a set of simulator specific commands. You must
then run the executable model to perform simulation. Running the executable model
may require simulator specific commands. The executable model is typically a set of
binary files specific to a simulator.

Simulator Commands

You must run one or more simulator commands to generate the executable simulation
model and then to run the executable simulation model. The commands require the
following inputs to generate an executable model of the top-level testbench module
that you can simulate, as the Inputs and Commands to Generate and Run the
Executable Model figure shows:

• The name of the top-level testbench module.

• The HDL design files, including files generated by tools such as Platform Designer,
simulation library files, and testbench files.

Figure 1. Inputs and Commands to Generate and Run the Executable Simulation Model

One or More
Simulator Commands

Executable
Simulation

Model

Command to
Run Simulation

my_design.sv
my_testbench.sv

library1.sv
library2.sv

my_top
Top-Level Testbench

Module Name

Simulation
Running

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Since you must run several commands to create and run the executable model to
perform simulation, you can place the calls to the commands into one or more
simulation scripts for convenience. These scripts can be Linux shell scripts, Tcl scripts,
Perl, or Python scripts.

1.2. Overview of Simulation Tool Flow

The various simulator commands that you use to generate and run the executable
model are all part of the simulation tool flow. A simulation tool flow consists of
executing the following three stages of the simulation, in that order:

1. Compilation

2. Elaboration

3. Simulation

You run simulator specific commands at each stage in the flow.

1.2.1. Compilation Stage

In the first stage of simulation you run compilation commands.

Inputs to a Compilation Command

The compilation command takes as input one or more design files, testbench files, and
simulation library files.

What Does a Compilation Command Do?

A compilation command does the following:

1. Reads the files that you specify as arguments to the command.

2. Analyzes the content of the files, which includes checking for syntax errors and
other issues.

3. Stores the analyzed content (such as the module definitions) in a directory in a
simulator specific proprietary format. The directory is known as a library directory.
You can also specify the directory as an input argument.

This step of storing the analyzed content of HDL files in a library directory is
known as compiling the files into a library directory, or simply compiling a file.

Compiling a file is similar to running Intel Quartus Prime Analysis & Synthesis, in that
the analyzed file content is stored in design database directory. The compilation is also
loosely analogous to compiling a C/C++ file into an object file, where the object file is
stored in a separate directory.

The library directory contains the definitions of all modules that are defined in the files
that you compiled into the library. You use these module definitions in the elaboration
stage. You may need to run multiple compilation commands to compile all the files
into library directories.

Compilation Command Example

Consider a design example that has two design files, foo.sv and bar.sv, and one
testbench file, my_testbench.sv.

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To compile these files, you first create a new directory, for example my_work. Next,
you run the simulator specific compilation command that takes in the file names and
directory name as inputs, as the File and Directory Name Input to Simulator Specific
Compilation Command figure shows. Once the command runs successfully, one or
more files appear in the my_work library directory. The directory contains the
definitions of all modules the three HDL files define, in a proprietary format that only
the simulator understands.

Figure 2. File and Directory Name Input to Simulator Specific Compilation Command

Compilation
Command

my_work_directory

foo.sv

/usr/design/bar.sv

../../my_testbench.sv

“my_work_directory”

1.2.2. Elaboration Stage

The elaboration stage follows the compilation stage. In the elaboration stage you
typically run just one elaboration command. This elaboration command can take
several inputs. At the minimum, elaboration requires as input the top-level testbench
module name, and the list of library directories that the compilation stage creates.

Figure 3. Elaboration Stage Inputs and Output

Elaboration
Command

Executable
Simulation

Model

“/usr/design/my_design_lib_directory”

“my_testbench_lib_dir”
“common_library_directory”

“my_top_tb”

The output of the elaboration command is the executable simulation model for the
top-level testbench. The executable simulation model comprises one or more
simulator-specific files and directories. For more details about the elaboration stage,
refer to Understanding Elaboration.

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.3. Simulation Stage

The commands that apply to the simulation stage actually run the simulation. The
input to simulation stage commands is the executable simulation model that you
generate during the elaboration stage, along with other inputs, such as how long to
simulate, and which signals to capture for waveform viewing and dumping.

As the Files and Directories for Executable Model of my_top_tb figure shows, the
output of the simulation stage is simply the output from a simulation run, which can
include messages issued by HDL modules, files written out by the simulator such as
waveform dumps, and any GUI display of simulation in progress.

Figure 4. Files and Directories for Executable Model of my_top_tb

Simulation
Command

Output of
Simulation

Run

Executable
Simulation

Model

1.3. Simulation Tool Flow

The simulation tool flow begins with the compilation stage that compiles files into
logical libraries using simulator specific compilation commands.

The next stage is elaboration, where you run the elaboration command to generate an
executable simulation model. In the final stage, you run the executable simulation
model to run the simulation.

The following topics describe these simulation tool flow concepts in more detail:

1. Specifying Logical Libraries

2. Compiling Files into Library Directories

3. Understanding Elaboration

4. Commands to Configure and Run Simulation

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.1. Specifying Logical Libraries

Some simulator commands for compilation and elaboration require you to specify a
logical library name as input.

A Logical library is simply a name (typically short and readable) that represents a
physical library directory. For example, logical library name foo can represent physical
directory /users/jsmith/design1/bar. The simulator commands translate the
logical library name to a physical directory name by reading in a library mapping file.
The simulator commands require only the physical directory names.

The mapping of logical library names to physical directory names is known as library
mapping, which you must define. You typically store the library mapping in a separate
text file in a proprietary text format, with each line containing a single logical library
name and the corresponding library directory path. You can either update the file
manually, or by using a simulator specific command (if available). This library mapping
file often has a fixed simulator specific name and a fixed location. Therefore, you do
not generally specify the library mapping file as an argument to simulator commands,
even though the file is read by the commands.

A logical library name is an optional argument to many simulator commands. If you do
not specify a logical library name for such commands, the default value is work.
Therefore, you must map the logical library name work to a physical directory name.
Some simulators add a default library mapping for the work library if you do not
specify a mapping in a library mapping file. It is legal to map multiple logical library
names to a single library directory.

Example library mapping file with logical library names foo_lib and
common_sim_lib:

foo_lib : /users/john/designs/foo_dir
common_sim_lib : /usr/sim/common/libraries

Note: syntax of library mapping file varies with simulator

1.3.1.1. Why Do We Need Logical Library Names?

Using logical library names instead of physical directory names in command
invocations and in HDL files (especially VHDL files) simplifies some aspects of
simulation. Use of logical library names makes it easier to port simulation scripts when
moving the scripts across machines and disks because you only need to update the
library mapping to reflect any new library directory paths in the new environment.

For example, Intel recommends compiling Intel Quartus Prime simulation library files
into fixed logical library names. You can then map the logical library names to
appropriate library directory paths.

1.3.2. Compiling Files Into Library Directories

Many simulators include commands to compile one or more files, specified in some
order, into a single library directory. You specify the library directory by specifying its
logical library name. Some simulators have one command for compiling Verilog HDL or
SystemVerilog files, and a different command for compiling VHDL files.

The following section describes the various commands for compiling files into library
directories.

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.2.1. Inputs to Compilation Commands

Compilation commands accept the following inputs:

• An ordered list of one or more HDL file names, usually file names separated by
spaces.

Note: The file order is important in some cases, as Order of Files for Compilation
Commands explains.

• (Optional) Command line options to configure the compilation behavior, as
Compilation Command-Line Options describes.

• (Optional) The name of the logical library or a library directory name. When not
specified, the logical library default value is the work library, as Specifying Logical
Libraries describes.

Note: 1. You can compile two or more files using a single compilation command if you can
compile them into the same library, and they require the same compilation
options. The compilation command can take a list of HDL files as input.

2. You can compile files defining modules that are not part of the design or
testbench. The elaboration stage ignores such modules. In fact, in practice, you
typically compile many more modules than are required to simulate the top-level
testbench module.

The compilation command generates outputs, as Compilation Stage describes.

1.3.2.2. Order of Files for Compilation Commands

The order of files that you specify to compilation commands is irrelevant for Verilog
and SystemVerilog files in many instances. The main exception is when there are files
defining SystemVerilog packages, or other files that import or otherwise refer to those
SystemVerilog packages.

Important: You must compile the files defining the SystemVerilog packages before compiling the
files that import or refer to those packages. Otherwise, the compilation command
errors out when compiling files that import or refer to those SystemVerilog packages.

For example, suppose file multp_pkg.sv defines the SystemVerilog package multp,
and the file my_design.sv imports package multp:

• If you compile both multp_pkg.sv and my_design.sv with a single compilation
command, you must ensure that multp_pkg.sv occurs before my_design.sv.

• If you compile multp_pkg.sv and my_design.sv using separate compilation
commands, you must ensure that you run the command that is compiling
multp_pkg.sv first.

VHDL has stricter requirements for ordering the files. For example, when a VHDL file
foo.vhd refers to a logical library name lib1, you must compile the files into lib1
first, before compiling foo.vhd into another library.

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.2.3. Compilation Command Line Options

Some of the optional command-line arguments for the compilation command (not
including HDL file names and library names) include:

• The type of file for compilation (Verilog HDL, SystemVerilog, or VHDL).

• The values of the Verilog macros to pass in.

• The directories containing Verilog "include" files. These are files included in a
Verilog HDL file using the `include construct.

• Simulator-specific optimization switches.

1.3.2.4. Module Definitions in Library Directories

A library directory can contain one or more module definitions, as well as other
elements, such as SystemVerilog package definitions.

A library directory can store only one module definition per module. For example, if
the adder.sv and adder_fast.sv files define the same module adder, but have
different implementations (perhaps adder_fast.sv implements a fast adder), then
compiling both files into the same library directory with a single compilation command
results in a compilation error. However, you can compile the adder.sv and
adder_fast.sv files into different library directories.

You can also replace an existing module definition in a library with another module
definition with the same module name. For example, if a library directory already
includes a module definition for adder (from compiling file adder.sv), and you
compile the adder_fast.sv file into that library directory, the existing module
definition in the library directory is replaced with the module definition from
adder_fast.sv.

1.3.3. The Intel Quartus Prime Simulation Library

The Intel Quartus Prime software includes the Intel Quartus Prime simulation library.
This library is comprised of Verilog HDL and VHDL files in the following directory:

<quartus_installation>/quartus/eda/sim_lib

This library includes simulation models for all low-level blocks that you instantiate in
your design. The library includes the following different types of low level blocks:

Table 1. Low Level Blocks in Simulation Library

Low-Level Blocks Description

Gate-Level Primitives Gate-level primitives include simple, non-parameterized modules, such as AND gates and flip-
flops. altera_primitives.v and altera_primitives.vhd define the gate-level primitives.
These primitives are only used in RTL designs. Post-synthesis and post-fit netlists do not include
these primitives. Rather, these netlists include ATOMs.

Basic IP Function
Blocks

Previously known as "megafuctions," these are basic parameterized blocks for functions such as
FIFOs and multipliers. Only RTL designs use these blocks. Post-synthesis and post-fit netlists do
not include these blocks.

ATOMs Also known as WYSIWYGs, ATOMs are the lowest level primitives in an Intel Quartus Prime
design. There are different ATOM primitives, all of them parameterized modules with varying
complexity. They represent the hardware blocks on the FPGA. For example there are ATOM
modules that represent the I/O pins and buffers, FPGA lookup tables, DSP blocks, RAM blocks,

continued...

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Low-Level Blocks Description

and periphery blocks, such as high speed transceivers and hardened Ethernet and PCIe blocks.
You are not expected to instantiate ATOMs directly in your RTL. Rather, the ATOMs are
instantiated in the RTL files that the Intel Quartus Prime software generates. Since the Intel
Quartus Prime synthesis maps the design to ATOMs, the post-synthesis and post-fit netlists are
netlists of ATOMs, known as ATOM netlists. The Fitter places and routes the ATOM netlist.

HDL Library Files You compile the HDL library files into fixed logical locations, as Compiling Files into Library
Directories describes. You must not compile the libraries for Questa* Intel FPGA Edition. Instead
use the included precompiled libraries.

1.3.3.1. The Intel Quartus Prime Simulation Library Compiler

The Intel Quartus Prime Simulation Library Compiler is an Intel Quartus Prime
software GUI and command-line tool that generates simulation scripts. You can use
these scripts to automatically compile the Intel Quartus Prime software simulation
libraries for a given simulator, device family, and hardware description language
(Verilog HDL or VHDL).

Note: For Questa Intel FPGA Edition, do not use the Simulation Library Compiler to compile
the libraries in Questa Intel FPGA Edition. Instead, you must use the Questa Intel
FPGA Edition precompiled libraries included with this simulator.

Related Information

Questa Intel FPGA Edition Simulation User Guide

1.3.3.2. Running the Simulation Library Compiler in a Terminal

You can run the Intel Quartus Prime Simulation Library Compiler in a terminal without
launching the Intel Quartus Prime software GUI.

The following example command generates the Questasim compile.do simulation
script that compiles all Verilog HDL simulation files for the specified Intel Agilex® 7
device family.

quartus_sh –simlib_comp -family agilex7 -tool questasim \
 -language verilog -gen_only -cmd_file compile.do

To view all available command-line options, you can run the following command:

quartus_sh --help=simlib_comp

1.3.3.3. Running the Simulation Library Compiler in the GUI

To automatically compile all required simulation model libraries for your design in your
supported simulator using the Simulation Library Compiler GUI, follow these steps:

1. In the Intel Quartus Prime software, click Tools ➤ Launch Simulation Library
Compiler.

2. Specify options for your simulation tool, language, target device family, and output
location, and then click OK. Simulation model compilation may require up to an
hour, depending on your system. Although the compilation messages may appear
paused or incomplete, compilation is still running correctly.

3. Use the compiled simulation model libraries to simulate your design. For
information about running simulation, refer to your supported EDA simulator's
documentation.

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

12

https://www.intel.com/content/www/us/en/docs/programmable/730191.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.3.4. Finding Logical Library Names in Simulation Library Compiler Output

After you generate the simulation script using the Simulation Library Compiler, you
may need to inspect the script to identify the logical library names for use with your
elaboration command (vsim).

To identify the logical library names for Intel Quartus Prime simulation libraries in the
generated script, search for all of the lines that begin with vmap, such as the following
line:

vmap altera_ver "./verilog_libs/altera_ver"

The first argument to vmap is the logical library name (altera_ver). The second
argument is the physical directory where the library content is stored. This second
argument is irrelevant for Questa Intel FPGA Edition because you do not run the
command.

Questa Intel FPGA Edition installation includes its own library mapping in the
modelsim.ini file. This file maps the above logical library names to physical
directories within the installation path. Therefore when you run elaboration command
vsim -L altera_ver in Questa Intel FPGA Edition, the tool locates the correct
physical library corresponding to logical library altera_ver.

1.3.4. Understanding Elaboration

Simulator elaboration is analogous to the linking step in C/C++ programming that
produces an executable binary file.

You can run elaboration with a single command that accepts the following inputs and
generates an executable model for the top-level testbench module name:

• An ordered list of logical library names. You can specify the ordered list of logical
library names either explicitly on the elaboration command line, or by ordering
them in the library mapping file. If reading from the library mapping file, the
simulator uses the order of logical libraries in the library mapping file.

• (Optional) Elaboration options.

• Top-level testbench module name.

• (Optional) The name of the logical library containing the top-level testbench
module definition. If omitted, the top-level testbench module defaults to the work
library.

The elaboration command does not read any HDL files. The elaboration command only
reads the library directories containing the module definitions.

An important part of elaboration is to find the module definitions for all the module
instances in the top-level testbench module hierarchy. This identification is described
as binding the module instances to their module definitions, or linking the module
instances to their module definitions. Understanding the binding process during
elaboration is important when debugging common elaboration errors, as Elaboration
Binding Phase describes.

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.4.1. Elaboration Binding Phase

Elaboration works in a top-down manner to bind module instances in the following
order:

1. Elaboration finds the top-level testbench module definition, given the module
name and the library that contains the module definition as input. Typically, you
compile the top-level testbench module into the work library. For example,
specifying the top-level testbench module as foo with no library name, is
equivalent to specifying the top-level testbench module as work.foo.

2. Elaboration reads the module definition, and identifies all the module instances in
the top-level testbench module.

3. Elaboration attempts to find the module definitions for all instances in the top-
level testbench, one instance at a time.

For example, for an instance inst1 of module foo in the top-level testbench
module tb, elaboration attempts to find the definition of module foo by searching
for foo in the first library in the ordered list of library directories. If elaboration
cannot find the module definition in the first library directory, it searches in the
second library directory, and so on.

Once elaboration finds the definition of foo in a library directory, it stops
searching for the definition. Therefore, if foo is defined in multiple library
directories, elaboration uses only the first instance, and ignores any other
instances. In this way, elaboration binds inst1 to foo.

4. Elaboration attempts to find all of the module instances within foo, and then to
find the module definitions for those instances using the same process that
elaboration followed for binding foo.

5. Elaboration recursively attempts to bind all the module instances within the foo
module's hierarchy before processing other instances in the top-level testbench
tb.

6. The elaboration stage ends in one of the following ways:

• All instances in the top-level testbench hierarchy are bound to modules, and
elaboration succeeds.

• An error is generated because elaboration cannot bind one or more instances
in the top-level testbench module hierarchy to modules.

1.3.4.2. Elaboration Checks

The elaboration command performs several checks. For example, elaboration verifies
that the module definitions are consistent with their instantiations. This check
confirms that a module’s ports and parameter definitions match the corresponding
module instances.

1.3.4.3. Elaboration Options

There are many simulator specific elaboration options that you can specify. One
common elaboration option preserves specific signal names so that their waveforms (a
record of how the signals change with time) can be recorded during simulation. The
rationale behind this option is explained below.

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The elaboration stage generally includes an optimization step. The optimization step
attempts to build an optimized executable simulation model that can run faster or
consume less memory during simulation.

There are many signals (defined as wire, reg, or logic variables) in a typical design
and testbench hierarchy. At the end of a simulation, any signal can produce a
simulation waveform.

The optimization step may be unable to fully optimize the executable simulation model
if most of the signals in the testbench hierarchy are preserved. Therefore, it is best to
limit the signals that you preserve to those that require waveforms during simulation.
You can specify the signals to preserve at varying level of granularity. For example,
you can specify specific signal names, or all signals within a module instance.

1.3.5. Commands To Configure and Run Simulation

Once you generate the executable simulation model during elaboration, you can run
the executable simulation model to simulate the top-level testbench module.

There are several different methods to configure and run simulation. The following are
some of the typical simulator commands and options that you can use for simulation:

• You can specify which signals that you want the simulator to record during
simulation. You must ensure that those signals are preserved during the
elaboration stage, as Elaboration Options explains.

The simulator writes the waveforms of these signals to a simulator proprietary
database during simulation. You can view the waveforms in a GUI after simulation.

Note: You cannot record or display signals in encrypted HDL files with the
simulator.

• You can specify the amount of simulation time to simulate the top-level testbench
module. For example, you can specify a simulation time of 1 milliseconds.

• You can specify an option to wait for simulation licenses. This option is applicable
when using floating simulation licenses. Some simulators exit immediately if there
are no available floating licenses for simulation.

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.6. Intel FPGA Simulation Generic Workflow

The following describes the high level workflow for simulation of any Intel Quartus
Prime design using any supported simulator:

Figure 5. Generic Intel FPGA Simulation Workflow

Identify Files & Testbench Compile Into Libraries

File
HDL

.v, .vhd, .ip
.qsys

“top”
Test

Bench

Sim
Library
Files Lib A

work

Lib B

Assemble Simulation Script

1

5

2

3

4

Elaborate Top-Level
 Testbench

Simulation
Run

1. Identify all of the HDL simulation files, including design files, simulation library
files, and HDL testbench files.

2. Identify the top-level test bench module for simulation.

3. For each HDL simulation file, determine the logical library for compilation, and any
compilation options for compiling the file.(1)

4. Determine any simulator-specific elaboration options required for elaborating the
top- level testbench module, as Understanding Elaboration describes.

5. Use the information gathered in previous steps to assemble a simulation script to
compile, elaborate, and simulate the design. This script must include commands to
perform the following:

• Compile the simulation files into libraries, as Compiling Files into Library
Directories describes.

• Elaborate the Top-Level testbench, as Understanding Elaboration describes.

• Run the executable simulation model to simulate the testbench and the
design, as Commands to Configure and Run Simulation describes.

• Run the executable simulation model to simulate the testbench and the
design, using the appropriate commands for your simulator to configure and
run simulation.

The Intel Quartus Prime software can generate simulator-specific simulation scripts to
automate some of the simulation processing in your preferred simulation environment.

(1) In general, you can compile most HDL simulation files into the default work library.

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Intel Quartus Prime software can generate a simulator specific simulation script
for an IP core, or a Platform Designer system, for use in RTL simulation. The script
includes commands to compile all the IP RTL files, as well as an elaboration command
with any simulator specific options.

The Intel Quartus Prime software can generate a simulation library compilation script
for a given simulator, device family, and language. This script includes commands to
compile the simulation library files for the specified simulator, device family, and
language. You can use this script for RTL simulation and gate-level simulation.

1.4. Supported Simulation Types

You can run different types of simulation, depending on the stage of the Intel Quartus
Prime design flow:

Table 2. Supported Simulation Types

Simulation Type Description Occurs

RTL Simulation of an RTL design consisting of one or more RTL files that you
provide as input to the Intel Quartus Prime software. These RTL files
typically also include the files that the Intel Quartus Prime Platform
Designer generates for Intel FPGA IP and systems. You can only simulate
HDL RTL files.(2). The RTL files can instantiate low level blocks, such as
primitives, basic IP functions, and ATOMs, as Intel Quartus Prime
Simulation Library describes.

Can perform before
Intel Quartus Prime
Synthesis

Post-Synthesis
Simulation (Gate-
Level)

The Intel Quartus Prime software can generate a Verilog HDL or VHDL
gate-level netlist after the synthesis stage completes, but before the
Fitter stage runs. The resulting netlist is the post-synthesis netlist. The
Intel Quartus Prime EDA Netlist Writer tool generates the post-synthesis
netlist. The post-synthesis netlist is a netlist of low level blocks called
ATOMs. The post-synthesis netlist is a purely functional netlist.

Must perform after
Intel Quartus Prime
synthesis

Post-Fit Simulation
(Gate-Level)

The Intel Quartus Prime EDA Netlist Writer can generate a Verilog HDL or
VHDL gate-level netlist after the Fitter stage completes. The resulting
netlist is the post-fit netlist. The post-fit netlist is a netlist of ATOMs that
the Fitter placed and routed on the FPGA device. The post-fit netlist is a
purely functional netlist.
Note: The post-fit netlist includes chip locations of ATOM instances in

commented lines. The post-synthesis netlist does not include this
data.

Must perform after
Intel Quartus Prime
Fitter

Note: the Intel Quartus Prime software supports post-fit functional simulation, but does not
support post-fit timing simulation.

1.5. Supported Simulation Flows

The Intel Quartus Prime software supports scripted and specialized simulation flows.

(2) You must first convert the non-HDL files to HDL files prior to simulation

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 3. Simulation Flows

Simulation Flow Description

Scripted Simulation
Flows

Scripted simulation supports custom control of all aspects of simulation, such as custom
compilation commands, or multipass simulation flows. Use a version-independent top-level
simulation script that sources Intel Quartus Prime-generated IP simulation setup scripts. The Intel
Quartus Prime software can generate a combined simulator setup script for all IP cores, for each
supported simulator.

NativeLink Simulation
Flow

NativeLink automates Intel Quartus Prime integration with your EDA simulator. Setup NativeLink
to generate simulation scripts, compile simulation libraries, and automatically launch your
simulator following design compilation. Specify your own compilation, elaboration, and simulation
scripts for testbench and simulation model files. Do not use NativeLink if you require direct control
over every aspect of simulation.

Specialized Simulation
Flows

Specialized simulation flows support various design scenarios:
• For simulation of example designs, refer to the example design pr IP documentation.
• For simulation of Platform Designer designs, refer to Simulating Platform Designer (Standard)

Systems in Intel Quartus Prime Standard Edition User Guide: Platform Designer.
• For simulation of the Nios® V processor, refer to the Nios V Embedded Processor Design

Handbook.

1.6. Supported Hardware Description Languages

The Intel Quartus Prime software provides the following hardware description
language (HDL) support for EDA simulators.

Table 4. HDL Support

Language Support Description

VHDL • For VHDL simulation, you compile design files, testbench files, and Platform designer generated
RTL files using simulator commands.

• For all supported simulators other than Questa Intel FPGA Edition, you must also compile
simulation models from the Intel FPGA simulation libraries.

• Many of the Intel Quartus Prime simulation models and IP RTL files are implemented in Verilog or
SystemVerilog only. Therefore, you may require a simulator that is capable of VHDL and Verilog
HDL mixed language simulation.

Verilog /
SystemVerilog

• For Verilog or SystemVerilog simulation, you compile design files, testbench files, and Platform
Designer generated RTL files using simulator commands.

• For all supported simulators other than Questa Intel FPGA Edition, you must also compile
simulation models from the Intel FPGA simulation libraries.

• There are some IP RTL files that are implemented in VHDL only. Therefore, you may require a
simulator that is capable of VHDL and Verilog HDL mixed language simulation.

Mixed HDL • If your design is a mix of VHDL, Verilog HDL, and SystemVerilog files, you must use a mixed
language simulator.

• The Questa Intel FPGA Edition software supports native, mixed-language (VHDL/Verilog HDL/
SystemVerilog) simulation.
If you have a VHDL-only simulator and need to simulate Verilog HDL modules and IP cores, you
can either acquire a mixed-language simulator license from the simulator vendor, or use the
Questa Intel FPGA Edition simulator.

Schematic • You cannot simulate a schematic in any of the simulators that the Intel Quartus Prime software
supports.

• To perform RTL simulation of the schematic, you must convert the schematic to HDL format and
run RTL simulation on the HDL. The Intel Quartus Prime Pro Edition software cannot perform
schematic conversion.

• To perform post-synthesis or post-fit simulation, you must first compile the schematic based
design in the Intel Quartus Prime software, generate a gate-level Verilog HDL or VHDL simulation
netlist, and perform simulation on the gate-level netlist.

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7. Supported Simulators

The Intel Quartus Prime software supports the following EDA simulator versions for
RTL and gate-level simulation.

Table 5. Intel Quartus Prime Pro Edition Supported Simulators

Vendor Simulator Version Platform Supports
Siemens EDA

Verification IP

Aldec Active-HDL* 14.0 Windows* 64-bit No

Aldec Riviera-PRO* 2023.04.082 Windows, Linux, 64-bit No

Cadence Xcelium* Parallel Simulator 23.03.003 Linux 64-bit Yes

Intel FPGA Questa Intel FPGA Edition 2023.3 Windows, Linux, 64-bit Yes

Siemens EDA QuestaSim* Simulator(3) 2023.2 Windows, Linux, 64-bit Yes

Synopsys* VCS*, VCS MX U/2023.03-1 Linux 64-bit Yes

Table 6. Intel Quartus Prime Standard Edition Supported Simulators

Vendor Simulator Version Platform

Aldec Active-HDL 14.0 Windows

Aldec Riviera-PRO 2023.04 Windows, Linux

Cadence Xcelium 23.03.003 Linux

Intel Questa Intel FPGA Edition 2023.3 Windows, Linux

Siemens EDA QuestaSim 2023.2 Windows, Linux

Synopsys VCS
VCS MX

U/2023.03-1 Linux

Related Information

• Questa Intel FPGA Edition Simulation User Guide

• IBIS Models for Intel FPGA Devices

1.8. Using NativeLink Simulation (Intel Quartus Prime Standard
Edition)

The NativeLink feature integrates your EDA simulator with the Intel Quartus Prime
Standard Edition software by automating the following:

• Generation of simulator-specific files and simulation scripts.

• Compilation of simulation libraries.

• Launches your simulator automatically following Intel Quartus Prime Analysis &
Elaboration, Analysis & Synthesis, or after a full compilation.

(3) QuestaSim is the generic name for Questa Core and Questa Prime simulators from Siemens
EDA.

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

19

https://www.intel.com/content/www/us/en/docs/programmable/730191.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/board-layout/ibs-ibis-index.html?wapkw=IBIS%20Models
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.1. Setting Up NativeLink Simulation (Intel Quartus Prime Standard
Edition)

Before running NativeLink simulation, specify settings for your simulator in the Intel
Quartus Prime software.

To specify NativeLink settings in the Intel Quartus Prime Standard Edition software,
follow these steps:

1. Open an Intel Quartus Prime Standard Edition project.

2. Click Tools > Options and specify the location of your simulator executable file.

Table 7. Execution Paths for EDA Simulators

Simulator Path

Questa Intel FPGA Edition <drive letter>:\<simulator install path>\ (Windows)
/<simulator install path>/bin (Linux)

Siemens EDA QuestaSim <drive letter>:\<simulator install path>\ (Windows)
<simulator install path>/bin (Linux)

Synopsys VCS/VCS MX <simulator install path>/bin (Linux)

Cadence Incisive Enterprise/
Xcelium

<simulator install path>/tools/bin (Linux)

Aldec Active-HDL Aldec Riviera-PRO <drive letter>:\<simulator install path>\bin (Windows)
<simulator install path>/bin (Linux)

3. Click Assignments ➤ Settings and specify options on the Simulation page and
the More NativeLink Settings dialog box. Specify default options for simulation
library compilation, netlist and tool command script generation, and for launching
RTL or gate-level simulation automatically following compilation.

4. If your design includes a testbench, turn on Compile test bench. Click Test
Benches to specify options for each testbench. Alternatively, turn on Use script
to compile testbench and specify the script file.

5. To use a script to setup a simulation, turn on Use script to setup simulation.

1.8.2. Running RTL Simulation (NativeLink Flow)

To run RTL simulation using the NativeLink flow, follow these steps:

1. Set up the simulation environment.

2. Click Processing ➤ Start ➤ Start Analysis & Elaboration.

3. Click Tools ➤ Run Simulation ➤ Run Simulation Tool. NativeLink compiles
simulation libraries and launches and runs your RTL simulator automatically
according to the NativeLink settings.

4. Review and analyze the simulation results in your simulator. Correct any functional
errors in your design. If necessary, re-simulate the design to verify correct
behavior.

1.8.3. Running Gate-Level Simulation (NativeLink Flow)

To run gate-level simulation with the NativeLink flow, follow these steps:

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Set up the simulation environment.

2. To generate only a functional (rather than timing) gate-level netlist, click
Assignments ➤ Settings ➤ EDA Tool Settings ➤ More EDA Netlist Writer
Settings. Turn on Generate netlist for functional simulation only.

3. To synthesize the design, follow one of these steps:

• To generate a post-fit functional or post-fit timing netlist and then
automatically simulate your design according to your NativeLink settings, Click
Processing ➤ Start Compilation. Skip to step 6.

• To synthesize the design for post-synthesis functional simulation only, click
Processing ➤ Start ➤ Start Analysis & Synthesis.

4. To generate the simulation netlist, click Start ➤ Start EDA Netlist Writer.

5. Click Tools ➤ Run Simulation Tool ➤ Gate Level Simulation.

6. Review and analyze the simulation results in your simulator. Correct any
unexpected or incorrect conditions found in your design. Simulate the design again
until you verify correct behavior.

1.9. Intel FPGA Simulation Basics Revision History

Document Version Intel Quartus
Prime Version

Changes

2024.02.05 23.1 • Replaced all content in chapter with newly developed content more
suitable for basic understanding of FPGA design simulation.

• Replaced "Mentor Graphics" with "Siemens EDA" to reflect current
company name.

• Updated simulator versions supported and provided link to other
resources in Supported Simulators topic.

2022.11.07 22.1 • Updated simulator versions supported and provided link to other
resources in Simulator Support topic.

• Replaced support for Cadence Incisive Enterprise (ncsim) simulator
with Xcelium simulator support throughout.

• Removed support for ModelSim - Intel FPGA Edition simulator
throughout.

• Added precompiled libraries information to Supported Hardware
Description Languages and Compiling Simulation Model Libraries topics.

• Revised Running a Simulation (Custom Flow) topic to add missing EDA
Netlist Writer step and related links.

2018/09/24 18.1 • Removed Scripting IP Simulation and Generating a Combined
Simulation Script topics. These features are supported only for Intel
Arria 10 devices in Intel Quartus Prime Standard Edition.

• Added link to Scripting IP Simulation in the Introduction to Intel FPGA
IP Cores.

1. Intel FPGA Simulation Basics

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Siemens EDA QuestaSim Simulator Support
This chapter provides guidelines for simulation of Intel Quartus Prime designs with the
supported Siemens EDA QuestaSim simulators.

Note: Intel also provides the Questa Intel FPGA Edition simulator, a version of the Questa
Advanced simulator targeted for Intel FPGA devices. The Questa Intel FPGA Edition
simulator supports the Intel FPGA gate-level simulation libraries, and includes
behavioral simulation, HDL test benches, and Tcl scripting support. Refer to the Questa
Intel FPGA Edition Simulation User Guide for complete information.

Related Information

Questa Intel FPGA Edition Simulation User Guide

2.1. Quick Start Example (QuestaSim with Verilog)

You can adapt the following RTL simulation example to get started quickly with
QuestaSim:

1. To specify your EDA simulator and executable path, type the following Tcl package
command in the Intel Quartus Prime tcl shell window:

set_user_option -name EDA_TOOL_PATH_QUESTASIM <questasim
executable path>

set_global_assignment -name EDA_SIMULATION_TOOL "QuestaSim
(Verilog)"

2. Compile simulation model libraries using one of the following methods:

• Run NativeLink RTL simulation to compile required design files, simulation
models, and run your simulator. Verify results in your simulator. If you
complete this step you can ignore the remaining steps.

• To automatically compile all required simulation model libraries for your design
in your supported simulator, click Tools ➤ Launch Simulation Library
Compiler. Specify options for your simulation tool, language, target device
family, and output location, and then click OK.

• Type the following commands to create and map Intel FPGA simulation
libraries manually, and then compile the models manually:

vlib <lib1>_ver
vmap <lib1>_ver <lib1>_ver
vlog -work <lib1> <lib1>

Use the compiled simulation model libraries during simulation of your design.
Refer to your EDA simulator's documentation for information about running
simulation.

683080 | 2024.02.05

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/730191.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

3. Compile your design and testbench files:

vlog -work work <design or testbench name>.v

4. Load the design:

vsim -L work -L <lib1>_ver -L <lib2>_ver work.<testbench name>

2.2. QuestaSim Simulator Guidelines

The following guidelines apply to simulation of Intel Quartus Prime designs with
QuestaSim.

2.2.1. Passing Parameter Information from Verilog HDL to VHDL

You must use in-line parameters to pass values from Verilog HDL to VHDL.

By default, the x_on_violation_option logic option is enabled for all design
registers, resulting in an output of “X” at timing violation. To disable “X” propagation
at timing violations on a specific register, disable the x_on_violation_option logic
option for the specific register, as shown in the following example from the Intel
Quartus Prime Settings File (.qsf).

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF -to \
<register_name>

Example 1. In-line Parameter Passing Example

lpm_add_sub#(.lpm_width(12), .lpm_direction("Add"),
.lpm_type("LPM_ADD_SUB"),
.lpm_hint("ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO"))

lpm_add_sub_component (
 .dataa (dataa),
 .datab (datab),
 .result (sub_wire0)
);

Note: The sequence of the parameters depends on the sequence of the GENERIC in the
VHDL component declaration.

2.2.2. Viewing Simulation Messages

QuestaSim simulator error and warning messages are tagged with a vsim or vcom
code. To determine the cause and resolution for a vsim or vcom error or warning, use
the verror command.

For example, QuestaSim may return the following error:

** Error: C:/altera_trn/DUALPORT_TRY/simulation/questa/DUALPORT_TRY.vho(31):
 (vcom-1136) Unknown identifier "stratixiv"

In this case, type the following command:

verror 1136

2. Siemens EDA QuestaSim Simulator Support

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following description appears:

vcom Message # 1136:
The specified name was referenced but was not found. This indicates
that either the name specified does not exist or is not visible at
this point in the code.

2.2.3. Generating Signal Activity Data for Power Analysis

To generate and use simulation signal activity data for power analysis:

1. To run full compilation on your design, click Processing ➤ Start Compilation.

2. To specify settings for simulation output, click Assignments ➤ Settings ➤ EDA
Tool Settings ➤ Simulation. Select your simulator in Tool name and the
Format for output netlist and Output directory.

Figure 6. EDA Tool Settings for Simulation

3. Turn on Map illegal HDL characters. This setting directs the EDA Netlist Writer
to map illegal characters for VHDL or Verilog HDL, and results in more accurate
data for power analysis.

4. Click the Power Analyzer Settings page.

5.

6. To specify a .vcd for power analysis, click Add and specify the File name,
Entity, and Simulation period for the .vcd, and click OK.

7. To enable glitch filtering during power analysis with the .vcd you generate, turn
on Perform glitch filtering on VCD files.

8. To run the power analysis, click Start on the Power Analyzer tab. View the
toggle rates in the power analysis results.

2. Siemens EDA QuestaSim Simulator Support

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: To improve accuracy of power analysis, the Intel Quartus Prime EDA Netlist writer can
generate a Standard Delay Output (.sdo) file that includes back-annotation of delays
for a design's netlist for use during simulation in QuestaSim. Although the .sdo only
contains delay estimates and imprecise timing information, including the .sdo in
simulation results in a more accurate output .vcd for power analysis. The EDA Netlist
Writer currently supports .sdo file generation only for Verilog .vo simulation in the
QuestaSim simulator (not Questa Intel FPGA Edition) for Intel Stratix® 10 designs.
The EDA Netlist Writer does not currently support .sdo file generation for any other
simulator or device family.

2.2.3.1. Generating Standard Delay Output for Power Analysis

To improve accuracy of power analysis, you can generate a Standard Delay Output
(.sdo) file that includes back-annotated delay estimates for QuestaSim simulation.
QuestaSim simulation can then output a more accurate .vcd for use as power
analysis input. You must run Fitter (Finalize) before generating the .sdo.

Figure 7. Using an SDO in Power Analysis

Intel Quartus Prime
Power Analyzer

Power Analyzer Input Power Analyzer Output

Power
Report

Signal
Activity

Supported
Simulator

VCD
File

Operating Conditions

SDO
File

Enable SDO
Generation

Post-Fit
Design

1. Click Assignments ➤ Settings ➤ EDA Tool Settings ➤ Simulation. In Tool
name select QuestaSim and Verilog for Format for output netlist.

Figure 8. More EDA Netlist Writer Settings

2. Click More EDA Netlist Writer Settings. Set Enable SDO Generation for
Power Estimation to On. Set Generate Power Estimate Scripts to
ALL_NODES.

3. To run the Fitter, click Processing ➤ Start ➤ Start Fitter (Finalize).

2. Siemens EDA QuestaSim Simulator Support

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Create a representative testbench (.vt) that exercises the design functions
appropriately.

5. To specify the appropriate hierarchy level for signals in the output .vcd, add the
following line to the project .qsf file: (4)

set_global_assignment -name EDA_TEST_BENCH_DESIGN_INSTANCE_NAME
 <DUT instance path> -section_id eda_simulation

6. After Fitter processing is complete, click Processing ➤ Start ➤ Start EDA
Netlist Writer. EDA Netlist Writer generates the following files in /<project>/
simulation/questa/power/:

• <project>.vo (contains a reference to the .sdo file by default)

• <project>_dump_all_vcd_nodes.tcl—specifies nodes to save in .vcd

• <project>_v.sdo—back-annotated delay estimates

7. Create a QuestaSim script (.do) to load the design and testbench, start
QuestaSim, and then source the .do script.

8. To specify the signals QuestaSim includes in the .vcd file, source
*_dump_all_vcd_nodes.tcl in QuestaSim.

9. To generate the .vcd file, simulate the test bench and netlist in QuestaSim.
The .vcd file generates according to your specifications.

10. Specify the .vcd as an input to power analysis, as Generating Signal Activity Data
for Power Analysis describes.

2.2.4. Viewing Simulation Waveforms

QuestaSim automatically generates a Wave Log Format File (.wlf) following
simulation. You can use the .wlf to generate a waveform view.

To view a waveform from a .wlf through QuestaSim, perform the following steps:

1. Type vsim at the command line. The QuestaSim dialog box appears.

2. Click File ➤ Datasets. The Datasets Browser dialog box appears.

3. Click Open and select your .wlf.

4. Click Done.

5. In the Object browser, select the signals that you want to observe.

6. Click Add ➤ Wave, and then click Selected Signals.
You must first convert the .vcd to a .wlf before you can view a waveform in
QuestaSim.

7. To convert the .vcd to a .wlf, type the following at the command-line:

vcd2wlf <example>.vcd <example>.wlf

8. After conversion, view the .wlf waveform in QuestaSim.

(4) Specify the full hierarchical path in the testbench, not just the instance name. For example,
specify a|b|c, not just c.

2. Siemens EDA QuestaSim Simulator Support

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3. QuestaSim Simulation Setup Script Example

The Intel Quartus Prime software can generate a msim_setup.tcl simulation setup
script for IP cores in your design. The script compiles the required device library
models, compiles the design files, and elaborates the design with or without simulator
optimization. To run the script, type source msim_setup.tcl in the simulator
Transcript window.

Alternatively, if you are using the simulator at the command line, you can type the
following command:

vsim -c -do msim_setup.tcl

In this example the top-level-simulate.do custom top-level simulation script
sets the hierarchy variable TOP_LEVEL_NAME to top_testbench for the design, and
sets the variable QSYS_SIMDIR to the location of the generated simulation files.

Set hierarchy variables used in the IP-generated files
set TOP_LEVEL_NAME "top_testbench"
set QSYS_SIMDIR "./ip_top_sim"
Source generated simulation script which defines aliases used below
source $QSYS_SIMDIR/mentor/msim_setup.tcl
dev_com alias compiles simulation libraries for device library files
dev_com
com alias compiles IP simulation or Platform Designer model files and/or
Platform Designer model files in the correct order
com
Compile top level testbench that instantiates your IP
vlog -sv ./top_testbench.sv
elab alias elaborates the top-level design and testbench
elab
Run the full simulation
run - all

In this example, the top-level simulation files are stored in the same directory as the
original IP core, so this variable is set to the IP-generated directory structure. The
QSYS_SIMDIR variable provides the relative hierarchy path for the generated IP
simulation files. The script calls the generated msim_setup.tcl script and uses the
alias commands from the script to compile and elaborate the IP files required for
simulation along with the top-level simulation testbench. You can specify additional
simulator elaboration command options when you run the elab command, for
example, elab +nowarnTFMPC. The last command run in the example starts the
simulation.

2.4. Sourcing QuestaSim Simulator Setup Scripts

Follow these steps to incorporate the generated or QuestaSim IP simulation scripts
into a top-level project simulation script.

1. The generated simulation script contains the following template lines. Cut and
paste these lines into a new file. For example, sim_top.do.

Start of template
If the copied and modified template file is "mentor.do", run it
as: vsim -c -do mentor.do

Source the generated sim script
source msim_setup.tcl
Compile eda/sim_lib contents first
dev_com

2. Siemens EDA QuestaSim Simulator Support

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the top-level
vlog -sv ../../top.sv
Elaborate the design.
elab
Run the simulation
run -a
Report success to the shell
exit -code 0
End of template

2. Delete the first two characters of each line (comment and space):

Start of template
If the copied and modified template file is "mentor.do", run it
as: vsim -c -do mentor.do

Source the generated sim script
source msim_setup.tcl
Compile eda/sim_lib contents first
dev_com
Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the top-level
vlog -sv ../../top.sv
Elaborate the design.
elab
Run the simulation
run -a
Report success to the shell
exit -code 0
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on
the location of the simulation's top-level file. For example:

set TOP_LEVEL_NAME sim_top vlog -sv ../../sim_top.sv

4. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes required to match your
design simulation requirements. The scripts offer variables to set compilation or
simulation options. Refer to the generated script for details.

5. Run the resulting top-level script from the generated simulation directory:

vsim –c –do <path to sim_top>.tcl

2.5. Unsupported Features

The Intel Quartus Prime software does not support the following simulation features:

• Some versions of QuestaSim support SystemVerilog, PSL assertions, SystemC,
and more. For more information about specific feature support, refer to Siemens
EDA software documentation.

2. Siemens EDA QuestaSim Simulator Support

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6. Siemens EDA QuestaSim Simulator Support Revision History

Document Version Intel Quartus
Prime Version

Changes

2024.02.05 23.1 • Updated chapter to reflect end of support for ModelSim and relocation
of Questa Intel FPGA Edition information to new Questa Intel FPGA
Edition Simulation User Guide.

• Replaced "Mentor Graphics" with "Siemens EDA" to reflect current
company name.

• Updated tool name to QuestaSim in Generating Standard Delay Output
for Power Analysis topic.

2022.11.07 22.1 • Added support for Questa* Intel FPGA Edition simulator throughout.
• Replaced "Mentor Graphics" with "Siemens EDA" to reflect current

company name.
• Removed support for ModelSim - Intel FPGA Edition simulator

throughout.
• Replaced support for Cadence Incisive Enterprise (ncsim) simulator

with Xcelium simulator support throughout.
• Revised Using Questa* Intel FPGA Edition Precompiled Libraries topic.
• Corrected syntax error in ModelSim Simulation Setup Script Example

2017.05.08 18.1 • Changed title to ModelSim - Intel FPGA Edition, ModelSim®, and
QuestaSim Support*

• Stated no support for Intel Arria® 10 timing simulation in Simulating
Transport Delays and Disabling Timing Violations on Registers topics.

• Added Simulation Library Compiler details and another step to Quick
Start Example

2. Siemens EDA QuestaSim Simulator Support

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Synopsys VCS and VCS MX Support
You can include your supported EDA simulator in the Intel Quartus Prime design flow.
This document provides guidelines for simulation of Intel Quartus Prime designs with
the Synopsys VCS or VCS MX software.

3.1. Quick Start Example (VCS with Verilog)

You can adapt the following RTL simulation example to get started quickly with VCS:

1. To specify your EDA simulator and executable path, type the following Tcl package
command in the Intel Quartus Prime tcl shell window:

set_user_option -name EDA_TOOL_PATH_VCS <VCS executable path>

set_global_assignment -name EDA_SIMULATION_TOOL "VCS"

2. Compile simulation model libraries using the following method:

• Run NativeLink RTL simulation to compile required design files, simulation
models, and run your simulator. Verify results in your simulator. If you
complete this step you can ignore the remaining steps.

• To automatically compile all required simulation model libraries for your design
in your supported simulator, click Tools ➤ Launch Simulation Library
Compiler. Specify options for your simulation tool, language, target device
family, and output location, and then click OK.

Use the compiled simulation model libraries during simulation of your design.
Refer to your EDA simulator's documentation for information about running
simulation.

3. Modify the simlib_comp.vcs file to specify your design and testbench files.

4. Type the following to run the VCS simulator:

vcs -R -file simlib_comp.vcs

3.2. VCS and VCS MX Guidelines

The following guidelines apply to simulation of Intel FPGA designs in the VCS or VCS
MX software:

683080 | 2024.02.05

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Do not specify the -v option for altera_lnsim.sv because it defines a
systemverilog package.

• Add -verilog and +verilog2001ext+.v options to make sure all .v files are
compiled as verilog 2001 files, and all other files are compiled as systemverilog
files.

• Add the -lca option for Stratix V and later families because they include IEEE-
encrypted simulation files for VCS and VCS MX.

• Add -timescale=1ps/1ps to ensure picosecond resolution.

3.2.1. Simulating Transport Delays

By default, the VCS and VCS MX software filter out all pulses that are shorter than the
propagation delay between primitives. Turning on the transport delay options in the
VCS and VCS MX software prevents the simulator from filtering out these pulses. Intel
Arria 10 devices do not support timing simulation.

Table 8. Transport Delay Simulation Options (VCS and VCS MX)

Option Description

+transport_path_delays Use when simulation pulses are shorter than the delay in a gate-level primitive. You must
include the +pulse_e/number and +pulse_r/number options.

+transport_int_delays Use when simulation pulses are shorter than the interconnect delay between gate-level
primitives. You must include the +pulse_int_e/number and +pulse_int_r/number
options.

Note: The +transport_path_delays and +transport_path_delays options apply
automatically during NativeLink gate-level timing simulation.

The following VCS and VCS MX software command runs a post-synthesis simulation:

vcs -R <testbench>.v <gate-level netlist>.v -v <Intel FPGA device family \
library>.v +transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0

3.2.2. Disabling Timing Violation on Registers

In certain situations, you may want to ignore timing violations on registers and disable
the “X” propagation that occurs. For example, this technique may be helpful to
eliminate timing violations in internal synchronization registers in asynchronous clock-
domain crossing. Intel Arria 10 devices do not support timing simulation. Intel Arria
10 devices do not support timing simulation.

By default, the x_on_violation_option logic option is enabled for all design
registers, resulting in an output of “X” at timing violation. To disable “X” propagation
at timing violations on a specific register, disable the x_on_violation_option logic
option for the specific register, as shown in the following example from the Intel
Quartus Prime Settings File (.qsf).

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF -to \
<register_name>

3. Synopsys VCS and VCS MX Support

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.3. Generating Power Analysis Files

You can generate a Verilog Value Change Dump File (.vcd) for power analysis in the
Intel Quartus Prime software, and then run the .vcd from the VCS software. Use
this .vcd for power analysis in the Intel Quartus Prime power analyzer.

To generate and use a .vcd for power analysis, follow these steps:

1. In the Intel Quartus Prime software, click Assignments ➤ Settings.

2. Under EDA Tool Settings, click Simulation.

3. Turn on Generate Value Change Dump file script, specify the type of output
signals to include, and specify the top-level design instance name in your
testbench.

4. Click Processing ➤ Start Compilation.

5. Use the following command to include the script in your testbench where the
design under test (DUT) is instantiated:
include <revision_name>_dump_all_vcd_nodes.v

Note: Include the script within the testbench module block. If you include the
script outside of the testbench module block, syntax errors occur during
compilation.

6. Run the simulation with the VCS command. Exit the VCS software when the
simulation is finished and the <revision_name>.vcd file is generated in the
simulation directory.

3.3. VCS Simulation Setup Script Example

The Intel Quartus Prime software can generate a simulation setup script for IP cores in
your design. The scripts contain shell commands that compile the required simulation
models in the correct order, elaborate the top-level design, and run the simulation for
100 time units by default. You can run these scripts from a Linux command shell.

The scripts for VCS and VCS MX are vcs_setup.sh (for Verilog HDL or
SystemVerilog) and vcsmx_setup.sh (combined Verilog HDL and SystemVerilog with
VHDL). Read the generated .sh script to see the variables that are available for
override when sourcing the script or redefining directly if you edit the script. To set up
the simulation for a design, use the command-line to pass variable values to the shell
script.

Example 2. Using Command-line to Pass Simulation Variables

sh vcsmx_setup.sh\
USER_DEFINED_ELAB_OPTIONS=+rad\
USER_DEFINED_SIM_OPTIONS=+vcs+lic+wait

Example 3. Example Top-Level Simulation Shell Script for VCS-MX

Run generated script to compile libraries and IP simulation files
Skip elaboration and simulation of the IP variation
sh ./ip_top_sim/synopsys/vcsmx/vcsmx_setup.sh SKIP_ELAB=1 SKIP_SIM=1
QSYS_SIMDIR="./ip_top_sim"
#Compile top-level testbench that instantiates IP
vlogan -sverilog ./top_testbench.sv
#Elaborate and simulate the top-level design
vcs –lca –t ps <elaboration control options> top_testbench
simv <simulation control options>

3. Synopsys VCS and VCS MX Support

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 4. Example Top-Level Simulation Shell Script for VCS

Run script to compile libraries and IP simulation files
sh ./ip_top_sim/synopsys/vcs/vcs_setup.sh TOP_LEVEL_NAME=”top_testbench”\
Pass VCS elaboration options to compile files and elaborate top-level
 passed to the script as the TOP_LEVEL_NAME
USER_DEFINED_ELAB_OPTIONS="top_testbench.sv"\
Pass in simulation options and run the simulation for specified amount of time.
USER_DEFINED_SIM_OPTIONS=”<simulation control options>

3.4. Sourcing Synopsys VCS MX Simulator Setup Scripts

Follow these steps to incorporate the generated Synopsys VCS MX simulation scripts
for use in top-level project simulation scripts.

1. The generated simulation script contains these template lines. Cut and paste the
lines preceding the “helper file” into a new executable file. For example,
vcsmx.sh.

Start of template
If the copied and modified template file is "vcsmx_sim.sh", run
it as: ./vcsmx_sim.sh

Do the file copy, dev_com and com steps
source vcsmx_setup.sh
SKIP_ELAB=1

SKIP_SIM=1

Compile the top level module
vlogan +v2k
 +systemverilogext+.sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps
Override the top-level name
Override the sim options, so the simulation runs
forever (until $finish()).
source vcsmx_setup.sh
SKIP_FILE_COPY=1
SKIP_DEV_COM=1
SKIP_COM=1
TOP_LEVEL_NAME="'-top top'"
USER_DEFINED_SIM_OPTIONS=""
End of template

2. Delete the first two characters of each line (comment and space), as shown
below:

Start of template
If the copied and modified template file is "vcsmx_sim.sh", run
it as: ./vcsmx_sim.sh

Do the file copy, dev_com and com steps
source vcsmx_setup.sh
SKIP_ELAB=1
SKIP_SIM=1

Compile the top level module
vlogan +v2k +systemverilogext+.sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps
Override the top-level name
Override the sim options, so the simulation runs
forever (until $finish()).
source vcsmx_setup.sh
SKIP_FILE_COPY=1
SKIP_DEV_COM=1

3. Synopsys VCS and VCS MX Support

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

SKIP_COM=1
TOP_LEVEL_NAME="'-top top'"
USER_DEFINED_SIM_OPTIONS=""
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on
the simulation’s top-level file. For example:

TOP_LEVEL_NAME=”'-top sim_top'”

4. Make the appropriate changes to the compilation of your top-level file, for
example:

vlogan +v2k +systemverilogext+.sv "$QSYS_SIMDIR/../sim_top.sv"

5. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes required to match your
design simulation requirements. The scripts offer variables to set compilation or
simulation options. Refer to the generated script for details.

6. Run the resulting top-level script from the generated simulation directory by
specifying the path to vcsmx_sim.sh.

3.5. Sourcing Synopsys VCS Simulator Setup Scripts

Follow these steps to incorporate the generated Synopsys VCS simulation scripts into
a top-level project simulation script.

1. The generated simulation script contains these template lines. Cut and paste the
lines preceding the “helper file” into a new executable file. For example,
synopsys_vcs.f.

Start of template
If the copied and modified template file is "vcs_sim.sh", run it
as: ./vcs_sim.sh

Override the top-level name
specify a command file containing elaboration options
(system verilog extension, and compile the top-level).
Override the sim options, so the simulation
runs forever (until $finish()).
source vcs_setup.sh
TOP_LEVEL_NAME=top
USER_DEFINED_ELAB_OPTIONS="'-f ../../../synopsys_vcs.f'"
USER_DEFINED_SIM_OPTIONS=""

helper file: synopsys_vcs.f
+systemverilogext+.sv
../../../top.sv
End of template

2. Delete the first two characters of each line (comment and space) for the vcs.sh
file, as shown below:

Start of template
If the copied and modified template file is "vcs_sim.sh", run it
as: ./vcs_sim.sh

Override the top-level name
specify a command file containing elaboration options
(system verilog extension, and compile the top-level).
Override the sim options, so the simulation
runs forever (until $finish()).
source vcs_setup.sh

3. Synopsys VCS and VCS MX Support

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TOP_LEVEL_NAME=top
USER_DEFINED_ELAB_OPTIONS="'-f ../../../synopsys_vcs.f'"
USER_DEFINED_SIM_OPTIONS=""

3. Delete the first two characters of each line (comment and space) for the
synopsys_vcs.f file, as shown below:

helper file: synopsys_vcs.f
 +systemverilogext+.sv
 ../../../top.sv
End of template

4. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on
the simulation’s top-level file. For example:

TOP_LEVEL_NAME=sim_top

5. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes required to match your
design simulation requirements. The scripts offer variables to set compilation or
simulation options. Refer to the generated script for details.

6. Run the resulting top-level script from the generated simulation directory by
specifying the path to vcs_sim.sh.

3. Synopsys VCS and VCS MX Support

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.6. Synopsys VCS and VCS MX Support Revision History

Document Version Intel Quartus
Prime Version

Changes

2024.02.05 23.1 • Updated chapter to reflect end of support for ModelSim and relocation
of Questa Intel FPGA Edition information to new Questa Intel FPGA
Edition Simulation User Guide.

2017.11.06 17.1 • Stated no support for Intel Arria 10 timing simulation in Simulating
Transport Delays and Disabling Timing Violations on Registers topics.

• Added Simulation Library Compiler details and another step to Quick
Start Example

3. Synopsys VCS and VCS MX Support

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Cadence Xcelium Parallel Simulator Support
You can include your supported EDA simulator in the Intel Quartus Prime design flow.
This chapter provides specific guidelines for simulation of Intel Quartus Prime designs
with the Cadence Incisive Enterprise (IES) software.

4.1. Generating Simulator Setup Script Templates

You can use simulator setup scripts to help you readily simulate IP cores in your
design.

Follow these steps to generate the vendor-specific simulator setup script templates for
the IP modules in your design. You can then customize these templates for your
specific simulation goals.

1. To compile your design, click Processing ➤ Start Compilation. The Messages
window indicates when compilation is complete.

2. Click Tools ➤ Generate Simulator Setup Script for IP.

3. Retain the default settings for the Output directory and also the Use relative
paths whenever possible option.

4. To generate the setup script templates and vendor-specific sub-folders, including
xcelium/ and common/ in the specified output directory, click OK.

Figure 9. Generate Simulator Setup Script for IP Dialog Box

4.2. Sourcing Cadence Xcelium Simulator Setup Scripts

1. The generated xcelium/xmsim_setup.sh simulation script contains the
following template lines. Cut and paste these lines into a new top-level script, for
example xmsim.sh. This new top-level script calls the generated simulation
script, xmsim_setup.sh.

TOP-LEVEL TEMPLATE - BEGIN
#
QSYS_SIMDIR is used in the Quartus-generated IP simulation script to
construct paths to the files required to simulate the IP in your Quartus

683080 | 2024.02.05

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

project. By default, the IP script assumes that you are launching the
simulator from the IP script location. If launching from another
location, set QSYS_SIMDIR to the output directory you specified when you
generated the IP script, relative to the directory from which you launch
the simulator. In this case, you must also copy the generated files
"cds.lib" and "hdl.var" - plus the directory "cds_libs" if generated -
into the location from which you launch the simulator, or incorporate
into any existing library setup.
#
Run Quartus-generated IP simulation script once to compile Quartus EDA
simulation libraries and Quartus-generated IP simulation files, and copy
any ROM/RAM initialization files to the simulation directory.
- If necessary, specify any compilation options:
USER_DEFINED_COMPILE_OPTIONS
USER_DEFINED_VHDL_COMPILE_OPTIONS applied to vhdl compiler
USER_DEFINED_VERILOG_COMPILE_OPTIONS applied to verilog compiler
#
source <script generation output directory>/xcelium/xcelium_setup.sh \
SKIP_ELAB=1 \
SKIP_SIM=1 \
USER_DEFINED_COMPILE_OPTIONS=<compilation options for your design> \
USER_DEFINED_VHDL_COMPILE_OPTIONS=<VHDL compilation options for your
design> \
USER_DEFINED_VERILOG_COMPILE_OPTIONS=<Verilog compilation options for your
design> \
QSYS_SIMDIR=<script generation output directory>
#
Compile all design files and testbench files, including the top level.
(These are all the files required for simulation other than the files
compiled by the IP script)
#
xmvlog <compilation options> <design and testbench files>
#
TOP_LEVEL_NAME is used in this script to set the top-level simulation or
testbench module/entity name.
#
Run the IP script again to elaborate and simulate the top level:
- Specify TOP_LEVEL_NAME and USER_DEFINED_ELAB_OPTIONS.
- Override the default USER_DEFINED_SIM_OPTIONS. For example, to run
until $finish(), set to an empty string: USER_DEFINED_SIM_OPTIONS="".
#
source <script generation output directory>/xcelium/xcelium_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \
SKIP_COM=1 \
TOP_LEVEL_NAME=<simulation top> \
USER_DEFINED_ELAB_OPTIONS=<elaboration options for your design> \
USER_DEFINED_SIM_OPTIONS=<simulation options for your design>
#
TOP-LEVEL TEMPLATE - END

2. Delete the first two characters of each line (comment and space):

 # TOP-LEVEL TEMPLATE - BEGIN
 #
 # QSYS_SIMDIR is used in the Quartus-generated IP simulation script to
 # construct paths to the files required to simulate the IP in your Quartus
 # project. By default, the IP script assumes that you are launching the
 # simulator from the IP script location. If launching from another
 # location, set QSYS_SIMDIR to the output directory you specified when you
 # generated the IP script, relative to the directory from which you launch
 # the simulator. In this case, you must also copy the generated files
 # "cds.lib" and "hdl.var" - plus the directory "cds_libs" if generated -
 # into the location from which you launch the simulator, or incorporate
 # into any existing library setup.
 #
 # Run Quartus-generated IP simulation script once to compile Quartus EDA
 # simulation libraries and Quartus-generated IP simulation files, and copy
 # any ROM/RAM initialization files to the simulation directory.
 # - If necessary, specify any compilation options:

4. Cadence Xcelium Parallel Simulator Support

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 # USER_DEFINED_COMPILE_OPTIONS
 # USER_DEFINED_VHDL_COMPILE_OPTIONS applied to vhdl compiler
 # USER_DEFINED_VERILOG_COMPILE_OPTIONS applied to verilog compiler
 #
 source <script generation output directory>/xcelium/xcelium_setup.sh \
 SKIP_ELAB=1 \
 SKIP_SIM=1 \
 USER_DEFINED_COMPILE_OPTIONS=<compilation options for your design> \
 USER_DEFINED_VHDL_COMPILE_OPTIONS=<VHDL compilation options for your
design> \
 USER_DEFINED_VERILOG_COMPILE_OPTIONS=<Verilog compilation options for your
design> \
 QSYS_SIMDIR=<script generation output directory>
 #
 # Compile all design files and testbench files, including the top level.
 # (These are all the files required for simulation other than the files
 # compiled by the IP script)
 #
 xmvlog <compilation options> <design and testbench files>
 #
 # TOP_LEVEL_NAME is used in this script to set the top-level simulation or
 # testbench module/entity name.
 #
 # Run the IP script again to elaborate and simulate the top level:
 # - Specify TOP_LEVEL_NAME and USER_DEFINED_ELAB_OPTIONS.
 # - Override the default USER_DEFINED_SIM_OPTIONS. For example, to run
 # until $finish(), set to an empty string: USER_DEFINED_SIM_OPTIONS="".
 #
 source <script generation output directory>/xcelium/xcelium_setup.sh \
 SKIP_FILE_COPY=1 \
 SKIP_DEV_COM=1 \
 SKIP_COM=1 \
 TOP_LEVEL_NAME=<simulation top> \
 USER_DEFINED_ELAB_OPTIONS=<elaboration options for your design> \
 USER_DEFINED_SIM_OPTIONS=<simulation options for your design>
 #
 # TOP-LEVEL TEMPLATE - END

3. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes that you require to match
your design simulation requirements. The scripts offer variables to set compilation
or simulation options. Refer to the generated script for details.

4. Refer to the following xmsim.sh example content, where this file is in the same /
xcelium sub-folder as the xmsim_setup.sh file.

TOP-LEVEL TEMPLATE - BEGIN
#
QSYS_SIMDIR is used in the Quartus-generated IP simulation script to
construct paths to the files required to simulate the IP in your Quartus
project. By default, the IP script assumes that you are launching the
simulator from the IP script location. If launching from another
location, set QSYS_SIMDIR to the output directory you specified when you
generated the IP script, relative to the directory from which you launch
the simulator. In this case, you must also copy the generated files
"cds.lib" and "hdl.var" - plus the directory "cds_libs" if generated -
into the location from which you launch the simulator, or incorporate
into any existing library setup.
#
Run Quartus-generated IP simulation script once to compile Quartus EDA
simulation libraries and Quartus-generated IP simulation files, and copy
any ROM/RAM initialization files to the simulation directory.
- If necessary, specify any compilation options:
USER_DEFINED_COMPILE_OPTIONS
USER_DEFINED_VHDL_COMPILE_OPTIONS applied to vhdl compiler
USER_DEFINED_VERILOG_COMPILE_OPTIONS applied to verilog compiler
#
source ./xcelium_setup.sh \
SKIP_ELAB=1 \

4. Cadence Xcelium Parallel Simulator Support

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

SKIP_SIM=1 \
USER_DEFINED_COMPILE_OPTIONS="" \
USER_DEFINED_VHDL_COMPILE_OPTIONS="" \
USER_DEFINED_VERILOG_COMPILE_OPTIONS="" \
QSYS_SIMDIR=./../
#
Compile all design files and testbench files, including the top level.
(These are all the files required for simulation other than the files
compiled by the IP script)
#
xmvlog $QSYS_SIMDIR/PLL_RAM.v
xmvlog $QSYS_SIMDIR/UP_COUNTER_IP/UP_COUNTER_IP.v
xmvlog $QSYS_SIMDIR/DOWN_COUNTER_IP/DOWN_COUNTER_IP.v
xmvlog $QSYS_SIMDIR/ClockPLL/ClockPLL.v
xmvlog $QSYS_SIMDIR/RAMhub/RAMhub.v
xmvlog $QSYS_SIMDIR/testbench_1.v
#
TOP_LEVEL_NAME is used in this script to set the top-level simulation or
testbench module/entity name.
#
Run the IP script again to elaborate and simulate the top level:
- Specify TOP_LEVEL_NAME and USER_DEFINED_ELAB_OPTIONS.
- Override the default USER_DEFINED_SIM_OPTIONS. For example, to run
until $finish(), set to an empty string: USER_DEFINED_SIM_OPTIONS="".
#
 source ./xcelium_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \
SKIP_COM=1 \
TOP_LEVEL_NAME="tb" \
USER_DEFINED_ELAB_OPTIONS="-timescale\ 1ns/1ps\ -NOWARN\ CSINFI" \
USER_DEFINED_SIM_OPTIONS="-GUI"
#
TOP-LEVEL TEMPLATE - END

5. Run the resulting top-level script by typing the following at the command-line:

sh xmsim.sh

Specify the path to this file if you run it from a different directory.

4.3. Cadence Xcelium Parallel Simulator Support Revision History

Document Version Intel Quartus
Prime Version

Changes

2024.02.05 23.1 • Updated chapter to reflect end of support for ModelSim.

2022.11.07 22.1 • Replaced support for Cadence Incisive Enterprise (ncsim) simulator
with Xcelium simulator support throughout.

• Renamed chapter for Xcelium Parallel Simulator support.
• Added Xcelium command-line support.

2017.11.06 17.1 • Stated no support for Intel Arria 10 timing simulation in Simulating
Transport Delays and Disabling Timing Violations on Registers topics.

• Added Simulation Library Compiler details and another step to Quick
Start Example.

4. Cadence Xcelium Parallel Simulator Support

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Aldec Active-HDL and Riviera-PRO Support
You can include your supported EDA simulator in the Intel Quartus Prime design flow.
This chapter provides specific guidelines for simulation of Intel Quartus Prime designs
with the Aldec Active-HDL or Riviera-PRO software.

5.1. Quick Start Example (Active-HDL VHDL)

You can adapt the following RTL simulation example to get started quickly with Active-
HDL:

1. To specify your EDA simulator and executable path, type the following Tcl package
command in the Intel Quartus Prime Tcl shell window:

set_user_option -name EDA_TOOL_PATH_ACTIVEHDL <Active HDL
executable path>

set_global_assignment -name EDA_SIMULATION_TOOL "Active-HDL
(VHDL)"

2. Compile simulation model libraries using one of the following methods:

• Run NativeLink RTL simulation to compile required design files, simulation
models, and run your simulator. Verify results in your simulator. If you
complete this step you can ignore the remaining steps.

• To automatically compile all required simulation model libraries for your design
in your supported simulator, click Tools ➤ Launch Simulation Library
Compiler. Specify options for your simulation tool, language, target device
family, and output location, and then click OK.

• Compile Intel FPGA simulation models manually:

vlib <library1> <altera_library1>
vcom -strict93 -dbg -work <library1> <lib1_component/pack.vhd> \
 <lib1.vhd>

Use the compiled simulation model libraries during simulation of your design.
Refer to your EDA simulator's documentation for information about running
simulation.

3. Open the Active-HDL simulator.

4. Create and open the workspace:

createdesign <workspace name> <workspace path>
opendesign -a <workspace name>.adf

5. Create the work library and compile the netlist and testbench files:

vlib work
vcom -strict93 -dbg -work work <output netlist> <testbench file>

683080 | 2024.02.05

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

6. Load the design:

vsim +access+r -t 1ps +transport_int_delays +transport_path_delays \
-L work -L <lib1> -L <lib2> work.<testbench module name>

7. Run the simulation in the Active-HDL simulator.

5.2. Aldec Active-HDL and Riviera-PRO Guidelines

The following guidelines apply to simulating Intel FPGA designs in the Active-HDL or
Riviera-PRO software.

Compiling SystemVerilog Files

If your design includes multiple SystemVerilog files, you must compile the
SystemVerilog files together with a single alog command.

If you have Verilog files and SystemVerilog files in your design, you must first compile
the Verilog files, and then compile only the SystemVerilog files in the single alog
command.

5.2.1. Compiling SystemVerilog Files

If your design includes multiple SystemVerilog files, you must compile the System
Verilog files together with a single alog command. If you have Verilog files and
SystemVerilog files in your design, you must first compile the Verilog files, and then
compile only the SystemVerilog files in the single alog command.

5.2.2. Disabling Timing Violation on Registers

In certain situations, you may want to ignore timing violations on registers and disable
the “X” propagation that occurs. For example, this technique may be helpful to
eliminate timing violations in internal synchronization registers in asynchronous clock-
domain crossing. Intel Arria 10 devices do not support timing simulation.

By default, the x_on_violation_option logic option is enabled for all design
registers, resulting in an output of “X” at timing violation. To disable “X” propagation
at timing violations on a specific register, disable the x_on_violation_option logic
option for the specific register, as shown in the following example from the Intel
Quartus Prime Settings File (.qsf).

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF -to \
<register_name>

5.3. Using Simulation Setup Scripts

The Intel Quartus Prime software can generate the rivierapro_setup.tcl
simulation setup script for Intel FPGA IP cores in your design. The use and content of
the script file is similar to the msim_setup.tcl file that the Intel Quartus Prime
software generates for use with the QuestaSim simulator.

5. Aldec Active-HDL and Riviera-PRO Support

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4. Sourcing Aldec ActiveHDL* or Riviera Pro* Simulator Setup
Scripts

Follow these steps to incorporate the generated ActiveHDL* or Riviera Pro* simulation
scripts into a top-level project simulation script.

1. The generated simulation script contains the following template lines. Cut and
paste these lines into a new file. For example, sim_top.tcl.

TOP-LEVEL TEMPLATE - BEGIN
#
QSYS_SIMDIR is used in the Quartus-generated IP simulation script to
construct paths to the files required to simulate the IP in your Quartus
project. By default, the IP script assumes that you are launching the
simulator from the IP script location. If launching from another
location, set QSYS_SIMDIR to the output directory you specified when you
generated the IP script, relative to the directory from which you launch
the simulator.
#
set QSYS_SIMDIR <script generation output directory>
#
Source the generated IP simulation script.
source $QSYS_SIMDIR/aldec/rivierapro_setup.tcl
#
Set any compilation options you require (this is unusual).
set USER_DEFINED_COMPILE_OPTIONS <compilation options>
set USER_DEFINED_VHDL_COMPILE_OPTIONS <compilation options for VHDL>
set USER_DEFINED_VERILOG_COMPILE_OPTIONS <compilation options for Verilog>
#
Call command to compile the Quartus EDA simulation library.
dev_com
#
Call command to compile the Quartus-generated IP simulation files.
com
#
Add commands to compile all design files and testbench files, including
the top level. (These are all the files required for simulation other
than the files compiled by the Quartus-generated IP simulation script)
#
vlog -sv2k5 <your compilation options> <design and testbench files>
#
Set the top-level simulation or testbench module/entity name, which is
used by the elab command to elaborate the top level.
#
set TOP_LEVEL_NAME <simulation top>
#
Set any elaboration options you require.
set USER_DEFINED_ELAB_OPTIONS <elaboration options>
#
Call command to elaborate your design and testbench.
elab
#
Run the simulation.
run
#
Report success to the shell.
exit -code 0
#
TOP-LEVEL TEMPLATE - END

2. Delete the first two characters of each line (comment and space):

 # TOP-LEVEL TEMPLATE - BEGIN
 #
 # QSYS_SIMDIR is used in the Quartus-generated IP simulation script to
 # construct paths to the files required to simulate the IP in your Quartus
 # project. By default, the IP script assumes that you are launching the
 # simulator from the IP script location. If launching from another

5. Aldec Active-HDL and Riviera-PRO Support

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 # location, set QSYS_SIMDIR to the output directory you specified when you
 # generated the IP script, relative to the directory from which you launch
 # the simulator.
 #
 set QSYS_SIMDIR <script generation output directory>
 #
 # Source the generated IP simulation script.
 source $QSYS_SIMDIR/aldec/rivierapro_setup.tcl
 #
 # Set any compilation options you require (this is unusual).
 set USER_DEFINED_COMPILE_OPTIONS <compilation options>
 set USER_DEFINED_VHDL_COMPILE_OPTIONS <compilation options for VHDL>
 set USER_DEFINED_VERILOG_COMPILE_OPTIONS <compilation options for Verilog>
 #
 # Call command to compile the Quartus EDA simulation library.
 dev_com
 #
 # Call command to compile the Quartus-generated IP simulation files.
 com
 #
 # Add commands to compile all design files and testbench files, including
 # the top level. (These are all the files required for simulation other
 # than the files compiled by the Quartus-generated IP simulation script)
 #
 vlog -sv2k5 <your compilation options> <design and testbench files>
 #
 # Set the top-level simulation or testbench module/entity name, which is
 # used by the elab command to elaborate the top level.
 #
 set TOP_LEVEL_NAME <simulation top>
 #
 # Set any elaboration options you require.
 set USER_DEFINED_ELAB_OPTIONS <elaboration options>
 #
 # Call command to elaborate your design and testbench.
 elab
 #
 # Run the simulation.
 run
 #
 # Report success to the shell.
 exit -code 0
 #
 # TOP-LEVEL TEMPLATE - END

3. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes that you require to match
your design simulation requirements. The scripts offer variables to set compilation
or simulation options. Refer to the generated script for details.

4. Refer to the following sim_top.tcl example content, where this file is in the
same aldec/ sub-folder as the rivierapro_setup.tcl file.

TOP-LEVEL TEMPLATE - BEGIN
#
QSYS_SIMDIR is used in the Quartus-generated IP simulation script to
construct paths to the files required to simulate the IP in your Quartus
project. By default, the IP script assumes that you are launching the
simulator from the IP script location. If launching from another
location, set QSYS_SIMDIR to the output directory you specified when you
generated the IP script, relative to the directory from which you launch
the simulator.
#
set QSYS_SIMDIR ../
#
Source the generated IP simulation script.
 source $QSYS_SIMDIR/aldec/rivierapro_setup.tcl
 #
 # Set any compilation options you require (this is unusual).

5. Aldec Active-HDL and Riviera-PRO Support

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set USER_DEFINED_COMPILE_OPTIONS ""
set USER_DEFINED_VHDL_COMPILE_OPTIONS ""
set USER_DEFINED_VERILOG_COMPILE_OPTIONS ""
#
 # Call command to compile the Quartus EDA simulation library.
dev_com
 #
 # Call command to compile the Quartus-generated IP simulation files.
com
 #
 # Add commands to compile all design files and testbench files, including
 # the top level. (These are all the files required for simulation other
 # than the files compiled by the Quartus-generated IP simulation script)
 #
vlog -sv2k5 $QSYS_SIMDIR/PLL_RAM.v
vlog -sv2k5 $QSYS_SIMDIR/testbench_1.v
 #
 # Set the top-level simulation or testbench module/entity name, which is
 # used by the elab command to elaborate the top level.
 #
set TOP_LEVEL_NAME tb
 #
 # Set any elaboration options you require.
 set USER_DEFINED_ELAB_OPTIONS ""
 #
 # Call command to elaborate your design and testbench.
 elab
 #
 # Run the simulation.
run -all
 #
 # Report success to the shell.
 exit -code 0
 #
 # TOP-LEVEL TEMPLATE - END

5. To view all available options, invoke the Active-HDL or Riviera-PRO license and
launch the simulator by typing vsim in command-line mode. After the simulator
launches, type help in the simulator Console panel. To view options related to a
specific command, for example the vsim simulation command, type help vsim
in the simulator Console panel.

6. Run the new top-level script from the generated simulation directory in command-
line mode. To run the simulation in GUI mode, type the following:

vsim -gui -l log.txt +access +r -lib dsn tb -do sim_top.tcl

To run the simulation in command-line mode, type the following:

vsim –c –do sim_top.tcl

5. Aldec Active-HDL and Riviera-PRO Support

683080 | 2024.02.05

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Simulation

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5. Aldec Active-HDL and Riviera-PRO * Support Revision History

Document Version Intel Quartus
Prime Version

Changes

2024.02.05 23.1 • Updated chapter to reflect end of support for generation of ModelSim
files in favor of QuestaSim.

• Updated script content in Sourcing Aldec ActiveHDL or Riviera Pro*
Simulator Setup Scripts topic.

• Revised name of Questa Intel FPGA Edition and QuestaSim for latest
guidelines throughout.

2017.11.06 17.1 • Stated no support for Intel Arria 10 timing simulation in Simulating
Transport Delays and Disabling Timing Violations on Registers topics.

• Added Simulation Library Compiler details to Quick Start Example

5. Aldec Active-HDL and Riviera-PRO Support

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683080 | 2024.02.05

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics*, and Synopsys. Includes design flow steps,
generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor
Graphics* and Cadence*. Also includes information about signal integrity
analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

A. Intel Quartus Prime Standard Edition User Guides

683080 | 2024.02.05

Intel Quartus Prime Standard Edition User Guide: Third-party Simulation Send Feedback

48

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Simulation%20(683080%202024.02.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Standard
Edition User Guide
Third-party Synthesis

Updated for Intel® Quartus® Prime Design Suite: 18.1

This document is part of a collection - Intel® Quartus® Prime Standard Edition User Guides -
Combined PDF link

Online Version

Send Feedback UG-20181

683796

2018.09.24

https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683796.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Synopsys Synplify* Support..4
1.1. About Synplify Support...4
1.2. Design Flow.. 4
1.3. Hardware Description Language Support...6
1.4. Intel Device Family Support.. 6
1.5. Tool Setup.. 6

1.5.1. Specifying the Intel Quartus Prime Software Version.......................................6
1.5.2. Exporting Designs to the Intel Quartus Prime Software Using NativeLink

Integration... 6
1.6. Synplify Software Generated Files..8
1.7. Design Constraints Support...9

1.7.1. Running the Intel Quartus Prime Software Manually With the Synplify-
Generated Tcl Script... 10

1.7.2. Passing Timing Analyzer SDC Timing Constraints to the Intel Quartus
Prime Software..10

1.8. Simulation and Formal Verification... 11
1.9. Synplify Optimization Strategies.. 11

1.9.1. Using Synplify Premier to Optimize Your Design... 12
1.9.2. Using Implementations in Synplify Pro or Premier...12
1.9.3. Timing-Driven Synthesis Settings...12
1.9.4. FSM Compiler..14
1.9.5. Optimization Attributes and Options... 15
1.9.6. Intel-Specific Attributes.. 17

1.10. Guidelines for Intel FPGA IP Cores and Architecture-Specific Features........................18
1.10.1. Instantiating Intel FPGA IP Cores with the IP Catalog.................................. 19
1.10.2. Including Files for Intel Quartus Prime Placement and Routing Only.............. 23
1.10.3. Inferring Intel FPGA IP Cores from HDL Code... 23

1.11. Incremental Compilation and Block-Based Design...28
1.11.1. Design Flow for Incremental Compilation...29
1.11.2. Creating a Design with Separate Netlist Files for Incremental Compilation......29
1.11.3. Using MultiPoint Synthesis with Incremental Compilation............................. 30
1.11.4. Creating Multiple .vqm Files for a Incremental Compilation Flow With

Separate Synplify Projects...34
1.11.5. Performing Incremental Compilation in the Intel Quartus Prime Software.......38

1.12. Synopsys Synplify* Support Revision History... 39

2. Mentor Graphics Precision* Synthesis Support... 41
2.1. About Precision RTL Synthesis Support... 41
2.2. Design Flow.. 41

2.2.1. Timing Optimization... 44
2.3. Intel Device Family Support...44
2.4. Precision Synthesis Generated Files..44
2.5. Creating and Compiling a Project in the Precision Synthesis Software..........................45
2.6. Mapping the Precision Synthesis Design.. 45

2.6.1. Setting Timing Constraints.. 46
2.6.2. Setting Mapping Constraints..46
2.6.3. Assigning Pin Numbers and I/O Settings... 46
2.6.4. Assigning I/O Registers...47

Contents

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.5. Disabling I/O Pad Insertion..47
2.6.6. Controlling Fan-Out on Data Nets...48

2.7. Synthesizing the Design and Evaluating the Results..48
2.7.1. Obtaining Accurate Logic Utilization and Timing Analysis Reports....................49

2.8. Exporting Designs to the Intel Quartus Prime Software Using NativeLink Integration..... 49
2.8.1. Running the Intel Quartus Prime Software from within the Precision

Synthesis Software.. 49
2.8.2. Running the Intel Quartus Prime Software Manually Using the Precision

Synthesis-Generated Tcl Script...50
2.8.3. Using the Intel Quartus Prime Software to Run the Precision Synthesis

Software...50
2.8.4. Passing Constraints to the Intel Quartus Prime Software................................51

2.9. Guidelines for Intel FPGA IP Cores and Architecture-Specific Features......................... 54
2.9.1. Instantiating IP Cores With IP Catalog-Generated Verilog HDL Files.................54
2.9.2. Instantiating IP Cores With IP Catalog-Generated VHDL Files......................... 55
2.9.3. Instantiating Intellectual Property With the IP Catalog and Parameter Editor.... 55
2.9.4. Instantiating Black Box IP Functions With Generated Verilog HDL Files............ 56
2.9.5. Instantiating Black Box IP Functions With Generated VHDL Files.....................56
2.9.6. Inferring Intel FPGA IP Cores from HDL Code...57

2.10. Incremental Compilation and Block-Based Design...61
2.10.1. Creating a Design with Precision RTL Plus Incremental Synthesis.................. 61
2.10.2. Creating Multiple Mapped Netlist Files With Separate Precision Projects or

Implementations..63
2.10.3. Creating Black Boxes to Create Netlists... 64
2.10.4. Creating Intel Quartus Prime Projects for Multiple Netlist Files...................... 66
2.10.5. Hierarchy and Design Considerations.. 67

2.11. Mentor Graphics Precision* Synthesis Support Revision History................................ 67

A. Intel Quartus Prime Standard Edition User Guides..69

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Synopsys Synplify* Support

1.1. About Synplify Support

the Intel® Quartus® Prime software supports use of the Synopsys Synplify software
design flows, methodologies, and techniques for achieving optimal results in Intel
devices. Synplify support applies to Synplify, Synplify Pro, and Synplify Premier
software. This document assumes proper set up, licensing, and basic familiarity with
the Synplify software.

This document covers the following information:

• General design flow with the Synplify and Intel Quartus Prime software.

• Exporting designs and constraints to the Intel Quartus Prime software.

• Synplify software optimization strategies, including timing-driven compilation
settings, optimization options, and other attributes.

• Guidelines for use of Quartus Prime IP cores, including guidelines for HDL
inference of IP cores.

Related Information

• Synplify Synthesis Techniques with the Intel Quartus Prime Software online
training

• Synplify Pro Tips and Tricks online training

1.2. Design Flow

The following steps describe a basic Intel Quartus Prime software design flow using
the Synplify software:

1. Create Verilog HDL (.v) or VHDL (.vhd) design files.

2. Set up a project in the Synplify software and add the HDL design files for
synthesis.

3. Select a target device and add timing constraints and compiler directives in the
Synplify software to help optimize the design during synthesis.

4. Synthesize the project in the Synplify software.

5. Create an Intel Quartus Prime project and import the following files generated by
the Synplify software into the Intel Quartus Prime software. Use the following files
for placement and routing, and for performance evaluation:

683796 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://www.altera.com/education/training/courses/OSYN1150
http://www.altera.com/education/training/courses/OSYN1150
http://www.altera.com/education/training/courses/OSYN1100
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Verilog Quartus Mapping File (.vqm) netlist.

• The Synopsys Constraints Format (.scf) file for Timing Analyzer constraints.

• The .tcl file to set up your Intel Quartus Prime project and pass constraints.

Note: Alternatively, you can run the Intel Quartus Prime software from within
the Synplify software.

6. After obtaining place-and-route results that meet your requirements, configure or
program the Intel device.

Figure 1. Recommended Design Flow

VHDL
(.vhd)

Verilog
HDL
(.v)

System
Verilog

(.v)

Synplify Software

Synopsys Constraints
format (.scf) File

Timing & Area
Requirements

Satisfied?

Functional/RTL
Simulation

Gate-Level
Functional
Simulation

Constraints & Settings

Constraints & Settings

Program/Configure Device

Forward-Annotated
Project Constraints
(.tcl/.acf)

Configuation/Programming
Files (.sof/.pof)

Technology-
Specific Netlist

(.vqm/edf)

Post-Place-and-Route
Simulation Files

(.vho/.vo)
Quartus Prime Software

Yes

No

Related Information

• Running the Intel Quartus Prime Software from within the Synplify Software on
page 7

• Synplify Software Generated Files on page 8

• Design Constraints Support on page 9

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3. Hardware Description Language Support

The Synplify software supports VHDL, Verilog HDL, and SystemVerilog source files.
However, only the Synplify Pro and Premier software support mixed synthesis,
allowing a combination of VHDL and Verilog HDL or SystemVerilog format source files.

The HDL Analyst that is included in the Synplify software is a graphical tool for
generating schematic views of the technology-independent RTL view netlist (.srs)
and technology-view netlist (.srm) files. You can use the Synplify HDL Analyst to
analyze and debug your design visually. The HDL Analyst supports cross-probing
between the RTL and Technology views, the HDL source code, the Finite State Machine
(FSM) viewer, and between the technology view and the timing report file in the Intel
Quartus Prime software. A separate license file is required to enable the HDL Analyst
in the Synplify software. The Synplify Pro and Premier software include the HDL
Analyst.

Related Information

Guidelines for Intel FPGA IP Cores and Architecture-Specific Features on page 18

1.4. Intel Device Family Support

Support for newly released device families may require an overlay. Contact Synopsys
for more information.

Related Information

Synopsys Website

1.5. Tool Setup

1.5.1. Specifying the Intel Quartus Prime Software Version

You can specify your version of the Intel Quartus Prime software in Implementation
Options in the Synplify software. This option ensures that the netlist is compatible
with the software version and supports the newest features. Intel recommends using
the latest version of the Intel Quartus Prime software whenever possible. If your Intel
Quartus Prime software version is newer than the versions available in the Quartus
Version list, check if there is a newer version of the Synplify software available that
supports the current Intel Quartus Prime software version. Otherwise, select the latest
version in the list for the best compatibility.

Note: The Quartus Version list is available only after selecting an Intel device.

Example 1. Specifying Intel Quartus Prime Software Version at the Command Line

set_option -quartus_version <version number>

1.5.2. Exporting Designs to the Intel Quartus Prime Software Using
NativeLink Integration

The NativeLink feature in the Intel Quartus Prime software facilitates the seamless
transfer of information between the Intel Quartus Prime software and EDA tools, and
allows you to run other EDA design entry or synthesis, simulation, and timing analysis

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

6

http://www.synopsys.com
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

tools automatically from within the Intel Quartus Prime software. After a design is
synthesized in the Synplify software, a .vqm netlist file, an .scf file for Timing
Analyzer timing constraints, and .tcl files are used to import the design into the Intel
Quartus Prime software for place-and-route. You can run the Intel Quartus Prime
software from within the Synplify software or as a stand-alone application. After you
import the design into the Intel Quartus Prime software, you can specify different
options to further optimize the design.

Note: When you are using NativeLink integration, the path to your project must not contain
empty spaces. The Synplify software uses Tcl scripts to communicate with the Intel
Quartus Prime software, and the Tcl language does not accept arguments with empty
spaces in the path.

Use NativeLink integration to integrate the Synplify software and Intel Quartus Prime
software with a single GUI for both synthesis and place and-route operations.
NativeLink integration allows you to run the Intel Quartus Prime software from within
the Synplify software GUI, or to run the Synplify software from within the Intel
Quartus Prime software GUI.

1.5.2.1. Running the Intel Quartus Prime Software from within the Synplify
Software

To run the Intel Quartus Prime software from within the Synplify software, you must
set the QUARTUS_ROOTDIR environment variable to the Intel Quartus Prime software
installation directory located in <Intel Quartus Prime system directory>\altera\
<version number>\quartus. You must set this environment variable to use the
Synplify and Intel Quartus Prime software together. Synplify also uses this variable to
open the Intel Quartus Prime software in the background and obtain detailed
information about the Intel FPGA IP cores used in the design.

For the Windows operating system, do the following:

1. Point to Start, and click Control Panel.

2. Click System >Advanced system settings >Environment Variables.

3. Create a QUARTUS_ROOTDIR system variable.

For the Linux operating system, do the following:

• Create an environment variable QUARTUS_ROOTDIR that points to the <home
directory>/altera <version number> location.

You can create new place and route implementations with the New P&R button in the
Synplify software GUI. Under each implementation, the Synplify Pro software creates a
place-and-route implementation called pr_<number> Altera Place and Route. To
run the Intel Quartus Prime software in command-line mode after each synthesis run,
use the text box to turn on the place-and-route implementation. The results of the
place-and-route are written to a log file in the pr_ <number> directory under the
current implementation directory.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can also use the commands in the Intel Quartus Prime menu to run the Intel
Quartus Prime software at any time following a successful completion of synthesis. In
the Synplify software, on the Options menu, click Intel Quartus Prime and then
choose one of the following commands:

• Launch Quartus —Opens the Intel Quartus Prime software GUI and creates a
Intel Quartus Prime project with the synthesized output file, forward-annotated
timing constraints, and pin assignments. Use this command to configure options
for the project and to execute any Intel Quartus Prime commands.

• Run Background Compile—Runs the Intel Quartus Prime software in command-
line mode with the project settings from the synthesis run. The results of the
place-and-route are written to a log file.

The <project_name>_cons.tcl file is used to set up the Intel Quartus Prime project
and directs the <project_name>.tcl file to pass constraints from the Synplify software
to the Intel Quartus Prime software. By default, the <project_name>.tcl file contains
device, timing, and location assignments. The <project_name>.tcl file contains the
command to use the Synplify-generated .scf constraints file with the Timing Analyzer.

Related Information

Design Flow on page 4

1.5.2.2. Using the Intel Quartus Prime Software to Run the Synplify Software

You can set up the Intel Quartus Prime software to run the Synplify software for
synthesis with NativeLink integration. This feature allows you to use the Synplify
software to quickly synthesize a design as part of a standard compilation in the Intel
Quartus Prime software. When you use this feature, the Synplify software does not
use any timing constraints or assignments that you have set in the Intel Quartus
Prime software.

Note: For best results, Synopsys recommends that you set constraints in the Synplify
software and use a Tcl script to pass these constraints to the Intel Quartus Prime
software, instead of opening the Synplify software from within the Intel Quartus Prime
software.

To set up the Intel Quartus Prime software to run the Synplify software, do the
following:

1. On the Tools menu, click Options.

2. In the Options dialog box, click EDA Tool Options and specify the path of the
Synplify or Synplify Pro software under Location of Executable.

Running the Synplify software with NativeLink integration is supported on both floating
network and node-locked fixed PC licenses. Both types of licenses support batch mode
compilation.

1.6. Synplify Software Generated Files

During synthesis, the Synplify software produces several intermediate and output files.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 1. Synplify Intermediate and Output Files

File Extensions File Description

.vqm Technology-specific netlist in .vqm file format.
A .vqm file is created for all Intel device families supported by the Intel Quartus Prime
software.

.scf(1) Synopsys Constraint Format file containing timing constraints for the Timing Analyzer.

.tcl Forward-annotated constraints file containing constraints and assignments.
A .tcl file for the Intel Quartus Prime software is created for all devices. The .tclfile
contains the appropriate Tcl commands to create and set up an Intel Quartus Prime project
and pass placement constraints.

.srs Technology-independent RTL netlist file that can be read only by the Synplify software.

.srm Technology view netlist file.

.acf Assignment and Configurations file for backward compatibility with the MAX+PLUS II
software. For devices supported by the MAX+PLUS II software, the MAX+PLUS II
assignments are imported from the MAX+PLUS II .acf file.

.srr(2) Synthesis Report file.

Related Information

Design Flow on page 4

1.7. Design Constraints Support

You can specify timing constraints and attributes by using the SCOPE window of the
Synplify software, by editing the .sdc file, or by defining the compiler directives in the
HDL source file. The Synplify software forward-annotates many of these constraints to
the Intel Quartus Prime software.

After synthesis is complete, do the following steps:

1. Import the .vqm netlist to the Intel Quartus Prime software for place-and-route.

2. Use the .tcl file generated by the Synplify software to forward-annotate your
project constraints including device selection. The .tcl file calls the
generated .scf to forward-annotate Timing Analyzer timing constraints.

(1) If your design uses the Classic Timing Analyzer for timing analysis in the Intel Quartus Prime
software versions 10.0 and earlier, the Synplify software generates timing constraints in the
Tcl Constraints File (.tcl). If you are using the Intel Quartus Prime software versions 10.1
and later, you must use the Timing Analyzer for timing analysis.

(2) This report file includes performance estimates that are often based on pre-place-and-route
information. Use the fMAX reported by the Intel Quartus Prime software after place-and-route
—it is the only reliable source of timing information. This report file includes post-synthesis
device resource utilization statistics that might inaccurately predict resource usage after
place-and-route. The Synplify software does not account for black box functions nor for logic
usage reduction achieved through register packing performed by the Intel Quartus Prime
software. Register packing combines a single register and look-up table (LUT) into a single
logic cell, reducing logic cell utilization below the Synplify software estimate. Use the device
utilization reported by the Intel Quartus Prime software after place-and-route.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Design Flow on page 4

• Synplify Optimization Strategies on page 11

1.7.1. Running the Intel Quartus Prime Software Manually With the
Synplify-Generated Tcl Script

You can run the Intel Quartus Prime software with a Synplify-generated Tcl script.

To run the Tcl script to set up your project assignments, perform the following steps:

1. Ensure the .vqm, .scf, and .tcl files are located in the same directory.

2. In the Intel Quartus Prime software, on the View menu, point to Utility Windows
and click Tcl Console. The Intel Quartus Prime Tcl Console opens.

3. At the Tcl Console command prompt, type the following:

source <path>/<project name>_cons.tcl

1.7.2. Passing Timing Analyzer SDC Timing Constraints to the Intel
Quartus Prime Software

The Timing Analyzer is a powerful ASIC-style timing analysis tool that validates the
timing performance of all logic in your design using an industry standard constraints
format, Synopsys Design Constraints (.sdc).

The Synplify-generated .tcl file contains constraints for the Intel Quartus Prime
software, such as the device specification and any location constraints. Timing
constraints are forward-annotated in the Synopsys Constraints Format (.scf) file.

Note: Synopsys recommends that you modify constraints using the SCOPE constraint editor
window, rather than using the generated .sdc, .scf, or .tcl file.

The following list of Synplify constraints are converted to the equivalent Intel Quartus
Prime SDC commands and are forward-annotated to the Intel Quartus Prime software
in the .scffile:

• define_clock

• define_input_delay

• define_output_delay

• define_multicycle_path

• define_false_path

All Synplify constraints described above are mapped to SDC commands for the Timing
Analyzer.

For syntax and arguments for these commands, refer to the applicable topic in this
manual or refer to Synplify Help. For a list of corresponding commands in the Intel
Quartus Prime software, refer to the Intel Quartus Prime Help.

Related Information

Timing-Driven Synthesis Settings on page 12

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7.2.1. Individual Clocks and Frequencies

Specify clock frequencies for individual clocks in the Synplify software with the
define_clock command. This command is passed to the Intel Quartus Prime
software with the create_clock command.

1.7.2.2. Input and Output Delay

Specify input delay and output delay constraints in the Synplify software with the
define_input_delay and define_output_delay commands, respectively. These
commands are passed to the Intel Quartus Prime software with the
set_input_delay and set_output_delay commands.

1.7.2.3. Multicycle Path

Specify a multicycle path constraint in the Synplify software with the
define_multicycle_path command. This command is passed to the Intel Quartus
Prime software with the set_multicycle_path command.

1.7.2.4. False Path

Specify a false path constraint in the Synplify software with the define_false_path
command. This command is passed to the Intel Quartus Prime software with the
set_false_path command.

1.8. Simulation and Formal Verification

You can perform simulation and formal verification at various stages in the design
process. You can perform final timing analysis after placement and routing is
complete.

If area and timing requirements are satisfied, use the files generated by the Intel
Quartus Prime software to program or configure the Intel device. If your area or
timing requirements are not met, you can change the constraints in the Synplify
software or the Intel Quartus Prime software and rerun synthesis. Intel recommends
that you provide timing constraints in the Synplify software and any placement
constraints in the Intel Quartus Prime software. Repeat the process until area and
timing requirements are met.

You can also use other options and techniques in the Intel Quartus Prime software to
meet area and timing requirements, such as WYSIWYG Primitive Resynthesis, which
can perform optimizations on your .vqm netlist within the Intel Quartus Prime
software.

Note: In some cases, you might be required to modify the source code if the area and timing
requirements cannot be met using options in the Synplify and Intel Quartus Prime
software.

1.9. Synplify Optimization Strategies

Combining Synplify software constraints with VHDL and Verilog HDL coding techniques
and Intel Quartus Prime software options can help you obtain the results that you
require.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about applying attributes, refer to the Synopsys FPGA Synthesis
Reference Manual.

Related Information

Design Constraints Support on page 9

1.9.1. Using Synplify Premier to Optimize Your Design

Compared to other Synplify products, the Synplify Premier software offers additional
physical synthesis optimizations. After typical logic synthesis, the Synplify Premier
software places and routes the design and attempts to restructure the netlist based on
the physical location of the logic in the Intel device. The Synplify Premier software
forward-annotates the design netlist to the Intel Quartus Prime software to perform
the final placement and routing. In the default flow, the Synplify Premier software also
forward-annotates placement information for the critical path(s) in the design, which
can improve the compilation time in the Intel Quartus Prime software.

The physical location annotation file is called <design name>_plc.tcl. If you open
the Intel Quartus Prime software from the Synplify Premier software user interface,
the Intel Quartus Prime software automatically uses this file for the placement
information.

The Physical Analyst allows you to examine the placed netlist from the Synplify
Premier software, which is similar to the HDL Analyst for a logical netlist. You can use
this display to analyze and diagnose potential problems.

1.9.2. Using Implementations in Synplify Pro or Premier

You can create different synthesis results without overwriting the existing results, in
the Synplify Pro or Premier software, by creating a new implementation from the
Project menu. For each implementation, specify the target device, synthesis options,
and constraint files. Each implementation generates its own subdirectory that contains
all the resulting files, including .vqm, .scf, and .tcl files, from a compilation of the
particular implementation. You can then compare the results of the different
implementations to find the optimal set of synthesis options and constraints for a
design.

1.9.3. Timing-Driven Synthesis Settings

The Synplify software supports timing-driven synthesis with user-assigned timing
constraints to optimize the performance of the design.

The Intel Quartus Prime NativeLink feature allows timing constraints that are applied
in the Synplify software to be forward-annotated for the Intel Quartus Prime software
with an .scf file for timing-driven place and route.

The Synplify Synthesis Report File (.srr) contains timing reports of estimated
place-and-route delays. The Intel Quartus Prime software can perform further
optimizations on a post-synthesis netlist from third-party synthesis tools. In addition,
designs might contain black boxes or intellectual property (IP) functions that have not
been optimized by the third-party synthesis software. Actual timing results are
obtained only after the design has been fully placed and routed in the Intel Quartus
Prime software. For these reasons, the Intel Quartus Prime post place-and-route
timing reports provide a more accurate representation of the design. Use the statistics
in these reports to evaluate design performance.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Passing Timing Analyzer SDC Timing Constraints to the Intel Quartus Prime Software
on page 10

1.9.3.1. Clock Frequencies

For single-clock designs, you can specify a global frequency when using the
push-button flow. While this flow is simple and provides good results, it often does not
meet the performance requirements for more advanced designs. You can use timing
constraints, compiler directives, and other attributes to help optimize the performance
of a design. You can enter these attributes and directives directly in the HDL code.
Alternatively, you can enter attributes (not directives) into an .sdc file with the
SCOPE window in the Synplify software.

Use the SCOPE window to set global frequency requirements for the entire design and
individual clock settings. Use the Clocks tab in the SCOPE window to specify
frequency (or period), rise times, fall times, duty cycle, and other settings. Assigning
individual clock settings, rather than over-constraining the global frequency, helps the
Intel Quartus Prime software and the Synplify software achieve the fastest clock
frequency for the overall design. The define_clock attribute assigns clock
constraints.

1.9.3.2. Multiple Clock Domains

The Synplify software can perform timing analysis on unrelated clock domains. Each
clock group is a different clock domain and is treated as unrelated to the clocks in all
other clock groups. All clocks in a single clock group are assumed to be related, and
the Synplify software automatically calculates the relationship between the clocks. You
can assign clocks to a new clock group or put related clocks in the same clock group
with the Clocks tab in the SCOPE window, or with the define_clock attribute.

1.9.3.3. Input and Output Delays

Specify the input and output delays for the ports of a design in the Input/Output tab
of the SCOPE window, or with the define_input_delay and
define_output_delay attributes. The Synplify software does not allow you to
assign the tCO and tSU values directly to inputs and outputs. However, a tCO value can
be inferred by setting an external output delay; a tSU value can be inferred by setting
an external input delay.

Relationship Between tCO and the Output Delay

tCO = clock period – external output delay

Relationship Between tSU and the Input Delay

tSU = clock period – external input delay

When the syn_forward_io_constraints attribute is set to 1, the Synplify
software passes the external input and output delays to the Intel Quartus Prime
software using NativeLink integration. The Intel Quartus Prime software then uses the
external delays to calculate the maximum system frequency.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.9.3.4. Multicycle Paths

A multicycle path is a path that requires more than one clock cycle to propagate.
Specify any multicycle paths in the design in the Multi-Cycle Paths tab of the SCOPE
window, or with the define_multicycle_path attribute. You should specify which
paths are multicycle to prevent the Intel Quartus Prime and the Synplify compilers
from working excessively on a non-critical path. Not specifying these paths can also
result in an inaccurate critical path reported during timing analysis.

1.9.3.5. False Paths

False paths are paths that should be ignored during timing analysis, or should be
assigned low (or no) priority during optimization. Some examples of false paths
include slow asynchronous resets, and test logic that has been added to the design.
Set these paths in the False Paths tab of the SCOPE window, or use the
define_false_path attribute.

1.9.4. FSM Compiler

If the FSM Compiler is turned on, the compiler automatically detects state machines in
a design, which are then extracted and optimized. The FSM Compiler analyzes state
machines and implements sequential, gray, or one-hot encoding, based on the number
of states. The compiler also performs unused-state analysis, optimization of
unreachable states, and minimization of transition logic. Implementation is based on
the number of states, regardless of the coding style in the HDL code.

If the FSM Compiler is turned off, the compiler does not optimize logic as state
machines. The state machines are implemented as HDL code. Thus, if the coding style
for a state machine is sequential, the implementation is also sequential.

Use the syn_state_machine compiler directive to specify or prevent a state
machine from being extracted and optimized. To override the default encoding of the
FSM Compiler, use the syn_encoding directive.

Table 2. syn_encoding Directive Values

Value Description

Sequential Generates state machines with the fewest possible flipflops. Sequential, also called binary, state
machines are useful for area-critical designs when timing is not the primary concern.

Gray Generates state machines where only one flipflop changes during each transition. Gray-encoded state
machines tend to be glitches.

One-hot Generates state machines containing one flipflop for each state. One-hot state machines typically
provide the best performance and shortest clock-to-output delays. However, one-hot implementations
are usually larger than sequential implementations.

Safe Generates extra control logic to force the state machine to the reset state if an invalid state is reached.
You can use the safe value in conjunction with any of the other three values, which results in the state
machine being implemented with the requested encoding scheme and the generation of the reset logic.

Example 2. Sample VHDL Code for Applying syn_encoding Directive

SIGNAL current_state : STD_LOGIC_VECTOR (7 DOWNTO 0);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF current_state : SIGNAL IS "sequential";

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

By default, the state machine logic is optimized for speed and area, which may be
potentially undesirable for critical systems. The safe value generates extra control
logic to force the state machine to the reset state if an invalid state is reached.

1.9.4.1. FSM Explorer in Synplify Pro and Premier

The Synplify Pro and Premier software use the FSM Explorer to explore different
encoding styles for a state machine automatically, and then implement the best
encoding based on the overall design constraints. The FSM Explorer uses the FSM
Compiler to identify and extract state machines from a design. However, unlike the
FSM Compiler, which chooses the encoding style based on the number of states, the
FSM Explorer attempts several different encoding styles before choosing a specific
one. The trade-off is that the compilation requires more time to analyze the state
machine, but finds an optimal encoding scheme for the state machine.

1.9.5. Optimization Attributes and Options

1.9.5.1. Retiming in Synplify Pro and Premier

The Synplify Pro and Premier software can retime a design, which can improve the
timing performance of sequential circuits by moving registers (register balancing)
across combinational elements. Be aware that retimed registers incur name changes.
You can retime your design from Implementation Options or you can use the
syn_allow_retiming attribute.

1.9.5.2. Maximum Fan-Out

When your design has critical path nets with high fan-out, use the syn_maxfan
attribute to control the fan-out of the net. Setting this attribute for a specific net
results in the replication of the driver of the net to reduce overall fan-out. The
syn_maxfan attribute takes an integer value and applies it to inputs or registers. The
syn_maxfan attribute cannot be used to duplicate control signals. The minimum
allowed value of the attribute is 4. Using this attribute might result in increased logic
resource utilization, thus straining routing resources, which can lead to long
compilation times and difficult fitting.

If you must duplicate an output register or an output enable register, you can create a
register for each output pin by using the syn_useioff attribute.

1.9.5.3. Preserving Nets

During synthesis, the compiler maintains ports, registers, and instantiated
components. However, some nets cannot be maintained to create an optimized circuit.
Applying the syn_keep directive overrides the optimization of the compiler and
preserves the net during synthesis. The syn_keep directive is a Boolean data type
value and can be applied to wires (Verilog HDL) and signals (VHDL). Setting the value
to true preserves the net through synthesis.

1.9.5.4. Register Packing

Intel devices allow register packing into I/O cells. Intel recommends allowing the Intel
Quartus Prime software to make the I/O register assignments. However, you can
control register packing with the syn_useioff attribute. The syn_useioff attribute
is a Boolean data type value that can be applied to ports or entire modules. Setting

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the value to 1 instructs the compiler to pack the register into an I/O cell. Setting the
value to 0 prevents register packing in both the Synplify and Intel Quartus Prime
software.

1.9.5.5. Resource Sharing

The Synplify software uses resource sharing techniques during synthesis, by default,
to reduce area. Turning off the Resource Sharing option on the Options tab of the
Implementation Options dialog box improves performance results for some
designs. You can also turn off the option for a specific module with the syn_sharing
attribute. If you turn off this option, be sure to check the results to verify
improvement in timing performance. If there is no improvement, turn on Resource
Sharing.

1.9.5.6. Preserving Hierarchy

The Synplify software performs cross-boundary optimization by default, which causes
the design to flatten to allow optimization. You can use the syn_hier attribute to
override the default compiler settings. The syn_hier attribute applies a string value
to modules, architectures, or both. Setting the value to hard maintains the
boundaries of a module, architecture, or both, but allows constant propagation.
Setting the value to locked prevents all cross-boundary optimizations. Use the
locked setting with the partition setting to create separate design blocks and multiple
output netlists.

By default, the Synplify software generates a hierarchical .vqm file. To flatten the file,
set the syn_netlist_hierarchy attribute to 0.

1.9.5.7. Register Input and Output Delays

Two advanced options, define_reg_input_delay and
define_reg_output_delay, can speed up paths feeding a register, or coming from
a register, by a specific number of nanoseconds. The Synplify software attempts to
meet the global clock frequency goals for a design as well as the individual clock
frequency goals (set with the define_clock attribute). You can use these attributes
to add a delay to paths feeding into or out of registers to further constrain critical
paths. You can slow down a path that is too highly optimized by setting this attributes
to a negative number.

The define_reg_input_delay and define_reg_output_delay options are
useful to close timing if your design does not meet timing goals, because the routing
delay after placement and routing exceeds the delay predicted by the Synplify
software. Rerun synthesis using these options, specifying the actual routing delay
(from place-and-route results) so that the tool can meet the required clock frequency.
Synopsys recommends that for best results, do not make these assignments too
aggressively. For example, you can increase the routing delay value, but do not also
use the full routing delay from the last compilation.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the SCOPE constraint window, the registers panel contains the following options:

• Register—Specifies the name of the register. If you have initialized a compiled
design, select the name from the list.

• Type—Specifies whether the delay is an input or output delay.

• Route—Shrinks the effective period for the constrained registers by the specified
value without affecting the clock period that is forward-annotated to the Intel
Quartus Prime software.

Use the following Tcl command syntax to specify an input or output register delay in
nanoseconds.

Example 3. Input and Output Register Delay

define_reg_input_delay {<register>} -route <delay in ns>
define_reg_output_delay {<register>} -route <delay in ns>

1.9.5.8. syn_direct_enable

This attribute controls the assignment of a clock-enable net to the dedicated enable
pin of a register. With this attribute, you can direct the Synplify mapper to use a
particular net as the only clock enable when the design has multiple clock enable
candidates.

To use this attribute as a compiler directive to infer registers with clock enables, enter
the syn_direct_enable directive in your source code, instead of the SCOPE
spreadsheet.

The syn_direct_enable data type is Boolean. A value of 1 or true enables net
assignment to the clock-enable pin. The following is the syntax for Verilog HDL:

object /* synthesis syn_direct_enable = 1 */ ;

1.9.5.9. I/O Standard

For certain Intel devices, specify the I/O standard type for an I/O pad in the design
with the I/O Standard panel in the Synplify SCOPE window.

The Synplify SDC syntax for the define_io_standard constraint, in which the
delay_type must be either input_delay or output_delay.

Example 4. define_io_standard Constraint

define_io_standard [–disable|–enable] {<objectName>} -delay_type \
[input_delay|output_delay] <columnTclName>{<value>} [<columnTclName>{<value>}...]

For details about supported I/O standards, refer to the Synopsys FPGA Synthesis
Reference Manual.

1.9.6. Intel-Specific Attributes

You can use the altera_chip_pin_lc, altera_io_powerup, and
altera_io_opendrain attributes with specific Intel device features, which are
forward-annotated to the Intel Quartus Prime project, and are used during place-and-
route.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.9.6.1. altera_chip_pin_lc

Use the altera_chip_pin_lc attribute to make pin assignments. This attribute
applies a string value to inputs and outputs. Use the attribute only on the ports of the
top-level entity in the design. Do not use this attribute to assign pin locations from
entities at lower levels of the design hierarchy.

Note: The altera_chip_pin_lc attribute is not supported for any MAX series device.

In the SCOPE window, set the value of the altera_chip_pin_lc attribute to a pin
number or a list of pin numbers.

You can use VHDL code for making location assignments for supported Intel devices.
Pin location assignments for these devices are written to the output .tcl file.

Note: The data_out signal is a 4-bit signal; data_out[3] is assigned to pin 14 and
data_out[0] is assigned to pin 15.

Example 5. Making Location Assignments in VHDL

ENTITY sample (data_in : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 data_out: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));
ATTRIBUTE altera_chip_pin_lc : STRING;
ATTRIBUTE altera_chip_pin_lc OF data_out : SIGNAL IS "14, 5, 16, 15";

1.9.6.2. altera_io_powerup

Use the altera_io_powerup attribute to define the power-up value of an I/O
register that has no set or reset. This attribute applies a string value (high|low) to
ports with I/O registers. By default, the power-up value of the I/O register is set to
low.

1.9.6.3. altera_io_opendrain

Use the altera_io_opendrain attribute to specify open-drain mode I/O ports. This
attribute applies a boolean data type value to outputs or bidirectional ports for devices
that support open-drain mode.

1.10. Guidelines for Intel FPGA IP Cores and Architecture-Specific
Features

Intel provides parameterizable IP cores, including LPMs, device-specific Intel FPGA IP
cores, and IP available through the Intel FPGA IP Partners Program (AMPPSM). You can
use IP cores by instantiating them in your HDL code, or by inferring certain IP cores
from generic HDL code.

You can instantiate an IP core in your HDL code with the IP Catalog and configure the
IP core with the Parameter Editor, or instantiate the IP core using the port and
parameter definition. The IP Catalog and Parameter Editor provide a graphical
interface within the Intel Quartus Prime software to customize any available Intel
FPGA IP core for the design.

The Synplify software also automatically recognizes certain types of HDL code, and
infers the appropriate Intel FPGA IP core when an IP core provides optimal results.
The Synplify software provides options to control inference of certain types of IP cores.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Hardware Description Language Support on page 6

1.10.1. Instantiating Intel FPGA IP Cores with the IP Catalog

When you use the IP Catalog and Parameter Editor to set up and configure an IP core,
the IP Catalog creates a VHDL or Verilog HDL wrapper file <output file>.v|vhd that
instantiates the IP core.

The Synplify software uses the Intel Quartus Prime timing and resource estimation
netlist feature to report more accurate resource utilization and timing performance
estimates, and uses timing-driven optimization, instead of treating the IP core as a
“black box.” Including the generated IP core variation wrapper file in your Synplify
project, gives the Synplify software complete information about the IP core.

Note: There is an option in the Parameter Editor to generate a netlist for resource and timing
estimation. This option is not recommended for the Synplify software because the
software automatically generates this information in the background without a
separate netlist. If you do create a separate netlist <output file>_syn.v and use that
file in your synthesis project, you must also include the <output file>.v|vhd file in
your Intel Quartus Prime project.

Verify that the correct Intel Quartus Prime version is specified in the Synplify software
before compiling the generated file to ensure that the software uses the correct library
definitions for the IP core. The Quartus Version setting must match the version of
the Intel Quartus Prime software used to generate the customized IP core.

In addition, ensure that the QUARTUS_ROOTDIR environment variable specifies the
installation directory location of the correct Intel Quartus Prime version. The Synplify
software uses this information to launch the Intel Quartus Prime software in the
background. The environment variable setting must match the version of the Intel
Quartus Prime software used to generate the customized IP core.

Related Information

• Specifying the Intel Quartus Prime Software Version on page 6

• Using the Intel Quartus Prime Software to Run the Synplify Software on page 8

1.10.1.1. Instantiating Intel FPGA IP Cores with IP Catalog Generated Verilog
HDL Files

If you turn on the <output file>_inst.v option on the Parameter Editor, the IP
Catalog generates a Verilog HDL instantiation template file for use in your Synplify
design. The instantiation template file, <output file>_inst.v, helps to instantiate the
IP core variation wrapper file, <output file>.v, in your top-level design. Include the IP
core variation wrapper file <output file>.v in your Synplify project. The Synplify
software includes the IP core information in the output .vqm netlist file. You do not
need to include the generated IP core variation wrapper file in your Intel Quartus
Prime project.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.10.1.2. Instantiating Intel FPGA IP Cores with IP Catalog Generated VHDL Files

If you turn on the <output file>.cmp and <output file>_inst.vhd options on the
parameter editor, the IP Catalog generates a VHDL component declaration file and a
VHDL instantiation template file for use in your Synplify design. These files can help
you instantiate the IP core variation wrapper file, <output file>.vhd, in your top-level
design. Include the <output file>.vhd in your Synplify project. The Synplify software
includes the IP core information in the output .vqm netlist file. You do not need to
include the generated IP core variation wrapper file in your Intel Quartus Prime
project.

1.10.1.3. Changing Synplify’s Default Behavior for Instantiated Intel FPGA IP
Cores

By default, the Synplify software automatically opens the Intel Quartus Prime software
in the background to generate a resource and timing estimation netlist for IP cores.

You might want to change this behavior to reduce run times in the Synplify software,
because generating the netlist files can take several minutes for large designs, or if
the Synplify software cannot access your Intel Quartus Prime software installation to
generate the files. Changing this behavior might speed up the compilation time in the
Synplify software, but the Quality of Results (QoR) might be reduced.

The Synplify software directs the Intel Quartus Prime software to generate information
in two ways:

• Some IP cores provide a “clear box” model—the Synplify software fully synthesizes
this model and includes the device architecture-specific primitives in the
output .vqm netlist file.

• Other IP cores provide a “gray box” model—the Synplify software reads the
resource information, but the netlist does not contain all the logic functionality.

Note: You need to turn on Generate netlist when using the gray box model. For
more information, see the Intel Quartus Prime online help.

For these IP cores, the Synplify software uses the logic information for resource and
timing estimation and optimization, and then instantiates the IP core in the
output .vqm netlist file so the Intel Quartus Prime software can implement the
appropriate device primitives. By default, the Synplify software uses the clear box
model when available, and otherwise uses the gray box model.

Related Information

• Including Files for Intel Quartus Prime Placement and Routing Only on page 23

• Synplify Synthesis Techniques with the Intel Quartus Prime Software online
training

Includes more information about design flows using clear box model and gray
box model.

1.10.1.4. Instantiating Intellectual Property with the IP Catalog and Parameter
Editor

Many Intel FPGA IP cores include a resource and timing estimation netlist that the
Synplify software uses to report more accurate resource utilization and timing
performance estimates, and uses timing-driven optimization rather than a black box
function.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

20

http://www.altera.com/education/training/courses/OSYN1150
http://www.altera.com/education/training/courses/OSYN1150
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To create this netlist file, perform the following steps:

1. Select the IP core in the IP Catalog.

2. Click Next to open the Parameter Editor.

3. Click Set Up Simulation, which sets up all the EDA options.

4. Turn on the Generate netlist option to generate a netlist for resource and timing
estimation and click OK.

5. Click Generate to generate the netlist file.

The Intel Quartus Prime software generates a file <output file>_syn.v. This netlist
contains the gray box information for resource and timing estimation, but does not
contain the actual implementation. Include this netlist file in your Synplify project.
Next, include the IP core variation wrapper file <output file>.v|vhd in the Intel
Quartus Prime project along with your Synplify .vqm output netlist.

If your IP core does not include a resource and timing estimation netlist, the Synplify
software must treat the IP core as a black box.

Related Information

Including Files for Intel Quartus Prime Placement and Routing Only on page 23

1.10.1.5. Instantiating Black Box IP Cores with Generated Verilog HDL Files

Use the syn_black_box compiler directive to declare a module as a black box. The
top-level design files must contain the IP port-mapping and a hollow-body module
declaration. Apply the syn_black_box directive to the module declaration in the top-
level file or a separate file included in the project so that the Synplify software
recognizes the module is a black box. The software compiles successfully without this
directive, but reports an additional warning message. Using this directive allows you to
add other directives.

The example shows a top-level file that instantiates my_verilogIP.v, which is a
simple customized variation generated by the IP Catalog.

Example 6. Sample Top-Level Verilog HDL Code with Black Box Instantiation of IP

module top (clk, count);
 input clk;
 output [7:0] count;
 my_verilogIP verilogIP_inst (.clock (clk), .q (count));
endmodule
// Module declaration
// The following attribute is added to create a
// black box for this module.
module my_verilogIP (clock, q) /* synthesis syn_black_box */;
 input clock;
 output [7:0] q;
endmodule

1.10.1.6. Instantiating Black Box IP Cores with Generated VHDL Files

Use the syn_black_box compiler directive to declare a component as a black box.
The top-level design files must contain the IP core variation component declaration
and port-mapping. Apply the syn_black_box directive to the component declaration

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

in the top-level file. The software compiles successfully without this directive, but
reports an additional warning message. Using this directive allows you to add other
directives.

The example shows a top-level file that instantiates my_vhdlIP.vhd, which is a
simplified customized variation generated by the IP Catalog.

Example 7. Sample Top-Level VHDL Code with Black Box Instantiation of IP

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY top IS
 PORT (
 clk: IN STD_LOGIC ;
 count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END top;

ARCHITECTURE rtl OF top IS
COMPONENT my_vhdlIP
 PORT (
 clock: IN STD_LOGIC ;
 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
end COMPONENT;
attribute syn_black_box : boolean;
attribute syn_black_box of my_vhdlIP: component is true;
BEGIN
 vhdlIP_inst : my_vhdlIP PORT MAP (
 clock => clk,
 q => count
);
END rtl;

1.10.1.7. Other Synplify Software Attributes for Creating Black Boxes

Instantiating IP as a black box does not provide visibility into the IP for the synthesis
tool. Thus, it does not take full advantage of the synthesis tool's timing-driven
optimization. For better timing optimization, especially if the black box does not have
registered inputs and outputs, add timing models to black boxes by adding the
syn_tpd, syn_tsu, and syn_tco attributes.

Example 8. Adding Timing Models to Black Boxes in Verilog HDL

module ram32x4(z,d,addr,we,clk);
 /* synthesis syn_black_box syn_tcol="clk->z[3:0]=4.0"
 syn_tpd1="addr[3:0]->[3:0]=8.0"
 syn_tsu1="addr[3:0]->clk=2.0"
 syn_tsu2="we->clk=3.0" */
 output [3:0]z;
 input[3:0]d;
 input[3:0]addr;
 input we
 input clk
endmodule

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following additional attributes are supported by the Synplify software to
communicate details about the characteristics of the black box module within the HDL
code:

• syn_resources—Specifies the resources used in a particular black box.

• black_box_pad_pin—Prevents mapping to I/O cells.

• black_box_tri_pin—Indicates a tri-stated signal.

For more information about applying these attributes, refer to the Synopsys FPGA
Synthesis Reference Manual.

1.10.2. Including Files for Intel Quartus Prime Placement and Routing
Only

In the Synplify software, you can add files to your project that are used only during
placement and routing in the Intel Quartus Prime software. This can be useful if you
have gray or black boxes for Synplify synthesis that require the full design files to be
compiled in the Intel Quartus Prime software.

You can also set the option in a script using the -job_owner par option.

The example shows how to define files for a Synplify project that includes a top-level
design file, a gray box netlist file, an IP wrapper file, and an encrypted IP file. With
these files, the Synplify software writes an empty instantiation of “core” in the .vqm
file and uses the gray box netlist for resource and timing estimation. The files core.v
and core_enc8b10b.v are not compiled by the Synplify software, but are copied into
the place-and-route directory. The Intel Quartus Prime software compiles these files to
implement the “core” IP block.

Example 9. Commands to Define Files for a Synplify Project

add_file -verilog -job_owner par "core_enc8b10b.v"
add_file -verilog -job_owner par "core.v"
add_file -verilog "core_gb.v"
add_file -verilog "top.v"

1.10.3. Inferring Intel FPGA IP Cores from HDL Code

The Synplify software uses Behavior Extraction Synthesis Technology (BEST)
algorithms to infer high-level structures such as RAMs, ROMs, operators, FSMs, and
DSP multiplication operations. Then, the Synplify software keeps the structures
abstract for as long as possible in the synthesis process. This allows the use of
technology-specific resources to implement these structures by inferring the
appropriate Intel FPGA IP core when an IP core provides optimal results.

1.10.3.1. Inferring Multipliers

The figure shows the HDL Analyst view of an unsigned 8 × 8 multiplier with two
pipeline stages after synthesis in the Synplify software. This multiplier is converted
into an ALTMULT_ADD or ALTMULT_ACCUM IP core. For devices with DSP blocks, the
software might implement the function in a DSP block instead of regular logic,
depending on device utilization. For some devices, the software maps directly to DSP
block device primitives instead of instantiating an IP core in the .vqm file.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. HDL Analyst View of LPM_MULT IP Core (Unsigned 8x8 Multiplier with
Pipeline=2)

1.10.3.1.1. Resource Balancing

While mapping multipliers to DSP blocks, the Synplify software performs resource
balancing for optimum performance.

Intel devices have a fixed number of DSP blocks, which includes a fixed number of
embedded multipliers. If the design uses more multipliers than are available, the
Synplify software automatically maps the extra multipliers to logic elements (LEs), or
adaptive logic modules (ALMs).

If a design uses more multipliers than are available in the DSP blocks, the Synplify
software maps the multipliers in the critical paths to DSP blocks. Next, any wide
multipliers, which might or might not be in the critical paths, are mapped to DSP
blocks. Smaller multipliers and multipliers that are not in the critical paths might then
be implemented in the logic (LEs or ALMs). This ensures that the design fits
successfully in the device.

1.10.3.1.2. Controlling the DSP Block Inference

You can implement multipliers in DSP blocks or in logic in Intel devices that contain
DSP blocks. You can control this implementation through attribute settings in the
Synplify software.

1.10.3.1.3. Signal Level Attribute

You can control the implementation of individual multipliers by using the
syn_multstyle attribute as shown in the following Verilog HDL code (where
<signal_name> is the name of the signal):

<signal_name> /* synthesis syn_multstyle = "logic" */;

The syn_multstyle attribute applies to wires only; it cannot be applied to registers.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 3. DSP Block Attribute Setting in the Synplify Software

Attribute Name Value Description

syn_multstyle lpm_mult LPM function inferred and multipliers
implemented in DSP blocks.

logic LPM function not inferred and
multipliers implemented as LEs by the
Synplify software.

block_mult DSP IP core is inferred and multipliers
are mapped directly to DSP block
device primitives (for supported
devices).

Example 10. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code

module mult(a,b,c,r,en);
 input [7:0] a,b;
 output [15:0] r;
 input [15:0] c;
 input en;
 wire [15:0] temp /* synthesis syn_multstyle="logic" */;

 assign temp = a*b;
 assign r = en ? temp : c;
endmodule

Example 11. Signal Attributes for Controlling DSP Block Inference in VHDL Code

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity onereg is port (
 r : out std_logic_vector (15 downto 0);
 en : in std_logic;
 a : in std_logic_vector (7 downto 0);
 b : in std_logic_vector (7 downto 0);
 c : in std_logic_vector (15 downto 0);
);
end onereg;

architecture beh of onereg is
signal temp : std_logic_vector (15 downto 0);
attribute syn_multstyle : string;
attribute syn_multstyle of temp : signal is "logic";

begin
 temp <= a * b;
 r <= temp when en='1' else c;
end beh;

1.10.3.2. Inferring RAM

When a RAM block is inferred from an HDL design, the Synplify software uses an Intel
FPGA IP core to target the device memory architecture. For some devices, the Synplify
software maps directly to memory block device primitives instead of instantiating an
IP core in the .vqm file.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these guidelines for the Synplify software to successfully infer RAM in a design:

• The address line must be at least two bits wide.

• Resets on the memory are not supported. Refer to the device family
documentation for information about whether read and write ports must be
synchronous.

• Some Verilog HDL statements with blocking assignments might not be mapped to
RAM blocks, so avoid blocking statements when modeling RAMs in Verilog HDL.

For some device families, the syn_ramstyle attribute specifies the implementation
to use for an inferred RAM. You can apply the syn_ramstyle attribute globally to a
module or a RAM instance, to specify registers or block_ram values. To turn off
RAM inference, set the attribute value to registers.

When inferring RAM for some Intel device families, the Synplify software generates
additional bypass logic. This logic is generated to resolve a half-cycle read/write
behavior difference between the RTL and post-synthesis simulations. The RTL
simulation shows the memory being updated on the positive edge of the clock; the
post-synthesis simulation shows the memory being updated on the negative edge of
the clock. To eliminate bypass logic, the output of the RAM must be registered. By
adding this register, the output of the RAM is seen after a full clock cycle, by which
time the update has occurred, thus eliminating the need for bypass logic.

For devices with TriMatrix memory blocks, disable the creation of glue logic by setting
the syn_ramstyle value to no_rw_check. Set syn_ramstyle to no_rw_check to
disable the creation of glue logic in dual-port mode.

Example 12. VHDL Code for Inferred Dual-Port RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 data_in: IN STD_LOGIC_VECTOR (7 DOWNTO 0)
 wr_addr, rd_addr: IN STD_LOGIC_VECTOR (6 DOWNTO 0);
 we: IN STD_LOGIC);
 clk: IN STD_LOGIC);
END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECOR (7 DOWNTO 0);
SIGNAL mem; Mem_Type;
SIGNAL addr_reg: STD_LOGIC_VECTOR (6 DOWNTO 0);

BEGIN
 data_out <= mem (CONV_INTEGER(rd_addr));
 PROCESS (clk, we, data_in) BEGIN
 IF (clk='1' AND clk'EVENT) THEN
 IF (we='1') THEN
 mem(CONV_INTEGER(wr_addr)) <= data_in;
 END IF;
 END IF;
 END PROCESS;
END ram_infer;

Example 13. VHDL Code for Inferred Dual-Port RAM Preventing Bypass Logic

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 data_in : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 wr_addr, rd_addr : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
 we : IN STD_LOGIC;
 clk : IN STD_LOGIC);
END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL mem : Mem_Type;
SIGNAL addr_reg : STD_LOGIC_VECTOR (6 DOWNTO 0);
SIGNAL tmp_out : STD_LOGIC_VECTOR (7 DOWNTO 0); --output register

BEGIN
 tmp_out <= mem (CONV_INTEGER (rd_addr));
 PROCESS (clk, we, data_in) BEGIN
 IF (clk='1' AND clk'EVENT) THEN
 IF (we='1') THEN
 mem(CONV_INTEGER(wr_addr)) <= data_in;
 END IF;
 data_out <= tmp_out; --registers output preventing
 -- bypass logic generation
 END IF;
 END PROCESS;
END ram_infer;

1.10.3.3. RAM Initialization

Use the Verilog HDL $readmemb or $readmemh system tasks in your HDL code to
initialize RAM memories. The Synplify compiler forward-annotates the initialization
values in the .srs (technology-independent RTL netlist) file and the mapper
generates the corresponding hexadecimal memory initialization (.hex) file. One .hex
file is created for each of the altsyncram IP cores that are inferred in the design.
The .hex file is associated with the altsyncram instance in the .vqm file using the
init_file attribute.

The examples show how RAM can be initialized through HDL code, and how the
corresponding .hex file is generated using Verilog HDL.

Example 14. Using $readmemb System Task to Initialize an Inferred RAM in Verilog HDL
Code

initial
begin
 $readmemb("mem.ini", mem);
end
always @(posedge clk)
begin
 raddr_reg <= raddr;
 if(we)
 mem[waddr] <= data;
end

Example 15. Sample of .vqm Instance Containing Memory Initialization File

altsyncram mem_hex(.wren_a(we),.wren_b(GND),...);

defparam mem_hex.lpm_type = "altsyncram";
defparam mem_hex.operation_mode = "Dual_Port";
...
defparam mem_hex.init_file = "mem_hex.hex";

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.10.3.4. Inferring ROM

When a ROM block is inferred from an HDL design, the Synplify software uses an Intel
FPGA IP core to target the device memory architecture. For some devices, the Synplify
software maps directly to memory block device atoms instead of instantiating an IP
core in the .vqm file.

Follow these guidelines for the Synplify software to successfully infer ROM in a design:

• The address line must be at least two bits wide.

• The ROM must be at least half full.

• A CASE or IF statement must make 16 or more assignments using constant values
of the same width.

1.10.3.5. Inferring Shift Registers

The Synplify software infers shift registers for sequential shift components so that
they can be placed in dedicated memory blocks in supported device architectures
using the ALTSHIFT_TAPS IP core.

If necessary, set the implementation style with the syn_srlstyle attribute. If you do
not want the components automatically mapped to shift registers, set the value to
registers. You can set the value globally, or on individual modules or registers.

For some designs, turning off shift register inference improves the design
performance.

1.11. Incremental Compilation and Block-Based Design

As designs become more complex and designers work in teams, a block-based
incremental design flow is often an effective design approach. In an incremental
compilation flow, you can make changes to part of the design while maintaining the
placement and performance of unchanged parts of the design. Design iterations are
made dramatically faster by focusing new compilations on particular design partitions
and merging results with previous compilation results of other partitions. You can
perform optimization on individual subblocks and then preserve the results before you
integrate the blocks into a final design and optimize it at the top-level.

MultiPoint synthesis, which is available for certain device technologies in the
Synplify Pro and Premier software, provides an automated block-based incremental
synthesis flow. The MultiPoint feature manages a design hierarchy to let you design
incrementally and synthesize designs that take too long for synthesis of the entire
project. MultiPoint synthesis allows different netlist files to be created for different
sections of a design hierarchy and supports the Intel Quartus Prime incremental
compilation methodology. This feature also ensures that only those sections of a
design that have been updated are resynthesized when the design is compiled,
reducing synthesis run time and preserving the results for the unchanged blocks. You
can change and resynthesize one section of a design without affecting other sections.

You can also partition your design and create different netlist files manually with the
Synplify software by creating a separate project for the logic in each partition of the
design. Creating different netlist files for each partition of the design also means that
each partition can be independent of the others.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Hierarchical design methodologies can improve the efficiency of your design process,
providing better design reuse opportunities and fewer integration problems when
working in a team environment. When you use these incremental synthesis
methodologies, you can take advantage of incremental compilation in the Intel
Quartus Prime software. You can perform placement and routing on only the changed
partitions of the design, which reduces place-and-route time and preserves your fitting
results.

1.11.1. Design Flow for Incremental Compilation

The following steps describe the general incremental compilation flow when using
these features of the Intel Quartus Prime software:

1. Create Verilog HDL or VHDL design files.

2. Determine which hierarchical blocks you want to treat as separate partitions in
your design.

3. Set up your design using the MultiPoint synthesis feature or separate projects so
that a separate netlist file is created for each design partition.

4. If using separate projects, disable I/O pad insertion in the implementations for
lower-level partitions.

5. Compile and map each partition in the Synplify software, making constraints as
you would in a non-incremental design flow.

6. Import the .vqm netlist and .tcl file for each partition into the Intel Quartus Prime
software and set up the Intel Quartus Prime project(s) for incremental
compilation.

7. Compile your design in the Intel Quartus Prime software and preserve the
compilation results with the post-fit netlist in incremental compilation.

8. When you make design or synthesis optimization changes to part of your design,
resynthesize only the partition you modified to generate a new netlist and .tcl file.
Do not regenerate netlist files for the unmodified partitions.

9. Import the new netlist and .tcl file into the Intel Quartus Prime software and
recompile the design in the Intel Quartus Prime software with incremental
compilation.

1.11.2. Creating a Design with Separate Netlist Files for Incremental
Compilation

The first stage of a hierarchical or incremental design flow is to ensure that different
parts of your design do not affect each other. Ensure that you have separate netlists
for each partition in your design so you can take advantage of incremental compilation
in the Intel Quartus Prime software. If the entire design is in one netlist file, changes
in one partition might affect other partitions because of possible node name changes
when you resynthesize the design.

To ensure proper functionality of the synthesis flow, create separate netlist files only
for modules and entities. In addition, each module or entity requires its own design
file. If two different modules are in the same design file, but are defined as being part
of different partitions, incremental compilation cannot be maintained since both
partitions must be recompiled when one module is changed.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel recommends that you register all inputs and outputs of each partition. This
makes logic synchronous, and avoids any delay penalty on signals that cross partition
boundaries.

If you use boundary tri-states in a lower-level block, the Synplify software pushes, or
bubbles, the tri-states through the hierarchy to the top-level to use the tri-state
drivers on output pins of Intel devices. Because bubbling tri-states requires optimizing
through hierarchies, lower-level tri-states are not supported with a block-based
compilation methodology. Use tri-state drivers only at the external output pins of the
device and in the top-level block in the hierarchy.

You can generate multiple .vqm netlist files with the MultiPoint synthesis flow in the
Synplify Pro and Premier software, or by manually creating separate Synplify projects
and creating a black box for each block that you want to designate as a separate
design partition.

In the MultiPoint synthesis flow in the Synplify Pro and Premier software, you create
multiple .vqm netlist files from one easy-to-manage, top-level synthesis project. By
using the manual black box method, you have multiple synthesis projects, which
might be required for certain team-based or bottom-up designs where a single top-
level project is not desired.

After you have created multiple .vqm files using one of these two methods, you must
create the appropriate Intel Quartus Prime projects to place-and-route the design.

1.11.3. Using MultiPoint Synthesis with Incremental Compilation

This topic describes how to generate multiple .vqm files using the Synplify Pro and
Premier software MultiPoint synthesis flow. You must first set up your constraint file
and Synplify options, then apply the appropriate Compile Point settings to write
multiple .vqm files and create design partition assignments for incremental
compilation.

1.11.3.1. Set Compile Points and Create Constraint Files

The MultiPoint flow lets you segment a design into smaller synthesis units, called
Compile Points. The synthesis software treats each Compile Point as a partition for
incremental mapping, which allows you to isolate and work on each Compile Point
module as independent segments of the larger design without impacting other design
modules. A design can have any number of Compile Points, and Compile Points can be
nested. The top-level module is always treated as a Compile Point.

Compile Points are optimized in isolation from their parent, which can be another
Compile Point or a top-level design. Each block created with a Compile Point is
unaffected by critical paths or constraints on its parent or other blocks. A Compile
Point is independent, with its own individual constraints. During synthesis, any
Compile Points that have not yet been synthesized are synthesized before the top
level. Nested Compile Points are synthesized before the parent Compile Points in
which they are contained. When you apply the appropriate setting for the Compile
Point, a separate netlist is created for that Compile Point, isolating that logic from any
other logic in the design.

The figure shows an example of a design hierarchy that is split into multiple partitions.
The top-level block of each partition can be synthesized as a separate Compile Point.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3. Partitions in a Hierarchical Design

Partition Top

Partition B Partition F

D E

B

A

F

C

In this case, modules A, B, and F are Compile Points. The top-level Compile Point
consists of the top-level block in the design (that is, block A in this example),
including the logic that is not defined under another Compile Point. In this example,
the design for top-level Compile Point A also includes the logic in one of its subblocks,
C. Because block F is defined as its own Compile Point, it is not treated as part of the
top-level Compile Point A. Another separate Compile Point B contains the logic in
blocks B, D, and E. One netlist is created for the top-level module A and submodule C,
another netlist is created for B and its submodules D and E, while a third netlist is
created for F.

Apply Compile Points to the module, or to the architecture in the Synplify Pro SCOPE
spreadsheet, or to the .sdc file. You cannot set a Compile Point in the Verilog HDL or
VHDL source code. You can set the constraints manually using Tcl, by editing the .sdc
file, or you can use the GUI.

1.11.3.1.1. Defining Compile Points With .tcl or .sdc Files

To set Compile Points with a .tcl or .sdc file, use the define_compile_point
command.

Example 16. The define_compile_point Command

define_compile_point [-disable] {<objname>} -type {locked, partition}

<objname> represents any module in the design. The Compile Point type {locked,
partition} indicates that the Compile Point represents a partition for the Intel
Quartus Prime incremental compilation flow.

Each Compile Point has a set of constraint files that begin with the
define_current_design command to set up the SCOPE environment, as follows:

define_current_design {<my_module>}

1.11.3.2. Additional Considerations for Compile Points

To ensure that changes to a Compile Point do not affect the top-level parent module,
turn off the Update Compile Point Timing Data option in the Implementation
Options dialog box. If this option is turned on, updates to a child module can impact
the top-level module.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can apply the syn_allowed_resources attribute to any Compile Point view to
restrict the number of resources for a particular module.

When using Compile Points with incremental compilation, be aware of the following
restrictions:

• To use Compile Points effectively, you must provide timing constraints (timing
budgeting) for each Compile Point; the more accurate the constraints, the better
your results are. Constraints are not automatically budgeted, so manual time
budgeting is essential. Intel recommends that you register all inputs and outputs
of each partition. This avoids any logic delay penalty on signals that cross-partition
boundaries.

• When using the Synplify attribute syn_useioff to pack registers in the I/O
Elements (IOEs) of Intel devices, these registers must be in the top-level module.
Otherwise, you must direct the Intel Quartus Prime software to perform I/O
register packing instead of the syn_useioff attribute. You can use the Fast
Input Register or Fast Output Register options, or set I/O timing constraints
and turn on Optimize I/O cell register placement for timing on the
Advanced Settings (Fitter) dialog box in the Intel Quartus Prime software.

• There is no incremental synthesis support for top-level logic; any logic in the
top-level is resynthesized during every compilation in the Synplify software.

For more information about using Compile Points and setting Synplify attributes and
constraints for both top-level and lower-level Compile Points, refer to the Synopsys
FPGA Synthesis User Guide and the Synopsys FPGA Synthesis Reference Manual.

1.11.3.3. Creating a Intel Quartus Prime Project for Compile Points and
Multiple .vqm Files

During compilation, the Synplify Pro and Premier software creates a <top-level
project>.tcl file that provides the Intel Quartus Prime software with the appropriate
constraints and design partition assignments, creating a partition for each .vqm file
along with the information to set up a Intel Quartus Prime project.

Depending on your design methodology, you can create one Intel Quartus Prime
project for all netlists or a separate Intel Quartus Prime project for each netlist. In the
standard incremental compilation design flow, you create design partition assignments
and optional LogicLock™ floorplan location assignments for each partition in the design
within a single Intel Quartus Prime project. This methodology allows for the best
quality of results and performance preservation during incremental changes to your
design.

You might require a bottom-up design flow if each partition must be optimized
separately, such as for third-party IP delivery. If you use this flow, Intel recommends
you create a design floorplan to avoid placement conflicts between each partition. To
follow this design flow in the Intel Quartus Prime software, create separate Intel
Quartus Prime projects, export each design partition and incorporate them into a
top-level design using the incremental compilation features to maintain placement
results.

Related Information

Running the Intel Quartus Prime Software Manually With the Synplify-Generated Tcl
Script on page 10

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.11.3.3.1. Creating a Single Intel Quartus Prime Project for a Standard Incremental
Compilation Flow

Use the <top-level project>.tcl file that contains the Synplify assignments for all
partitions within the project. This method allows you to import all the partitions into
one Intel Quartus Prime project and optimize all modules within the project at once,
while taking advantage of the performance preservation and compilation-time
reduction that incremental compilation offers.

Figure 4. Design Flow Using Multiple .vqm Files with One Intel Quartus Prime Project

a.vqm

b.vqm f.vqm

Quartus Prime Project

Use the top-level Tcl file a.tcl
to import Synplify Pro assignments.

1.11.3.3.2. Creating Multiple Intel Quartus Prime Projects for a Bottom-Up Incremental
Compilation Flow

Use the <lower-level compile point>.tcl files that contain the Synplify assignments for
each Compile Point. Generate multiple Intel Quartus Prime projects, one for each
partition and netlist in the design. The designers in the project can optimize their own
partitions separately within the Intel Quartus Prime software and export the results for
their own partitions. You can export the optimized subdesigns and then import them
into one top-level Intel Quartus Prime project using incremental compilation to
complete the design.

Figure 5. Design Flow Using Multiple .vqm Files with Multiple Intel Quartus Prime
Projects

Quartus Prime Project Quartus Prime Project

a.vqm

b.vqm f.vqm

Quartus Prime Project

Use the top-level Tcl file a.tcl to Import
Synplify Pro Assignments

Use the lower-level
Tcl file f.tcl to Import
Synplify Pro Assignments

 Use the lower-level
Tcl file b.tcl to Import

Synplify Pro Assignments

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.11.4. Creating Multiple .vqm Files for a Incremental Compilation Flow
With Separate Synplify Projects

You can manually generate multiple .vqm files for a incremental compilation flow with
black boxes and separate Synplify projects for each design partition. This manual flow
is supported by versions of the Synplify software without the MultiPoint Synthesis
feature.

1.11.4.1. Manually Creating Multiple .vqm Files With Black Boxes

To create multiple .vqm files manually in the Synplify software, create a separate
project for each lower-level module and top-level design that you want to maintain as
a separate .vqm file for an incremental compilation partition. Implement black box
instantiations of lower-level partitions in your top-level project.

Figure 6. Partitions in a Hierarchical Design

Partition Top

Partition B Partition F

D E

B

A

F

C

The partition top contains the top-level block in the design (block A) and the logic that
is not defined as part of another partition. In this example, the partition for top-level
block A also includes the logic in one of its sub-blocks, block C. Because block F is
contained in its own partition, it is not treated as part of the top-level partition A.
Another separate partition, partition B, contains the logic in blocks B, D, and E. In a
team-based design, engineers can work independently on the logic in different
partitions. One netlist is created for the top-level module A and its submodule C,
another netlist is created for module B and its submodules D and E, while a third
netlist is created for module F.

1.11.4.1.1. Creating Multiple .vqm Files for this Design

To create multiple .vqm files for this design, follow these steps:

1. Generate a .vqm file for module B. Use B.v/.vhd, D.v/.vhd, and E.v/.vhd as
the source files.

2. Generate a .vqm file for module F. Use F.v/.vhd as the source files.

3. Generate a top-level .vqm file for module A. Use A.v/.vhd and C.v/.vhd as the
source files. Ensure that you use black box modules B and F, which were optimized
separately in the previous steps.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.11.4.1.2. Creating Black Boxes in Verilog HDL

Any design block that is not defined in the project, or included in the list of files to be
read for a project, is treated as a black box by the software. Use the syn_black_box
attribute to indicate that you intend to create a black box for the module. In Verilog
HDL, you must provide an empty module declaration for a module that is treated as a
black box.

The example shows the A.v top-level file. Follow the same procedure for lower-level
files that also contain a black box for any module beneath the current level hierarchy.

Example 17. Verilog HDL Black Box for Top-Level File A.v

module A (data_in, clk, e, ld, data_out);
 input data_in, clk, e, ld;
 output [15:0] data_out;

 wire [15:0] cnt_out;

 B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
 F U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));

 // Any other code in A.v goes here.
endmodule

// Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black boxes.

module B (data_in, clk, ld, data_out) /* synthesis syn_black_box */ ;
 input data_in, clk, ld;
 output [15:0} data_out;
endmodule

module F (d, clk, e, q) /* synthesis syn_black_box */ ;
 input [15:0] d;
 input clk, e;
 output [15:0] q;
endmodule

1.11.4.1.3. Creating Black Boxes in VHDL

Any design that is not defined in the project, or included in the list of files to be read
for a project, is treated as a black box by the software. Use the syn_black_box
attribute to indicate that you intend to treat the component as a black box. In VHDL,
you must have a component declaration for the black box.

Although VHDL is not case-sensitive, a .vqm (a subset of Verilog HDL) file is case-
sensitive. Entity names and their port declarations are forwarded to the .vqm file.
Black box names and port declarations are also passed to the .vqm file. To prevent
case-based mismatches, use the same capitalization for black box and entity
declarations in VHDL designs.

The example shows the A.vhd top-level file. Follow this same procedure for any
lower-level files that contain a black box for any block beneath the current level of
hierarchy.

Example 18. VHDL Black Box for Top-Level File A.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY synplify;
USE synplify.attributes.all;

ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;
 clk, e, ld : IN STD_LOGIC;
 data_out : OUT INTEGER RANGE 0 TO 15);

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

END A;

ARCHITECTURE a_arch OF A IS

COMPONENT B PORT(
 data_in : IN INTEGER RANGE 0 TO 15;
 clk, ld : IN STD_LOGIC;
 d_out : OUT INTEGER RANGE 0 TO 15);
END COMPONENT;

COMPONENT F PORT(
 d : IN INTEGER RANGE 0 TO 15;
 clk, e: IN STD_LOGIC;
 q : OUT INTEGER RANGE 0 TO 15);
END COMPONENT;

attribute syn_black_box of B: component is true;
atrribute syn_black_box of F: component is true;

-- Other component declarations in A.vhd go here
signal cnt_out : INTEGER RANGE 0 TO 15;

BEGIN

U1 : B
PORT MAP (
 data_in => data_in,
 clk => clk,
 ld => ld,
 d_out => cnt_out);

U2 : F
PORT MAP (
 d => cnt_out,
 clk => clk,
 e => e,
 q => data_out);

-- Any other code in A.vhd goes here

END a_arch;

After you complete the steps above, you have a netlist for each partition of the design.
These files are ready for use with the incremental compilation flow in the Intel Quartus
Prime software.

1.11.4.2. Creating a Intel Quartus Prime Project for Multiple .vqm Files

The Synplify software creates a .tcl file for each .vqm file that provides the Intel
Quartus Prime software with the appropriate constraints and information to set up a
project.

Depending on your design methodology, you can create one Intel Quartus Prime
project for all netlists or a separate Intel Quartus Prime project for each netlist. In the
standard incremental compilation design flow, you create design partition assignments
and optional LogicLock floorplan location assignments for each partition in the design
within a single Intel Quartus Prime project. This methodology allows for the best
quality of results and performance preservation during incremental changes to your
design. You might require a bottom-up design flow where each partition must be
optimized separately, such as for third-party IP delivery.

To perform this design flow in the Intel Quartus Prime software, create separate Intel
Quartus Prime projects, export each design partition and incorporate it into a top-level
design using the incremental compilation features to maintain the results.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Running the Intel Quartus Prime Software Manually With the Synplify-Generated Tcl
Script on page 10

1.11.4.2.1. Creating a Single Intel Quartus Prime Project for a Standard Incremental
Compilation Flow

Use the <top-level project>.tcl file that contains the Synplify assignments for the
top-level design. This method allows you to import all of the partitions into one Intel
Quartus Prime project and optimize all modules within the project at once, taking
advantage of the performance preservation and compilation time reduction offered by
incremental compilation.

All of the constraints from the top-level project are passed to the Intel Quartus Prime
software in the top-level .tcl file, but constraints made in the lower-level projects
within the Synplify software are not forward-annotated. Enter these constraints
manually in your Intel Quartus Prime project.

Figure 7. Design Flow Using Multiple .vqm Files with One Intel Quartus Prime Project

a.vqm

b.vqm f.vqm

Quartus Prime Project

Use a.tcl to import top-level
Synplify Pro assignments.

Enter any lower-level
assignments manually.

1.11.4.2.2. Creating Multiple Intel Quartus Prime Projects for a Bottom-Up Incremental
Compilation Flow

Use the .tcl file that is created for each .vqm file by the Synplify software for each
Synplify project. This method generates multiple Intel Quartus Prime projects, one for
each block in the design. The designers in the project can optimize their own blocks
separately within the Intel Quartus Prime software and export the placement of their
own blocks.

Designers should create a LogicLock region to create a design floorplan for each block
to avoid conflicts between partitions. The top-level designer then imports all the blocks
and assignments into the top-level project. This method allows each block in the
design to be optimized separately and then imported into one top-level project.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8. Design Flow Using Multiple Synplify Projects and Multiple Intel Quartus Prime
Projects

Quartus Prime Project Quartus Prime Project

a.vqm

b.vqm f.vqm

Quartus Prime Project

Use the top-level
Tcl file a.tcl to Import
Synplify Assignments

Use the lower-level
Tcl file f.tcl to Import
Synplify Assignments

Use the lower-level
Tcl file b.tcl to Import
Synplify Assignments

1.11.5. Performing Incremental Compilation in the Intel Quartus Prime
Software

In a standard design flow using Multipoint Synthesis, the Synplify software uses the
Intel Quartus Prime top-level .tcl file to ensure that the two tools databases stay
synchronized. The Tcl file creates, changes, or deletes partition assignments in the
Intel Quartus Prime software for Compile Points that you create, change, or delete in
the Synplify software. However, if you create, change, or delete a partition in the Intel
Quartus Prime software, the Synplify software does not change your Compile Point
settings. Make any corresponding change in your Synplify project to ensure that you
create the correct .vqm files.

Note: If you use the NativeLink integration feature, the Synplify software does not use any
information about design partition assignments that you have set in the Intel Quartus
Prime software.

If you create netlist files with multiple Synplify projects, or if you do not use the
Synplify Pro or Premier-generated .tcl files to update constraints in your Intel Quartus
Prime project, you must ensure that your Synplify .vqm netlists align with your Intel
Quartus Prime partition settings.

After you have set up your Intel Quartus Prime project with .vqm netlist files as
separate design partitions, set the appropriate Intel Quartus Prime options to preserve
your compilation results. On the Assignments menu, click Design Partitions
Window. Change the Netlist Type to Post-Fit to preserve the previous compilation’s
post-fit placement results. If you do not make these settings, the Intel Quartus Prime
software does not reuse the placement or routing results from the previous
compilation.

You can take advantage of incremental compilation with your Synplify design to reduce
compilation time in the Intel Quartus Prime software and preserve the results for
unchanged design blocks.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Using the Intel Quartus Prime Software to Run the Synplify Software on page 8

1.12. Synopsys Synplify* Support Revision History

Date Version Changes

2016.05.03 16.0.0 • Noted limitations of NativeLink synthesis.

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

November 2013 13.1.0 Dita conversion. Restructured content.

June 2012 12.0.0 Removed survey link.

November 2011 10.1.1 Template update.

December 2010 10.1.0 • Changed to new document template.
• Removed Classic Timing Analyzer support.
• Removed the “altera_implement_in_esb or altera_implement_in_eab” section.
• Edited the “Creating a Intel Quartus Prime Project for Compile Points and Multiple .vqm

Files” on page 14–33 section for changes with the incremental compilation flow.
• Edited the “Creating a Intel Quartus Prime Project for Multiple .vqm Files” on page 14–39

section for changes with the incremental compilation flow.
• Editorial changes.

July 2010 10.0.0 • Minor updates for the Intel Quartus Prime software version 10.0 release.

November 2009 9.1.0 • Minor updates for the Intel Quartus Prime software version 9.1 release.

March 2009 9.0.0 • Added new section “Exporting Designs to the Intel Quartus Prime Software Using NativeLink
Integration” on page 14–14.

• Minor updates for the Intel Quartus Prime software version 9.0 release.
• Chapter 10 was previously Chapter 9 in software version 8.1.

November 2008 8.1.0 • Changed to 8-1/2 x 11 page size
• Changed the chapter title from “Synplicity Synplify & Synplify Pro Support” to “Synopsys

Synplify Support”
• Replaced references to Synplicity with references to Synopsys
• Added information about Synplify Premier
• Updated supported device list
• Added SystemVerilog information to Figure 14–1

May 2008 8.0.0 • Updated supported device list
• Updated constraint annotation information for the Timing Analyzer
• Updated RAM and MAC constraint limitations
• Revised Table 9–1
• Added new section “Changing Synplify’s Default Behavior for Instantiated Altera

Megafunctions”
• Added new section “Instantiating Intellectual Property Using the MegaWizard Plug-In

Manager and IP Toolbench”
• Added new section “Including Files for Intel Quartus Prime Placement and Routing Only”
• Added new section “Additional Considerations for Compile Points”
• Removed section “Apply the LogicLock Attributes”
• Modified Figure 9–4, 9–43, 9–47. and 9–48
• Added new section “Performing Incremental Compilation in the Intel Quartus Prime

Software”
• Numerous text changes and additions throughout the chapter
• Renamed several sections
• Updated “Referenced Documents” section

1. Synopsys Synplify* Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

1. Synopsys Synplify* Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

40

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Mentor Graphics Precision* Synthesis Support

2.1. About Precision RTL Synthesis Support

This manual delineates the support for the Mentor Graphics® Precision RTL Synthesis
and Precision RTL Plus Synthesis software in the Intel Quartus Prime software, as well
as key design flows, methodologies and techniques for improving your results for Intel
devices. This manual assumes that you have set up, licensed, and installed the
Precision Synthesis software and the Intel Quartus Prime software.

Note: You must set up, license, and install the Precision RTL Plus Synthesis software if you
want to use the incremental synthesis feature for incremental compilation and block-
based design.

To obtain and license the Precision Synthesis software, refer to the Mentor Graphics
website. To install and run the Precision Synthesis software and to set up your work
environment, refer to the Precision Synthesis Installation Guide in the Precision
Manuals Bookcase. To access the Manuals Bookcase in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

Related Information

Mentor Graphics website

2.2. Design Flow

The following steps describe a basic Intel Quartus Prime design flow using the
Precision Synthesis software:

1. Create Verilog HDL or VHDL design files.

2. Create a project in the Precision Synthesis software that contains the HDL files for
your design, select your target device, and set global constraints.

3. Compile the project in the Precision Synthesis software.

4. Add specific timing constraints, optimization attributes, and compiler directives to
optimize the design during synthesis. With the design analysis and cross-probing
capabilities of the Precision Synthesis software, you can identify and improve
circuit area and performance issues using prelayout timing estimates.

Note: For best results, Mentor Graphics recommends specifying constraints that
are as close as possible to actual operating requirements. Properly setting
clock and I/O constraints, assigning clock domains, and indicating false and
multicycle paths guide the synthesis algorithms more accurately toward a
suitable solution in the shortest synthesis time.

5. Synthesize the project in the Precision Synthesis software.

6. Create an Intel Quartus Prime project and import the following files generated by
the Precision Synthesis software into the Intel Quartus Prime project:

683796 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://www.mentor.com
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• The Verilog Quartus Mapping File (.vqm) netlist

• Synopsys Design Constraints File (.sdc) for Timing Analyzer constraints

• Tcl Script Files (.tcl) to set up your Intel Quartus Prime project and pass
constraints

Note: If your design uses the Classic Timing Analyzer for timing analysis in the
Intel Quartus Prime software versions 10.0 and earlier, the Precision
Synthesis software generates timing constraints in the Tcl Constraints File
(.tcl). If you are using the Intel Quartus Prime software versions 10.1 and
later, you must use the Timing Analyzer for timing analysis.

7. After obtaining place-and-route results that meet your requirements, configure or
program the Intel device.

You can run the Intel Quartus Prime software from within the Precision Synthesis
software, or run the Precision Synthesis software using the Intel Quartus Prime
software.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9. Design Flow Using the Precision Synthesis Software and Intel Quartus Prime
Software

Functional/RTL
Si m ulation

VHDL V erilog HDL

Constraints and
Settings

Constraints and
Settings

Precision Synthesis

Gate-Level
Functional
Si m ulation

Gate-Level Timing
Si m ulation

Timing and Area
Requirements

Satisfied?

Fo r ward-Annotated Project
Configuration
(.tcl /.acf)

Technology-
Specific Netlist

(.edf)

Post-Synthesis
Simulation Files

(.vho /.vo)

Post Place-and-Route
Simulation File

(.vho /.vo)

Configuration/Programming Files
(.sof /.pof)

Program/Configure Device

Quartus Prime Software

Quartus Prime Timing Constraints
in SDC format (.sdc)

System
V erilog

Design Specifications

No

Yes

Related Information

• Running the Intel Quartus Prime Software from within the Precision Synthesis
Software on page 49

• Using the Intel Quartus Prime Software to Run the Precision Synthesis Software on
page 50

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.1. Timing Optimization

If your area or timing requirements are not met, you can change the constraints and
resynthesize the design in the Precision Synthesis software, or you can change the
constraints to optimize the design during place-and-route in the Intel Quartus Prime
software. Repeat the process until the area and timing requirements are met.

You can use other options and techniques in the Intel Quartus Prime software to meet
area and timing requirements. For example, the WYSIWYG Primitive Resynthesis
option can perform optimizations on your EDIF netlist in the Intel Quartus Prime
software.

While simulation and analysis can be performed at various points in the design
process, final timing analysis should be performed after placement and routing is
complete.

2.3. Intel Device Family Support

The Precision Synthesis software supports active devices available in the current
version of the Intel Quartus Prime software. Support for newly released device families
may require an overlay. Contact Mentor Graphics for more information.

2.4. Precision Synthesis Generated Files

During synthesis, the Precision Synthesis software produces several intermediate and
output files.

Table 4. Precision Synthesis Software Intermediate and Output Files

File Extension File Description

.psp Precision Synthesis Project File.

.xdb Mentor Graphics Design Database File.

.rep(3) Synthesis Area and Timing Report File.

.vqm(4) Technology-specific netlist in .vqm file format.
By default, the Precision Synthesis software creates .vqm files for Arria series, Cyclone
series, and Stratix series devices. The Precision Synthesis software defaults to creating .vqm
files when the device is supported.

continued...

(3) The timing report file includes performance estimates that are based on pre-place-and-route
information. Use the fMAX reported by the Intel Quartus Prime software after place-and-route
for accurate post-place-and-route timing information. The area report file includes post-
synthesis device resource utilization statistics that can differ from the resource usage after
place-and-route due to black boxes or further optimizations performed during placement and
routing. Use the device utilization reported by the Intel Quartus Prime software after place-
and-route for final resource utilization results.

(4) The Precision Synthesis software-generated VQM file is supported by the Intel Quartus Prime
software version 10.1 and later.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Extension File Description

.tcl Forward-annotated Tcl assignments and constraints file. The <project name>.tcl file is
generated for all devices. The .tcl file acts as the Intel Quartus Prime Project Configuration
file and is used to make basic project and placement assignments, and to create and compile
a Intel Quartus Prime project.

.acf Assignment and Configurations file for backward compatibility with the MAX+PLUS II
software. For devices supported by the MAX+PLUS II software, the MAX+PLUS II
assignments are imported from the MAX+PLUS II .acf file.

.sdc Intel Quartus Prime timing constraints file in Synopsys Design Constraints format.
This file is generated automatically if the device uses the Timing Analyzer by default in the
Intel Quartus Prime software, and has the naming convention <project
name>_pnr_constraints .sdc.

Related Information

• Exporting Designs to the Intel Quartus Prime Software Using NativeLink
Integration on page 49

• Synthesizing the Design and Evaluating the Results on page 48

2.5. Creating and Compiling a Project in the Precision Synthesis
Software

After creating your design files, create a project in the Precision Synthesis software
that contains the basic settings for compiling the design.

2.6. Mapping the Precision Synthesis Design

In the next steps, you set constraints and map the design to technology-specific cells.
The Precision Synthesis software maps the design by default to the fastest possible
implementation that meets your timing constraints. To accomplish this, you must
specify timing requirements for the automatically determined clock sources. With this
information, the Precision Synthesis software performs static timing analysis to
determine the location of the critical timing paths. The Precision Synthesis software
achieves the best results for your design when you set as many realistic constraints as
possible. Be sure to set constraints for timing, mapping, false paths, multicycle paths,
and other factors that control the structure of the implemented design.

Mentor Graphics recommends creating an .sdc file and adding this file to the
Constraint Files section of the Project Files list. You can create this file with a text
editor, by issuing command-line constraint parameters, or by directing the Precision
Synthesis software to generate the file automatically the first time you synthesize your
design. By default, the Precision Synthesis software saves all timing constraints and
attributes in two files: precision_rtl.sdc and precision_tech.sdc. The
precision_rtl.sdc file contains constraints set on the RTL-level database (post-
compilation) and the precision_tech.sdc file contains constraints set on the gate-
level database (post- synthesis) located in the current implementation directory.

You can also enter constraints at the command line. After adding constraints at the
command line, update the .sdc file with the update constraint file command.
You can add constraints that change infrequently directly to the HDL source files with
HDL attributes or pragmas.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Precision .sdc file contains all the constraints for the Precision Synthesis project.
For the Intel Quartus Prime software, placement constraints are written in a .tcl file
and timing constraints for the Timing Analyzer are written in the Intel Quartus
Prime.sdc file.

2.6.1. Setting Timing Constraints

The Precision Synthesis software uses timing constraints, based on the industry-
standard .sdc file format, to deliver optimal results. Missing timing constraints can
result in incomplete timing analysis and might prevent timing errors from being
detected. The Precision Synthesis software provides constraint analysis prior to
synthesis to ensure that designs are fully and accurately constrained. The
<project name>_pnr_constraints.sdc file, which contains timing constraints
in .sdc format, is generated in the Intel Quartus Prime software.

Note: Because the .sdc file format requires that timing constraints be set relative to defined
clocks, you must specify your clock constraints before applying any other timing
constraints.

You also can use multicycle path and false path assignments to relax requirements or
exclude nodes from timing requirements, which can improve area utilization and allow
the software optimizations to focus on the most critical parts of the design.

For details about the syntax of Synopsys Design Constraint commands, refer to the
Precision RTL Synthesis User’s Manual and the Precision Synthesis Reference Manual.

2.6.2. Setting Mapping Constraints

Mapping constraints affect how your design is mapped into the target Intel device. You
can set mapping constraints in the user interface, in HDL code, or with the
set_attribute command in the constraint file.

2.6.3. Assigning Pin Numbers and I/O Settings

The Precision Synthesis software supports assigning device pin numbers, I/O
standards, drive strengths, and slew rate settings to top-level ports of the design. You
can set these timing constraints with the set_attribute command, the GUI, or by
specifying synthesis attributes in your HDL code. These constraints are
forward-annotated in the <project name>.tcl file that is read by the Intel Quartus
Prime software during place-and-route and do not affect synthesis.

You can use the set_attribute command in the Precision Synthesis software .sdc
file to specify pin number constraints, I/O standards, drive strengths, and slow
slew-rate settings. The table below describes the format to use for entries in the
Precision Synthesis software constraint file.

Table 5. Constraint File Settings

Constraint Entry Format for Precision Constraint File

Pin number set_attribute -name PIN_NUMBER -value "<pin number>" -port <port name>

I/O standard set_attribute -name IOSTANDARD -value "<I/O Standard>" -port <port name>

continued...

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Constraint Entry Format for Precision Constraint File

Drive strength set_attribute -name DRIVE -value "<drive strength in mA>" -port <port name>

Slew rate set_attribute -name SLEW -value "TRUE | FALSE" -port <port name>

You also can use synthesis attributes or pragmas in your HDL code to make these
assignments.

Example 19. Verilog HDL Pin Assignment

//pragma attribute clk pin_number P10;

Example 20. VHDL Pin Assignment

attribute pin_number : string
attribute pin_number of clk : signal is "P10";

You can use the same syntax to assign the I/O standard using the IOSTANDARD
attribute, drive strength using the attribute DRIVE, and slew rate using the SLEW
attribute.

For more details about attributes and how to set these attributes in your HDL code,
refer to the Precision Synthesis Reference Manual.

2.6.4. Assigning I/O Registers

The Precision Synthesis software performs timing-driven I/O register mapping by
default. You can force a register to the device IO element (IOE) using the Complex I/O
constraint. This option does not apply if you turn off I/O pad insertion.

Note: You also can make the assignment by right-clicking on the pin in the Schematic
Viewer.

For the Stratix series, Cyclone series, and the MAX II device families, the Precision
Synthesis software can move an internal register to an I/O register without any
restrictions on design hierarchy.

For more mature devices, the Precision Synthesis software can move an internal
register to an I/O register only when the register exists in the top-level of the
hierarchy. If the register is buried in the hierarchy, you must flatten the hierarchy so
that the buried registers are moved to the top-level of the design.

2.6.5. Disabling I/O Pad Insertion

The Precision Synthesis software assigns I/O pad atoms (device primitives used to
represent the I/O pins and I/O registers) to all ports in the top-level of a design by
default. In certain situations, you might not want the software to add I/O pads to all
I/O pins in the design. The Intel Quartus Prime software can compile a design without
I/O pads; however, including I/O pads provides the Precision Synthesis software with
more information about the top-level pins in the design.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.5.1. Preventing the Precision Synthesis Software from Adding I/O Pads

If you are compiling a subdesign as a separate project, I/O pins cannot be primary
inputs or outputs of the device; therefore, the I/O pins should not have an I/O pad
associated with them.

To prevent the Precision Synthesis software from adding I/O pads:

• You can use the Precision Synthesis GUI or add the following command to the
project file:

setup_design -addio=false

2.6.5.2. Preventing the Precision Synthesis Software from Adding an I/O Pad on
an Individual Pin

To prevent I/O pad insertion on an individual pin when you are using a black box, such
as DDR or a phase-locked loop (PLL), at the external ports of the design, perform the
following steps:

1. Compile your design.

2. Use the Precision Synthesis GUI to select the individual pin and turn off I/O pad
insertion.

Note: You also can make this assignment by attaching the nopad attribute to the port in the
HDL source code.

2.6.6. Controlling Fan-Out on Data Nets

Fan-out is defined as the number of nodes driven by an instance or top-level port.
High fan-out nets can cause significant delays that result in an unroutable net. On a
critical path, high fan-out nets can cause longer delays in a single net segment that
result in the timing constraints not being met. To prevent this behavior, each device
family has a global fan-out value set in the Precision Synthesis software library. In
addition, the Intel Quartus Prime software automatically routes high fan-out signals on
global routing lines in the Intel device whenever possible.

To eliminate routability and timing issues associated with high fan-out nets, the
Precision Synthesis software also allows you to override the library default value on a
global or individual net basis. You can override the library value by setting a
max_fanout attribute on the net.

2.7. Synthesizing the Design and Evaluating the Results

During synthesis, the Precision Synthesis software optimizes the compiled design, and
then writes out netlists and reports to the implementation subdirectory of your
working directory after the implementation is saved, using the following naming
convention:

<project name>_impl_<number>

After synthesis is complete, you can evaluate the results for area and timing. The
Precision RTL Synthesis User’s Manual describes different results that can be evaluated
in the software.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

There are several schematic viewers available in the Precision Synthesis software: RTL
schematic, Technology-mapped schematic, and Critical Path schematic. These analysis
tools allow you to quickly and easily isolate the source of timing or area issues, and to
make additional constraint or code changes to optimize the design.

2.7.1. Obtaining Accurate Logic Utilization and Timing Analysis Reports

Historically, designers have relied on post-synthesis logic utilization and timing reports
to determine the amount of logic their design requires, the size of the device required,
and how fast the design runs. However, today’s FPGA devices provide a wide variety of
advanced features in addition to basic registers and look-up tables (LUTs). The Intel
Quartus Prime software has advanced algorithms to take advantage of these features,
as well as optimization techniques to increase performance and reduce the amount of
logic required for a given design. In addition, designs can contain black boxes and
functions that take advantage of specific device features. Because of these advances,
synthesis tool reports provide post-synthesis area and timing estimates, but you
should use the place-and-route software to obtain final logic utilization and timing
reports.

2.8. Exporting Designs to the Intel Quartus Prime Software Using
NativeLink Integration

The NativeLink feature in the Intel Quartus Prime software facilitates the seamless
transfer of information between the Intel Quartus Prime software and EDA tools, which
allows you to run other EDA design entry/synthesis, simulation, and timing analysis
tools automatically from within the Intel Quartus Prime software.

After a design is synthesized in the Precision Synthesis software, the
technology-mapped design is written to the current implementation directory as an
EDIF netlist file, along with a Intel Quartus Prime Project Configuration File and a
place-and-route constraints file. You can use the Project Configuration script,
<project name>.tcl, to create and compile a Intel Quartus Prime project for your EDIF
or VQM netlist. This script makes basic project assignments, such as assigning the
target device specified in the Precision Synthesis software. If you select a newer Intel
device, the constraints are written in SDC format to the <project name>_
pnr_constraints.sdc file by default, which is used by the Fitter and the Timing
Analyzer in the Intel Quartus Prime software.

Use the following Precision Synthesis software command before compilation to
generate the <project name>_pnr_constraints.sdc:

setup_design -timequest_sdc

With this command, the file is generated after synthesis.

2.8.1. Running the Intel Quartus Prime Software from within the
Precision Synthesis Software

The Precision Synthesis software also has a built-in place-and-route environment that
allows you to run the Intel Quartus Prime Fitter and view the results in the Precision
Synthesis GUI. This feature is useful when performing an initial compilation of your
design to view post-place-and-route timing and device utilization results. Not all the
advanced Intel Quartus Prime options that control the compilation process are
available when you use this feature.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Two primary Precision Synthesis software commands control the place-and-route
process. Use the setup_place_and_route command to set the place-and-route
options. Start the process with the place_and_route command.

Precision Synthesis software uses individual Intel Quartus Prime executables, such as
analysis and synthesis, Fitter, and the Timing Analyzer for improved runtime and
memory utilization during place and route. This flow is referred to as the Intel
Quartus Prime Modular flow option in the Precision Synthesis software. By default,
the Precision Synthesis software generates a Intel Quartus Prime Project Configuration
File (.tcl file) for current device families. Timing constraints that you set during
synthesis are exported to the Intel Quartus Prime place-and-route constraints file
<project name>_pnr_constraints.sdc.

After you compile the design in the Intel Quartus Prime software from within the
Precision Synthesis software, you can invoke the Intel Quartus Prime GUI manually
and then open the project using the generated Intel Quartus Prime project file. You
can view reports, run analysis tools, specify options, and run the various processing
flows available in the Intel Quartus Prime software.

For more information about running the Intel Quartus Prime software from within the
Precision Synthesis software, refer to the Intel Quartus Prime Integration chapter in
the Precision Synthesis Reference Manual.

2.8.2. Running the Intel Quartus Prime Software Manually Using the
Precision Synthesis-Generated Tcl Script

You can run the Intel Quartus Prime software using a Tcl script generated by the
Precision Synthesis software. To run the Tcl script generated by the Precision Synthesis
software to set up your project and start a full compilation, perform the following
steps:

1. Ensure the .vqm file, .tcl files, and .sdc file are located in the same directory. The
files should be located in the implementation directory by default.

2. In the Intel Quartus Prime software, on the View menu, point to Utility Windows
and click Tcl Console.

3. At the Tcl Console command prompt, type the command:

source <path>/<project name>.tcl

4. On the File menu, click Open Project. Browse to the project name and click
Open.

5. Compile the project in the Intel Quartus Prime software.

2.8.3. Using the Intel Quartus Prime Software to Run the Precision
Synthesis Software

With NativeLink integration, you can set up the Intel Quartus Prime software to run
the Precision Synthesis software. This feature allows you to use the Precision
Synthesis software to synthesize a design as part of a standard compilation. When you
use this feature, the Precision Synthesis software does not use any timing constraints
or assignments that you have set in the Intel Quartus Prime software.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.8.4. Passing Constraints to the Intel Quartus Prime Software

The place-and-route constraints script forward-annotates timing constraints that you
made in the Precision Synthesis software. This integration allows you to enter these
constraints once in the Precision Synthesis software, and then pass them
automatically to the Intel Quartus Prime software.

The following constraints are translated by the Precision Synthesis software and are
applicable to the Timing Analyzer:

• create_clock

• set_input_delay

• set_output_delay

• set_max_delay

• set_min_delay

• set_false_path

• set_multicycle_path

2.8.4.1. create_clock

You can specify a clock in the Precision Synthesis software.

Example 21. Specifying a Clock Using create_clock

create_clock -name <clock_name> -period <period in ns> \
-waveform {<edge_list>} -domain <ClockDomain> <pin>

The period is specified in units of nanoseconds (ns). If no clock domain is specified,
the clock belongs to a default clock domain main. All clocks in the same clock domain
are treated as synchronous (related) clocks. If no <clock_name> is provided, the
default name virtual_default is used. The <edge_list> sets the rise and fall edges
of the clock signal over an entire clock period. The first value in the list is a rising
transition, typically the first rising transition after time zero. The waveform can contain
any even number of alternating edges, and the edges listed should alternate between
rising and falling. The position of any edge can be equal to or greater than zero but
must be equal to or less than the clock period.

If -waveform <edge_list> is not specified and -period <period in ns> is
specified, the default waveform has a rising edge of 0.0 and a falling edge of
<period_value>/2.

The Precision Synthesis software maps the clock constraint to the Timing Analyzer
create_clock setting in the Intel Quartus Prime software.

The Intel Quartus Prime software supports only clock waveforms with two edges in a
clock cycle. If the Precision Synthesis software finds a multi-edge clock, it issues an
error message when you synthesize your design in the Precision Synthesis software.

2.8.4.2. set_input_delay

This port-specific input delay constraint is specified in the Precision Synthesis
software.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 22. Specifying set_input_delay

set_input_delay {<delay_value> <port_pin_list>} \
-clock <clock_name> -rise -fall -add_delay

This constraint is mapped to the set_input_delay setting in the Intel Quartus Prime
software.

When the reference clock <clock_name> is not specified, all clocks are assumed to be
the reference clocks for this assignment. The input pin name for the assignment can
be an input pin name of a time group. The software can use the clock_fall option
to specify delay relative to the falling edge of the clock.

Note: Although the Precision Synthesis software allows you to set input delays on pins inside
the design, these constraints are not sent to the Intel Quartus Prime software, and a
message is displayed.

2.8.4.3. set_output_delay

This port-specific output delay constraint is specified in the Precision Synthesis
software.

Example 23. Using the set_output_delay Constraint

set_output_delay {<delay_value> <port_pin_list>} \
-clock <clock_name> -rise -fall -add_delay

This constraint is mapped to the set_output_delay setting in the Intel Quartus
Prime software.

When the reference clock <clock_name> is not specified, all clocks are assumed to be
the reference clocks for this assignment. The output pin name for the assignment can
be an output pin name of a time group.

Note: Although the Precision Synthesis software allows you to set output delays on pins
inside the design, these constraints are not sent to the Intel Quartus Prime software.

2.8.4.4. set_max_delay and set_min_delay

The maximum delay and minimum delay for a point-to-point timing path constraint is
specified in the Precision Synthesis software.

Example 24. Using the set_max_delay Constraint

set_max_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

Example 25. Using the set_min_delay Constraint

set_min_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

The set_max_delay and set_min_delay commands specify that the maximum and
minimum respectively, required delay for any start point in <from_node_list> to any
endpoint in <to_node_list> must be less than or greater than <delay_value>.
Typically, you use these commands to override the default setup constraint for any
path with a specific maximum or minimum time value for the path.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The node lists can contain a collection of clocks, registers, ports, pins, or cells. The -
from and -to parameters specify the source (start point) and the destination
(endpoint) of the timing path, respectively. The source list (<from_node_list>) cannot
include output ports, and the destination list (<to_node_list>) cannot include input
ports. If you include more than one node on a list, you must enclose the nodes in
quotes or in braces ({ }).

If you specify a clock in the source list, you must specify a clock in the destination list.
Applying set_max_delay or set_min_delay setting between clocks applies the
exception from all registers or ports driven by the source clock to all registers or ports
driven by the destination clock. Applying exceptions between clocks is more efficient
than applying them for specific node-to-node, or node-to-clock paths. If you want to
specify pin names in the list, the source must be a clock pin and the destination must
be any non-clock input pin to a register. Assignments from clock pins, or to and from
cells, apply to all registers in the cell or for those driven by the clock pin.

2.8.4.5. set_false_path

The false path constraint is specified in the Precision Synthesis software.

Example 26. Using the set_false_path Constraint

set_false_path -to <to_node_list> -from <from_node_list> -reset_path

The node lists can be a list of clocks, ports, instances, and pins. Multiple elements in
the list can be represented using wildcards such as * and ?.

In a place-and-route Tcl constraints file, this false path setting in the Precision
Synthesis software is mapped to a set_false_path setting. The Intel Quartus Prime
software supports setup, hold, rise, or fall options for this assignment.

The node lists for this assignment represents top-level ports and/or nets connected to
instances (end points of timing assignments).

Any false path setting in the Precision Synthesis software can be mapped to a setting
in the Intel Quartus Prime software with a through path specification.

2.8.4.6. set_multicycle_path

The multicycle path constraint is specified in the Precision Synthesis software.

Example 27. Using the set_multicycle_path Constraint

set_multicycle_path <multiplier_value> [-start] [-end] \
-to <to_node_list> -from <from_node_list> -reset_path

The node list can contain clocks, ports, instances, and pins. Multiple elements in the
list can be represented using wildcards such as * and ?. Paths without multicycle path
definitions are identical to paths with multipliers of 1. To add one additional cycle to
the datapath, use a multiplier value of 2. The option start indicates that source clock
cycles should be considered for the multiplier. The option end indicates that
destination clock cycles should be considered for the multiplier. The default is to
reference the end clock.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the place-and-route Tcl constraints file, the multicycle path setting in the Precision
Synthesis software is mapped to a set_multicycle_path setting. The Intel Quartus
Prime software supports the rise or fall options on this assignment.

The node lists represent top-level ports and/or nets connected to instances (end
points of timing assignments). The node lists can contain wildcards (such as *); the
Intel Quartus Prime software automatically expands all wildcards.

Any multicycle path setting in Precision Synthesis software can be mapped to a setting
in the Intel Quartus Prime software with a -through specification.

2.9. Guidelines for Intel FPGA IP Cores and Architecture-Specific
Features

Intel provides parameterizable IP cores, including the LPMs, and device-specific Intel
FPGA IP, and IP available through third-party partners. You can use IP cores by
instantiating them in your HDL code or by inferring certain functions from generic HDL
code.

If you want to instantiate an IP core such as a PLL in your HDL code, you can
instantiate and parameterize the function using the port and parameter definitions, or
you can customize a function with the parameter editor. Intel recommends using the
IP Catalog and parameter editor, which provides a graphical interface within the Intel
Quartus Prime software for customizing and parameterizing any available IP core for
the design.

The Precision Synthesis software automatically recognizes certain types of HDL code
and infers the appropriate IP core.

Related Information

Inferring Intel FPGA IP Cores from HDL Code on page 57

2.9.1. Instantiating IP Cores With IP Catalog-Generated Verilog HDL Files

The IP Catalog generates a Verilog HDL instantiation template file <output
file>_inst.v and a hollow-body black box module declaration <output file>_bb.v for
use in your Precision Synthesis design. Incorporate the instantiation template file,
<output file>_inst.v, into your top-level design to instantiate the IP core wrapper
file, <output file>.v.

Include the hollow-body black box module declaration <output file>_bb.v in your
Precision Synthesis project to describe the port connections of the black box. Adding
the IP core wrapper file <output file>.v in your Precision Synthesis project is optional,
but you must add it to your Intel Quartus Prime project along with the Precision
Synthesis generated EDIF or VQM netlist.

Alternatively, you can include the IP core wrapper file <output file>.v in your Precision
Synthesis project and turn on the Exclude file from Compile Phase option in the
Precision Synthesis software to exclude the file from compilation and to copy the file
to the appropriate directory for use by the Intel Quartus Prime software during place-
and-route.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.2. Instantiating IP Cores With IP Catalog-Generated VHDL Files

The IP Catalog generates a VHDL component declaration file <output file>.cmp and a
VHDL instantiation template file <output file>_inst.vhd for use in your Precision
Synthesis design. Incorporate the component declaration and instantiation template
into your top-level design to instantiate the IP core wrapper file, <output file>.vhd.

Adding the IP core wrapper file <output file>.vhd in your Precision Synthesis project
is optional, but you must add the file to your Intel Quartus Prime project along with
the Precision Synthesis-generated EDIF or VQM netlist.

Alternatively, you can include the IP core wrapper file <output file>.v in your Precision
Synthesis project and turn on the Exclude file from Compile Phase option in the
Precision Synthesis software to exclude the file from compilation and to copy the file
to the appropriate directory for use by the Intel Quartus Prime software during place-
and-route.

2.9.3. Instantiating Intellectual Property With the IP Catalog and
Parameter Editor

Many Intel FPGA IP functions include a resource and timing estimation netlist that the
Precision Synthesis software can use to synthesize and optimize logic around the IP
efficiently. As a result, the Precision Synthesis software provides better timing
correlation, area estimates, and Quality of Results (QoR) than a black box approach.

To create this netlist file, perform the following steps:

1. Select the IP function in the IP Catalog.

2. Click Next to open the Parameter Editor.

3. Click Set Up Simulation, which sets up all the EDA options.

4. Turn on the Generate netlist option to generate a netlist for resource and timing
estimation and click OK.

5. Click Generate to generate the netlist file.

The Intel Quartus Prime software generates a file <output file>_syn.v. This netlist
contains the “gray box” information for resource and timing estimation, but does not
contain the actual implementation. Include this netlist file into your Precision
Synthesis project as an input file. Then include the IP core wrapper file <output
file>.v|vhd in the Intel Quartus Prime project along with your EDIF or VQM output
netlist.

The generated “gray box” netlist file, <output file>_syn.v , is always in Verilog HDL
format, even if you select VHDL as the output file format.

Note: For information about creating a gray box netlist file from the command line, search
Altera's Knowledge Database.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.4. Instantiating Black Box IP Functions With Generated Verilog HDL
Files

You can use the syn_black_box or black_box compiler directives to declare a
module as a black box. The top-level design files must contain the IP port mapping
and a hollow-body module declaration. You can apply the directive to the module
declaration in the top-level file or a separate file included in the project so that the
Precision Synthesis software recognizes the module is a black box.

Note: The syn_black_box and black_box directives are supported only on module or
entity definitions.

The example below shows a sample top-level file that instantiates my_verilogIP.v,
which is a simplified customized variation generated by the IP Catalog and Parameter
Editor.

Example 28. Top-Level Verilog HDL Code with Black Box Instantiation of IP

module top (clk, count);
 input clk;
 output[7:0] count;

 my_verilogIP verilogIP_inst (.clock (clk), .q (count));
endmodule

// Module declaration
// The following attribute is added to create a
// black box for this module.
module my_verilogIP (clock, q) /* synthesis syn_black_box */;
 input clock;
 output[7:0] q;
endmodule

2.9.5. Instantiating Black Box IP Functions With Generated VHDL Files

You can use the syn_black_box or black_box compiler directives to declare a
component as a black box. The top-level design files must contain the IP core
variation component declaration and port mapping. Apply the directive to the
component declaration in the top-level file.

Note: The syn_black_box and black_box directives are supported only on module or
entity definitions.

The example below shows a sample top-level file that instantiates my_vhdlIP.vhd,
which is a simplified customized variation generated by the IP Catalog and Parameter
Editor.

Example 29. Top-Level VHDL Code with Black Box Instantiation of IP

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY top IS
 PORT (
 clk: IN STD_LOGIC ;
 count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END top;

ARCHITECTURE rtl OF top IS
 COMPONENT my_vhdlIP

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 PORT (
 clock: IN STD_LOGIC ;
 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
 end COMPONENT;
 attribute syn_black_box : boolean;
 attribute syn_black_box of my_vhdlIP: component is true;
 BEGIN
 vhdlIP_inst : my_vhdlIP PORT MAP (
 clock => clk,
 q => count
);
END rtl;

2.9.6. Inferring Intel FPGA IP Cores from HDL Code

The Precision Synthesis software automatically recognizes certain types of HDL code
and maps arithmetical operators, relational operators, and memory (RAM and ROM),
to technology-specific implementations. This functionality allows technology-specific
resources to implement these structures by inferring the appropriate Intel function to
provide optimal results. In some cases, the Precision Synthesis software has options
that you can use to disable or control inference.

For coding style recommendations and examples for inferring technology-specific
architecture in Intel devices, refer to the Precision Synthesis Style Guide.

2.9.6.1. Multipliers

The Precision Synthesis software detects multipliers in HDL code and maps them
directly to device atoms to implement the multiplier in the appropriate type of logic.
The Precision Synthesis software also allows you to control the device resources that
are used to implement individual multipliers.

2.9.6.1.1. Controlling DSP Block Inference for Multipliers

By default, the Precision Synthesis software uses DSP blocks available in Stratix series
devices to implement multipliers. The default setting is AUTO, which allows the
Precision Synthesis software to map to logic look-up tables (LUTs) or DSP blocks,
depending on the size of the multiplier. You can use the Precision Synthesis GUI or
HDL attributes for direct mapping to only logic elements or to only DSP blocks.

Table 6. Options for dedicated_mult Parameter to Control Multiplier Implementation
in Precision Synthesis

Value Description

ON Use only DSP blocks to implement multipliers, regardless of the size of the multiplier.

OFF Use only logic (LUTs) to implement multipliers, regardless of the size of the multiplier.

AUTO Use logic (LUTs) or DSP blocks to implement multipliers, depending on the size of the multipliers.

2.9.6.2. Setting the Use Dedicated Multiplier Option

To set the Use Dedicated Multiplier option in the Precision Synthesis GUI,
compile the design, and then in the Design Hierarchy browser, right-click the operator
for the desired multiplier and click Use Dedicated Multiplier.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.3. Setting the dedicated_mult Attribute

To control the implementation of a multiplier in your HDL code, use the
dedicated_mult attribute with the appropriate value as shown in the examples
below.

Example 30. Setting the dedicated_mult Attribute in Verilog HDL

//synthesis attribute <signal name> dedicated_mult <value>

Example 31. Setting the dedicated_mult Attribute in VHDL

ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE dedicated_mult OF <signal name>: SIGNAL IS <value>;

The dedicated_mult attribute can be applied to signals and wires; it does not work
when applied to a register. This attribute can be applied only to simple multiplier code,
such as a = b * c.

Some signals for which the dedicated_mult attribute is set can be removed during
synthesis by the Precision Synthesis software for design optimization. In such cases, if
you want to force the implementation, you should preserve the signal by setting the
preserve_signal attribute to TRUE.

Example 32. Setting the preserve_signal Attribute in Verilog HDL

//synthesis attribute <signal name> preserve_signal TRUE

Example 33. Setting the preserve_signal Attribute in VHDL

ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE preserve_signal OF <signal name>: SIGNAL IS TRUE;

Example 34. Verilog HDL Multiplier Implemented in Logic

module unsigned_mult (result, a, b);
 output [15:0] result;
 input [7:0] a;
 input [7:0} b;
 assign result = a * b;
 //synthesis attribute result dedicated_mult OFF
endmodule

Example 35. VHDL Multiplier Implemented in Logic

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY unsigned_mult IS
 PORT(
 a: IN std_logic_vector (7 DOWNTO 0);
 b: IN std_logic_vector (7 DOWNTO 0);
 result: OUT std_logic_vector (15 DOWNTO 0));
ATTRIBUTE dedicated_mult: STRING;
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
 SIGNAL a_int, b_int: UNSIGNED (7 downto 0);
 SIGNAL pdt_int: UNSIGNED (15 downto 0);
ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF;

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

BEGIN
 a_int <= UNSIGNED (a);
 b_int <= UNSIGNED (b);
 pdt_int <= a_int * b_int;
 result <= std_logic_vector(pdt_int);
END rtl;

2.9.6.4. Multiplier-Accumulators and Multiplier-Adders

The Precision Synthesis software also allows you to control the device resources used
to implement multiply-accumulators or multiply-adders in your project or in a
particular module.

The Precision Synthesis software detects multiply-accumulators or multiply-adders in
HDL code and infers an ALTMULT_ACCUM or ALTMULT_ADD IP cores so that the logic
can be placed in DSP blocks, or the software maps these functions directly to device
atoms to implement the multiplier in the appropriate type of logic.

Note: The Precision Synthesis software supports inference for these functions only if the
target device family has dedicated DSP blocks.

For more information about DSP blocks in Intel devices, refer to the appropriate Intel
device family handbook and device-specific documentation. For details about which
functions a given DSP block can implement, refer to the DSP Solutions Center on the
Altera website.

For more information about inferring multiply-accumulator and multiply-adder IP cores
in HDL code, refer to the Intel Recommended HDL Coding Styles and the Mentor
Graphics Precision Synthesis Style Guide.

Related Information

Altera DSP Solutions website

2.9.6.5. Controlling DSP Block Inference

By default, the Precision Synthesis software infers the ALTMULT_ADD or
ALTMULT_ACCUM IP cores appropriately in your design. These IP cores allow the Intel
Quartus Prime software to select either logic or DSP blocks, depending on the device
utilization and the size of the function.

You can use the extract_mac attribute to prevent inference of an ALTMULT_ADD or
ALTMULT_ACCUM IP cores in a certain module or entity.

Table 7. Options for extract_mac Attribute Controlling DSP Implementation

Value Description

TRUE The ALTMULT_ADD or ALTMULT_ACCUM IP core is inferred.

FALSE The ALTMULT_ADD or ALTMULT_ACCUM IP core is not inferred.

To control inference, use the extract_mac attribute with the appropriate value from
the examples below in your HDL code.

Example 36. Setting the extract_mac Attribute in Verilog HDL

//synthesis attribute <module name> extract_mac <value>

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

59

http://www.altera.com/technology/dsp/dsp-index.jsp
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 37. Setting the extract_mac Attribute in VHDL

ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF <entity name>: ENTITY IS <value>;

To control the implementation of the multiplier portion of a multiply-accumulator or
multiply-adder, you must use the dedicated_mult attribute.

You can use the extract_mac, dedicated_mult, and preserve_signal attributes
(in Verilog HDL and VHDL) to implement the given DSP function in logic in the Intel
Quartus Prime software.

Example 38. Using extract_mac, dedicated_mult, and preserve_signal in Verilog HDL

module unsig_altmult_accuml (dataout, dataa, datab, clk, aclr, clken);
 input [7:0} dataa, datab;
 input clk, aclr, clken;
 output [31:0] dataout;

 reg [31:0] dataout;
 wire [15:0] multa;
 wire [31:0] adder_out;

 assign multa = dataa * datab;

 //synthesis attribute multa preserve_signal TRUE
 //synthesis attribute multa dedicated_mult OFF
 assign adder_out = multa + dataout;

 always @ (posedge clk or posedge aclr)
 begin
 if (aclr)
 dataout <= 0;
 else if (clken)
 dataout <= adder_out;
 end

 //synthesis attribute unsig_altmult_accuml extract_mac FALSE
endmodule

Example 39. Using extract_mac, dedicated_mult, and preserve_signal in VHDL

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;
ENTITY signedmult_add IS
 PORT(
 a, b, c, d: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0));
 ATTRIBUTE preserve_signal: BOOLEANS;
 ATTRIBUTE dedicated_mult: STRING;
 ATTRIBUTE extract_mac: BOOLEAN;
 ATTRIBUTE extract_mac OF signedmult_add: ENTITY IS FALSE;
END signedmult_add;
ARCHITECTURE rtl OF signedmult_add IS
 SIGNAL a_int, b_int, c_int, d_int : signed (7 DOWNTO 0);
 SIGNAL pdt_int, pdt2_int : signed (15 DOWNTO 0);
 SIGNAL result_int: signed (15 DOWNTO 0);
 ATTRIBUTE preserve_signal OF pdt_int: SIGNAL IS TRUE;
 ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
 ATTRIBUTE preserve_signal OF pdt2_int: SIGNAL IS TRUE;
 ATTRIBUTE dedicated_mult OF pdt2_int: SIGNAL IS "OFF";
BEGIN
 a_int <= signed (a);
 b_int <= signed (b);

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 c_int <= signed (c);
 d_int <= signed (d);
 pdt_int <= a_int * b_int;
 pdt2_int <= c_int * d_int;
 result_int <= pdt_int + pdt2_int;
 result <= STD_LOGIC_VECTOR(result_int);
END rtl;

2.9.6.6. RAM and ROM

The Precision Synthesis software detects memory structures in HDL code and converts
them to an operator that infers an ALTSYNCRAM or LPM_RAM_DP IP cores, depending
on the device family. The software then places these functions in memory blocks.

The software supports inference for these functions only if the target device family has
dedicated memory blocks.

For more information about inferring RAM and ROM IP cores in HDL code, refer to the
Precision Synthesis Style Guide.

2.10. Incremental Compilation and Block-Based Design

As designs become more complex and designers work in teams, a block-based
incremental design flow is often an effective design approach. In an incremental
compilation flow, you can make changes to one part of the design while maintaining
the placement and performance of unchanged parts of the design. Design iterations
can be made dramatically faster by focusing new compilations on particular design
partitions and merging results with the results of previous compilations of other
partitions. You can perform optimization on individual blocks and then integrate them
into a final design and optimize the design at the top-level.

The first step in an incremental design flow is to make sure that different parts of your
design do not affect each other. You must ensure that you have separate netlists for
each partition in your design. If the whole design is in one netlist file, changes in one
partition affect other partitions because of possible node name changes when you
resynthesize the design.

You can create different implementations for each partition in your Precision Synthesis
project, which allows you to switch between partitions without leaving the current
project file. You can also create a separate project for each partition if you require
separate projects for a team-based design flow. Alternatively, you can use the
incremental synthesis capability in the Precision RTL Plus software.

2.10.1. Creating a Design with Precision RTL Plus Incremental Synthesis

The Precision RTL Plus incremental synthesis flow for Intel Quartus Prime incremental
compilation uses a partition-based approach to achieve faster design cycle time.

Using the incremental synthesis feature, you can create different netlist files for
different partitions of a design hierarchy within one partition implementation, which
makes each partition independent of the others in an incremental compilation flow.
Only the portions of a design that have been updated must be recompiled during
design iterations. You can make changes and resynthesize one partition in a design to
create a new netlist without affecting the synthesis results or fitting of other
partitions.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following steps show a general flow for partition-based incremental synthesis with
Intel Quartus Prime incremental compilation:

1. Create Verilog HDL or VHDL design files.

2. Determine which hierarchical blocks you want to treat as separate partitions in
your design, and designate the partitions with the incr_partition attribute.

3. Create a project in the Precision RTL Plus Synthesis software and add the HDL
design files to the project.

4. Enable incremental synthesis in the Precision RTL Plus Synthesis software using
one of these methods:

• Use the Precision RTL Plus Synthesis GUI to turn on Enable Incremental
Synthesis.

• Run the following command in the Transcript Window:

setup_design -enable_incr_synth

5. Run the basic Precision Synthesis flow of compilation, synthesis, and place-and-
route on your design. In subsequent runs, the Precision RTL Plus Synthesis
software processes only the parts of the design that have changed, resulting in a
shorter iteration than the initial run. The performance of the unchanged partitions
is preserved.

The Precision RTL Plus Synthesis software sets the netlist types of the unchanged
partitions to Post Fit and the changed partitions to Post Synthesis. You can
change the netlist type during timing closure in the Intel Quartus Prime software
to obtain the best QoR.

6. Import the EDIF or VQM netlist for each partition and the top-level .tcl file into the
Intel Quartus Prime software, and set up the Intel Quartus Prime project to use
incremental compilation.

7. Compile your Intel Quartus Prime project.

8. If you want, you can change the Intel Quartus Prime incremental compilation
netlist type for a partition with the Design Partitions Window. You can change
the Netlist Type to one of the following options:

• To preserve the previous post-fit placement results, change the Netlist Type
of the partition to Post-Fit.

• To preserve the previous routing results, set the Fitter Preservation Level of
the partition to Placement and Routing.

2.10.1.1. Creating Partitions with the incr_partition Attribute

Partitions are set using the HDL incr_partition attribute. The Precision Synthesis
software creates or deletes partitions by reading this attribute during compilation
iterations. The attribute can be attached to either the design unit definition or an
instance.

To delete partitions, you can remove the attribute or set the attribute value to false.

Note: The Precision Synthesis software ignores partitions set in a black box.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 40. Using incr_partition Attribute to Create a Partition in Verilog HDL

Design unit partition:

module my_block(
 input clk;
 output reg [31:0] data_out) /* synthesis incr_partition */ ;

Instance partition:

my_block my_block_inst(.clk(clk), .data_out(data_out));
// synthesis attribute my_block_inst incr_partition true

Example 41. Using incr_partition Attribute to a Create Partition in VHDL

Design unit partition:

entity my_block is
 port(
 clk : in std_logic;
 data_out : out std_logic_vector(31 downto 0)
);
 attribute incr_partition : boolean;
 attribute incr_partition of my_block : entity is true;
end entity my_block;

Instance partition:

component my_block is
 port(
 clk : in std_logic;
 data_out : out std_logic_vector(31 downto 0)
);
end component;

attribute incr_partition : boolean;
attribute incr_partition of my_block_inst : label is true;

my_block_inst my_block
 port map(clk, data_out);

2.10.2. Creating Multiple Mapped Netlist Files With Separate Precision
Projects or Implementations

You can manually generate multiple netlist files, which can be VQM or EDIF files, for
incremental compilation using black boxes and separate Precision projects or
implementations for each design partition. This manual flow is supported in versions of
the Precision software that do not include the incremental synthesis feature. You
might also use this feature if you perform synthesis in a team-based environment
without a top-level synthesis project that includes all of the lower-level design blocks.

In the Precision Synthesis software, create a separate implementation, or a separate
project, for each lower-level module and for the top-level design that you want to
maintain as a separate netlist file. Implement black box instantiations of lower-level
modules in your top-level implementation or project.

For more information about managing implementations and projects, refer to the
Precision RTL Synthesis User’s Manual.

Note: In a standard Intel Quartus Prime incremental compilation flow, Precision Synthesis
software constraints made on lower-level modules are not passed to the Intel Quartus
Prime software. Ensure that appropriate constraints are made in the top-level
Precision Synthesis project, or in the Intel Quartus Prime project.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.3. Creating Black Boxes to Create Netlists

In the figure below, the top-level partition contains the top-level block in the design
(block A) and the logic that is not defined as part of another partition. In this example,
the partition for top-level block A also includes the logic in the sub-block C. Because
block F is contained in its own partition, it is not treated as part of the top-level
partition A. Another separate partition, B, contains the logic in blocks B, D, and E. In a
team-based design, different engineers may work on the logic in different partitions.
One netlist is created for the top-level module A and its submodule C, another netlist
is created for module B and its submodules D and E, while a third netlist is created for
module F.

Figure 10. Partitions in a Hierarchical Design

Partition Top

Partition B Partition F

D E

B

A

F

C

To create multiple EDIF netlist files for this design, follow these steps:

1. Generate a netlist file for module B. Use B.v/.vhd, D.v/.vhd, and E.v/.vhd as the
source files.

2. Generate a netlist file for module F. Use F.v/.vhd as the source file.

3. Generate a top-level netlist file for module A. Use A.v/.vhd and C.v/.vhd as the
source files. Ensure that you create black boxes for modules B and F, which were
optimized separately in the previous steps.

The goal is to individually synthesize and generate a netlist file for each lower-level
module and then instantiate these modules as black boxes in the top-level file. You
can then synthesize the top-level file to generate the netlist file for the top-level
design. Finally, both the lower-level and top-level netlist files are provided to your
Intel Quartus Prime project.

Note: When you make design or synthesis optimization changes to part of your design,
resynthesize only the changed partition to generate the new netlist file. Do not
resynthesize the implementations or projects for the unchanged partitions.

2.10.3.1. Creating Black Boxes in Verilog HDL

Any design block that is not defined in the project or included in the list of files to be
read for a project is treated as a black box by the software. In Verilog HDL, you must
provide an empty module declaration for any module that is treated as a black box.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A black box for the top-level file A.v is shown in the following example. Provide an
empty module declaration for any lower-level files, which also contain a black box for
any module beneath the current level of hierarchy.

Example 42. Verilog HDL Black Box for Top-Level File A.v

module A (data_in, clk, e, ld, data_out);
 input data_in, clk, e, ld;
 output [15:0] data_out;
 wire [15:0] cnt_out;
 B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
 F U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));
 // Any other code in A.v goes here.
endmodule
//Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black boxes.
module B (data_in, clk, ld, data_out);
 input data_in, clk, ld;
 output [15:0] data_out;
endmodule
module F (d, clk, e, q);
 input [15:0] d;
 input clk, e;
 output [15:0] q;
endmodule

2.10.3.2. Creating Black Boxes in VHDL

Any design block that is not defined in the project or included in the list of files to be
read for a project is treated as a black box by the software. In VHDL, you must
provide a component declaration for the black box.

A black box for the top-level file A.vhd is shown in the example below. Provide a
component declaration for any lower-level files that also contain a black box or for any
block beneath the current level of hierarchy.

Example 43. VHDL Black Box for Top-Level File A.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY A IS
 PORT (data_in : IN INTEGER RANGE 0 TO 15;
 clk, e, ld : IN STD_LOGIC;
 data_out : OUT INTEGER RANGE 0 TO 15);
END A;
ARCHITECTURE a_arch OF A IS
COMPONENT B PORT(
 data_in : IN INTEGER RANGE 0 TO 15;
 clk, ld : IN STD_LOGIC;
 d_out : OUT INTEGER RANGE 0 TO 15);
END COMPONENT;
COMPONENT F PORT(
 d : IN INTEGER RANGE 0 TO 15;
 clk, e: IN STD_LOGIC;
 q : OUT INTEGER RANGE 0 TO 15);
END COMPONENT;
-- Other component declarations in A.vhd go here
signal cnt_out : INTEGER RANGE 0 TO 15;
BEGIN
 U1 : B
 PORT MAP (
 data_in => data_in,
 clk => clk,
 ld => ld,
 d_out => cnt_out);
 U2 : F

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 PORT MAP (
 d => cnt_out,
 clk => clk,
 e => e,
 q => data_out);
 -- Any other code in A.vhd goes here
END a_arch;

After you complete the steps outlined above, you have different netlist files for each
partition of the design. These files are ready for use with incremental compilation in
the Intel Quartus Prime software.

2.10.4. Creating Intel Quartus Prime Projects for Multiple Netlist Files

The Precision Synthesis software creates a .tcl file for each implementation, and
provides the Intel Quartus Prime software with the appropriate constraints and
information to set up a project. When using incremental synthesis, the Precision RTL
Plus Synthesis software creates only a single .tcl file, <project
name>_incr_partitions.tcl, to pass the partition information to the Intel Quartus
Prime software.

Depending on your design methodology, you can create one Intel Quartus Prime
project for all netlists, or a separate Intel Quartus Prime project for each netlist. In the
standard incremental compilation design flow, you create design partition assignments
for each partition in the design within a single Intel Quartus Prime project. This
methodology provides the best QoR and performance preservation during incremental
changes to your design. You might require a bottom-up design flow if each partition
must be optimized separately, such as for third-party IP delivery.

To follow this design flow in the Intel Quartus Prime software, create separate Intel
Quartus Prime projects and export each design partition and incorporate it into a
top-level design using the incremental compilation features to maintain placement
results.

Related Information

Running the Intel Quartus Prime Software Manually Using the Precision
Synthesis-Generated Tcl Script on page 50

2.10.4.1. Creating a Single Intel Quartus Prime Project for a Standard
Incremental Compilation Flow

Use the <top-level project>.tcl file generated for the top-level partition to create your
Intel Quartus Prime project and import all the netlists into this one Intel Quartus
Prime project for an incremental compilation flow. You can optimize all partitions
within the single Intel Quartus Prime project and take advantage of the performance
preservation and compilation time reduction that incremental compilation provides.

All the constraints from the top-level implementation are passed to the Intel Quartus
Prime software in the top-level .tcl file, but any constraints made only in the
lower-level implementations within the Precision Synthesis software are not
forward-annotated. Enter these constraints manually in your Intel Quartus Prime
project.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.4.2. Creating Multiple Intel Quartus Prime Projects for a Bottom-Up Flow

Use the .tcl files generated by the Precision Synthesis software for each Precision
Synthesis software implementation or project to generate multiple Intel Quartus Prime
projects, one for each partition in the design. Each designer in the project can
optimize their block separately in the Intel Quartus Prime software and export the
placement of their blocks using incremental compilation. Designers should create a
LogicLock region to provide a floorplan location assignment for each block; the top-
level designer should then import all the blocks and assignments into the top-level
project.

2.10.5. Hierarchy and Design Considerations

To ensure the proper functioning of the synthesis flow, you can create separate
partitions only for modules, entities, or existing netlist files. In addition, each module
or entity must have its own design file. If two different modules are in the same
design file, but are defined as being part of different partitions, incremental synthesis
cannot be maintained because both regions must be recompiled when you change one
of the modules.

Intel recommends that you register all inputs and outputs of each partition. This
makes logic synchronous and avoids any delay penalty on signals that cross partition
boundaries.

If you use boundary tri-states in a lower-level block, the Precision Synthesis software
pushes the tri-states through the hierarchy to the top-level to make use of the tri-
state drivers on output pins of Intel devices. Because pushing tri-states requires
optimizing through hierarchies, lower-level tri-states are not supported with a
block-based compilation methodology. You should use tri-state drivers only at the
external output pins of the device and in the top-level block in the hierarchy.

2.11. Mentor Graphics Precision* Synthesis Support Revision
History

Date Version Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 • Dita conversion.
• Removed obsolete devices.
• Replaced Intel FPGA IP, MegaWizard, and IP Toolbench content with IP Catalog and

Parameter Editor content.

June 2012 12.0.0 • Removed survey link.

November 2011 10.1.1 • Template update.
• Minor editorial changes.

December 2010 10.1.0 • Changed to new document template.
• Removed Classic Timing Analyzer support.
• Added support for . vqm netlist files.
• Edited the “Creating Intel Quartus Prime Projects for Multiple EDIF Files” on page 15–30

section for changes with the incremental compilation flow.
• Editorial changes.

July 2010 10.0.0 • Minor updates for the Intel Quartus Prime software version 10.0 release

November 2009 9.1.0 • Minor updates for the Intel Quartus Prime software version 9.1 release

continued...

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

March 2009 9.0.0 • Updated list of supported devices for the Intel Quartus Prime software version 9.0 release
• Chapter 11 was previously Chapter 10 in software version 8.1

November 2008 8.1.0 • Changed to 8-1/2 x 11 page size
• Title changed to Mentor Graphics Precision Synthesis Support
• Updated list of supported devices
• Added information about the Precision RTL Plus incremental synthesis flow
• Updated Figure 10-1 to include SystemVerilog
• Updated “Guidelines for Intel FPGA IP and Architecture-Specific Features” on page 10–19
• Updated “Incremental Compilation and Block-Based Design” on page 10–28
• Added section “Creating Partitions with the incr_partition Attribute” on page 10–29

May 2008 8.0.0 • Removed Mercury from the list of supported devices
• Changed Precision version to 2007a update 3
• Added note for Stratix IV support
• Renamed “Creating a Project and Compiling the Design” section to “Creating and Compiling

a Project in the Precision RTL Synthesis Software”
• Added information about constraints in the Tcl file
• Updated document based on the Intel Quartus Prime software version 8.0

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

2. Mentor Graphics Precision* Synthesis Support

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

68

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683796 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys* that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics*, and Synopsys*. Includes design flow steps,
generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor
Graphics* and Cadence*. Also includes information about signal integrity
analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

A. Intel Quartus Prime Standard Edition User Guides

683796 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis Send Feedback

70

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Third-party%20Synthesis%20(683796%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Standard
Edition User Guide
Debug Tools

Updated for Intel® Quartus® Prime Design Suite: 18.1

This document is part of a collection - Intel® Quartus® Prime Standard Edition User Guides -
Combined PDF link

Online Version

Send Feedback UG-20182

683552

2018.09.24

https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683552.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. System Debugging Tools Overview... 7
1.1. System Debugging Tools Portfolio.. 7

1.1.1. System Debugging Tools Comparison... 7
1.1.2. Suggested Tools for Common Debugging Requirements.................................. 8
1.1.3. Debugging Ecosystem.. 9

1.2. Tools for Monitoring RTL Nodes.. 10
1.2.1. Resource Usage... 10
1.2.2. Pin Usage... 12
1.2.3. Usability Enhancements.. 12

1.3. Stimulus-Capable Tools...13
1.3.1. In-System Sources and Probes.. 14
1.3.2. In-System Memory Content Editor..14
1.3.3. System Console...15

1.4. Virtual JTAG Interface Intel FPGA IP... 15
1.5. System-Level Debug Fabric... 16
1.6. System Debugging Tools Overview Revision History..16

2. Analyzing and Debugging Designs with System Console...17
2.1. Introduction to System Console... 17
2.2. System Console Debugging Flow..18
2.3. IP Cores that Interact with System Console... 19

2.3.1. Services Provided through Debug Agents.. 19
2.4. Starting System Console...20

2.4.1. Starting System Console from Nios II Command Shell...................................20
2.4.2. Starting Stand-Alone System Console... 20
2.4.3. Starting System Console from Platform Designer (Standard)..........................20
2.4.4. Starting System Console from Intel Quartus Prime....................................... 20
2.4.5. Customizing Startup...20

2.5. System Console GUI...21
2.5.1. System Explorer Pane...22

2.6. System Console Commands.. 23
2.7. Running System Console in Command-Line Mode...25
2.8. System Console Services.. 26

2.8.1. Locating Available Services..26
2.8.2. Opening and Closing Services.. 27
2.8.3. SLD Service.. 27
2.8.4. In-System Sources and Probes Service... 28
2.8.5. Monitor Service... 30
2.8.6. Device Service...32
2.8.7. Design Service.. 33
2.8.8. Bytestream Service.. 34
2.8.9. JTAG Debug Service... 35

2.9. Working with Toolkits... 36
2.9.1. Convert your Dashboard Scripts to Toolkit API... 36
2.9.2. Creating a Toolkit Description File...36
2.9.3. Registering a Toolkit...37
2.9.4. Launching a Toolkit.. 37

Contents

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.5. Matching Toolkits with IP Cores..38
2.9.6. Toolkit API.. 38

2.10. ADC Toolkit... 75
2.10.1. ADC Toolkit Terms.. 78
2.10.2. Setting the Frequency of the Reference Signal..78
2.10.3. Tuning the Signal Generator.. 79
2.10.4. Running a Signal Quality Test...81
2.10.5. Running a Linearity Test..82
2.10.6. ADC Toolkit Data Views... 82

2.11. System Console Examples and Tutorials.. 85
2.11.1. Nios II Processor Example... 85

2.12. On-Board Intel FPGA Download Cable II Support.. 87
2.13. MATLAB and Simulink* in a System Verification Flow ..87

2.13.1. Supported MATLAB API Commands...89
2.13.2. High Level Flow..89

2.14. Deprecated Commands...89
2.15. Analyzing and Debugging Designs with the System Console Revision History..............90

3. Debugging Transceiver Links.. 92
3.1. Channel Manager...92

3.1.1. Channel Display Modes... 94
3.2. Transceiver Debugging Flow Walkthrough..94
3.3. Modifying the Design to Enable Transceiver Debug... 94

3.3.1. Adapting an Intel FPGA Design Example ...94
3.3.2. Stratix V Debug System Configuration.. 97
3.3.3. Instantiating and Parameterizing Intel Arria 10 Debug IP cores.....................103

3.4. Programming the Design into an Intel FPGA...105
3.5. Loading the Design in the Transceiver Toolkit... 106
3.6. Linking Hardware Resources.. 106

3.6.1. Linking One Design to One Device.. 108
3.6.2. Linking Two Designs to Two Devices..108
3.6.3. Linking One Design on Two Devices.. 108
3.6.4. Linking Designs and Devices on Separate Boards..109
3.6.5. Verifying Hardware Connections... 109

3.7. Identifying Transceiver Channels.. 110
3.7.1. Controlling Transceiver Channels.. 110

3.8. Creating Transceiver Links...110
3.9. Running Link Tests... 110

3.9.1. Running BER Tests... 111
3.9.2. Signal Eye Margin Testing (Stratix V only)... 111
3.9.3. Running Custom Traffic Tests (Stratix V only) .. 113
3.9.4. Link Optimization Tests... 114

3.10. Controlling PMA Analog Settings...115
3.10.1. Intel Arria 10 and Intel Cyclone 10 GX PMA Settings................................. 115

3.11. User Interface Settings Reference...119
3.12. Troubleshooting Common Errors...123
3.13. Scripting API Reference...123

3.13.1. Transceiver Toolkit Commands..123
3.13.2. Data Pattern Generator Commands...130
3.13.3. Data Pattern Checker Commands..132

3.14. Debugging Transceiver Links Revision History...134

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Quick Design Debugging Using Signal Probe...136
4.1. Design Flow Using Signal Probe..136

4.1.1. Perform a Full Compilation...136
4.1.2. Reserve Signal Probe Pins... 137
4.1.3. Assign Signal Probe Sources.. 137
4.1.4. Add Registers Between Pipeline Paths and Signal Probe Pins........................ 137
4.1.5. Perform a Signal Probe Compilation.. 138
4.1.6. Analyze the Results of a Signal Probe Compilation...................................... 138
4.1.7. What a Signal Probe Compilation Does.. 139
4.1.8. Understanding the Results of a Signal Probe Compilation............................. 139

4.2. Scripting Support...141
4.2.1. Making a Signal Probe Pin... 141
4.2.2. Deleting a Signal Probe Pin..141
4.2.3. Enabling a Signal Probe Pin... 142
4.2.4. Disabling a Signal Probe Pin...142
4.2.5. Performing a Signal Probe Compilation..142
4.2.6. Reserving Signal Probe Pins...142
4.2.7. Adding Signal Probe Sources..143
4.2.8. Assigning I/O Standards..143
4.2.9. Adding Registers for Pipelining... 143
4.2.10. Running Signal Probe Immediately After a Full Compilation........................ 144
4.2.11. Running Signal Probe Manually...144
4.2.12. Enabling or Disabling All Signal Probe Routing.. 144
4.2.13. Allowing Signal Probe to Modify Fitting Results... 144

4.3. Quick Design Debugging Using Signal Probe Revision History................................... 144

5. Design Debugging with the Signal Tap Logic Analyzer.. 146
5.1. The Signal Tap Logic Analyzer.. 146

5.1.1. Hardware and Software Requirements...147
5.1.2. Signal Tap Logic Analyzer Features and Benefits .. 147
5.1.3. Backward Compatibility with Previous Versions of Intel Quartus Prime

Software... 148
5.2. Signal Tap Logic Analyzer Task Flow Overview..148

5.2.1. Add the Signal Tap Logic Analyzer to Your Design....................................... 149
5.2.2. Configure the Signal Tap Logic Analyzer.. 149
5.2.3. Define Trigger Conditions.. 150
5.2.4. Compile the Design.. 150
5.2.5. Program the Target Device or Devices... 150
5.2.6. Run the Signal Tap Logic Analyzer.. 150
5.2.7. View, Analyze, and Use Captured Data..151

5.3. Configuring the Signal Tap Logic Analyzer..151
5.3.1. Assigning an Acquisition Clock... 151
5.3.2. Adding Signals to the Signal Tap File...152
5.3.3. Adding Signals with a Plug-In.. 155
5.3.4. Adding Finite State Machine State Encoding Registers................................. 156
5.3.5. Specifying Sample Depth.. 157
5.3.6. Capture Data to a Specific RAM Type...157
5.3.7. Select the Buffer Acquisition Mode..158
5.3.8. Specifying Pipeline Settings... 160
5.3.9. Filtering Relevant Samples.. 160
5.3.10. Manage Multiple Signal Tap Files and Configurations..................................167

Contents

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4. Defining Triggers..169
5.4.1. Basic Trigger Conditions.. 169
5.4.2. Comparison Trigger Conditions...170
5.4.3. Advanced Trigger Conditions..172
5.4.4. Custom Trigger HDL Object..175
5.4.5. Trigger Condition Flow Control... 178
5.4.6. Specify Trigger Position... 190
5.4.7. Power-Up Triggers.. 191
5.4.8. External Triggers..193

5.5. Compiling the Design..193
5.5.1. Faster Compilations with Intel Quartus Prime Incremental Compilation.......... 194
5.5.2. Prevent Changes Requiring Recompilation..195
5.5.3. Verify Whether You Need to Recompile Your Project.................................... 196
5.5.4. Incremental Route with Rapid Recompile... 196
5.5.5. Timing Preservation with the Signal Tap Logic Analyzer............................... 198
5.5.6. Performance and Resource Considerations... 198

5.6. Program the Target Device or Devices...199
5.6.1. Ensure Setting Compatibility Between .stp and .sof Files..............................200

5.7. Running the Signal Tap Logic Analyzer.. 200
5.7.1. Runtime Reconfigurable Options...201
5.7.2. Signal Tap Status Messages... 203

5.8. View, Analyze, and Use Captured Data..204
5.8.1. Capturing Data Using Segmented Buffers.. 204
5.8.2. Differences in Pre-Fill Write Behavior Between Different Acquisition Modes.....206
5.8.3. Creating Mnemonics for Bit Patterns... 207
5.8.4. Automatic Mnemonics with a Plug-In...207
5.8.5. Locating a Node in the Design..208
5.8.6. Saving Captured Data...208
5.8.7. Exporting Captured Data to Other File Formats...209
5.8.8. Creating a Signal Tap List File.. 209

5.9. Other Features...209
5.9.1. Creating Signal Tap File from Design Instances...209
5.9.2. Using the Signal Tap MATLAB MEX Function to Capture Data........................ 211
5.9.3. Using Signal Tap in a Lab Environment.. 213
5.9.4. Remote Debugging Using the Signal Tap Logic Analyzer...............................213
5.9.5. Using the Signal Tap Logic Analyzer in Devices with Configuration

Bitstream Security..214
5.9.6. Monitor FPGA Resources Used by the Signal Tap Logic Analyzer.................... 214

5.10. Design Example: Using Signal Tap Logic Analyzers..214
5.11. Custom Triggering Flow Application Examples...214

5.11.1. Design Example 1: Specifying a Custom Trigger Position............................215
5.11.2. Design Example 2: Trigger When triggercond1 Occurs Ten Times between

triggercond2 and triggercond3... 216
5.12. Signal Tap Scripting Support.. 216

5.12.1. Signal Tap Command-Line Options..216
5.12.2. Data Capture from the Command Line...217

5.13. Design Debugging with the Signal Tap Logic Analyzer Revision History.....................218

7. In-System Debugging Using External Logic Analyzers.. 220
7.1. About the Intel Quartus Prime Logic Analyzer Interface... 220
7.2. Choosing a Logic Analyzer...220

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.1. Required Components...221
7.3. Flow for Using the LAI...222

7.3.1. Defining Parameters for the Logic Analyzer Interface...................................223
7.3.2. Mapping the LAI File Pins to Available I/O Pins... 223
7.3.3. Mapping Internal Signals to the LAI Banks...224
7.3.4. Compiling Your Intel Quartus Prime Project..224
7.3.5. Programming Your Intel-Supported Device Using the LAI............................. 225

7.4. Controlling the Active Bank During Runtime...225
7.4.1. Acquiring Data on Your Logic Analyzer.. 225

7.5. Using the LAI with Incremental Compilation...226
7.6. LAI Core Parameters...226
7.7. In-System Debugging Using External Logic Analyzers Revision History...................... 227

8. In-System Modification of Memory and Constants.. 228
8.1. Setting Up In-System Modifiable Memories and Constants....................................... 228
8.2. Running the In-System Memory Content Editor.. 229

8.2.1. Instance Manager...229
8.2.2. Editing Data Displayed in the Hex Editor Pane.. 229
8.2.3. Importing and Exporting Memory Files.. 230
8.2.4. Scripting Support... 230
8.2.5. Programming the Device with the In-System Memory Content Editor............ 230
8.2.6. Example: Using the In-System Memory Content Editor with the Signal Tap

Logic Analyzer... 230
8.3. In-System Modification of Memory and Constants Revision History............................231

9. Design Debugging Using In-System Sources and Probes.. 232
9.1. Hardware and Software Requirements.. 234
9.2. Design Flow Using the In-System Sources and Probes Editor....................................234

9.2.1. Instantiating the In-System Sources and Probes IP Core............................. 235
9.2.2. In-System Sources and Probes IP Core Parameters.....................................236

9.3. Compiling the Design..236
9.4. Running the In-System Sources and Probes Editor..237

9.4.1. In-System Sources and Probes Editor GUI... 237
9.4.2. Programming Your Device With JTAG Chain Configuration............................ 237
9.4.3. Instance Manager...238
9.4.4. In-System Sources and Probes Editor Pane..238

9.5. Tcl interface for the In-System Sources and Probes Editor..240
9.6. Design Example: Dynamic PLL Reconfiguration...242
9.7. Design Debugging Using In-System Sources and Probes Revision History.................. 244

A. Intel Quartus Prime Standard Edition User Guides..246

Contents

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. System Debugging Tools Overview
This chapter provides a quick overview of the tools available in the Intel® Quartus®

Prime system debugging suite and discusses the criteria for selecting the best tool for
your debug requirements.

1.1. System Debugging Tools Portfolio

The Intel Quartus Prime software provides a portfolio of system debugging tools for
real-time verification of your design.

System debugging tools provide visibility by routing (or “tapping”) signals in your
design to debugging logic. The Compiler includes the debugging logic in your design
and generates programming files that you download into the FPGA or CPLD for
analysis.

Each tool in the system debugging portfolio uses a combination of available memory,
logic, and routing resources to assist in the debugging process. Because different
designs have different constraints and requirements, you can choose the tool that
matches the specific requirements for your design, such as the number of spare pins
available or the amount of logic or memory resources remaining in the physical
device.

1.1.1. System Debugging Tools Comparison

Table 1. System Debugging Tools Portfolio

Tool Description Typical Usage

System Console • Provides real-time in-system debugging
capabilities.

• Allows you to read from and write to Memory
Mapped components in a system without a
processor or additional software

• Communicates with hardware modules in a
design through a Tcl interpreter.

• Allows you to take advantage of all the features
of the Tcl scripting language.

• Supports JTAG and TCP/IP connectivity.

You need to perform system-level debugging.
For example, if you have an Avalon®-MM slave
or Avalon-ST interfaces, you can debug the
design at a transaction level.

Transceiver
Toolkit

• Allows you to test and tune transceiver link
signal quality through a combination of metrics.

• Auto Sweeping of physical medium attachment
(PMA) settings help you find optimal parameter
values.

You need to debug or optimize signal integrity
of a board layout even before finishing the
design.

Signal Tap Logic
Analyzer

• Uses FPGA resources.
• Samples test nodes, and outputs the information

to the Intel Quartus Prime software for display
and analysis.

You have spare on-chip memory and you want
functional verification of a design running in
hardware.

continued...

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Tool Description Typical Usage

Signal Probe Incrementally routes internal signals to I/O pins
while preserving results from the last place-and-
routed design.

You have spare I/O pins and you want to check
the operation of a small set of control pins
using either an external logic analyzer or an
oscilloscope.

Logic Analyzer
Interface (LAI)

• Multiplexes a larger set of signals to a smaller
number of spare I/O pins.

• Allows you to select which signals switch onto
the I/O pins over a JTAG connection.

You have limited on-chip memory and a large
set of internal data buses to verify using an
external logic analyzer. Logic analyzer vendors,
such as Tektronics* and Agilent*, provide
integration with the tool to improve usability.

In-System
Sources and
Probes

Provides an easy way to drive and sample logic
values to and from internal nodes using the JTAG
interface.

You want to prototype the FPGA design using a
front panel with virtual buttons.

In-System
Memory Content
Editor

Displays and allows you to edit on-chip memory. You want to view and edit the contents of on-
chip memory that is not connected to a Nios®

II processor.
You can also use the tool when you do not
want to have a Nios II debug core in your
system.

Virtual JTAG
Interface

Allows you to communicate with the JTAG interface
so that you can develop custom applications.

You want to communicate with custom signals
in your design.

1.1.2. Suggested Tools for Common Debugging Requirements

Table 2. Tools for Common Debugging Requirements(1)

Requirement Signal
Probe

Logic
Analyzer
Interface

(LAI)

Signal
Tap Logic
Analyzer

Description

More Data Storage N/A X — An external logic analyzer with the LAI tool allows you to
store more captured data than the Signal Tap
Logic Analyzer, because the external logic analyzer can
provide access to a bigger buffer.
The Signal Probe tool does not capture or store data.

Faster Debugging X X — You can use the LAI or the Signal Probe tool with external
equipment, such as oscilloscopes and mixed signal
oscilloscopes (MSOs). This ability provides access to timing
mode, which allows you to debug combined streams of
data.

Minimal Effect on
Logic Design

X X(2) X(2) The Signal Probe tool incrementally routes nodes to pins,
with no effect on the design logic.
The LAI adds minimal logic to a design, requiring fewer
device resources.
The Signal Tap Logic Analyzer has little effect on the design,
because the Compiler considers the debug logic as a
separate design partition.

Short Compile and
Recompile Time

X X(2) X(2) Signal Probe uses incremental routing to attach signals to
previously reserved pins. This feature allows you to quickly
recompile when you change the selection of source signals.
The Signal Tap Logic Analyzer and the LAI can refit their
own design partitions to decrease recompilation time.

Sophisticated
Triggering
Capability

N/A N/A X The triggering capabilities of the Signal Tap Logic Analyzer
are comparable to commercial logic analyzers.

continued...

1. System Debugging Tools Overview

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Requirement Signal
Probe

Logic
Analyzer
Interface

(LAI)

Signal
Tap Logic
Analyzer

Description

Low I/O Usage — — X The Signal Tap Logic Analyzer does not require additional
output pins.
Both the LAI and Signal Probe require I/O pin assignments.

Fast Data
Acquisition

N/A — X The Signal Tap Logic Analyzer can acquire data at speeds of
over 200 MHz.
Signal integrity issues limit acquisition speed for external
logic analyzers that use the LAI.

No JTAG Connection
Required

X — X Signal Probe and Signal Tap do not require a host for
debugging purposes.
A FPGA design with the LAI requires an active JTAG
connection to a host running the Intel Quartus Prime
software.

No External
Equipment Required

— — X The Signal Tap Logic Analyzer only requires a JTAG
connection from a host running the Intel Quartus Prime
software or the stand-alone Signal Tap Logic Analyzer.
Signal Probe and the LAI require the use of external
debugging equipment, such as multimeters, oscilloscopes,
or logic analyzers.

Notes to Table:
1. • X indicates the recommended tools for the feature.

• — indicates that while the tool is available for that feature, that tool might not give the best results.
• N/A indicates that the feature is not applicable for the selected tool.

2. Valid when you use incremental compilation.

1.1.3. Debugging Ecosystem

The Intel Quartus Prime software allows you to use the debugging tools in tandem to
exercise and analyze the logic under test and maximize closure.

A very important distinction in the system debugging tools is how they interact with
the design. All debugging tools in the Intel Quartus Prime software allow you to read
the information from the design node, but only a subset allow you to input data at
runtime:

Table 3. Classification of System Debugging Tools

Debugging Tool Read Data
from Design

Input Values
into the
Design

Comments

Signal Tap Logic Analyzer, Yes No General purpose troubleshooting tools
optimized for probing signals in a register
transfer level (RTL) netlistLogic Analyzer Interface

Signal Probe

In-System Sources and Probes Yes Yes These tools allow to:
• Read data from breakpoints that you

define
• Input values into your design during

runtime

Virtual JTAG Interface

System Console

Transceiver Toolkit

In-System Memory Content Editor

1. System Debugging Tools Overview

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Taken together, the set of on-chip debugging tools form a debugging ecosystem. The
set of tools can generate a stimulus to and solicit a response from the logic under test,
providing a complete solution.

Figure 1. Debugging Ecosystem at Runtime

JTAG

FPGA

Quartus Prime Software Design Under Test

Virtual JTAG Interface
Transceiver Toolkit

System Console
In-System Sources and Probes

In-System Memory Content Editor

Signal Tap
Logic Analyzer Interface

Signal Probe

1.2. Tools for Monitoring RTL Nodes

The Signal Tap Logic Analyzer, Signal Probe, and LAI tools are useful for probing and
debugging RTL signals at system speed. These general-purpose analysis tools enable
you to tap and analyze any routable node from the FPGA or CPLD.

• In cases when the design has spare logic and memory resources, the Signal Tap
Logic Analyzer can providing fast functional verification of the design running on
actual hardware.

Note: CPLDs do not support the Signal Tap Logic Analyzer, because these devices
do not have available memory resources.

• Conversely, if logic and memory resources are tight and you require the large
sample depths associated with external logic analyzers, both the LAI and the
Signal Probe tools simplify monitoring internal design signals using external
equipment.

Related Information

• Design Debugging with the Signal Tap Logic Analyzer on page 146

• In-System Debugging Using External Logic Analyzers on page 220

1.2.1. Resource Usage

The most important selection criteria for these three tools are the remaining resources
on the device after implementing the design and the number of spare pins.

Evaluate debugging options early on in the design planning process to ensure that you
support the appropriate options in the board, Intel Quartus Prime project, and design.
Planning early can reduce debugging time, and eliminates last minute changes to
accommodate debug methodologies.

1. System Debugging Tools Overview

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Resource Usage per Debugging Tool

Signal
Probe

Lo
gic

 A
na

lyz
er

 In
te

rfa
ce

Signal Tap

Lo
gic

Memory

1.2.1.1. Overhead Logic

Any debugging tool that requires a JTAG connection requires SLD infrastructure logic
for communication with the JTAG interface and arbitration between instantiated
debugging modules. This overhead logic uses around 200 logic elements (LEs), a small
fraction of the resources available in any of the supported devices. All available
debugging modules in your design share the overhead logic. Both the Signal Tap Logic
Analyzer and the LAI use a JTAG connection.

1.2.1.1.1. For Signal Tap Logic Analyzer

The Signal Tap Logic Analyzer requires both logic and memory resources. The number
of logic resources used depends on the number of signals tapped and the complexity
of the trigger logic. However, the amount of logic resources that the Signal Tap Logic
Analyzer uses is typically a small percentage of most designs.

A baseline configuration consisting of the SLD arbitration logic and a single node with
basic triggering logic contains approximately 300 to 400 Logic Elements (LEs). Each
additional node you add to the baseline configuration adds about 11 LEs. Compared
with logic resources, memory resources are a more important factor to consider for
your design. Memory usage can be significant and depends on how you configure your
Signal Tap Logic Analyzer instance to capture data and the sample depth that your
design requires for debugging. For the Signal Tap Logic Analyzer, there is the added
benefit of requiring no external equipment, as all of the triggering logic and storage is
on the chip.

1.2.1.1.2. For Signal Probe

The resource usage of Signal Probe is minimal. Because Signal Probe does not require
a JTAG connection, logic and memory resources are not necessary. Signal Probe only
requires resources to route internal signals to a debugging test point.

1.2.1.1.3. For Logic Analyzer Interface

The LAI requires a small amount of logic to implement the multiplexing function
between the signals under test, in addition to the SLD infrastructure logic. Because no
data samples are stored on the chip, the LAI uses no memory resources.

1. System Debugging Tools Overview

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.1.2. Resource Estimation

The resource estimation feature for the Signal Tap Logic Analyzer and the LAI allows
you to quickly judge if enough on-chip resources are available before compiling the
tool with your design.

Figure 3. Resource Estimator

1.2.2. Pin Usage

1.2.2.1. For Signal Tap Logic Analyzer

Other than the JTAG test pins, the Signal Tap Logic Analyzer uses no additional pins.
All data is buffered using on-chip memory and communicated to the Signal Tap Logic
Analyzer GUI via the JTAG test port.

1.2.2.2. For Signal Probe

The ratio of the number of pins used to the number of signals tapped for the Signal
Probe feature is one-to-one. Because this feature can consume free pins quickly, a
typical application for this feature is routing control signals to spare pins for
debugging.

1.2.2.3. For Logic Analyzer Interface

The LAI can map up to 256 signals to each debugging pin, depending on available
routing resources. The JTAG port controls the active signals mapped to the spare I/O
pins. With these characteristics, the LAI is ideal for routing data buses to a set of test
pins for analysis.

1.2.3. Usability Enhancements

The Signal Tap Logic Analyzer, Signal Probe, and LAI tools can be added to your
existing design with minimal effects. With the node finder, you can find signals to
route to a debugging module without making any changes to your HDL files. Signal
Probe inserts signals directly from your post-fit database. The Signal Tap Logic
Analyzer and LAI support inserting signals from both pre-synthesis and post-fit
netlists.

1.2.3.1. Incremental Compilation

All three tools allow you to find and configure your debugging setup quickly. In
addition, the Intel Quartus Prime incremental compilation feature and the Intel
Quartus Prime incremental routing feature allow for a fast turnaround time for your
programming file, increasing productivity and enabling fast debugging closure.

Both the LAI and Signal Tap Logic Analyzer support incremental compilation. With
incremental compilation, you can add a Signal Tap Logic Analyzer instance or an LAI
instance incrementally into your placed-and-routed design. This has the benefit of
both preserving your timing and area optimizations from your existing design, and

1. System Debugging Tools Overview

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

decreasing the overall compilation time when any changes are necessary during the
debugging process. With incremental compilation, you can save up to 70% compile
time of a full compilation.

1.2.3.2. Incremental Routing

Signal Probe uses the incremental routing feature. The incremental routing feature
runs only the Fitter stage of the compilation. This leaves your compiled design
untouched, except for the newly routed node or nodes. With Signal Probe, you can
save as much as 90% compile time of a full compilation.

1.2.3.3. Automation Via Scripting

As another productivity enhancement, all tools in the on-chip debugging tool set
support scripting via the quartus_stp Tcl package. For the Signal Tap Logic Analyzer
and the LAI, scripting enables user-defined automation for data collection while
debugging in the lab. The System Console includes a full Tcl interpreter for scripting.

1.2.3.4. Remote Debugging

You can perform remote debugging of a system with the Intel Quartus Prime software
via the System Console. This feature allows you to debug equipment deployed in the
field through an existing TCP/IP connection.

• For information about setting up a Nios II system with the System Console to
perform remote debugging, refer to Application Note 624

• For information about setting up an Intel FPGA SoC to perform remote debugging
with the Intel Quartus Prime SLD tools, refer to Application Note 693.

Related Information

• Application Note 624: Debugging with System Console over TCP/IP

• Application Note 693: Remote Debugging over TCP/IP for Intel FPGA SoC

1.3. Stimulus-Capable Tools

The In-System Memory Content Editor, In-System Sources and Probes, and Virtual
JTAG interface enable you to use the JTAG interface as a general-purpose
communication port.

Though you can use all three tools to achieve the same results, there are some
considerations that make one tool easier to use in certain applications:

• The In-System Sources and Probes is ideal for toggling control signals.

• The In-System Memory Content Editor is useful for inputting large sets of test
data.

• Finally, the Virtual JTAG interface is well suited for advanced users who want to
develop custom JTAG solutions.

System Console provides system-level debugging at a transaction level, such as with
Avalon-MM slave or Avalon-ST interfaces. You can communicate to a chip through
JTAG and TCP/IP protocols. System Console uses a Tcl interpreter to communicate
with hardware modules that you instantiate into your design.

1. System Debugging Tools Overview

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

13

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an624.pdf
https://www.intel.com/content/www/us/en/docs/programmable/723698.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.1. In-System Sources and Probes

In-System Sources and Probes allow you to read and write to a design by accessing
JTAG resources.

You instantiate an Intel FPGA IP into your HDL code. This Intel FPGA IP core contains
source ports and probe ports that you connect to signals in your design, and abstracts
the JTAG interface's transaction details.

In addition, In-System Sources and Probes provide a GUI that displays source and
probe ports by instance, and allows you to read from probe ports and drive to source
ports. These features make this tool ideal for toggling a set of control signals during
the debugging process.

Related Information

Design Debugging Using In-System Sources and Probes on page 232

1.3.1.1. Push Button Functionality

During the development phase of a project, you can debug your design using the In-
System Sources and Probes GUI instead of push buttons and LEDs. Furthermore, In-
System Sources and Probes supports a set of scripting commands for reading and
writing using the Signal Tap logic analyzer. You can also build your own Tk graphical
interfaces using the Toolkit API. This feature is ideal for building a virtual front panel
during the prototyping phase of the design.

Related Information

• Toolkit API on page 38

• Signal Tap Scripting Support on page 216

1.3.2. In-System Memory Content Editor

The In-System Memory Content Editor allows you to quickly view and modify memory
content either through a GUI interface or through Tcl scripting commands. The In-
System Memory Content Editor works by turning single-port RAM blocks into dual-port
RAM blocks. One port is connected to your clock domain and data signals, and the
other port is connected to the JTAG clock and data signals for editing or viewing.

Related Information

In-System Modification of Memory and Constants on page 228

1.3.2.1. Generate Test Vectors

Because you can modify a large set of data easily, a useful application for the
In-System Memory Content Editor is to generate test vectors for your design. For
example, you can instantiate a free memory block, connect the output ports to the
logic under test (using the same clock as your logic under test on the system side),
and create the glue logic for the address generation and control of the memory. At
runtime, you can modify the contents of the memory using either a script or the
In-System Memory Content Editor GUI and perform a burst transaction of the data
contents in the modified RAM block synchronous to the logic being tested.

1. System Debugging Tools Overview

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.3. System Console

System Console is a framework that you can launch from the Intel Quartus Prime
software to start services for performing various debugging tasks. System Console
provides you with Tcl scripts and a GUI to access the Platform Designer (Standard)
system integration tool to perform low-level hardware debugging of your design, as
well as identify a module by its path, and open and close a connection to a Platform
Designer (Standard) module. You can access your design at a system level for
purposes of loading, unloading, and transferring designs to multiple devices. Also,
System Console supports the Tk toolkit for building graphical interfaces.

Related Information

Analyzing and Debugging Designs with System Console on page 17

1.3.3.1. Test Signal Integrity

System Console also allows you to access commands that allow you to control how
you generate test patterns, as well as verify the accuracy of data generated by test
patterns. You can use JTAG debug commands in System Console to verify the
functionality and signal integrity of your JTAG chain. You can test clock and reset
signals.

1.3.3.2. Board Bring-Up and Verification

You can use System Console to access programmable logic devices on your
development board, perform board bring-up, and perform verification. You can also
access software running on a Nios II or Intel FPGA SoC processor, as well as access
modules that produce or consume a stream of bytes.

1.3.3.3. Test Link Signal Integrity with Transceiver Toolkit

Transceiver Toolkit runs from the System Console framework, and allows you to run
automatic tests of your transceiver links for debugging and optimizing your transceiver
designs. You can use the Transceiver Toolkit GUI to set up channel links in your
transceiver devices and change parameters at runtime to measure signal integrity. For
selected devices, the Transceiver Toolkit can also run and display eye contour tests.

1.4. Virtual JTAG Interface Intel FPGA IP

The Virtual JTAG Interface Intel FPGA IP provides the finest level of granularity for
manipulating the JTAG resource. This Intel FPGA IP allows you to build your own JTAG
scan chain by exposing all of the JTAG control signals and configuring your JTAG
Instruction Registers (IRs) and JTAG Data Registers (DRs). During runtime, you
control the IR/DR chain through a Tcl API, or with System Console. This feature is
meant for users who have a thorough understanding of the JTAG interface and want
precise control over the number and type of resources used.

Related Information

• Virtual JTAG (altera_virtual_jtag) IP Core User Guide

• Virtual JTAG Interface (VJI) Intel FPGA IP

1. System Debugging Tools Overview

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

15

https://www.intel.com/content/www/us/en/docs/programmable/683705/current/virtual-jtag-core-user-guide.html
http://quartushelp.altera.com/current/#hdl/mega/mega_file_sld_virtual_jtag.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5. System-Level Debug Fabric

During compilation, the Intel Quartus Prime generates the System-Level Debugging
Hub to allow multiple instances of debugging tools in a design.

Most Intel FPGA on-chip debugging tools use the JTAG port to control and read-back
data from debugging logic and signals under test. The System-Level Debugging Hub
manages the sharing of JTAG resources.

Note: For System Console, you explicitly insert debug IP cores into the design to enable
debugging.

The System-Level Debugging Hub appears in the project's design hierarchy as
sld_hub:sld_hub_inst.

1.6. System Debugging Tools Overview Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.05.07 18.0.0 • Moved here information about debug fabric on PR designs from the
Design Debugging with the Signal Tap Logic Analyzer chapter.

2017.05.08 17.0.0 • Combined Altera JTAG Interface and Required Arbitration Logic topics
into a new updated topic named System-Level Debugging
Infrastructure.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 Added information that System Console supports the Tk toolkit.

November 2013 13.1.0 Dita conversion. Added link to Remote Debugging over TCP/IP for Altera
SoC Application Note.

June 2012 12.0.0 Maintenance release.

November 2011 10.0.2 Maintenance release. Changed to new document template.

December 2010 10.0.1 Maintenance release. Changed to new document template.

July 2010 10.0.0 Initial release

1. System Debugging Tools Overview

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Analyzing and Debugging Designs with System Console

2.1. Introduction to System Console

System Console provides visibility into your design and allows you to perform system-
level debug on a FPGA at run-time. System Console performs tests on debug-enabled
Platform Designer (Standard) instantiated IP cores. A variety of debug services
provide read and write access to elements in your design. You can perform the
following tasks with System Console and the tools built on top of System Console:

• Bring up boards with both finalized and partially complete designs.

• Perform remote debug with internet access.

• Automate run-time verification through scripting across multiple devices in your
system.

• Test serial links with point-and-click configuration tuning in the Transceiver Toolkit.

• Debug memory interfaces with the External Memory Interface Toolkit.

• Integrate your debug IP into the debug platform.

• Test the performance of your ADC and analog chain on a Intel MAX® 10 device
with the ADC Toolkit.

• Perform system verification with MATLAB*/Simulink.

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 4. System Console Tools
(Tools) shows the applications that interact with System Console. The System Console API supports services
that access your design in operation. Some services have specific hardware requirements.

Tcl Console
Transceiver

Debug Toolkit
ADC Toolkit Bus Analyzer EMIF Toolkit Toolkit API

System Console Tcl
(Command-Line Interface)

System Console GUI Interface

System Console

Ethernet Processor Master Bytestream Others

TCP/IP Nios II JTAG Master JTAG UART ISSP

Nios II with
JTAG Debug

USB Debug
Master

Tools

API

Hardware
Requirements

Note: Use debug links to connect the host to the target you are debugging.

Related Information

• Introduction to Intel Memory Solution
In External Memory Interface Handbook Volume 1

• Debugging Transceiver Links on page 92

• AN 693: Remote Hardware Debugging over TCP/IP for Intel SoC

• AN 624: Debugging with System Console over TCP/IP

• White Paper 01208: Hardware in the Loop from the MATLAB/Simulink Environment

• System Console Online Training

2.2. System Console Debugging Flow

To debug a design with the System Console, you must perform a series of steps:

1. Add an IP Core to the Platform Designer (Standard) system.

2. Generate the Platform Designer (Standard) system.

3. Compile the design.

4. Connect a board and program the FPGA.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

18

https://www.intel.com/content/www/us/en/docs/programmable/710283.html
https://www.intel.com/content/www/us/en/docs/programmable/723698.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/horizontal/exm-debug-sys-console-tcpip.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01208-hardware-in-the-loop.pdf
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/systems-console.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Start the System Console.

6. Locate and open a System Console service.

7. Perform debug operations with the service.

8. Close the service.

2.3. IP Cores that Interact with System Console

System Console runs on your host computer and communicates with your running
design through debug agents. Debug agents are soft-logic embedded in some IP cores
that enable debug communication with the host computer.

You instantiate debug IP cores using the Platform Designer (Standard) IP Catalog.
Some IP cores are enabled for debug by default, while you can enable debug for other
IP cores through options in the parameter editor. Some debug agents have multiple
purposes.

When you use IP cores with embedded debug in your design, you can make large
portions of the design accessible. Debug agents allow you to read and write to
memory and alter peripheral registers from the host computer.

Services associated with debug agents in the running design can open and close as
needed. System Console determines the communication protocol with the debug
agent. The communication protocol determines the best board connection to use for
command and data transmission.

The Programmable SRAM Object File (.sof) provides the System Console with
channel communication information. When System Console opens in the Intel Quartus
Prime software or Platform Designer (Standard) while your design is open, any
existing .sof is automatically found and linked to the detected running device. In a
complex system, you may need to link the design and device manually.

2.3.1. Services Provided through Debug Agents

By adding the appropriate debug agent to your design, System Console services can
use the associated capabilities of the debug agent.

Table 4. Common Services for System Console

Service Function Debug Agent Providing Service

master Access memory-mapped (Avalon-MM or AXI)
slaves connected to the master interface.

• Nios II with debug
• JTAG to Avalon Master Bridge
• USB Debug Master

slave Allows the host to access a single slave without
needing to know the location of the slave in the
host's memory map. Any slave that is accessible
to a System Console master can provide this
service.

• Nios II with debug
• JTAG to Avalon Master Bridge
• USB Debug Master
If an SRAM Object File (.sof) is loaded, then
slaves controlled by a debug master provide the
slave service.

processor • Start, stop, or step the processor.
• Read and write processor registers.

Nios II with debug

JTAG UART The JTAG UART is an Avalon-MM slave device that
you can use in conjunction with System Console
to send and receive byte streams.

JTAG UART

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The following IP cores in the IP Catalog do not support VHDL simulation generation in
the current version of the Intel Quartus Prime software:

• JTAG Debug Link

• SLD Hub Controller System

• USB Debug Link

Related Information

• System Console Examples and Tutorials on page 85

• System Console Commands on page 23

2.4. Starting System Console

2.4.1. Starting System Console from Nios II Command Shell

1. On the Windows Start menu, click All Programs ➤ Intel ➤ Nios II EDS
<version> ➤ Nios II<version> ➤ Command Shell..

2. Type system-console.

3. Type -- help for System Console help.

4. Type system-console --project_dir=<project directory> to point to a
directory that contains .qsf or .sof files.

2.4.2. Starting Stand-Alone System Console

You can get the stand-alone version of System Console as part of the Intel Quartus
Prime software Programmer and Tools installer on the Altera website.

1. Navigate to the Download Center page and click the Additional Software tab.

2. On the Windows Start menu, click All Programs ➤ Intel FPGA <version> ➤
Programmer and Tools ➤ System Console.

Related Information

Intel Download Center

2.4.3. Starting System Console from Platform Designer (Standard)

Click Tools ➤ System Console.

2.4.4. Starting System Console from Intel Quartus Prime

Click Tools ➤ System Debugging Tools ➤ System Console.

2.4.5. Customizing Startup

You can customize your System Console environment, as follows:

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

20

https://www.intel.com/content/www/us/en/collections/products/fpga/software/downloads.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Add commands to the system_console_rc configuration file located at:

— <$HOME>/system_console/system_console_rc.tcl

The file in this location is the user configuration file, which only affects the owner
of the home directory.

• Specify your own design startup configuration file with the command-line
argument --rc_script=<path_to_script>, when you launch System Console
from the Nios II command shell.

• Use the system_console_rc.tcl file in combination with your custom
rc_script.tcl file. In this case, the system_console_rc.tcl file performs
System Console actions, and the rc_script.tcl file performs your debugging
actions.

On startup, System Console automatically runs the Tcl commands in these files. The
commands in the system_console_rc.tcl file run first, followed by the commands
in the rc_script.tcl file.

2.5. System Console GUI

The System Console GUI consists of a main window with multiple panes, and allows
you to interact with the design currently running on the host computer.

• System Explorer—Displays the hierarchy of the System Console virtual file
system in your design, including board connections, devices, designs, and scripts.

• Workspace—Displays available toolkits including the ADC Toolkit, Transceiver
Toolkit, Toolkits, GDB Server Control Panel, and Bus Analyzer. Click the Tools
menu to launch applications.

• Tcl Console—A window that allows you to interact with your design using Tcl
scripts, for example, sourcing scripts, writing procedures, and using System
Console API.

• Messages—Displays status, warning, and error messages related to connections
and debug actions.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. System Console GUI

2.5.1. System Explorer Pane

The System Explorer pane displays the virtual file system for all connected
debugging IP cores, and contains the following information:

• Devices folder—Displays information about all devices connected to the System
Console.

• Scripts folder—Stores scripts for easy execution.

• Connections folder—Displays information about the board connections visible to
the System Console, such as Intel FPGA Download Cable. Multiple connections are
possible.

• Designs folder—Displays information about Intel Quartus Prime designs
connected to the System Console. Each design represents a loaded .sof file.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Devices folder contains a sub-folder for each device connected to the System
Console. Each device sub-folder contains a (link) folder, and may contain a (files)
folder. The (link) folder shows debug agents (and other hardware) that System
Console can access. The (files) folder contains information about the design files
loaded from the Intel Quartus Prime project for the device.

Figure 6. System Explorer Pane
The figure shows the EP4SGX230 folder under the Device folder, which contains a (link) folder. The (link)
folder contains a JTAG folder, which describes the active debug connections to this device, for example, JTAG,
USB, Ethernet, and agents connected to the EP4SGX230 device via a JTAG connection.

• Folders with a context menu display a context menu icon. Right-click these folders
to view the context menu. For example, the Connections folder above shows a
context menu icon.

• Folders that have messages display a message icon. Mouse-over these folders to
view the messages. For example, the Scripts folder in the example has a
message icon.

• Debug agents that sense the clock and reset state of the target show an
information or error message with a clock status icon. The icon indicates whether
the clock is running (information, green), stopped (error, red), or running but in
reset (error, red). For example, the trace_system_jtag_link.h2t folder in the
figure has a running clock.

2.6. System Console Commands

The console commands enable testing. Use console commands to identify a service by
its path, and to open and close the connection. The path that identifies a service is
the first argument to most System Console commands.

To initiate a service connection, do the following:

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Identify a service by specifying its path with the get_service_paths command.

2. Open a connection to the service with the claim_service command.

3. Use Tcl and System Console commands to test the connected device.

4. Close a connection to the service with the close_service command

Note: For all Tcl commands, the <format> argument must come first.

Table 5. System Console Commands

Command Arguments Function

get_service_types N/A Returns a list of service types that System
Console manages. Examples of service types
include master, bytestream, processor, sld,
jtag_debug, device, and design.

get_service_paths • <service-type>
• <device>—Returns

services in the same
specified device. The
argument can be a device
or another service in the
device.

• <hpath>—Returns
services whose hpath
starts with the specified
prefix.

• <type>—Returns services
whose debug type
matches this value.
Particularly useful when
opening slave services.

• <type>—Returns services
on the same development
boards as the argument.
Specify a board service, or
any other service on the
same board.

Allows you to filter the services which are
returned.

claim_service • <service-type>
• <service-path>
• <claim-group>
• <claims>

Provides finer control of the portion of a service
you want to use.
claim_service returns a new path which
represents a use of that service. Each use is
independent. Calling claim_service multiple
times returns different values each time, but
each allows access to the service until closed.

close_service • <service-type>
• <service-path>

Closes the specified service type at the specified
path.

is_service_open • <service-type>
• <service-type>

Returns 1 if the service type provided by the
path is open, 0 if the service type is closed.

get_services_to_add N/A Returns a list of all services that are instantiable
with the add_service command.

add_service • <service-type>
• <instance-name>
• optional-parameters

Adds a service of the specified service type with
the given instance name. Run
get_services_to_add to retrieve a list of
instantiable services. This command returns the
path where the service was added.

continued...

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

Run help add_service <service-type> to get
specific help about that service type, including
any parameters that might be required for that
service.

add_service gdbserver • <Processor Service>
• <port number>

Instantiates a gdbserver.

add_service tcp • <instance name>
• <ip_addr>
• <port_number>

Allows you to connect to a TCP/IP port that
provides a debug link over ethernet. See AN693
(Remote Hardware Debugging over TCP/IP for
Intel FPGA SoC) for more information.

add_service
transceiver_channel_rx

• <data_pattern_checker>
• <path>
• <transceiver path>
• <transceiver channel

address>
• <reconfig path>
• <reconfig channel

address>

Instantiates a Transceiver Toolkit receiver
channel.

add_service
transceiver_channel_tx

• <data_pattern_generator
>

• <path>
• <transceiver path>
• <transceiver channel

address>
• <reconfig path>
• <reconfig channel

address>

Instantiates a Transceiver Toolkit transmitter
channel.

add_service
transceiver_debug_link

• <transceiver_channel_tx
path>

• <transceiver_channel_rx
path>

Instantiates a Transceiver Toolkit debug link.

get_version N/A Returns the current System Console version and
build number.

get_claimed_services • <claim> For the given claim group, returns a list of
services claimed. The returned list consists of
pairs of paths and service types. Each pair is one
claimed service.

refresh_connections N/A Scans for available hardware and updates the
available service paths if there have been any
changes.

send_message • <level>
• <message>

Sends a message of the given level to the
message window. Available levels are info,
warning, error, and debug.

Related Information

Remote Hardware Debugging over TCP/IP for SoC Devices

2.7. Running System Console in Command-Line Mode

You can run System Console in command line mode and either work interactively or
run a Tcl script. System Console prints the output in the console window.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

25

https://www.intel.com/content/www/us/en/docs/programmable/723698/current/remote-hardware-debugging-over-tcp-ip.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• --cli—Runs System Console in command-line mode.

• --project_dir=<project dir>—Directs System Console to the location of
your hardware project. Also works in GUI mode.

• --script=<your script>.tcl—Directs System Console to run your Tcl script.

• --help— Lists all available commands. Typing --help <command name>
provides the syntax and arguments of the command.

System Console provides command completion if you type the beginning letters of a
command and then press the Tab key.

2.8. System Console Services

Intel's System Console services provide access to hardware modules instantiated in
your FPGA. Services vary in the type of debug access they provide.

2.8.1. Locating Available Services

System Console uses a virtual file system to organize the available services, which is
similar to the /dev location on Linux systems. Board connection, device type, and
IP names are all part of a service path. Instances of services are referred to by their
unique service path in the file system. To retrieve service paths for a particular
service, use the command get_service_paths <service-type>.

Example 1. Locating a Service Path

#We are interested in master services.
set service_type "master"

#Get all the paths as a list.
set master_service_paths [get_service_paths $service_type]

#We are interested in the first service in the list.
set master_index 0

#The path of the first master.
set master_path [lindex $master_service_paths $master_index]

#Or condense the above statements into one statement:
set master_path [lindex [get_service_paths master] 0]

System Console commands require service paths to identify the service instance you
want to access. The paths for different components can change between runs of
System Console and between versions. Use the get_service_paths command to
obtain service paths.

The string values of service paths change with different releases of the tool. Use the
marker_node_info command to get information from the path.

System Console automatically discovers most services at startup. System Console
automatically scans for all JTAG and USB-based service instances and retrieves their
service paths. System Console does not automatically discover some services, such as
TCP/IP. Use add_service to inform System Console about those services.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 2. Marker_node_info

Use the marker_node_info command to get information about the discovered
services.

set slave_path [get_service_paths -type altera_avalon_uart.slave slave]
array set uart_info [marker_node_info $slave_path]
echo $uart_info(full_hpath)

2.8.2. Opening and Closing Services

After you have a service path to a particular service instance, you can access the
service for use.

The claim_service command directs System Console to start using a particular
service instance, and with no additional arguments, claims a service instance for
exclusive use.

Example 3. Opening a Service

set service_type "master"
set claim_path [claim_service $service_type $master_path mylib];#Claims service.

You can pass additional arguments to the claim_service command to direct System
Console to start accessing a particular portion of a service instance. For example, if
you use the master service to access memory, then use claim_service to only
access the address space between 0x0 and 0x1000. System Console then allows
other users to access other memory ranges, and denies access to the claimed memory
range. The claim_service command returns a newly created service path that you
can use to access your claimed resources.

You can access a service after you open it. When you finish accessing a service
instance, use the close_service command to direct System Console to make this
resource available to other users.

Example 4. Closing a Service

close_service master $claim_path; #Closes the service.

2.8.3. SLD Service

The SLD Service shifts values into the instruction and data registers of SLD nodes and
captures the previous value. When interacting with a SLD node, start by acquiring
exclusive access to the node on an opened service.

Example 5. SLD Service

set timeout_in_ms 1000
set lock_failed [sld_lock $sld_service_path $timeout_in_ms]

This code attempts to lock the selected SLD node. If it is already locked, sld_lock
waits for the specified timeout. Confirm the procedure returns non-zero before
proceeding. Set the instruction register and capture the previous one:

if {$lock_failed} {
 return
}

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set instr 7
set delay_us 1000
set capture [sld_access_ir $sld_service_path $instr $delay_us]

The 1000 microsecond delay guarantees that the following SLD command executes
least 1000 microseconds later. Data register access works the same way.

set data_bit_length 32
set delay_us 1000
set data_bytes [list 0xEF 0xBE 0xAD 0xDE]
set capture [sld_access_dr $sld_service_path $data_bit_length $delay_us \
$data_bytes]

Shift count is specified in bits, but the data content is specified as a list of bytes. The
capture return value is also a list of bytes. Always unlock the SLD node once finished
with the SLD service.

sld_unlock $sld_service_path

Related Information

Virtual JTAG IP Core User Guide

2.8.3.1. SLD Commands

Table 6. SLD Commands

Command Arguments Function

sld_access_ir <claim-path>
<ir-value>
<delay> (in µs)

Shifts the instruction value into the instruction register of the specified
node. Returns the previous value of the instruction.
If the <delay> parameter is non-zero, then the JTAG clock is paused for
this length of time after the access.

sld_access_dr <service-path>
<size_in_bits>
<delay-in-µs>,
<list_of_byte_values>

Shifts the byte values into the data register of the SLD node up to the size
in bits specified.
If the <delay> parameter is non-zero, then the JTAG clock is paused for at
least this length of time after the access.
Returns the previous contents of the data register.

sld_lock <service-path>
<timeout-in-milliseconds>

Locks the SLD chain to guarantee exclusive access.
Returns 0 if successful. If the SLD chain is already locked by another user,
tries for <timeout>ms before throwing a Tcl error. You can use the catch
command if you want to handle the error.

sld_unlock <service-path> Unlocks the SLD chain.

2.8.4. In-System Sources and Probes Service

The In-System Sources and Probes (ISSP) service provides scriptable access to the
altsource_probe IP core in a similar manner to using the In-System Sources and
Probes Editor in the Intel Quartus Prime software.

Example 6. ISSP Service

Before you use the ISSP service, ensure your design works in the In-System
Sources and Probes Editor. In System Console, open the service for an ISSP
instance.

set issp_index 0
set issp [lindex [get_service_paths issp] 0]
set claimed_issp [claim_service issp $issp mylib]

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

28

https://www.intel.com/content/www/us/en/docs/programmable/683705/current/virtual-jtag-core-user-guide.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

View information about this particular ISSP instance.

array set instance_info [issp_get_instance_info $claimed_issp]
set source_width $instance_info(source_width)
set probe_width $instance_info(probe_width)

The Intel Quartus Prime software reads probe data as a single bitstring of length equal
to the probe width.

set all_probe_data [issp_read_probe_data $claimed_issp]

As an example, you can define the following procedure to extract an individual probe
line's data.

proc get_probe_line_data {all_probe_data index} {
 set line_data [expr { ($all_probe_data >> $index) & 1 }]
 return $line_data
}
set initial_all_probe_data [issp_read_probe_data $claim_issp]
set initial_line_0 [get_probe_line_data $initial_all_probe_data 0]
set initial_line_5 [get_probe_line_data $initial_all_probe_data 5]
...
set final_all_probe_data [issp_read_probe_data $claimed_issp]
set final_line_0 [get_probe_line_data $final_all_probe_data 0]

Similarly, the Intel Quartus Prime software writes source data as a single bitstring of
length equal to the source width.

set source_data 0xDEADBEEF
issp_write_source_data $claimed_issp $source_data

The currently set source data can also be retrieved.

set current_source_data [issp_read_source_data $claimed_issp]

As an example, you can invert the data for a 32-bit wide source by doing the
following:

set current_source_data [issp_read_source_data $claimed_issp]
set inverted_source_data [expr { $current_source_data ^ 0xFFFFFFFF }]
issp_write_source_data $claimed_issp $inverted_source_data

2.8.4.1. In-System Sources and Probes Commands

Note: The valid values for ISSP claims include read_only, normal, and exclusive.

Table 7. In-System Sources and Probes Commands

Command Arguments Function

issp_get_instance_info <service-path> Returns a list of the configurations of the In-System Sources and Probes
instance, including:
instance_index

instance_name

source_width

continued...

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

probe_width

issp_read_probe_data <service-path> Retrieves the current value of the probe input. A hex string is returned
representing the probe port value.

issp_read_source_data <service-path> Retrieves the current value of the source output port. A hex string is
returned representing the source port value.

issp_write_source_data <service-path>
<source-value>

Sets values for the source output port. The value can be either a hex
string or a decimal value supported by the System Console Tcl
interpreter.

2.8.5. Monitor Service

The monitor service builds on top of the master service to allow reads of Avalon-MM
slaves at a regular interval. The service is fully software-based. The monitor service
requires no extra soft-logic. This service streamlines the logic to do interval reads, and
it offers better performance than exercising the master service manually for the reads.

Example 7. Monitor Service

1. Determine the master and the memory address range that you want to poll:

set master_index 0
set master [lindex [get_service_paths master] $master_index]
set address 0x2000
set bytes_to_read 100
set read_interval_ms 100

With the first master, read 100 bytes starting at address 0x2000 every 100
milliseconds.

2. Open the monitor service:

set monitor [lindex [get_service_paths monitor] 0]
set claimed_monitor [claim_service monitor $monitor mylib]

The monitor service opens the master service automatically.

3. With the monitor service, register the address range and time interval:

monitor_add_range $claimed_monitor $master $address $bytes_to_read
monitor_set_interval $claimed_monitor $read_interval_ms

4. Add more ranges, defining the result at each interval:

global monitor_data_buffer
set monitor_data_buffer [list]

5. Gather the data and append it with a global variable.

proc store_data {monitor master address bytes_to_read} {
 global monitor_data_buffer
monitor_read_data returns the range of data polled from the running design
as a list
#(in this example, a 100-element list).
 set data [monitor_read_data $claimed_monitor $master $address
$bytes_to_read]
Append the list as a single element in the monitor_data_buffer global list.
 lappend monitor_data_buffer $data
}

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If this procedure takes longer than the interval period, the monitor service
may have to skip the next one or more calls to the procedure. In this case,
monitor_read_data returns the latest polled data.

6. Register this callback with the opened monitor service:

set callback [list store_data $claimed_monitor $master $address
$bytes_to_read]
monitor_set_callback $claimed_monitor $callback

7. Use the callback variable to call when the monitor finishes an interval. Start
monitoring:

monitor_set_enabled $claimed_monitor 1

Immediately, the monitor reads the specified ranges from the device and invokes
the callback at the specified interval. Check the contents of
monitor_data_buffer to verify this. To turn off the monitor, use 0 instead of 1
in the above command.

2.8.5.1. Monitor Commands

You can use the Monitor commands to read many Avalon-MM slave memory locations
at a regular interval.

Under normal load, the monitor service reads the data after each interval and then
calls the callback. If the value you read is timing sensitive, you can use the
monitor_get_read_interval command to read the exact time between the
intervals at which the data was read.

Under heavy load, or with a callback that takes a long time to execute, the monitor
service skips some callbacks. If the registers you read do not have side effects (for
example, they read the total number of events since reset), skipping callbacks has no
effect on your code. The monitor_read_data command and
monitor_get_read_interval command are adequate for this scenario.

If the registers you read have side effects (for example, they return the number of
events since the last read), you must have access to the data that was read, but for
which the callback was skipped. The monitor_read_all_data and
monitor_get_all_read_intervals commands provide access to this data.

Table 8. Monitoring Commands

Command Arguments Function

monitor_add_range <service-path>
<target-path>
<address>
<size>

Adds a contiguous memory address into the
monitored memory list.
<service path> is the value returned when
you opened the service.
<target-path> argument is the name of a
master service to read. The address is within
the address space of this service. <target-
path> is returned from [lindex
[get_service_paths master] n] where
n is the number of the master service.

continued...

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

<address> and <size> are relative to the
master service.

monitor_get_all_read_intervals <service-path>
<target-path>
<address>
<size>

Returns a list of intervals in milliseconds
between two reads within the data returned
by monitor_read_all_data.

monitor_get_interval <service-path> Returns the current interval set which
specifies the frequency of the polling action.

monitor_get_missing_event_count <service-path> Returns the number of callback events
missed during the evaluation of last Tcl
callback expression.

monitor_get_read_interval <service-path>
<target-path>
<address>
<size>

Returns the milliseconds elapsed between
last two data reads returned by
monitor_read_data.

monitor_read_all_data <service-path>
<target-path>
<address>
<size>

Returns a list of 8-bit values read from all
recent values read from device since last Tcl
callback. You must specify a memory range
within the range in monitor_add_range.

monitor_read_data <service-path>
<target-path>
<address>
<size>

Returns a list of 8-bit values read from the
most recent values read from device. You
must specify a memory range within the
range in monitor_add_range.

monitor_set_callback <service-path>
<Tcl-expression>

Specifies a Tcl expression that the System
Console must evaluate after reading all the
memories that this service monitors.
Typically, you specify this expression as a
single string Tcl procedure call with
necessary argument passed in.

monitor_set_enabled <service-path>
<enable(1)/disable(0)>

Enables and disables monitoring. Memory
read starts after this command, and Tcl
callback evaluates after data is read.

monitor_set_interval <service-path>
<interval>

Defines the target frequency of the polling
action by specifying the interval between two
memory reads. The actual polling frequency
varies depending on the system activity.

2.8.6. Device Service

The device service supports device-level actions.

Example 8. Programming

You can use the device service with Tcl scripting to perform device programming.

set device_index 0 ; #Device index for target
set device [lindex [get_service_paths device] $device_index]
set sof_path [file join project_path output_files project_name.sof]
device_download_sof $device $sof_path

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To program, all you need are the device service path and the file system path to
a .sof. Ensure that no other service (e.g. master service) is open on the target
device or else the command fails. Afterwards, you may do the following to check that
the design linked to the device is the same one programmed:

device_get_design $device

2.8.6.1. Device Commands

The device commands provide access to programmable logic devices on your board.
Before you use these commands, identify the path to the programmable logic device
on your board using the get_service_paths.

Table 9. Device Commands

Command Arguments Function

device_download_sof <service_path>
<sof-file-path>

Loads the specified .sof to the device specified by the path.

device_get_connections <service_path> Returns all connections which go to the device at the specified path.

device_get_design <device_path> Returns the design this device is currently linked to.

2.8.7. Design Service

You can use design service commands to work with Intel Quartus Prime design
information.

Example 9. Load

When you open System Console from the Intel Quartus Prime software or Platform
Designer (Standard), the current project's debug information is sourced automatically
if the .sof has been built. In other situations, you can load manually.

set sof_path [file join project_dir output_files project_name.sof]
set design [design_load $sof_path]

System Console is now aware that this particular .sof has been loaded.

Example 10. Linking

Once a .sof is loaded, System Console automatically links design information to the
connected device. The resultant link persists and you can choose to unlink or reuse
the link on an equivalent device with the same .sof.

You can perform manual linking.

set device_index 0; # Device index for our target
set device [lindex [get_service_paths device] $device_index]
design_link $design $device

Manually linking fails if the target device does not match the design service.

Linking fails even if the .sof programmed to the target is not the same as the
design .sof.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.8.7.1. Design Service Commands

Design service commands load and work with your design at a system level.

Table 10. Design Service Commands

Command Arguments Function

design_load <quartus-
project-path>,
<sof-file-path>,
or <qpf-file-
path>

Loads a model of a Intel Quartus Prime design into System
Console. Returns the design path.
For example, if your Intel Quartus Prime Project File (.qpf) is in
c:/projects/loopback, type the following command:
design_load {c:\projects\loopback\}

design_link <design-path>
<device-service-
path>

Links a Intel Quartus Prime logical design with a physical device.
For example, you can link a Intel Quartus Prime design called
2c35_quartus_design to a 2c35 device. After you create this
link, System Console creates the appropriate correspondences
between the logical and physical submodules of the Intel Quartus
Prime project.

design_extract_debug_files <design-path>
<zip-file-name>

Extracts debug files from a .sof to a zip file which can be
emailed to Intel FPGA Support for analysis.
You can specify a design path of {} to unlink a device and to
disable auto linking for that device.

design_get_warnings <design-path> Gets the list of warnings for this design. If the design loads
correctly, then an empty list returns.

2.8.8. Bytestream Service

The bytestream service provides access to modules that produce or consume a stream
of bytes. Use the bytestream service to communicate directly to the IP core that
provides bytestream interfaces, such as the Altera JTAG UART or the Avalon-ST JTAG
interface.

Example 11. Bytestream Service

The following code finds the bytestream service for your interface and opens it.

set bytestream_index 0
set bytestream [lindex [get_service_paths bytestream] $bytestream_index]
set claimed_bytestream [claim_service bytestream $bytestream mylib]

To specify the outgoing data as a list of bytes and send it through the opened service:

set payload [list 1 2 3 4 5 6 7 8]
bytestream_send $claimed_bytestream $payload

Incoming data also comes as a list of bytes.

set incoming_data [list]
while {[llength $incoming_data] ==0} {
 set incoming_data [bytestream_receive $claimed_bytestream 8]
}

Close the service when done.

close_service bytestream $claimed_bytestream

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.8.8.1. Bytestream Commands

Table 11. Bytestream Commands

Command Arguments Function

bytestream_send <service-path>
<values>

Sends the list of bytes to the specified bytestream service. Values argument is
the list of bytes to send.

bytestream_receive <service-path>
<length>

Returns a list of bytes currently available in the specified services receive
queue, up to the specified limit. Length argument is the maximum number of
bytes to receive.

2.8.9. JTAG Debug Service

The JTAG Debug service allows you to check the state of clocks and resets within your
design.

The following is a JTAG Debug design flow example.

1. To identify available JTAG Debug paths:

get_service_paths jtag_debug

2. To select a JTAG Debug path:

set jtag_debug_path [lindex [get_service_paths jtag_debug] 0]

3. To claim a JTAG Debug service path:

 set claim_jtag_path [claim_service jtag_debug$jtag_debug_path mylib]

4. Running the JTAG Debug service:

jtag_debug_reset_system $claim_jtag_path
jtag_debug_loop $claim_jtag_path [list 1 2 3 4 5]

2.8.9.1. JTAG Debug Commands

JTAG Debug commands help debug the JTAG Chain connected to a device.

Table 12. JTAG Debug Commands

Command Argument Function

jtag_debug_loop <service-path>
<list_of_byte_val
ues>

Loops the specified list of bytes through a loopback of tdi
and tdo of a system-level debug (SLD) node. Returns the
list of byte values in the order that they were received. This
command blocks until all bytes are received. Byte values
have the 0x (hexadecimal) prefix and are delineated by
spaces.

jtag_debug_sample_clock <service-path> Returns the clock signal of the system clock that drives the
module's system interface. The clock value is sampled
asynchronously; consequently, you must sample the clock
several times to guarantee that it is switching.

continued...

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Argument Function

jtag_debug_sample_reset <service-path> Returns the value of the reset_n signal of the Avalon-ST
JTAG Interface core. If reset_n is low (asserted), the value
is 0 and if reset_n is high (deasserted), the value is 1.

jtag_debug_sense_clock <service-path> Returns a sticky bit that monitors system clock activity. If
the clock switched at least once since the last execution of
this command, returns 1. Otherwise, returns 0.. The sticky
bit is reset to 0 on read.

jtag_debug_reset_system <service-path> Issues a reset request to the specified service. Connectivity
within your device determines which part of the system is
reset.

2.9. Working with Toolkits

The Toolkit API allows you to create custom tools to visualize and interact with your
design debug data. The Toolkit API provides graphical widgets in the form of buttons
and text fields, which can leverage user input to interact with debug logic. You can use
Toolkit API with the Intel Quartus Prime software versions 14.1 and later. The Toolkit
API is the successor to the Dashboard service.

Toolkits you create with the Toolkit API require the following files:

• XML file that describes the toolkit (.toolkit file).

• Tcl file that implements the toolkit GUI.

2.9.1. Convert your Dashboard Scripts to Toolkit API

Convert your Dashboard scripts to work with the Toolkit API by following these steps:

1. Create a .toolkit file.

2. Modify your dashboard script:

a. Remove the add_service dashboard <name of service> command.

b. Change dashboard_<command> to toolkit_<command>.

c. Change open_service to claim_service

For example:

open_service slave $path
master_read_memory $path address count

becomes

set c [claim_service slave $path lib {}]
master_read_memory $c address count

2.9.2. Creating a Toolkit Description File

A toolkit description file (.toolkit) is a XML file which provides the registration data
for a toolkit.

Include the following attributes in your toolkit description file:

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 13. Attributes in Toolkit Description File

Attribute name Purpose

name Internal toolkit file name.

displayName Toolkit display name to appear in the GUI.

addMenuItem Whether the System Console Tools ➤ Toolkits menu displays the toolkit.

Table 14. Toolkit child elements

Attribute name Purpose

description Description of the purpose of the toolkit.

file Path to .tcl file containing the toolkit implementation.

icon Path to icon to display as the toolkit launcher button in System Console
Note: The .png 64x64 format is preferred. If the icon does not take up the whole

space, ensure that the background is transparent.

requirement If the toolkit works with a particular type of hardware, this attribute specifies the
debug type name of the hardware. This attribute enables automatic discovery of the
toolkit.
The syntax of a toolkit's debug type name is:
• Name of the hw.tcl component.
• dot.
• Name of the interface within that component which the toolkit uses.
For example: <hw.tcl name>.<interface name>.

Example 12. .toolkit Description File

<?xml version="1.0" encoding="UTF-8"?>
 <toolkit name="toolkit_example" displayName="Toolkit Example"
addMenuItem="true">
 <file> toolkit_example.tcl </file>
 </toolkit>

Related Information

Matching Toolkits with IP Cores on page 38

2.9.3. Registering a Toolkit

Use the toolkit_register command in the System Console to make your toolkit
available. Remember to specify the path to the .toolkit file. Registering a toolkit
does not create an instance of the toolkit GUI.

toolkit_register <toolkit_file>

2.9.4. Launching a Toolkit

With the System Console, you can launch pre-registered toolkits in a number of ways:

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Click Tools ➤ Toolkits.

• Use the Toolkits tab. Each toolkit has a description, a detected hardware list, and
a launch button.

• Use following command:

toolkit_open <.toolkit_file_name>

You can launch a toolkit in the context of a hardware resource associated with a toolkit
type. If you use the command:

toolkit_open <toolkit_name> <context>

the toolkit Tcl can retrieve the context by typing

set context [toolkit_get_context]

Related Information

toolkit_get_context on page 49

2.9.5. Matching Toolkits with IP Cores

You can match your toolkit with any IP core:

• When searching for IP, the toolkit looks for debug markers and matches IP cores
to the toolkit requirements. In the toolkit file, use the requirement attribute to
specify a debug type, as follows:

<requirement><type>debug.type-name</type></requirement

• Create debug assignments in the hw.tcl for an IP core. hw.tcl files are
available when you load the design in System Console.

• System Console discovers debug markers from identifiers in the hardware and
associates with IP, without direct knowledge of the design.

2.9.6. Toolkit API

The Toolkit API service enables you to construct GUIs for visualizing and interacting
with debug data. The Toolkit API is a graphical pane for the layout of your graphical
widgets, which include buttons and text fields. Widgets pull data from other System
Console services. Similarly, widgets use services to leverage user input to act on
debug logic in your design.

Properties

Widget properties can push and pull information to the user interface. Widgets have
properties specific to their type. For example, when you click a button, the button
property onClick performs an action. A label widget does not have the same
property, because the widget does not perform an action on click operation. However,
both the button and label widgets have the text property to display text strings.

Layout

The Toolkit API service creates a widget hierarchy where the toolkit is at the top-level.
The service implements group-type widgets that contain child widgets. Layout
properties dictate layout actions that a parent performs on its children. For example,

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the expandableX property when set as True, expands the widget horizontally to
encompass all of the available space. The visible property when set as True allows
a widget to display in the GUI.

User Input

Some widgets allow user interaction. For example, the textField widget is a text
box that allows user entries. Access the contents of the box with the text property. A
Tcl script can either get or set the contents of the textField widget with the text
property.

Callbacks

Some widgets perform user-specified actions, referred to as callbacks. The
textField widget has the onChange property, which is called when text contents
change. The button widget has the onClick property, which is called when you click
a button. Callbacks update widgets or interact with services based on the contents of
a text field, or the state of any other widget.

2.9.6.1. Customizing Toolkit API Widgets

Use the toolkit_set_property command to interact with the widgets that you
instantiate. The toolkit_set_property command is most useful when you change
part of the execution of a callback.

2.9.6.2. Toolkit API Script Examples

Example 13. Making the Toolkit Visible in System Console

Use the toolkit_set_property command to modify the visible property of the
root toolkit. Use the word self if a property is applied to the entire toolkit. In other
cases, refer to the root toolkit using all.

toolkit_set_property self visible true

Example 14. Adding Widgets

Use the toolkit_add command to add widgets.

toolkit_add my_button button all

The following commands add a label widget my_label to the root toolkit. In the GUI,
the label appears as Widget Label.

set name "my_label"
set content "Widget Label"
toolkit_add $name label all
toolkit_set_property $name text $content

In the GUI, the displayed text changes to the new value. Add one more label:

toolkit_add my_label_2 label all
toolkit_set_property my_label_2 text "Another label"

The new label appears to the right of the first label.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To place the new label under the first, use the following command:

toolkit_set_property self itemsPerRow 1

Example 15. Gathering Input

To incorporate user input into your Toolkit API,

1. Create a text field using the following commands:

set name "my_text_field"
set widget_type "textField"
set parent "all"
toolkit_add $name $widget_type $parent

2. The widget size is very small. To make the widget fill the horizontal space, use the
following command:

toolkit_set_property my_text_field expandableX true

3. Now, the text field is fully visible. You can type text into the field, on clicking. To
retrieve the contents of the field, use the following command:

set content [toolkit_get_property my_text_field text]
puts $content

This command prints the contents into the console.

Example 16. Updating Widgets Upon User Events

When you use callbacks, the Toolkit API can also perform actions without interactive
typing:

1. Start by defining a procedure that updates the first label with the text field
contents:

proc update_my_label_with_my_text_field{
 set content [toolkit_get_property my_text_field text]
 toolkit_set_property my_label text $content
}

2. Run the update_my_label_with_my_text_field command in the Tcl Console.
The first label now matches the text field contents.

3. Use the update_my_label_with_my_text_field command whenever the text
field changes:

toolkit_set_property my_text_field onChange
update_my_label_with_my_text_field

The Toolkit executes the onChange property each time the text field changes. The
execution of this property changes the first field to match what you type.

Example 17. Buttons

Use buttons to trigger actions.

1. To create a button that changes the second label:

proc append_to_my_label_2 {suffix} {
 set old_text [toolkit_get_property my_label_2 text]
 set new_text "${old_text}${suffix}"
 toolkit_set_property my_label_2 text $new_text
 }

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 set text_to_append ", and more"
 toolkit_add my_button button all
 toolkit_set_property my_button onClick
[append_to_my_label_2 $text_to_append]

2. Click the button to append some text to the second label.

Example 18. Groups

The property itemsPerRow dictates the laying out of widgets in a group. For more
complicated layouts where the number of widgets per row is different, use nested
groups. To add a new group with more widgets per row:

toolkit_add my_inner_group group all
toolkit_set_property my_inner_group itemsPerRow 2
toolkit_add inner_button_1 button my_inner_group
toolkit_add inner_button_2 button my_inner_group

These commands create a row with a group of two buttons. To make the nested group
more seamless, remove the border with the group name using the following
commands:

toolkit_set_property my_inner_group title ""

You can set the title property to any other string to ensure the display of the border
and title text.

Example 19. Tabs

Use tabs to manage widget visibility:

toolkit_add my_tabs tabbedGroup all
toolkit_set_property my_tabs expandableX true
toolkit_add my_tab_1 group my_tabs
toolkit_add my_tab_2 group my_tabs
toolkit_add tabbed_label_1 label my_tab_1
toolkit_add tabbed_label_2 label my_tab_2
toolkit_set_property tabbed_label_1 text "in the first tab"
toolkit_set_property tabbed_label_2 text "in the second tab"

These commands add a set of two tabs, each with a group containing a label. Clicking
on the tabs changes the displayed group/label.

2.9.6.3. Toolkit API GUI Example

This example shows how to register and launch a toolkit containing an interactive GUI
window:

1. Write a toolkit description file. For a working example, refer to Creating a Toolkit
Description File.

2. Generate a .tcl file using the text on Toolkit API GUI Example .tcl File.

3. Open the System Console.

4. Register your toolkit in the Tcl Console pane. Include the relative path to your
file's location.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7. Registering Your Toolkit

Register toolkit here

The Toolkit appears in the Toolkits tab

Figure 8. Toolkits Tab After Toolkit Example Registration

Link to launch instance

5. Click the Launch link.

A new tab appears, containing the widgets you specified in the TCL file.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9. Toolkit Example GUI

Generated GUI

When you insert text in the Send Data field and click Launch, the text appears in
the Receive Data field.

Related Information

Creating a Toolkit Description File on page 36

2.9.6.3.1. Toolkit API GUI Example .tcl File

The following Toolkit API .tcl file creates a GUI window that provides debug interaction
with your design.

namespace eval Test {

 variable ledValue 0
 variable dashboardActive 0
 variable Switch_off 1

 proc toggle { position } {
 set ::Test::ledValue ${position}
 ::Test::updateDashboard
 }

 proc sendText {} {
 set sendText [toolkit_get_property sendTextText text]
 toolkit_set_property receiveTextText text $sendText
 }

 proc dashBoard {} {

 if { ${::Test::dashboardActive} == 1 } {
 return -code ok "dashboard already active"
 }

 set ::Test::dashboardActive 1
 #
 # top group widget
 #
 toolkit_add topGroup group self
 toolkit_set_property topGroup expandableX false
 toolkit_set_property topGroup expandableY false
 toolkit_set_property topGroup itemsPerRow 1
 toolkit_set_property topGroup title ""

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 #
 # leds group widget
 #
 toolkit_add ledsGroup group topGroup
 toolkit_set_property ledsGroup expandableX false
 toolkit_set_property ledsGroup expandableY false
 toolkit_set_property ledsGroup itemsPerRow 2
 toolkit_set_property ledsGroup title "LED State"

 #
 # leds widgets
 #
 toolkit_add led0Button button ledsGroup
 toolkit_set_property led0Button enabled true
 toolkit_set_property led0Button expandableX false
 toolkit_set_property led0Button expandableY false
 toolkit_set_property led0Button text "Toggle"
 toolkit_set_property led0Button onClick {::Test::toggle 1}

 toolkit_add led0LED led ledsGroup
 toolkit_set_property led0LED expandableX false
 toolkit_set_property led0LED expandableY false
 toolkit_set_property led0LED text "LED 0"
 toolkit_set_property led0LED color "green_off"

 toolkit_add led1Button button ledsGroup
 toolkit_set_property led1Button enabled true
 toolkit_set_property led1Button expandableX false
 toolkit_set_property led1Button expandableY false
 toolkit_set_property led1Button text "Turn ON"
 toolkit_set_property led1Button onClick {::Test::toggle 2}

 toolkit_add led1LED led ledsGroup
 toolkit_set_property led1LED expandableX false
 toolkit_set_property led1LED expandableY false
 toolkit_set_property led1LED text "LED 1"
 toolkit_set_property led1LED color "green_off"

 #
 # sendText widgets
 #
 toolkit_add sendTextGroup group topGroup
 toolkit_set_property sendTextGroup expandableX false
 toolkit_set_property sendTextGroup expandableY false
 toolkit_set_property sendTextGroup itemsPerRow 1
 toolkit_set_property sendTextGroup title "Send Data"

 toolkit_add sendTextText text sendTextGroup
 toolkit_set_property sendTextText expandableX false
 toolkit_set_property sendTextText expandableY false
 toolkit_set_property sendTextText preferredWidth 200
 toolkit_set_property sendTextText preferredHeight 100
 toolkit_set_property sendTextText editable true
 toolkit_set_property sendTextText htmlCapable false
 toolkit_set_property sendTextText text ""

 toolkit_add sendTextButton button sendTextGroup
 toolkit_set_property sendTextButton enabled true
 toolkit_set_property sendTextButton expandableX false
 toolkit_set_property sendTextButton expandableY false
 toolkit_set_property sendTextButton text "Send Now"
 toolkit_set_property sendTextButton onClick {::Test::sendText}

 #
 # receiveText widgets
 #
 toolkit_add receiveTextGroup group topGroup
 toolkit_set_property receiveTextGroup expandableX false
 toolkit_set_property receiveTextGroup expandableY false
 toolkit_set_property receiveTextGroup itemsPerRow 1

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 toolkit_set_property receiveTextGroup title "Receive Data"

 toolkit_add receiveTextText text receiveTextGroup
 toolkit_set_property receiveTextText expandableX false
 toolkit_set_property receiveTextText expandableY false
 toolkit_set_property receiveTextText preferredWidth 200
 toolkit_set_property receiveTextText preferredHeight 100
 toolkit_set_property receiveTextText editable false
 toolkit_set_property receiveTextText htmlCapable false
 toolkit_set_property receiveTextText text ""

 return -code ok
 }

 proc updateDashboard {} {

 if { ${::Test::dashboardActive} > 0 } {

 toolkit_set_property ledsGroup title "LED State"
 if { [expr ${::Test::ledValue} & 0x01 & \
 ${::Test::Switch_off}] } {
 toolkit_set_property led0LED color "green"
 set ::Test::Switch_off 0
 } else {
 toolkit_set_property led0LED color "green_off"
 set ::Test::Switch_off 1
 }
 if { [expr ${::Test::ledValue} & 0x02] } {
 toolkit_set_property led1LED color "green"
 } else {
 toolkit_set_property led1LED color "green_off"
 }
 }
 }
}
::Test::dashBoard

2.9.6.4. Toolkit API Commands

Toolkit API commands run in the context of a unique toolkit instance.

toolkit_register on page 46

toolkit_open on page 47

get_quartus_ini on page 48

toolkit_get_context on page 49

toolkit_get_types on page 50

toolkit_get_properties on page 51

toolkit_add on page 52

toolkit_get_property on page 53

toolkit_set_property on page 54

toolkit_remove on page 55

toolkit_get_widget_dimensions on page 56

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.4.1. toolkit_register

Description
Point to the XML file that describes the plugin (.toolkit file) .

Usage
toolkit_register <toolkit_file>

Returns
No return value.

Arguments

<toolkit_file> Path to the toolkit definition file.

Example

toolkit_register /path/to/toolkit_example.toolkit

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.4.2. toolkit_open

Description
Opens an instance of a toolkit in System Console.

Usage
toolkit_open <toolkit_id> [<context>]

Returns
No return value.

Arguments

<toolkit_id> Name of the toolkit type to open.

<context> An optional context, such as a service path for a hardware resource
that is associated with the toolkit that opens.

Example

toolkit_open my_toolkit_id

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.4.3. get_quartus_ini

Description
Returns the value of an ini setting from the Intel Quartus Prime software .ini file.

Usage
get_quartus_ini <ini> <type>

Returns
Value of ini setting.

Arguments

<ini> Name of the Intel Quartus Prime software .ini setting.

<type> (Optional) Type of .ini setting. The known types are string and
enabled. If the type is enabled, the value of the .ini setting returns
1, or 0 if not enabled.

Example

set my_ini_enabled [get_quartus_ini my_ini enabled]

set my_ini_raw_value [get_quartus_ini my_ini]

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.4.4. toolkit_get_context

Description
Returns the context that was specified when the toolkit was opened. If no context was
specified, returns an empty string.

Usage
toolkit_get_context

Returns
Context.

Arguments
No arguments.

Example

set context [toolkit_get_context]

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.4.5. toolkit_get_types

Description
Returns a list of widget types.

Usage
toolkit_get_types

Returns
List of widget types.

Arguments
No arguments.

Example

set widget_names [toolkit_get_types]

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.4.6. toolkit_get_properties

Description
Returns a list of toolkit properties for a type of widget.

Usage
toolkit_get_properties <widgetType>

Returns
List of toolkit properties.

Arguments

<widgetType> Type of widget.

Example

set widget_properties [toolkit_get_properties xyChart]

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.4.7. toolkit_add

Description
Adds a widget to the current toolkit.

Usage
toolkit_add <id> <type><groupid>

Returns
No return value.

Arguments

<id> A unique ID for the widget being added.

<type> The type of widget that is being added.

<groupid> The ID for the parent group that contains the new widget. Use self
for the toolkit base group.

Example

toolkit_add my_button button parentGroup

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.4.8. toolkit_get_property

Description
Returns the property value for a specific widget.

Usage
toolkit_get_property <id> <propertyName>

Returns
The property value.

Arguments

<id> A unique ID for the widget being queried.

<propertyName> The name of the widget property.

Example

set enabled [toolkit_get_property my_button enabled]

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.4.9. toolkit_set_property

Description
Sets the property value for a specific widget.

Usage
toolkit_set_property <id><propertyName> <value>

Returns
No return value.

Arguments

<id> A unique ID for the widget being modified.

<propertyName> The name of the widget property being set.

<value> The new value for the widget property.

Example

toolkit_set_property my_button enabled 0

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.4.10. toolkit_remove

Description
Removes a widget from the specified toolkit.

Usage
toolkit_remove <id>

Returns
No return value.

Arguments

<id> A unique ID for the widget being removed.

Example

toolkit_remove my_button

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.4.11. toolkit_get_widget_dimensions

Description
Returns the width and height of the specified widget.

Usage
toolkit_get_widget_dimensions <id>

Returns
Width and height of specified widget.

Arguments

<id> A unique ID for the widget being added.

Example

set dimensions [toolkit_get_widget_dimensions my_button]

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5. Toolkit API Properties

The following are the Toolkit API widget properties:

Widget Types and Properties on page 58

barChart Properties on page 59

button Properties on page 60

checkBox Properties on page 61

comboBox Properties on page 62

dial Properties on page 63

fileChooserButton Properties on page 64

group Properties on page 65

label Properties on page 66

led Properties on page 67

lineChart Properties on page 68

list Properties on page 69

pieChart Properties on page 70

table Properties on page 71

text Properties on page 72

textField Properties on page 73

timeChart Properties on page 74

xyChart Properties on page 75

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.1. Widget Types and Properties

Table 15. Toolkit API Widget Types and Properties

Name Description

enabled Enables or disables the widget.

expandable Controls whether the widget is expandable.

expandableX Allows the widget to resize horizontally if there is space
available in the cell where it resides.

expandableY Allows the widget to resize vertically if there is space
available in the cell where it resides.

foregroundColor Sets the foreground color.

maxHeight If the widget's expandableY is set, this is the maximum
height in pixels that the widget can take.

minHeight If the widget's expandableY is set, this is the minimum
height in pixels that the widget can take.

maxWidth If the widget's expandableX is set, this is the maximum
width in pixels that the widget can take.

minWidth If the widget's expandableX is set, this is the minimum
width in pixels that the widget can take.

preferredHeight The height of the widget if expandableY is not set.

preferredWidth The width of the widget if expandableX is not set.

toolTip Implements a mouse-over tooltip.

visible Displays the widget.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.2. barChart Properties

Table 16. Toolkit API barChart Properties

Name Description

title Chart title.

labelX X-axis label text.

label X-axis label text.

range Y-axis value range. By default, it is auto range. Specify the
range using a Tcl list, for example:
[list lower_numerical_value
upper_numerical_value].

itemValue Specify the value using a Tcl list, for example:
[list bar_category_str numerical_value].

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.3. button Properties

Table 17. Toolkit API button Properties

Name Description

onClick Specifies the Tcl command to run every time you click the
button. Usually the command is a proc.

text The text on the button.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.4. checkBox Properties

Table 18. Toolkit API checkBox Properties

Name Description

checked Specifies the state of the checkbox.

onClick Specifies the Tcl command to run every time you click the
checkbox. The command is usually a proc.

text The text on the checkbox.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.5. comboBox Properties

Table 19. Toolkit API comboBox Properties

Name Description

onChange A Tcl callback to run when the value of the combo box
changes.

options A list of items to display in the combo box.

selectedItem The selected item in the combo box.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.6. dial Properties

Table 20. Toolkit API dial Properties

Name Description

max The maximum value that the dial can show.

min The minimum value that the dial can show.

ticksize The space between the different tick marks of the dial.

title The title of the dial.

value The value that the dial's needle marks. It must be between
min and max.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.7. fileChooserButton Properties

Table 21. Toolkit API fileChooserButton Properties

Name Description

text The text on the button.

onChoose A Tcl command that runs every time you click the button.
The command is usually a proc.

title The title of the dialog box.

chooserButtonText The text of the dialog box approval button. Default value is
Open.

filter The file filter, based on extension. The filter supports only
one extension. By default, the filter allows all file names.
Specify the filter using the syntax [list
filter_description file_extension], for example:
[list "Text Document (.txt)" "txt"].

mode Specifies what kind of files or directories you can select. The
default is files_only. Possible options are files_only
and directories_only.

multiSelectionEnabled Controls whether you can select multiple files. Default value
is false.

paths This property is read-only. Returns a list of file paths
selected in the file chooser dialog box. The property is most
useful when you use it within the onClick script, or inside
a procedure that updates the result after the dialog box
closes.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.8. group Properties

Table 22. Toolkit API group Properties

Name Description

itemsPerRow The number of widgets the group can position in one row,
from left to right, before moving to the next row.

title The title of the group. Groups with a title can have a border
around them, and setting an empty title removes the
border.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.9. label Properties

Table 23. Toolkit API label Properties

Name Description

text The text to show in the label.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.10. led Properties

Table 24. Toolkit API led Properties

Name Description

color The color of the LED. The options are: red_off, red,
yellow_off, yellow, green_off, green, blue_off,
blue, and black.

text The text to show next to the LED.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.11. lineChart Properties

Table 25. Toolkit API lineChart Properties

Name Description

title Chart title.

labelX X-axis label text.

labelY Y-axis label text.

range Y-axis value range. By default, it is auto range. Specify the
range using a Tcl list, for example:
[list lower_numerical_value
upper_numerical_value].

itemValue Item value. Specify the value using a Tcl list, for example:
[list bar_category_str numerical_value].

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.12. list Properties

Table 26. Toolkit API list Properties

Name Description

selected Index of the selected item in the combo box.

options List of options to display.

onChange A Tcl callback to run when the selected item in the list
changes.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.13. pieChart Properties

Table 27. Toolkit API pieChart Properties

Name Description

title Chart title.

itemValue Item value. Specified using a Tcl list, for example:
[list bar_category_str numerical_value].

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.14. table Properties

Table 28. Toolkit API table Properties

Name Description

columnCount The number of columns (Mandatory) (0, by default).

rowCount The number of rows (Mandatory) (0, by default).

headerReorderingAllowed Controls whether you can drag the columns (false, by
default).

headerResizingAllowed Controls whether you can resize all column widths. (false,
by default).
Note: You can resize each column individually with the

columnWidthResizable property.

rowSorterEnabled Controls whether you can sort the cell values in a column
(false, by default).

showGrid Controls whether to draw both horizontal and vertical lines
(true, by default).

showHorizontalLines Controls whether to draw horizontal line (true, by default).

rowIndex Current row index. Zero-based. This value affects some
properties below (0, by default).

columnIndex Current column index. Zero-based. This value affects all
column specific properties below (0, by default).

cellText Specifies the text inside the cell given by the current
rowIndex and columnIndex (Empty, by default).

selectedRows Control or retrieve row selection.

columnHeader The text in the column header.

columnHeaders A list of names to define the columns for the table.

columnHorizontalAlignment The cell text alignment in the specified column. Supported
types are leading (default), left, center, right,
trailing.

columnRowSorterType The type of sorting method. This is applicable only if
rowSorterEnabled is true. Each column has its own
sorting type. Possible types are string (default), int, and
float.

columnWidth The number of pixels in the column width.

columnWidthResizable Controls whether the column width is resizable by you
(false, by default).

contents The contents of the table as a list. For a table with columns
A, B, and C, the format of the list is {A1 B1 C1 A2 B2 C2
etc}.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.15. text Properties

Table 29. Toolkit API text Properties

Name Description

editable Controls whether the text box is editable.

htmlCapable Controls whether the text box can format HTML.

text The text to show in the text box.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.16. textField Properties

Table 30. Toolkit API textField Properties

Name Description

editable Controls whether the text box is editable.

onChange A Tcl callback to run when you change the content of the
text box.

text The text in the text box.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.17. timeChart Properties

Table 31. Toolkit API timeChart Properties

Name Description

labelX The label for the X-axis.

labelY The label for the Y-axis.

latest The latest value in the series.

maximumItemCount The number of sample points to display in the historic
record.

title The title of the chart.

range Sets the range for the chart. The range has the form {low,
high}. The low/high values are doubles.

showLegend Specifies whether a legend for the series is shown in the
graph.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.6.5.18. xyChart Properties

Table 32. Toolkit API xyChart Properties

Name Properties

title Chart title.

labelX X-Axis label text.

labelY Y-Axis label text.

range Sets the range for the chart. The range is of the form
{low, high}. The low/high values are doubles.

maximumItemCount Specifies the maximum number of data values to keep in a
data series. This setting only affects new data in the chart.
If you add more data values than the maximumItemCount,
only the last maximumItemCount number of entries are
kept.

series Adds a series of data to the chart. The first value in the
spec is the identifier for the series. If the same identifier is
set twice, the Toolkit API selects the most recent series. If
the identifier does not contain series data, that series is
removed from the chart. Specify the series in a Tcl list:
{identifier, x-1 y-1, x-2 y-2}.

showLegend Sets whether a legend for the series appears in the graph.

2.10. ADC Toolkit

The ADC Toolkit is designed to work with Intel MAX 10 devices and helps you
understand the performance of the analog signal chain as seen by the on-board ADC
hardware. The GUI displays the performance of the ADC using industry standard
metrics. You can export the collected data to a .csv file and process this raw data
yourself. The ADC Toolkit is built on the System Console framework and can only be
operated using the GUI. There is no Tcl support for the tool.

Prerequisites for Using the ADC Toolkit

• Altera Modular ADC IP core

— External Reference Voltage if you select External in the Altera Modular
ADC IP parameters

• Reference signal

The ADC Toolkit needs a sine wave signal to be fed to the analog inputs. You need the
capability to precisely set the level and frequency of the reference signal. A high-
precision sine wave is needed for accurate test results; however, there are useful
things that can be read in Scope mode with any input signal.

To achieve the best testing results, ensure that the reference signal has less distortion
than the device ADC is able to resolve. Otherwise, you are adding distortions from the
source into the resulting ADC distortion measurements. The limiting factor is based on
hardware precision.

Note: When applying a sine wave, the ADC should sample at 2x the fundamental sine wave
frequency. There should be a low-pass filter, 3dB point set to the fundamental
frequency.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Configuring the Altera Modular ADC IP Core

The Altera Modular ADC IP core needs to be included in the design. You can instantiate
this IP core from the IP Catalog. When you configure this IP core in the Parameter
Editor, you need to enable the Debug Path option located under Core
Configuration.

There are two limitations in the Intel Quartus Prime software v14.1 for the Altera
Modular ADC IP core. The ADC Toolkit does not support the ADC control core only
option under Core Configuration. You must select a core variant that uses the
standard sequencer in order for the Altera Modular ADC IP core to work with ADC
Toolkit. Also, if an Avalon Master is not connected to the sequencer, you must
manually start the sequencer before the ADC Toolkit.

Figure 10. Altera Modular ADC Core

Starting the ADC Toolkit

You can launch the ADC Toolkit from System Console. Before starting the ADC toolkit,
you need to verify that the board is programmed. You can then load the .sof by
clicking File ➤ Load Design. If System Console was started with an active project,
the design is auto-loaded when you start System Console.

There are two methods to start the ADC Toolkit. Both methods require you to have a
Intel MAX 10 device connected, programmed with a project, and linked to this project.
However, the Launch command only shows up if these requirements are met. You can
always start the ADC Toolkit from the Tools menu, but a successful connection still
depends on meeting the above requirements.

• Click Tools ➤ ADC Toolkit

• Alternatively, click Launch from the Toolkits tab. The path for the device is
displayed above the Launch button.

Note: Only one ADC Toolkit enabled device can be connected at a time.

Upon starting the ADC Toolkit, an identifier path on the ADC Toolkit tab shows you
which ADC on the device is being used for this instance of the ADC Toolkit.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11. Launching ADC Toolkit

ADC Toolkit Flow

The ADC Toolkit GUI consists of four panels: Frequency Selection, Scope, Signal
Quality, and Linearity.

1. Use the Frequency Selection panel to calculate the required sine wave frequency
for proper signal quality testing. The ADC Toolkit provides the nearest ideal
frequency based on the desired reference signal frequency.

2. Use the Scope panel to tune the signal generator or inspect input signal
characteristics.

3. Use the Signal Quality panel to test the performance of the ADC using industry
standard metrics.

4. Use the Linearity panel to test the linearity performance of the ADC and display
differential and integral non-linearity results.

Figure 12. ADC Toolkit GUI

Related Information

• Using the ADC Toolkit in Intel MAX 10 Devices online training

• Intel MAX 10 FPGA Device Overview

• Intel MAX 10 FPGA Device Datasheet

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

77

http://wl.altera.com/education/training/courses/OMAXADC103
https://www.intel.com/content/www/us/en/docs/programmable/683658.html
https://www.intel.com/content/www/us/en/docs/programmable/683794.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Intel MAX 10 FPGA Design Guidelines

• Intel MAX 10 Analog to Digital Converter User Guide

• Additional information about sampling frequency
Nyquist sampling theorem and how it relates to the nominal sampling interval
required to avoid aliasing.

2.10.1. ADC Toolkit Terms

Table 33. ADC Toolkit Terms

Term Description

SNR The ratio of the output signal voltage level to the output
noise level.

THD The ratio of the sum of powers of the harmonic frequency
components to the power of the fundamental/original
frequency component.

SFDR Characterizes the ratio between the fundamental signal and
the highest spurious in the spectrum.

SINAD The ratio of the RMS value of the signal amplitude to the
RMS value of all other spectral components, including
harmonics, but excluding DC.

ENOB The number of bits with which the ADC behaves.

DNL The maximum and minimum difference in the step width
between actual transfer function and the perfect transfer
function

INL The maximum vertical difference between the actual and
the ideal curve. It indicates the amount of deviation of the
actual curve from the ideal transfer curve.

2.10.2. Setting the Frequency of the Reference Signal

The Frequency Selection panel allows you to compute the reference signal
frequency that ADC performance tests require. This frequency is critical and affects
the validity of your test results.The computed frequency varies depending on the type
of test you want to do with the ADC Toolkit.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

78

https://www.intel.com/content/www/us/en/docs/programmable/683196.html
https://www.intel.com/content/www/us/en/docs/programmable/683596.html
http://redwood.berkeley.edu/bruno/npb261/aliasing.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13. Frequency Selection Panel

To set the frequency of the reference signal:

1. On ADC Channel, select the ADC channel that you plan to test.
The tool populates the Sample Size and Sample Frequency fields.

2. In Desired Frequency, enter the target frequency for testing.

3. Click Calculate.

• The closest frequency for valid testing near your desired frequency appears
under both Signal Quality Test and Linearity Test.

• The nearest required sine wave frequencies are different for the signal quality
test and linearity test.

4. Set your signal generator to the precise frequency given by the tool based on the
type of test you want to run.

2.10.3. Tuning the Signal Generator

The Scope panel allows you to tune the signal generator in order to achieve the best
possible performance from the ADC.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14. Scope Mode Panel

To tune the signal generator:

1. On ADC Channel, select the ADC channel that you plan to test.

2. Enter the reference Sample Frequency (unless the tool can extract this value
from the IP).

3. Enter the Ref Voltage (unless the tool can extract this value from the IP).

4. Click Run.
The tool repeatedly captures a buffer worth of data and displays the data as a
waveform, besides additional information under Signal Information.

5. Tune the signal generator to use the maximum dynamic range of the ADC without
clipping.

Note: Avoid hitting 0 or 4095 because of signal clipping.

6. Ensure that the sine wave under Oscilloscope shows evenly balanced top and
bottom peaks. This indicates optimum value.

• For Intel MAX 10 devices, you want to get as close to Min Code = 0 and Max
Code = 4095 without actually hitting those values.

• To observe coherent sampling in the test window, you must set the frequency
precisely to the value needed for testing, Before moving forward, follow the
suggested value for signal quality testing or linearity testing that appears next
to the detected frequency.

7. From the Raw Data tab, export the data as a .csv file.

Related Information

Additional information about coherent sampling vs window sampling

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

80

https://www.maximintegrated.com/en/design/techdocs/app-notes/index.mvp
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.4. Running a Signal Quality Test

The available performance metrics in signal quality test mode are the following: signal
to noise ratio (SNR), total harmonic distortion (THD), spurious free dynamic range
(SFDR), signal to noise and distortion ratio (SINAD), effective number of bits (ENOB),
and a frequency response graph.The frequency response graph shows the signal,
noise floor, and any spurs or harmonics.

The signal quality parameters are measurements relative to the carrier signal and not
the full scale of the ADC.

Before running a signal quality test, ensure that you have set up the frequency of the
reference signal using Scope mode.

Figure 15. Signal Quality Panel

To run a signal quality test:

1. On ADC Channel, select the ADC channel that you plan to test.

2. Click Run.

From the Raw Data tab, you can export your data as a .csv file.

For signal quality tests, the signal must be coherently sampled. Based on the sampling
rate and number of samples to test, specific input frequencies are required for
coherent sampling.The sample frequency for each channel is calculated based on the
ADC sequencer configuration.

Related Information

Additional information about dynamic parameters such as SNR, THD, etc

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

81

http://www.cse.psu.edu/~chip/course/analog/lecture/SFDR1.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.5. Running a Linearity Test

The linearity test determines the linearity of the step sizes of each ADC code. It uses a
histogram testing method which requires sinusoidal inputs which are easier to source
from signal generators and DACs than other test methods.

When using Linearity test mode, the reference signal must meet specific
requirements:

• The signal source covers the full code range of the ADC. Results improve if the
time spent at code end is equivalent, by tuning the reference signal in Scope
mode.

• If you use code ends, ensure that you are not clipping the signal. Look at the
signal in Scope mode to see that it does not look flat at the top or bottom. A good
practice is to back away from code ends and test a smaller range within the
desired operating range of the ADC input signal.

• Choosing a frequency that is not an integer multiple of the sample rate and buffer
size helps to ensure all code bins are filled relatively evenly to the probability
density function of a sine wave. If an integer multiple is selected, some bins may
be skipped entirely while others are over populated. This makes the tests results
invalid. Use the frequency calculator feature to determine a good signal frequency
near your desired frequency.

To run a linearity test:

1. On ADC Channel, select the ADC channel that you plan to test.

2. Enter the test sample size in Burst Size. Larger samples increase the confidence
in the test results.

3. Click Run.

• You can stop the test at anytime, as well as click Run again to continue
adding to the aggregate data. To start fresh, click Reset after you stop a test.
Anytime you change the input signal or channel, you should click Reset so
your results are correct for a particular input.

• There are three graphical views of the data: Histogram view, DNL view, and
INL view.

• From the Raw Data tab, you can export your data as a .csv file.

2.10.6. ADC Toolkit Data Views

Histogram View

The Histogram view shows how often each code appears. The graph updates every
few seconds as it collects data. You can use the Histogram view to quickly check if
your test signal is set up appropriately.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 16. Example of Pure Sine Wave Histogram
The figure below shows the shape of a pure sine wave signal. Your reference signal should look similar.

If your reference signal is not a relatively smooth line, but has jagged edges with
some bins having a value of 0, and adjacent bins with a much higher value, then the
test signal frequency is not adequate. Use Scope mode to help choose a good
frequency for linearity testing.

Figure 17. Examples of (Left) Poor Frequency Choice vs (Right) Good Frequency Choice

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Differential Non-linearity View

Figure 18. Example of Good Differential Non-linearity

The DNL view shows the currently collected data. Ideally, you want your data to look like a straight line
through the 0 on the x-axis. When there are not enough samples of data, the line appears rough. The line
improves as more data is collected and averaged.

Each point in the graph represents how many LSB values a particular code differs from the ideal step size of 1
LSB. The Results box shows the highest positive and negative DNL values.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Integral Non-linearity View

Figure 19. Example of Good Integral Non-linearity

The INL view shows currently collected data. Ideally, with a perfect ADC and enough samples, the graph
appears as a straight line through 0 on the x-axis.

Each point in the graph represents how many LSB values a particular code differs from its expected point in the
voltage slope. The Results box shows the highest positive and negative INL values.

2.11. System Console Examples and Tutorials

Intel provides examples for performing board bring-up, creating a simple dashboard,
and programming a Nios II processor. The System_Console.zip file contains design
files for the board bring-up example. The Nios II Ethernet Standard .zip files contain
the design files for the Nios II processor example.

Note: The instructions for these examples assume that you are familiar with the Intel
Quartus Prime software, Tcl commands, and Platform Designer (Standard).

Related Information

On-Chip Debugging Design Examples Website
Contains the design files for the example designs that you can download.

2.11.1. Nios II Processor Example

This example programs the Nios II processor on your board to run the count binary
software example included in the Nios II installation. This is a simple program that
uses an 8-bit variable to repeatedly count from 0x00 to 0xFF. The output of this

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

85

https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/debugging.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

variable is displayed on the LEDs on your board. After programming the Nios II
processor, you use System Console processor commands to start and stop the
processor.

To run this example, perform the following steps:

1. Download the Nios II Ethernet Standard Design Example for your board from the
Altera website.

2. Create a folder to extract the design. For this example, use C:\Count_binary.

3. Unzip the Nios II Ethernet Standard Design Example into C:\Count_binary.

4. In a Nios II command shell, change to the directory of your new project.

5. Program your board. In a Nios II command shell, type the following:

nios2-configure-sof niosii_ethernet_standard_<board_version>.sof

6. Using Nios II Software Build Tools for Eclipse, create a new Nios II Application and
BSP from Template using the Count Binary template and targeting the Nios II
Ethernet Standard Design Example.

7. To build the executable and linkable format (ELF) file (.elf) for this application,
right-click the Count Binary project and select Build Project.

8. Download the .elf file to your board by right-clicking Count Binary project and
selecting Run As, Nios II Hardware.

• The LEDs on your board provide a new light show.

9. Type the following:

system-console; #Start System Console.

#Set the processor service path to the Nios II processor.
set niosii_proc [lindex [get_service_paths processor] 0]

set claimed_proc [claim_service processor $niosii_proc mylib]; #Open the
service.

processor_stop $claimed_proc; #Stop the processor.
#The LEDs on your board freeze.

processor_run $claimed_proc; #Start the processor.
#The LEDs on your board resume their previous activity.

processor_stop $claimed_proc; #Stop the processor.

close_service processor $claimed_proc; #Close the service.

• The processor_step, processor_set_register, and
processor_get_register commands provide additional control over the
Nios II processor.

Related Information

• Nios II Ethernet Standard Design Example

• Nios II Gen2 Software Developer's Handbook

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

86

https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/horizontal/exm-net-std-de.html
https://www.intel.com/content/www/us/en/docs/programmable/683525.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.11.1.1. Processor Commands

Table 34. Processor Commands

Command (1) Arguments Function

processor_download_elf <service-path>
<elf-file-path>

Downloads the given Executable and Linking Format File
(.elf) to memory using the master service associated with the
processor. Sets the processor's program counter to the .elf
entry point.

processor_in_debug_mode <service-path> Returns a non-zero value if the processor is in debug mode.

processor_reset <service-path> Resets the processor and places it in debug mode.

processor_run <service-path> Puts the processor into run mode.

processor_stop <service-path> Puts the processor into debug mode.

processor_step <service-path> Executes one assembly instruction.

processor_get_register_names <service-path> Returns a list with the names of all of the processor's accessible
registers.

processor_get_register <service-path>
<register_name>

Returns the value of the specified register.

processor_set_register <service-path>
<register_name>
<value>

Sets the value of the specified register.

Related Information

Nios II Processor Example on page 85

2.12. On-Board Intel FPGA Download Cable II Support

System Console supports an On-Board Intel FPGA Download Cable II circuit via the
USB Debug Master IP component. This IP core supports the master service.

Not all Stratix® V boards support the On-Board Intel FPGA Download Cable II. For
example, the transceiver signal integrity board does not support the On-Board Intel
FPGA Download Cable II.

2.13. MATLAB and Simulink* in a System Verification Flow

You can test system development in System Console using MATLAB and Simulink*,
and set up a system verification flow using the Intel FPGA Hardware in the Loop (HIL)
tools. In this approach, you deploy the design hardware to run in real time, and
simulate the system's surrounding components in a software environment. The HIL
approach allows you to use the flexibility of software tools with the real-world
accuracy and speed of hardware. You can gradually introduce more hardware
components to the system verification testbench. This technique gives you more

(1) If your system includes a Nios II/f core with a data cache, it may complicate the debugging
process. If you suspect the Nios II/f core writes to memory from the data cache at
nondeterministic intervals; thereby, overwriting data written by the System Console, you can
disable the cache of the Nios II/f core while debugging.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

control over the integration process as you tune and validate the system. When the
full system is integrated, the HIL approach allows you to provide stimuli via software
to test the system under a variety of scenarios.

Advantages of HIL Approach

• Avoid long computational delays for algorithms with high processing rates

• API helps to control, debug, visualize, and verify FPGA designs all within the
MATLAB environment

• FPGA results are read back by the MATLAB software for further analysis and
display

Required Tools and Components

• MATLAB software

• DSP Builder for Intel FPGAs software

• Intel Quartus Prime software

• Intel FPGA

Note: The DSP Builder for Intel FPGAs installation bundle includes the System Console
MATLAB API.

Figure 20. Hardware in the Loop Host-Target Setup

Related Information

White Paper 01208: Hardware in the Loop from the MATLAB/Simulink Environment

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

88

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01208-hardware-in-the-loop.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.13.1. Supported MATLAB API Commands

You can perform the work from the MATLAB environment, and read and write to
masters and slaves through the System Console. The supported MATLAB API
commands spare you from launching the System Console software. The supported
commands are:

• SystemConsole.refreshMasters;

• M = SystemConsole.openMaster(1);

• M.write (type, byte address, data);

• M.read (type, byte address, number of words);

• M.close

Example 20. MATLAB API Script Example

SystemConsole.refreshMasters; %Investigate available targets
M = SystemConsole.openMaster(1); %Creates connection with FPGA target
%%%%%%%% User Application %%%%%%%%%%%%
....
M.write('uint32',write_address,data); %Send data to FPGA target
....
data = M.read('uint32',read_address,size); %Read data from FPGA target
....
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
M.close; %Terminates connection to FPGA target

2.13.2. High Level Flow

1. Install the DSP Builder for Intel FPGAs software, so you have the necessary
libraries to enable this flow

2. Build the design using Simulink and the DSP Builder for Intel FPGAs libraries.

DSP Builder for Intel FPGAs helps to convert the Simulink design to HDL

3. Include Avalon-MM components in the design (DSP Builder for Intel FPGAs can
port non-Avalon-MM components)

4. Include Signals and Control blocks in the design

5. Separate synthesizable and non-synthesizable logic with boundary blocks.

6. Integrate the DSP system in Platform Designer (Standard)

7. Program the Intel FPGA

8. Interact with the Intel FPGA through the supported MATLAB API commands.

2.14. Deprecated Commands

The table lists commands that have been deprecated. These commands are currently
supported, but are targeted for removal from System Console.

Note: All dashboard_<name> commands are deprecated and replaced with
toolkit_<name> commands for Intel Quartus Prime software15.1, and later.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 35. Deprecated Commands

Command Arguments Function

open_service <service_type>
<service_path>

Opens the specified service type at the specified path.
Calls to open_service may be replaced with calls to claim_service providing that
the return value from claim_service is stored and used to access and close the
service.

2.15. Analyzing and Debugging Designs with the System Console
Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.05.07 18.0.0 Removed obsolete section: Board Bring-Up with System Console Tutorial.

2017.05.08 17.0.0 • Created topic Convert your Dashboard Scripts to Toolkit API.
• Removed Registering the Service Example from Toolkit API Script

Examples, and added corresponding code snippet to Registering a
Toolkit.

• Moved .toolkit Description File Example under Creating a Toolkit
Description File.

• Renamed Toolkit API GUI Example .toolkit File to .toolkit Description
File Example.

• Updated examples on Toolkit API to reflect current supported syntax.

2015.11.02 15.1.0 • Edits to Toolkit API content and command format.
• Added Toolkit API design example.
• Added graphic to Introduction to System Console.
• Deprecated Dashboard.
• Changed instances of Quartus II to Intel Quartus Prime.

October 2015 15.1.0 • Added content for Toolkit API
— Required .toolkit and Tcl files
— Registering and launching the toolkit
— Toolkit discovery and matching toolkits to IP
— Toolkit API commands table

May 2015 15.0.0 Added information about how to download and start System Console
stand-alone.

December 2014 14.1.0 • Added overview and procedures for using ADC Toolkit on MAX 10
devices.

• Added overview for using MATLAB/Simulink Environment with System
Console for system verification.

June 2014 14.0.0 Updated design examples for the following: board bring-up, dashboard
service, Nios II processor, design service, device service, monitor service,
bytestream service, SLD service, and ISSP service.

November 2013 13.1.0 Re-organization of sections. Added high-level information with block
diagram, workflow, SLD overview, use cases, and example Tcl scripts.

June 2013 13.0.0 Updated Tcl command tables. Added board bring-up design example.
Removed SOPC Builder content.

November 2012 12.1.0 Re-organization of content.

August 2012 12.0.1 Moved Transceiver Toolkit commands to Transceiver Toolkit chapter.

continued...

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

June 2012 12.0.0 Maintenance release. This chapter adds new System Console features.

November 2011 11.1.0 Maintenance release. This chapter adds new System Console features.

May 2011 11.0.0 Maintenance release. This chapter adds new System Console features.

December 2010 10.1.0 Maintenance release. This chapter adds new commands and references for
Qsys.

July 2010 10.0.0 Initial release. Previously released as the System Console User Guide,
which is being obsoleted. This new chapter adds new commands.

2. Analyzing and Debugging Designs with System Console

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Debugging Transceiver Links
The Transceiver Toolkit helps you optimize high-speed serial links in your board design
by providing real-time control, monitoring, and debugging of the transceiver links
running on your board.

The Transceiver Toolkit allows you to:

• Control the transmitter or receiver channels to optimize transceiver settings and
hardware features.

• Test bit-error rate (BER) while running multiple links at the target data rate.

• Control internal pattern generators and checkers, as well as enabling loopback
modes.

• Run auto sweep tests to identify the best physical media attachment (PMA)
settings for each link.

• For Stratix V devices, view the receiver horizontal and vertical eye margin during
testing.

• Test multiple devices across multiple boards simultaneously.

Note: The Transceiver Toolkit runs from the System Console framework.

To launch the toolkit, click Tools ➤ System Debugging Tools ➤ Transceiver
Toolkit. Alternatively, you can run Tcl scripts from the command-line:

system-console --script=<name of script>

For an online demonstration using the Transceiver Toolkit to run a high-speed link test
with one of the design examples, refer to the Transceiver Toolkit Online Demo on the
Altera website.

Related Information

• On-Chip Debugging Design Examples

• Transceiver Toolkit Online Demo

• Transceiver Toolkit for Intel Arria® 10 Devices (OTCVRKITA10)
26 Minutes Online Course

• Transceiver Toolkit for 28-nm Devices (OTCVR1100)
39 Minutes Online Course

3.1. Channel Manager

The Channel Manager is the graphical component of the Transceiver Toolkit. The
Channel Manager allows you to configure and control transceiver channels and links,
and adjust programmable analog settings to improve the signal integrity of the link.
The Channel Manager is in the Workspace area of the System Console.

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/horizontal/on-chip-debugging.html
https://www.intel.com/content/www/us/en/programmable/customertraining/webex/Transceiver_Toolkit/launcher.html#
https://www.intel.com/content/www/us/en/support/programmable/support-resources/support-centers/xcvr-phy-support.html
https://learning.intel.com/developer/learn/course/external/view/elearning/800/transceiver-toolkit-for-28-nm-devices
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The Channel Manager consists of three tabs that display components in a spreadsheet
format:

• Transmitter Channels

• Receiver Channels

• Transceiver Links

The columns on each tab depend on the parameters of each device.

Figure 21. Example: Transceiver Links Tab of the Channel Manager

Channel Manager Functions

The Channel Manager simplifies actions such as:

• Copying and pasting settings—Copy, paste, import, and export PMA settings to
and from channels.

• Importing and exporting settings— To export PMA settings to a text file, select a
row in the Channel Manager. To apply the PMA settings from a text file, select one
or more rows in the Channel Manager. The PMA settings in the text file apply to a
single channel. When you import the PMA settings from a text file, you are
duplicating one set of PMA settings for all the channels you select.

• Starting and stopping tests—The Channel Manager allows you to start and stop
tests by right-clicking the channels. You can select two or more rows in the
Channel Manager to start or stop test for multiple channels.

Related Information

• System Explorer Pane on page 22

• System Console GUI on page 21

• User Interface Settings Reference on page 119

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.1. Channel Display Modes

The three channel display modes are:

• Current (default)—shows the current values from the device. Blue text indicates
that the settings are live.

• Min/Max—shows the minimum and maximum values to be used in the auto
sweep.

• Best—shows the best tested values from the last completed auto sweep run.

Note: The Transmitter Channels tab only shows the Current display mode. The
Transceiver Toolkit requires a receiver channel to perform auto sweep tests.

3.2. Transceiver Debugging Flow Walkthrough

These steps describe the high-level process of debugging transceivers with the
Transceiver Toolkit.

1. Modify the design to enable transceiver debug.

2. Load the modified design to the FPGA.

3. Load the design to the Transceiver Toolkit.

4. Link hardware resources.

5. Verify hardware connections.

6. Identify transceiver channels.

7. Run link tests or control PMA analog settings.

3.3. Modifying the Design to Enable Transceiver Debug

The configuration of the debugging system varies by device family.

3.3.1. Adapting an Intel FPGA Design Example

Design examples allow you to quickly test the functionality of the receiver and
transmitter channels in your design. You can modify and customize the design
examples to match your intended transceiver design and signal integrity development
board.

1. Download a design example from the On-Chip Debugging Design Examples page
of the Intel FPGA website.

2. Open the Intel Quartus Prime and click Project ➤ Restore Archived Project to
restore the design example project archive.

3. Compare the development board and device specified in the readme.txt file with
your board and device:

Option Description

Same development board and same
device

Directly program the device with the programming file included in
the example.

Same board, different device Choose the appropriate device and recompile the design.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Different board Edit the necessary pin assignments and recompile the design
example.

4. To recompile the design, you must make your modifications to the system
configuration in Platform Designer (Standard), regenerate in Platform Designer
(Standard), and recompile the design in the Intel Quartus Prime software to
generate a new programming file.

Once you recompile your design, you can:

• Change the transceiver settings in the design examples and observe the effects on
transceiver link performance

• Isolate and verify the high-speed serial links without debugging other logic in your
design.

Refer to the readme.txt of each design example for more information.

3.3.1.1. Modifying Stratix V Design Examples

You can adapt Intel FPGA design examples to experiment with configurations that
match your own design. For example, you can change data rate, number of lanes,
PCS-PMA width, FPGA-fabric interface width, or input reference clock frequency. To
modify the design examples, change the IP core parameters and regenerate the
system in Platform Designer (Standard). Next, update the top-level design file, and
re-assign device I/O pins as necessary.

To modify a Stratix V design example PHY block to match your design, follow these
steps:

1. Determine the number of channels your design requires.

2. Open the <project name>.qpf for the design example in the Intel Quartus Prime
software.

3. Click Tools ➤ Platform Designer (Standard).

4. On the System Contents tab, right-click the PHY block and click Edit. Specify
options for the PHY block to match your design requirement for number of lanes,
data rate, PCS-PMA width, FPGA-fabric interface width, and input reference clock
frequency.

5. Specify a multiple of the FPGA-fabric interface data width for Avalon Data
Symbol Size. The available values are 8 or 10. Click Finish.

6. Delete any timing adapter from the design. The timing adapters are not required.

7. From the IP Catalog, add one Data Pattern Generator and Data Pattern
Checker for each transmitter and receiver lane.

8. Right-click Data Pattern Generator and click Edit. Specify a value for
ST_DATA_W that matches the FPGA-fabric interface width.

9. Right-click Data Pattern Checker and click Edit. Specify a value for
ST_DATA_W that matches the FPGA-fabric interface width.

10. From the IP Catalog, add a Transceiver Reconfiguration Controller.

11. Right-click Transceiver Reconfiguration Controller and click Edit. Specify 2*
number of lanes for the number of reconfigurations interfaces. Click finish.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

12. Create connections for the data pattern generator and data pattern checker
components. Right-click the net name in the System Contents tab and specify
the following connections.

From To

Block Name Net Name Block Name Net Name

clk_100 clk data_pattern_generator csr_clk

clk_100 clk_reset data_pattern_generator csr_clk_reset

master_0 master data_pattern_generator csr_slave

xcvr_*_phy_0 tx_clk_out0 data_pattern_generator pattern_out_clk

xcvr_*_phy_0 tx_parallel_data0 data_pattern_generator pattern_out

clk_100 clk data_pattern_checker csr_clk

clk_100 clk_reset data_pattern_checker csr_clk_reset

master_0 master data_pattern_checker csr_slave

xcvr_*_phy_0 rx_clk_out0 data_pattern_checker pattern_in_clk

xcvr_*_phy_0 rx_parallel_data0 data_pattern_checker pattern_in

13. Click System ➤ Assign Base Addresses.

14. Connect the reset port of timing adapters to clk_reset of clk_100.

15. To implement the changes to the system, click Generate ➤ Generate HDL.

16. If you modify the number of lanes in the PHY, you must update the top-level file
accordingly. The following example shows Verilog HDL code for a two-channel
design that declares input and output ports in the top-level design. The example
design includes the low latency PHY IP core. If you modify the PHY parameters,
you must modify the top-level design with the correct port names. Platform
Designer (Standard) displays an example of the PHY, click Generate ➤ HDL
Example.

module low_latency_10g_1ch DUT (
 input wire GXB_RXL11,
 input wire GXB_RXL12,
 output wire GXB_TXL11,
 output wire GXB_TX12
);

 low_latency_10g_1ch DUT (

 .xcvr_low_latency_phy_0_tx_serial_data_export
({GXB_TXL11, GXB_TXL12}),
 .xcvr_low_latency_phy_0_rx_serial_data_export
({GXB_RXL11, GXB_TXL12}),

);

17. From the Intel Quartus Prime software, click Assignments ➤ Pin Planner and
update pin assignments to match your board.

18. Edit the design’s Synopsys Design Constraints (.sdc) to reflect the reference
clock change. Ignore the reset warning messages.

19. Click Start ➤ Start Compilation to recompile the design.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.3.1.1.1. Generating reconfig_clk from an Internal PLL

You can use an internal PLL to generate the reconfig_clk, by changing the Platform
Designer (Standard) connections to delay offset cancellation until the generated clock
is stable.

• If there is no free running clock within the required frequency range of the
reconfiguration clock, add a PLL to the top-level of the design example. The
frequency range varies depending on the device family. Refer to the device family
data sheet for your device.

• When using an internal PLL, hold off offset cancellation until the generated clock is
stable. You do this by connecting the pll_locked signal of the internal PLL to
the .clk_clk_in_reset_n port of the Platform Designer (Standard) system,
instead of the system_reset signal.

• Implement the filter logic, inverter, and synchronization to the reconfig_clk
outside of the Platform Designer (Standard) system with your own logic.

You can find the support solution in the Intel FPGA Knowledge Base. The solution
applies to only Arria® V, Cyclone® V, Stratix IV GX/GT, and Stratix V devices.

3.3.2. Stratix V Debug System Configuration

For Stratix V designs, the Transceiver Toolkit configuration requires instantiation of the
JTAG to Avalon Bridge and Reconfiguration Controller IP cores. Click Tools ➤ IP
Catalog to parameterize, generate, and instantiate the following debugging
components for Stratix V designs.

Table 36. Stratix V / 28nm Transceiver Toolkit IP Core Configuration

Component Debugging
Functions

Parameterization Notes Connect To

Transceiver Native
PHY

Supports all
debugging functions

• If Enable 10G PCS is enabled, 10G PCS
protocol mode must be set to basic on the
10G PCS tab.

• Avalon-ST Data
Pattern Checker

• Avalon-ST Data
Pattern Generator

• JTAG to Avalon
Master Bridge

• Reconfiguration
controller

Custom PHY Test all possible
transceiver parallel
data widths

• Set lanes, group size, serialization factor, data
rate, and input clock frequency to match your
application.

• Turn on Avalon data interfaces.
• Disable 8B/10B.
• Set Word alignment mode to manual.
• Disable rate match FIFO.
• Disable byte ordering block.

• Avalon-ST Data
Pattern Checker

• Avalon-ST Data
Pattern Generator

• JTAG to Avalon
Master Bridge

• Reconfiguration
controller

Low Latency PHY Test at more than
8.5 Gbps in GT
devices or use of
PMA direct mode
(such as when using
six channels in one
quad)

• Set Phase compensation FIFO mode to
EMBEDDED above certain data rates and set
to NONE for PMA direct mode.

• Turn on Avalon data interfaces.
• Set serial loopback mode to enable serial

loopback controls in the toolkit.

• Avalon-ST Data
Pattern Checker

• Avalon-ST Data
Pattern Generator

• JTAG to Avalon
Master Bridge

• Reconfiguration
controller

continued...

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

97

https://www.intel.com/content/www/us/en/support/programmable/articles/000083300.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Component Debugging
Functions

Parameterization Notes Connect To

Intel-Avalon Data
Pattern Generator

Generates standard
data test patterns at
Avalon-ST source
ports

• Select PRBS7, PRBS15, PRBS23, PRBS31,
high frequency, or low frequency patterns.

• Turn on Enable Bypass interface for
connection to design logic.

• PHY input port
• JTAG to Avalon

Master Bridge
• Your design logic

Intel-Avalon Data
Pattern Checker

Validates incoming
data stream against
test patterns
accepted on Avalon
streaming sink ports

Specify a value for ST_DATA_W that matches the
FPGA-fabric interface width.

• PHY output port
• JTAG to Avalon

Master Bridge

Reconfiguration
Controller

Supports PMA control
and other transceiver
settings

• Connect the reconfiguration controller to
• Connect reconfig_from_xcvr to

reconfig_to_xcvr.
• Enable Analog controls.
• Turn on Enable Eye Viewerblock to enable

signal eye analysis (Stratix V only)
• Turn on Enable Bit Error Rate Block for BER

testing
• Turn on Enable decision feedback equalizer

(DFE) block for link optimization
• Enable DFE block

• PHY input port
• JTAG to Avalon

Master Bridge

JTAG to Avalon Master
Bridge

Accepts encoded
streams of bytes
with transaction data
and initiates Avalon-
MM transactions

N/A • PHY input port
• Avalon-ST Data

Pattern Checker
• Avalon-ST Data

Pattern Generator
• Reconfiguration

Controller

3.3.2.1. Bit Error Rate Test Configuration (Stratix V)

Use the following configuration to perform bit rate error testing in Stratix V designs.

Figure 22. Bit Error Rate Test Configuration (Stratix V)

JTAG-to-Avalon
Master Bridge

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Your Design Logic

XCVR Reconfig
Controller

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 37. System Connections: Bit Error Rate Tests

From To

Your Design Logic Data Pattern Generator bypass port

Data Pattern Generator PHY input port

JTAG to Avalon Master Bridge Intel FPGA Avalon Data Pattern Generator

JTAG to Avalon Master Bridge Intel FPGA Avalon Data Pattern Checker

JTAG to Avalon Master Bridge PHY input port

Data Pattern Checker PHY output port

Transceiver Reconfiguration Controller PHY input port

Related Information

Running BER Tests on page 111

3.3.2.2. PRBS Signal Eye Test Configuration (Stratix V)

Use the following configuration to perform PRBS signal eye testing in Stratix V
designs.

Figure 23. PRBS Signal Eye Test Configuration (Stratix V)

JTAG-to-Avalon
Master Bridge

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Your Design Logic

XCVR
 Reconfiguration

 Controller

Table 38. System Connections: PRBS Signal Eye Tests (Stratix V)

From To

Your Design Logic Data Pattern Generator bypass port

Data Pattern Generator PHY input port

JTAG to Avalon Master Bridge Intel Avalon Data Pattern Generator

JTAG to Avalon Master Bridge Intel Avalon Data Pattern Checker

Data Pattern Checker PHY output port

continued...

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

From To

JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller

JTAG to Avalon Master Bridge PHY input port

Transceiver Reconfiguration Controller PHY input port

Related Information

Running PRBS Signal Eye Tests (Stratix V only) on page 112

3.3.2.2.1. Enabling Serial Bit Comparator Mode (Stratix V)

Serial bit comparator mode allows you to run Eye Viewer diagnostic features with
any PRBS patterns or user-design data, without disrupting the data path. For Stratix V
devices, you must enable Serial bit comparator mode.

To enable this mode for Stratix V devices, you must enable the following debugging
component options when configuring the debugging system:

Table 39. Component Settings for Serial Bit Comparator Mode

Debugging Component Setting for Serial Bit Mode(2)

Transceiver Reconfiguration Controller Turn on Enable Eye Viewer block and Enable Bit Error Rate Block

Data Pattern Generator(3) Turn on Enable Bypass interface

Serial bit comparator mode is less accurate than Data pattern checker mode for
single bit error checking. Do not use Serial bit comparator mode if you require an
exact error rate. Use the Serial bit comparator mode for checking a large window of
error. The toolkit does not read the bit error counter in real-time because it reads
through the memory-mapped interface. Serial bit comparator mode has the following
hardware limitations for Stratix V devices:

• Toolkit uses serial bit checker only on a single channel per reconfiguration
controller at a time.

• When the serial bit checker is running on channel n, you can change only the VOD,
pre-emphasis, DC gain, and Eye Viewer settings on that channel. Changing or
enabling DFE or CTLE can cause corruption of the serial bit checker results.

• When the serial bit checker is running on a channel, you cannot change settings
on any other channel on the same reconfiguration controller.

• When the serial bit checker is running on a channel, you cannot open any other
channel in the Transceiver Toolkit.

• When the serial bit checker is running on a channel, you cannot copy PMA settings
from any channel on the same reconfiguration controller.

3.3.2.3. Custom Traffic Signal Eye Test Configuration (Stratix V)

Use the following configuration to perform custom traffic signal eye testing in Stratix V
designs.

(2) Settings in Table 39 on page 100 are supported in Stratix V devices only.

(3) Limited support for Data Pattern Generator or data pattern in Serial Bit Mode.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 24. System Configuration: Custom Traffic Signal Eye Tests (Stratix V)

JTAG-to-Avalon
Master Bridge Custom PHY

IP Core
or

Low-Latency
PHY IP Core

Your Design Logic
(Custom Traffic)

XCVR
 Reconfiguration

 Controller

Table 40. System Connections: Custom Traffic Signal Eye Tests (Stratix V)

From To

Your design logic with custom traffic PHY input port

JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller

JTAG to Avalon Master Bridge PHY input port

Transceiver Reconfiguration Controller PHY input port

Related Information

Running Custom Traffic Tests (Stratix V only) on page 113

3.3.2.4. Link Optimization Test Configuration (Stratix V)

Use the following configuration for link optimization tests in Stratix V devices.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 25. System Configuration: Link Optimization Tests (Stratix V)

JTAG-to-Avalon
Master Bridge

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Your Design Logic

XCVR
 Reconfiguration

 Controller

From To

Your Design Logic Data Pattern Generator bypass port

Data Pattern Generator PHY input port

JTAG to Avalon Master Bridge Altera Avalon Data Pattern Generator

JTAG to Avalon Master Bridge Altera Avalon Data Pattern Checker

Data Pattern Checker PHY output port

JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller

JTAG to Avalon Master Bridge PHY input port

Transceiver Reconfiguration Controller PHY input port

Related Information

Running the Auto Sweep Test on page 114

3.3.2.5. PMA Analog Setting Control Configuration (Stratix V)

Use the following configuration to control PMA Analog settings in Stratix V designs.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 26. System Configuration: PMA Analog Setting Control (Stratix V)

JTAG-to-Avalon
Master Bridge Custom PHY

IP Core
or

Low-Latency
PHY IP Core

XCVR
 Reconfiguration

 Controller

Table 41. System Connections: PMA Analog Setting Control (Stratix V)

From To

JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller

JTAG to Avalon Master Bridge PHY input port

Transceiver Reconfiguration Controller PHY input port

Related Information

Controlling PMA Analog Settings on page 115

3.3.3. Instantiating and Parameterizing Intel Arria 10 Debug IP cores

To debug Intel Arria 10 designs with the Transceiver Toolkit, you must enable
debugging settings in Transceiver Intel FPGA IP cores. You can either activate these
settings when you first instantiate these components, or modify your instance after
preliminary compilation.

The IP cores that you modify are:

• Transceiver Native PHY

• Transceiver ATX PLL

• CMU PLL

• fPLL

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The parameters that you enable in the debug IP cores are:

Table 42. IP Cores and Debug Settings
For more information about these parameters, refer to Debug Settings for Transceiver IP Cores.

IP Core Enable
dynamic
reconfiguratio
n

Enable Altera
Debug Master
Endpoint

Enable
capability
registers

Enable control
and status
registers

Enable PRBS
Soft
accumulators

Transceiver Native PHY Yes Yes Yes Yes Yes

Transceiver ATX PLL Yes Yes

CMU PLL Yes Yes

fPLL Yes Yes

For each transceiver IP core:

1. In the IP Components tab of the Project Navigator, right-click the IP instance,
and click Edit in Parameter Editor.

2. Turn on debug settings as they appear in the IP Cores and Debug Settings table
above.

Figure 27. Intel Arria 10 Transceiver Native PHY IP Core in the Parameter Editor

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

104

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 28. Intel Arria 10 Transceiver ATX PLL Core in the Parameter Editor

3. Click Generate HDL.

After enabling parameters for all IPs in the design, recompile your project.

3.3.3.1. Debug Settings for Transceiver IP Cores

The table describes the settings that you turn on when preparing your transceiver for
debug:

Table 43. Intel FPGA IP Settings for Transceiver Debug

Setting Description

Enable Dynamic Reconfiguration Allows you to change the behavior of the transceiver channels and PLLs without
powering down the device

Enable Altera Debug Master
Endpoint

Allows you to access the transceiver and PLL registers through System Console.
When you recompile your design, Intel Quartus Prime software inserts the ADME,
debug fabric, and embedded logic during synthesis.

Enable capability registers Capability registers provide high level information about the configuration of the
transceiver channel

Enable control and status
registers

Enables soft registers to read status signals and write control signals on the PHY
interface through the embedded debug.

Enable PRBS Soft Accumulators Enables soft logic for performing PRBS bit and error accumulation when you use
the hard PRBS generator and checker.

For more information about dynamic reconfiguration parameters on Intel Arria 10
devices, refer to the Intel Arria 10 Transceiver PHY User Guide.

Related Information

Dynamic Reconfiguration Parameters

3.4. Programming the Design into an Intel FPGA

After you include debug components in the design, compile, and generate
programming files, you can program the design in the Intel FPGA.

Related Information

nocp-doc-link/683528

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

105

https://www.intel.com/content/www/us/en/docs/programmable/683617/current/dynamic-reconfiguration-parameters.html
https://www.intel.com/content/www/us/en/docs/programmable/683528.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5. Loading the Design in the Transceiver Toolkit

If the FPGA is already programmed with the project when loading, the Transceiver
Toolkit automatically links the design to the target hardware in the toolkit. The toolkit
automatically discovers links between transmitter and receiver of the same channel.

Before loading the device, ensure that you connect the hardware. The device and JTAG
connections appear in the Device and Connections folders of the System Explorer
pane.

To load the design into the Transceiver Toolkit:

1. In the System Console, click File ➤ Load Design.

2. Select the .sof programming file for the transceiver design.

After loading the project, the designs and design instances folders in the System
Explorer pane display information about the design, such as the design name and the
blocks in the design that can communicate to the System Console.

Related Information

System Explorer Pane on page 22

3.6. Linking Hardware Resources

Linking the hardware resources maps the project you load to the target FPGA. When
you load multiple design projects for multiple FPGAs, linking indicates which of the
projects is in each of the FPGAs. The toolkit automatically discovers hardware and
designs that you connect. You can also manually link a design to connected hardware
resources in the System Explorer.

If you are using more than one Intel FPGA board, you can set up a test with multiple
devices linked to the same design. This setup is useful if you want to perform a link
test between a transmitter and receiver on two separate devices. You can also load
multiple Intel Quartus Prime projects and link between different systems. You can
perform tests on separate and unrelated systems in a single Intel Quartus Prime
instance.

Figure 29. One Channel Loopback Mode for Stratix V (28nm)

JTAG-to-Avalon
Master Bridge

Loopback
on board

Top-Level Design (FPGA)

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Transceiver Toolkit
host computer

XCVR
Reconfiguration

Controller

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 30. One Channel Loopback Mode for Intel Arria 10devices

Transceiver Toolkit
Host Computer

Top-Level Design (FPGA)

Loopback
On Board

Hard PRBS Generator
Hard PRBS Checker

Altera Debug Master
Endpoint (ADME)

Transceiver Native PHY IP

Figure 31. Four Channel Loopback Mode for Stratix V / 28nm

JTAG-to-Avalon
Master Bridge

Top-Level Design (FPGA)

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Transceiver Toolkit
host computer

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Loopback
on board

Loopback
on board

Loopback
on board

Loopback
on board

XCVR
Reconfiguration

Controller

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 32. Four Channel Loopback Mode for Intel Arria 10devices

Transceiver Toolkit
Host Computer

Top-Level Design (FPGA)

Loopback
On Board

Hard PRBS Generator

Hard PRBS Checker

Altera Debug Master
Endpoint (ADME)

Transceiver Native PHY IP

Loopback
On Board

Hard PRBS Generator
Hard PRBS Checker Loopback

On BoardHard PRBS Generator
Hard PRBS Checker

Loopback
On Board

Hard PRBS Generator
Hard PRBS Checker

3.6.1. Linking One Design to One Device

To link one design to one device by one Intel FPGA Download Cable:

1. Load the design for your Intel Quartus Prime project.

2. If the design is not auto-linked, link each device to an appropriate design.

3. Create the link between channels on the device to test.

3.6.2. Linking Two Designs to Two Devices

To link two designs to two separate devices on the same board, connected by one
Intel FPGA Download Cable download cable:

1. Load the design for all the Intel Quartus Prime project files you need.

2. If the design does not auto-link, link each device to an appropriate design

3. Open the project for the second device.

4. Link the second device on the JTAG chain to the second design (unless the design
auto-links).

5. Create a link between the channels on the devices you want to test.

3.6.3. Linking One Design on Two Devices

To link the same design on two separate devices, follow these steps:

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In the Transceiver Toolkit, open the .sof you are using on both devices.

2. Link the first device to this design instance.

3. Link the second device to the design.

4. Create a link between the channels on the devices you want to test.

3.6.4. Linking Designs and Devices on Separate Boards

To link two designs to two separate devices on separate boards that connect to
separate Intel FPGA Download Cables:

1. Load the design for all the Intel Quartus Prime project files you need.

2. If the design does not auto-link, link each device to an appropriate design.

3. Create the link between channels on the device to test.

4. Link the device connected to the second Intel FPGA Download Cable to the second
design.

5. Create a link between the channels on the devices you want to test.

3.6.5. Verifying Hardware Connections

After creating links, verify that the channels connect correctly and loop back properly
on the hardware.This precaution saves time in the workflow.

Use the toolkit to send data patterns and receive them correctly:

1. In the Receiver tab, verify that RX CDR locked to Data is set to Locked.

Figure 33. RX CDR Locked to Data

2. Start the generator on the Transmitter Channel.

3. Start the checker on the Receiver Channel.

4. Verify you have Lock to Data, and the Bit Error Rate between the two is very low
or zero.

After you verify communication between transmitter and receiver, you can create a
link between the two transceivers and perform Auto Sweep and Eye Viewer(4) tests
with the pair.

(4) Eye Viewer available only for Stratix V devices.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.7. Identifying Transceiver Channels

Verify whether the Transceiver Toolkit detects the channels correctly. If a receiver and
transmitter share a transceiver channel, the toolkit identifies the channel.

The Transceiver Toolkit identifies and displays transmitter and receiver channels on the
Transmitter Channels and Receiver Channels tabs of the Channel Manager. You
can also manually identify the transmitter and receiver in a transceiver channel, and
then create a link between the two for testing.

3.7.1. Controlling Transceiver Channels

To adjust or monitor transmitter or receiver settings while the channels are running:

• In the Transmitter Channels tab, click Control Transmitter Channel

• In the Receiver Channels tab, click Control Receiver Channel.

• In the Transceiver Links tab, click Control Receiver Channel.

For example, you can transmit a data pattern across the transceiver link, and then
report the signal quality of the data you receive.

3.8. Creating Transceiver Links

Creating a link designates which Transmitter and Receiver channels connect physically.
The toolkit automatically creates links when a receiver and transmitter share a
transceiver channel. You can also manually create and delete links between
transmitter and receiver channels.

To create a transceiver link:

1. In the Channel Manager, click Setup.

2. Select the generator and checker you want to control.

3. Select the transmitter and receiver pair you want to control.

4. Click Create Transceiver Link.

5. Click Close.

The Transceiver Toolkit generates an automatic name for the link, but you can use a
shorter, more meaningful name by typing in the Link Alias cell.

3.9. Running Link Tests

Once you identify the transceiver channels for debugging, you can run link tests. Use
the Transceiver Links tab to control link tests.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you run link tests, channel color highlights indicate the test status:

Table 44. Channel Color Highlights

Color Transmitter Channel Receiver Channel

Red Channel is closed or generator clock is not
running.

Channel is closed or checker clock is not running.

Green Generator is sending a pattern. Checker is checking and data pattern is locked.

Neutral (same color
as background)

Channel is open, generator clock is running,
and generator is not sending a pattern.

Channel is open, checker clock is running, and
checker is not checking.

Yellow N/A Checker is checking and data pattern is not
locked.

3.9.1. Running BER Tests

BER tests help you assess signal integrity. Follow these steps to run BER tests across a
transceiver link:

1. In the Channel Manager, click Control Transceiver Link.

2. Specify a PRBS Test pattern

3. If your device supports setting a Checker mode, set to Data pattern checker.

4. Try different values of Reconfiguration, Generator, or Checker settings, if
available.

5. Click Start to run the pattern with your settings.

6. If your device supports error injection, you can click Inject Error to inject error
bits.

7. You can also Reset the counter, or Stop the test.

Note: Intel Arria 10 devices do not support Inject Error if you use the hard PRBS
Pattern Generator and Checker in the system configuration.

Related Information

• Bit Error Rate Test Configuration (Stratix V) on page 98

• User Interface Settings Reference on page 119

3.9.2. Signal Eye Margin Testing (Stratix V only)

Stratix V includes Eye Viewer circuitry, that allows visualization of the horizontal and
vertical eye margin at the receiver. For supported devices, use signal eye tests to tune
the PMA settings of your transceiver. This results in the best eye margin and BER at
high data rates. The toolkit disables signal eye testing for unsupported devices.

The Eye Viewer graph can display a bathtub curve, eye diagram representing eye
margin, or heat map display. The run list displays the statistics of each Eye Viewer
test. When PMA settings are suitable, the bathtub curve is wide, with sharp slopes
near the edges. The curve is up to 30 units wide. If the bathtub is narrow, then the
signal quality is poor. The wider the bathtub curve, the wider the eye. The smaller the
bathtub curve, the smaller the eye. The eye contour shows the estimated horizontal
and vertical eye opening at the receiver.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can right-click any of the test runs in the list, and then click Apply Settings to
Device to quickly apply that PMA setting to your device. You can also click Export,
Import, or Create Report.

Figure 34. Eye Viewer Settings and Status Showing Results of Two Test Runs

Figure 35. Heat Map Display and Bathtub Curve Through Eye

3.9.2.1. Running PRBS Signal Eye Tests (Stratix V only)

Run PRBS signal eye tests to visualize the estimated horizontal and vertical eye
opening at the receiver. After programming the FPGA with your debugging design,
loading the design in the toolkit, and linking hardware, follow these steps to run PRBS
signal eye tests:

1. Click Setup.

a. Select the generator and checker you want to control.

b. Select the transmitter and receiver pair you want to control.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

c. Click Create Transceiver Link and click Close.

2. Click Link Eye Viewer, and select Eye Viewer as the Test mode. The Eye
Viewer mode displays test results as a bathtub curve, heat map, or eye contour
representing bit error and phase offset data.

3. Specify the PRBS Test pattern and the Checker mode. Use Serial bit
comparator checker mode only for checking a large window of error with custom
traffic.

The checker mode option is only available after you turn on Enable Eye Viewer
block and Enable Bit Error Rate Block in the Reconfiguration Controller
component. (Stratix V designs only)

4. Specify Run length and Eye Viewer settings to control the test coverage and
type of Eye Viewer results displayed, respectively.

5. Click Start to run the pattern with your settings. Eye Viewer uses the current
channel settings to start a phase sweep of the channel. The phase sweep runs 32
iterations. As the run progresses, view the status under Eye Viewer status. Use
this diagram to compare PMA settings for the same channel and to choose the
best combination of PMA settings for a particular channel.

6. When the run completes, the chart displays the characteristics of each run. Click
Stop to halt the test, change the PMA settings, and re-start the test. Click Create
Report to export data to a table format for further viewing.

Related Information

PRBS Signal Eye Test Configuration (Stratix V) on page 99

3.9.3. Running Custom Traffic Tests (Stratix V only)

After programming the FPGA with your debugging design, loading the design in the
toolkit, and linking hardware, follow these steps to run custom traffic tests:

1. In the Channel Manager, click Setup.

2. Select the associated reconfiguration controller.

3. Click Create Transceiver Link and click Close.

4. Click the Receiver Eye Viewer tab.

5. Select Eye Viewer as the Test mode. The Eye Viewer mode displays test
results as a bathtub curve, heat map, or eye contour representing bit error and
phase offset data.

6. Specify the PRBS Test pattern.

7. For Checker mode, select Serial bit comparator.

The checker mode option is only available after you turn on Enable Eye Viewer
block and Enable Bit Error Rate Block for the Reconfiguration Controller
component.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Specify Run length and Eye Viewer settings to control the test coverage and
type of Eye Viewer results displayed, respectively.

9. Click Start to run the pattern with your settings. Eye Viewer uses the current
channel settings to start a phase sweep of the channel. The phase sweep runs 32
iterations. As the run progresses, view the status under Eye Viewer status.

10. When the run completes, the chart displays the characteristics of each run. Click
Stop to halt the test, change the PMA settings, and re-start the test. Click Create
Report to export data to a table format for further viewing.

Related Information

Custom Traffic Signal Eye Test Configuration (Stratix V) on page 100

3.9.4. Link Optimization Tests

The Transceiver Toolkit auto sweep test automatically sweeps PMA ranges to
determine the transceiver settings that provide the best signal integrity. The toolkit
allows you to store a history of the test runs, and keep a record of the best PMA
settings.

3.9.4.1. Running the Auto Sweep Test

to run link optimization tests:

1. In the Transceiver Links tab, select the channel you want to control.

2. Click Link Auto Sweep.
The Advanced tab appears with Auto sweep as Test mode.

3. Specify the PRBS Test pattern.

4. Specify Run length experiment with the Transmitter settings, and Receiver
settings to control the test coverage and PMA settings, respectively.

5. Click Start to run all combinations of tests meeting the PMA parameter limits.
When the run completes the chart is displayed and the characteristics of each run
are listed in the run list.

6. You can click Stop to halt the test, change the PMA settings, and re-start the test.
Click Create Report to export data to a table format for further viewing.

7. If you want to determine the best tap settings using decision feedback
equalization (DFE):

a. Set the DFE mode to Off.

b. Use Auto Sweep to find optimal PMA settings.

c. If BER = 0, use the best PMA settings achieved.

d. If BER > 0, use this PMA setting, and set the minimum and maximum values
obtained from Auto Sweep to match this setting. Set the maximum DFE range
to limits for each of the three DFE settings.

e. Run Create Report to view the results and determine which DFE setting has
the best BER. Use these settings in conjunction with the PMA settings for the
best results.

Related Information

• Link Optimization Test Configuration (Stratix V) on page 101

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

114

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Instantiating and Parameterizing Intel Arria 10 Debug IP cores on page 103

3.9.4.2. Determining the Best Tap Settings

To determine the best tap settings using decision feedback equalization (DFE):

1. Use Auto Sweep to find optimal PMA settings, while leaving the DFE mode set to
Off.

Option Description

If BER = 0 Use the best PMA settings achieved.

If BER > 0 Use this PMA setting, and set the minimum and maximum values auto sweep reports to
match this setting. Set the maximum DFE range to limits for each of the three DFE settings.

2. Click Create Report to view the results and determine which DFE setting has the
best BER. Use these settings in conjunction with the PMA settings for the best
results.

3.10. Controlling PMA Analog Settings

The Transceiver Toolkit allows you to directly control PMA analog settings while the link
is running. For a detailed description of each parameter, refer to the PHY user guide of
the corresponding device.

To control PMA analog settings, follow these steps:

1. In the Channel Manager, click Setup.

2. In the Transmitter Channels tab, define a transmitter without a generator, and
click Create Transmitter Channel.

3. In the Receiver Channels tab, define a receiver without a generator, and click
Create Receiver Channel.

4. In the Transceiver Links tab, select the transmitter and receivers you want to
control, and click Create Transceiver Link.

5. Click Close.

6. Click Control Receiver Channel, Control Transmitter Channel, or Control
Transceiver Link to directly control the PMA settings while running.

3.10.1. Intel Arria 10 and Intel Cyclone 10 GX PMA Settings

The following figures show the PMA analog settings.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 36. Transmitter Channel PMA Settings

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 37. Receiver Channel PMA Settings

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 38. Transceiver Link PMA Settings

Related Information

• Instantiating and Parameterizing Intel Arria 10 Debug IP cores on page 103

• PMA Analog Setting Control Configuration (Stratix V) on page 102

• PMA Parameters

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

118

https://www.intel.com/content/www/us/en/docs/programmable/683617/current/pma-parameters.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.11. User Interface Settings Reference

The Transceiver Toolkit user interface contains the following settings:

Table 45. Transceiver Toolkit Control Pane Settings
Settings in alphabetical order. All the settings appear in the Transceiver Link control pane.

Setting Description Device Families Control Pane

Alias Name you choose for the channel. All supported device
families

Transmitter
pane
Receiver pane

Auto Sweep status Reports the current and best tested bits, errors,
bit error rate, and case count for the current Auto
Sweep test.

All supported device
families

Receiver pane

Bit error rate (BER) Reports the number of errors divided by bits
tested since the last reset of the checker.

All supported device
families

Receiver pane

Channel address Logical address number of the transceiver channel. All supported device
families

Transmitter
pane
Receiver pane

Data rate Data rate of the channel that appears in the
project file, or data rate the frequency detector
measures.
To use the frequency detector, turn on Enable
Frequency Counter in the Data Pattern Checker
IP core or Data Pattern Generator IP core,
regenerate the IP cores, and recompile the design.
The measured data rate depends on the Avalon
management clock frequency that appears in the
project file.
If you make changes to your settings and want to
sample the data rate again, click the Refresh
button next to the Data rate

All supported device
families

Transmitter
pane
Receiver pane

DC gain Provides an equal boost to the incoming signal
across the frequency spectrum.

All supported device
families

Receiver pane

DFE mode Decision feedback equalization (DFE) for improving
signal quality.

Device Value

Stratix V 1-5

Intel Arria 10 1-11

In Stratix V devices DFE modes are Off, Manual,
One-time adaptive mode and Adaptation
Enabled. Adaptation Enabled mode DFE
automatically tries to find the best tap values.
In Intel Arria 10 devices, DFE modes are Off,
Manual and Adaptation Enabled. DFE in
Adaptation Enabled mode automatically tries to
find the best tap values.

Stratix V
Intel Arria 10

Receiver pane

Enable word aligner Forces the transceiver channel to align to the word
you specify.

Stratix V Receiver pane

continued...

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Description Device Families Control Pane

Equalization control Boosts the high-frequency gain of the incoming
signal to compensate for the low-pass filter effects
of the physical medium. When you use this option
with DFE, use DFE in Manual or Adaptation
Enabled mode.
In Stratix V devices, auto sweep supports AEQ
one-time adaptation.

All supported device
families

Receiver pane

Equalization mode For Intel Arria 10 devices, you can set
Equalization Mode to Manual or Triggered.
In Stratix V devices, Adaptive equalization (AEQ)
automatically evaluates and selects the best
combination of equalizer settings, and turns off
Equalization Control. The one-time selection
determines the best setting and stops searching.
You can use AEQ for multiple, independently
controlled receiver channels.

All supported device
families

Receiver pane

Error rate limit Turns on or off error rate limits. Start checking
after specifies the number of bits the toolkit waits
before looking at the bit error rate (BER) for the
next two checks.
Bit error rate achieves below sets upper bit
error rate limits. If the error rate is better than the
set error rate, the test ends.
Bit error rate exceeds sets lower bit error rate
limits. If the error rate is worse than the set error
rate, the test ends.

All supported device
families

Receiver pane

Generator/Checker
mode

Specifies Data pattern checker or Serial bit
comparator for BER tests.
If you enable Serial bit comparator the Data
Pattern Generator sends the PRBS pattern, but the
serial bit comparator checks the pattern.
In Bypass mode, clicking Start begins counting
on the Serial bit comparator.
For BER testing:
• Intel Arria 10 devices support the Data Pattern

Checker and the Hard PRBS.
• Stratix V devices support the Data Pattern

Checker and the Serial Bit Checker.

All supported device
families

Transmitter
pane
Receiver pane

Horizontal phase step
interval

Specifies the number of horizontal steps to
increment when performing a sweep. Increasing
the value increases the speed of the test but at a
lower resolution. This option only applies to eye
contour.

Stratix V Transmitter
pane
Receiver pane

Increase test range For the selected set of controls, increases the span
of tests by one unit down for the minimum, and
one unit up for the maximum.
You can span either PMA Analog controls (non-DFE
controls), or the DFE controls. You can quickly set
up a test to check if any PMA setting combinations
near your current best yields better results.
To use, right-click the Advanced panel

All supported device
families

Receiver pane

Inject Error Flips one bit to the output of the data pattern
generator to introduce an artificial error.

Stratix V Transmitter
pane

Maximum tested bits Sets the maximum number of bits tested for each
test iteration.

All supported device
families

Receiver pane

Number of bits tested Specifies the number of bits tested since the last
reset of the checker.

All supported device
families

Receiver pane

continued...

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Description Device Families Control Pane

Number of error bits Specifies the number of error bits encountered
since the last reset of the checker.

All supported device
families

Receiver pane

Number of preamble
beats

Number of clock cycles to which the preamble
word is sent before the test pattern begins.

Stratix V Transmitter
pane

PLL refclk freq Channel reference clock frequency that appears in
the project file, or reference clock frequency
calculated from the measured data rate.

All supported device
families

Transmitter
pane
Receiver pane

Populate with Right-click the Advanced panel to load current
values on the device as a starting point, or initially
load the best settings auto sweep determines. The
Intel Quartus Prime software automatically applies
the values you specify in the drop-down lists for
the Transmitter settings and Receiver settings.

All supported device
families

Receiver pane

Preamble word Word to send out if you use the preamble mode
(only if you use soft PRBS Data Pattern Generator
and Checker).

All supported device
families

Transmitter
pane

Pre-emphasis This programmable module boosts high
frequencies in the transmit data for each transmit
buffer signal. This action counteracts possible
attenuation in the transmission media.
(Stratix V only) Using pre-emphasis can maximize
the data eye opening at the far-end receiver.

All supported device
families

Transmitter
pane

Receiver channel Specifies the name of the selected receiver
channel.

All supported device
families

Receiver pane

Refresh Button After loading the .pof file, loads fresh settings
from the registers after running dynamic
reconfiguration.

All supported device
families

Transmitter
pane
Receiver pane

Reset Resets the current test. All supported device
families

Receiver pane

Rules Based
Configuration (RBC)
validity checking

Displays in red any invalid combination of settings
for each list under Transmitter settings and
Receiver settings, based on previous settings.
When you enable this option, the settings appear
in red to indicate the current combination is
invalid. This action avoids manually testing invalid
settings that you cannot compile for your design,
and prevents setting the device into an invalid
mode for extended periods of time and potentially
damaging the circuits.

All supported device
families

Receiver pane

Run length Sets coverage parameters for test runs. All supported device
families

Transmitter
pane
Receiver pane

RX CDR PLL status(5) Shows the receiver in lock-to-reference (LTR)
mode. When in auto-mode, if data cannot be
locked, this signal alternates in LTD mode if the
CDR is locked to data.

All supported device
families

Receiver pane

continued...

(5) For Stratix V devices, the Phase Frequency Detector (PFD) is inactive in LTD mode. The
rx_is_lockedtoref status signal turns on and off randomly, and is not significant in LTD
mode.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Description Device Families Control Pane

RX CDR data status Shows the receiver in lock-to-data (LTD) mode.
When in auto-mode, if data cannot be locked, the
signal stays high when locked to data and never
switches.

All supported device
families

Receiver pane

Serial loopback
enabled

Inserts a serial loopback before the buffers,
allowing you to form a link on a transmitter and
receiver pair on the same physical channel of the
device.

All supported device
families

Transmitter
pane
Receiver pane

Start Starts the pattern generator or checker on the
channel to verify incoming data.

All supported device
families

Transmitter
pane
Receiver pane

Stop Stops generating patterns and testing the channel. All supported device
families

Transmitter
pane
Receiver pane

Target bit error rate Finds the contour edge of the bit error rate that
you select. This option only applies to eye contour
mode.

Stratix V Transmitter
pane
Receiver pane

Test pattern Test pattern sent by the transmitter channel.
The Data Pattern Checker self-aligns both high and
low frequency patterns. Use Bypass mode to
send user-design data.

Device Family Test Patterns Available

Stratix V PRBS7, PRBS15, PRBS23,
PRBS31, LowFrequency,
HighFrequency, and Bypass
mode.

Intel Arria 10 PRBS9, PRBS15, PRBS23,
and PRBS31.

All supported device
families

Transmitter
pane
Receiver pane

Time limit Specifies the time limit unit and value to have a
maximum bounds time limit for each test iteration.

All supported device
families

Receiver

Transmitter channel Specifies the name of the selected transmitter
channel.

All supported device
families

Transmitter
pane

TX/CMU PLL status Specifies whether the transmitter channel PLL is
locked to the reference clock.

All supported device
families

Transmitter
pane

Use preamble upon
start

If turned on, sends the preamble word before the
test pattern. If turned off, starts sending the test
pattern immediately.

All supported device
families

Transmitter
pane

Vertical phase step
interval

Specify the number of vertical steps to increment
when performing a sweep. Increasing the value
increases the speed of the test but at a lower
resolution. This option only applies to the eye
contour.

Stratix V Transmitter
pane
Receiver pane

VOD control Programmable transmitter differential output
voltage.

All supported device
families

Transmitter
pane

Related Information

Channel Manager on page 92

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.12. Troubleshooting Common Errors

Missing high-speed link pin connections

Check the pin connections to identify high-speed links (tx_p/n and rx_p/n) are
missing. When porting an older design to the latest version of the Intel Quartus Prime
software, make sure that these connections exist after porting.

Reset Issues:

Ensure that the reset input to the Transceiver Native PHY, Transceiver Reset Controller,
and ATX PLL Intel FPGA IPs is not held active (1'b1). The Transceiver Toolkit
highlights in red all the Transceiver Native PHY channels that you are setting up.

Unconnected reconfig_clk

You must connect and drive the reconfig_clk input to the Transceiver Native PHY
and ATX PLL Intel FPGA IPs. Otherwise, the toolkit does not display the transceiver
link channel.

3.13. Scripting API Reference

The Intel Quartus Prime software provides an API to access Transceiver Toolkit
functions using Tcl commands, and script tasks such as linking device resources and
identifying high-speed serial links.

To save the project setup in a Tcl script for use in subsequent testing sessions:

1. Set up and define links that describe the entire physical system.

2. Click Save Tcl Script to save the setup for future use.

You can also build a custom test routine script.

To run the scripts, double-click the script name in the System Explorer scripts folder.

To view a list of the available Tcl command descriptions from the Tcl Console window,
including example usage:

1. In the Tcl console, type help help. The Console displays all Transceiver Toolkit
Tcl commands.

2. Type help <command name>. The Console displays the command description.

3.13.1. Transceiver Toolkit Commands

The following tables list the available Transceiver Toolkit scripting commands.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 46. Transceiver Toolkit channel_rx Commands

Command Arguments Function

transceiver_channel_rx_get_data <service-path> Returns a list of the current
checker data. The results are in
the order of number of bits,
number of errors, and bit error
rate.

transceiver_channel_rx_get_dcgain <service-path> Gets the DC gain value on the
receiver channel.

transceiver_channel_rx_get_dfe_tap_value <service-path> <tap
position>

Gets the current tap value of the
channel you specify at the tap
position you specify.

transceiver_channel_rx_get_eqctrl <service-path> Gets the equalization control
value on the receiver channel.

transceiver_channel_rx_get_pattern <service-path> Returns the current data checker
pattern by name.

transceiver_channel_rx_has_dfe <service-path> Reports whether the channel you
specify has the DFE feature
available.

transceiver_channel_rx_has_eye_viewer <service-path> (Stratix V only) Reports whether
the Eye Viewer feature is
available for the channel you
specify.

transceiver_channel_rx_is_checking <service-path> Returns non-zero if the checker is
running.

transceiver_channel_rx_is_dfe_enabled <service-path> Reports whether the DFE feature
is enabled on the channel you
specify.

transceiver_channel_rx_is_locked <service-path> Returns non-zero if the checker is
locked onto the incoming data.

transceiver_channel_rx_reset_counters <service-path> Resets the bit and error counters
inside the checker.

transceiver_channel_rx_reset <service-path> Resets the channel you specify.

transceiver_channel_rx_set_dcgain <service-path> <value> Sets the DC gain value on the
receiver channel.

transceiver_channel_rx_set_dfe_enabled <service-path> <disable(0)/
enable(1)>

Enables or disables the DFE
feature on the channel you
specify.

transceiver_channel_rx_set_dfe_tap_value <service-path> <tap
position> <tap value>

Sets the current tap value of the
channel you specify at the tap
position you specify to the value
you specify.

transceiver_channel_rx_set_dfe_adaptive <service-path> <adaptive-
mode>

Sets DFE adaptation mode of the
channel you specify.

Value Description

0 off

1 adaptive

2 one-time adaptive

continued...

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

transceiver_channel_rx_set_eqctrl <service-path> <value> Sets the equalization control
value on the receiver channel.

transceiver_channel_rx_start_checking <service-path> Starts the checker.

transceiver_channel_rx_stop_checking <service-path> Stops the checker.

transceiver_channel_rx_get_eye_viewer_ph
ase_step

<service-path> (Stratix V only) Gets the current
phase step of the channel you
specify.

transceiver_channel_rx_set_pattern <service-path> <pattern-
name>

Sets the expected pattern to the
one specified by the pattern
name.

transceiver_channel_rx_is_eye_viewer_ena
bled

<service-path> (Stratix V only) Reports whether
the Eye Viewer feature is enabled
on the channel you specify.

transceiver_channel_rx_set_eye_viewer_en
abled

<service-path> <disable(0)/
enable(1)>

(Stratix V only) Enables or
disables the Eye Viewer feature
on the channel you specify.

transceiver_channel_rx_set_eye_viewer_ph
ase_step

<service-path> <phase step> (Stratix V only) Sets the phase
step of the channel you specify.

transceiver_channel_rx_set_word_aligner_
enabled

<service-path> <disable(0)/
enable(1)>

Enables or disables the word
aligner of the channel you
specify.

transceiver_channel_rx_is_word_aligner_e
nabled

<service-path> <disable(0)/
enable(1)>

Reports whether the word aligner
feature is enabled on the channel
you specify.

transceiver_channel_rx_is_locked <service-path> Returns non-zero if the checker is
locked onto the incoming signal.

transceiver_channel_rx_is_rx_locked_to_d
ata

<service-path> Returns 1 if transceiver is in lock
to data (LTD) mode. Otherwise 0.

transceiver_channel_rx_is_rx_locked_to_r
ef

<service-path> Returns 1 if transceiver is in lock
to reference (LTR) mode.
Otherwise 0.

transceiver_channel_rx_has_eye_viewer_1d <service-path> (Stratix V only) Detects whether
the eye viewer in <service-path>
supports 1D-Eye Viewer mode.

transceiver_channel_rx_set_1deye_mode <service-path> <disable(0)/
enable(1)>

(Stratix V only) Enables or
disables 1D-Eye Viewer mode.

transceiver_channel_rx_get_1deye_mode <service-path> (Stratix V only) Returns whether
1D-Eye Viewer mode is on or off.

Table 47. Transceiver Toolkit channel_tx Commands

Command Arguments Function

transceiver_channel_tx_disable_preamble <service-path> Disables the preamble mode at
the beginning of generation.

transceiver_channel_tx_enable_preamble <service-path> Enables the preamble mode at
the beginning of generation.

transceiver_channel_tx_get_number_of_pre
amble_beats

<service-path> Returns the number of beats to
send out the preamble word.

transceiver_channel_tx_get_pattern <service-path> Returns the pattern.

continued...

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

transceiver_channel_tx_get_preamble_word <service-path> Returns the preamble word.

transceiver_channel_tx_get_preemph0t <service-path> Gets the pre-emphasis first pre-
tap value on the transmitter
channel.

transceiver_channel_tx_get_preemph1t <service-path> Gets the pre-emphasis first post-
tap value on the transmitter
channel.

transceiver_channel_tx_get_preemph2t <service-path> Gets the pre-emphasis second
post-tap value on the transmitter
channel.

transceiver_channel_tx_get_preemph3t <service-path> Gets the pre-emphasis second
pre-tap value on the transmitter
channel.

transceiver_channel_tx_get_vodctrl <service-path> Gets the VOD control value on the
transmitter channel.

transceiver_channel_tx_inject_error <service-path> Injects a 1-bit error into the
generator's output.

transceiver_channel_tx_is_generating <service-path> Returns non-zero if the generator
is running.

transceiver_channel_tx_is_preamble_enabl
ed

<service-path> Returns non-zero if preamble
mode is enabled.

transceiver_channel_tx_set_number_of_pre
amble_beats

<service-path> <number-of-
preamble-beats>

Sets the number of beats to send
out the preamble word.

transceiver_channel_tx_set_pattern <service-path> <pattern-
name>

Sets the output pattern to the
one specified by the pattern
name.

transceiver_channel_tx_set_preamble_word <service-path> <preamble-
word>

Sets the preamble word to be
sent out.

transceiver_channel_tx_set_preemph0t <service-path> <value> Sets the pre-emphasis first pre-
tap value on the transmitter
channel.

transceiver_channel_tx_set_preemph1t <service-path> <value> Sets the pre-emphasis first post-
tap value on the transmitter
channel.

transceiver_channel_tx_set_preemph2t <service-path> <value> Sets the pre-emphasis second
post-tap value on the transmitter
channel.

transceiver_channel_tx_set_preemph3t <service-path> <value> Sets the pre-emphasis second
pre-tap value on the transmitter
channel.

transceiver_channel_tx_set_vodctrl <service-path> <vodctrl
value>

Sets the VOD control value on the
transmitter channel.

transceiver_channel_tx_start_generation <service-path> Starts the generator.

transceiver_channel_tx_stop_generation <service-path> Stops the generator.

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 48. Transceiver Toolkit Transceiver Toolkit debug_link Commands

Command Arguments Function

transceiver_debug_link_get_pattern <service-path> Gets the pattern the link uses to
run the test.

transceiver_debug_link_is_running <service-path> Returns non-zero if the test is
running on the link.

transceiver_debug_link_set_pattern <service-path> <data
pattern>

Sets the pattern the link uses to
run the test.

transceiver_debug_link_start_running <service-path> Starts running a test with the
currently selected test pattern.

transceiver_debug_link_stop_running <service-path> Stops running the test.

Table 49. Transceiver Toolkit reconfig_analog Commands

Command Arguments Function

transceiver_reconfig_analog_get_logic
al_channel_address

<service-path> Gets the transceiver logic channel
address currently set.

transceiver_reconfig_analog_get_rx_dc
gain

<service-path> Gets the DC gain value on the
receiver channel specified by the
current logic channel address.

transceiver_reconfig_analog_get_rx_eq
ctrl

<service-path> Gets the equalization control value
on the receiver channel specified by
the current logic channel address.

transceiver_reconfig_analog_get_tx_pr
eemph0t

<service-path> Gets the pre-emphasis first pre-tap
value on the transmitter channel
specified by the current logic
channel address.

transceiver_reconfig_analog_get_tx_pr
eemph1t

<service-path> Gets the pre-emphasis first post-
tap value on the transmitter
channel specified by the current
logic channel address.

transceiver_reconfig_analog_get_tx_pr
eemph2t

<service-path> Gets the pre-emphasis second
post-tap value on the transmitter
channel specified by the current
logic channel address.

transceiver_reconfig_analog_get_tx_vo
dctrl

<service-path> Gets the VOD control value on the
transmitter channel specified by the
current logic channel address.

transceiver_reconfig_analog_set_logic
al_channel_address

<service-path> <logic channel
address>

Sets the transceiver logic channel
address.

transceiver_reconfig_analog_set_rx_dc
gain

<service-path> <dc_gain
value>

Sets the DC gain value on the
receiver channel specified by the
current logic channel address

transceiver_reconfig_analog_set_rx_eq
ctrl

<service-path> <eqctrl value> Sets the equalization control value
on the receiver channel specified by
the current logic channel address.

transceiver_reconfig_analog_set_tx_pr
eemph0t

<service-path> <value> Sets the pre-emphasis first pre-tap
value on the transmitter channel
specified by the current logic
channel address.

continued...

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

transceiver_reconfig_analog_set_tx_pr
eemph1t

<service-path> < value> Sets the pre-emphasis first post-
tap value on the transmitter
channel specified by the current
logic channel address.

transceiver_reconfig_analog_set_tx_pr
eemph2t

<service-path> <value> Sets the pre-emphasis second post-
tap value on the transmitter
channel specified by the current
logic channel address.

transceiver_reconfig_analog_set_tx_vo
dctrl

<service-path> <vodctrl value> Sets the VOD control value on the
transmitter channel specified by the
current logic channel address.

Table 50. Transceiver Toolkit Decision Feedback Equalization (DFE) Commands

Command Arguments Function

alt_xcvr_reconfig_dfe_get_logical_channe
l_address

<service-path> Gets the logic channel address
that other
alt_xcvr_reconfig_dfe
commands use to apply.

alt_xcvr_reconfig_dfe_is_enabled <service-path> Reports whether the DFE feature
is enabled on the previously
channel you specify.

alt_xcvr_reconfig_dfe_set_enabled <service-path> <disable(0)/
enable(1)>

Enables or disables the DFE
feature on the previously channel
you specify.

alt_xcvr_reconfig_dfe_set_logical_channe
l_address

<service-path> <logic
channel address>

(Stratix V only) Sets the logic
channel address that other
alt_xcvr_reconfig_eye_vie
wer commands use.

alt_xcvr_reconfig_dfe_set_tap_value <service-path> <tap
position> <tap value>

Sets the tap value at the
previously channel you specify at
specified tap position and value.

Table 51. Transceiver Toolkit Eye Monitor Commands (Stratix V only)

Command Arguments Function

alt_xcvr_custom_is_word_aligner_enabled <service-path> <disable(0)/
enable(1)>

Reports whether the word aligner
feature is enabled on the
previously channel you specify.

alt_xcvr_custom_set_word_aligner_enabled <service-path> <disable(0)/
enable(1)>

Enables or disables the word
aligner of the previously channel
you specify.

alt_xcvr_custom_is_rx_locked_to_data <service-path> Returns whether the receiver CDR
is locked to data.

alt_xcvr_custom_is_rx_locked_to_ref <service-path> Returns whether the receiver CDR
PLL is locked to the reference
clock.

alt_xcvr_custom_is_serial_loopback_enabl
ed

<service-path> Returns whether the serial
loopback mode of the previously
channel you specify is enabled.

alt_xcvr_custom_set_serial_loopback_enab
led

<service-path> <disable(0)/
enable(1)>

Enables or disables the serial
loopback mode of the previously
channel you specify.

continued...

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

alt_xcvr_custom_is_tx_pll_locked <service-path> Returns whether the transmitter
PLL is locked to the reference
clock.

alt_xcvr_reconfig_eye_viewer_get_logical
_channel_address

<service-path> Gets the logic channel address on
which other
alt_reconfig_eye_viewer
commands use.

alt_xcvr_reconfig_eye_viewer_get_phase_s
tep

<service-path> Gets the current phase step of
the previously channel you
specify.

alt_xcvr_reconfig_eye_viewer_is_enabled <service-path> Reports whether the Eye Viewer
feature is enabled on the
previously channel you specify.

alt_xcvr_reconfig_eye_viewer_set_enabled <service-path> <disable(0)/
enable(1)>

Enables or disables the Eye
Viewer feature on the previously
channel you specify.
Setting a value of 2 enables both
Eye Viewer and the Serial Bit
Comparator.

alt_xcvr_reconfig_eye_viewer_set_logical
_channel_address

<service-path> <logic
channel address>

Sets the logic channel address
that other
alt_reconfig_eye_viewer
commands use.

alt_xcvr_reconfig_eye_viewer_set_phase_s
tep

<service-path> <phase step> Sets the phase step of the
previously channel you specify.

alt_xcvr_reconfig_eye_viewer_has_ber_che
cker

<service-path> Detects whether the eye viewer
pointed to by <service-path>
supports the Serial Bit
Comparator.

alt_xcvr_reconfig_eye_viewer_ber_checker
_is_enabled

<service-path> Detects whether the Serial Bit
Comparator is enabled.

alt_xcvr_reconfig_eye_viewer_ber_checker
_start

<service-path> Starts the Serial Bit Comparator
counters.

alt_xcvr_reconfig_eye_viewer_ber_checker
_stop

<service-path> Stops the Serial Bit Comparator
counters.

alt_xcvr_reconfig_eye_viewer_ber_checker
_reset_counters

<service-path> Resets the Serial Bit Comparator
counters.

alt_xcvr_reconfig_eye_viewer_ber_checker
_is_running

<service-path> Reports whether the Serial Bit
Comparator counters are
currently running or not.

alt_xcvr_reconfig_eye_viewer_ber_checker
_get_data

<service-path> Gets the current total bit, error
bit, and exception counts for the
Serial Bit Comparator.

alt_xcvr_reconfig_eye_viewer_has_1deye <service-path> Detects whether the eye viewer
pointed to by <service-path>
supports 1D-Eye Viewer mode.

alt_xcvr_reconfig_eye_viewer_set_1deye_m
ode

<service-path> <disable(0)/
enable(1)

Enables or disables 1D-Eye
Viewer mode.

alt_xcvr_reconfig_eye_viewer_get_1deye_m
ode

<service-path> Gets the enable or disabled state
of 1D-Eye Viewer mode.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 52. Channel Type Commands

Command Arguments Function

get_channel_type <service-path> <logical-
channel-num>

Reports the detected type (GX/GT) of channel <logical-channel-num
> for the reconfiguration block located at <service-path>.

set_channel_type <service-path> <logical-
channel-num> <channel-
type>

Overrides the detected channel type of channel <logical-channel-
num> for the reconfiguration block located at <service-path> to the
type specified (0:GX, 1:GT).

Table 53. Loopback Commands

Command Arguments Function

loopback_get <service-path> Returns the value of a setting or result on the loopback channel. Available results
include:
• Status—running or stopped.
• Bytes—number of bytes sent through the loopback channel.
• Errors—number of errors reported by the loopback channel.
• Seconds—number of seconds since the loopback channel was started.

loopback_set <service-path> Sets the value of a setting controlling the loopback channel. Some settings are only
supported by particular channel types. Available settings include:
• Timer—number of seconds for the test run.
• Size—size of the test data.
• Mode—mode of the test.

loopback_start <service-path> Starts sending data through the loopback channel.

loopback_stop <service-path> Stops sending data through the loopback channel.

3.13.2. Data Pattern Generator Commands

You can use Data Pattern Generator commands to control data patterns for debugging
transceiver channels. You must instantiate the Data Pattern Generator component to
support these commands.

Table 54. Soft Data Pattern Generator Commands

Command Arguments Function

data_pattern_generator_start <service-path> Starts the data pattern generator.

data_pattern_generator_stop <service-path> Stops the data pattern generator.

data_pattern_generator_is_generating <service-path> Returns non-zero if the generator is
running.

data_pattern_generator_inject_error <service-path> Injects a 1-bit error into the generator
output.

data_pattern_generator_set_pattern <service-path>
<pattern-name>

Sets the output pattern that <pattern-
name> specifies.

Value Description

• PRBS7
• PRBS15
• PRBS23
• PRBS31

Pseudo-random binary
sequences. PRBS files
are clear text, and you
can modify the PRBS
files.

continued...

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

Value Description

HF Outputs high frequency,
constant pattern of
alternating 0s and 1s

LF Outputs low frequency,
constant pattern of
10b’1111100000 for 10-
bit symbols and
8b’11110000 for 8-bit
symbols

data_pattern_generator_get_pattern <service-path> Returns currently selected output
pattern.

data_pattern_generator_get_available_patterns <service-path> Returns a list of available data patterns
by name.

data_pattern_generator_enable_preamble <service-path> Enables the preamble mode at the
beginning of generation.

data_pattern_generator_disable_preamble <service-path> Disables the preamble mode at the
beginning of generation.

data_pattern_generator_is_preamble_enabled <service-path> Returns a non-zero value if preamble
mode is enabled.

data_pattern_generator_set_preamble_word <preamble-
word>

Sets the preamble word (could be 32-bit
or 40-bit).

data_pattern_generator_get_preamble_word <service-path> Gets the preamble word.

data_pattern_generator_set_preamble_beats <service-
path><number-
of-preamble-
beats>

Sets the number of beats to send out in
the preamble word.

data_pattern_generator_get_preamble_beats <service-path> Returns the currently set number of
beats to send out in the preamble word.

data_pattern_generator_fcnter_start <service-
path><max-
cycles>

Sets the max cycle count and starts the
frequency counter.

data_pattern_generator_check_status <service-path> Queries the data pattern generator for
current status. Returns a bitmap
indicating the status, with bits defined
as follows:

Value Description

0 Enabled

1 Bypass enabled

2 Avalon

3 Sink ready

4 Source valid

continued...

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

Value Description

5 Frequency counter enabled

data_pattern_generator_fcnter_report <service-
path><force-
stop>

Reports the current measured clock
ratio, stopping the counting first
depending on <force-stop>.

Table 55. Hard Data Pattern Generator Commands

Command Arguments Function

hard_prbs_generator_start <service-path> Starts the generator that you specify.

hard_prbs_generator_stop <service-path> Stops the generator that you specify.

hard_prbs_generator_is_generating <service-path> Checks the generation status. Returns:

Value Description

0 Generating

1 Otherwise

hard_prbs_generator_set_pattern <service-path>
<pattern>

Sets the pattern of the hard PRBS generator
you specify to pattern.

hard_prbs_generator_get_pattern <service-path> Returns the current pattern for a given hard
PRBS generator.

hard_prbs_generator_get_available_patterns <service-path> Returns the available patterns for a given
hard PRBS generator.

3.13.3. Data Pattern Checker Commands

You can use Data Pattern Checker commands to verify your generated data patterns.
You must instantiate the Data Pattern Checker component to support these
commands.

Table 56. Soft Data Pattern Checker Commands

Command Arguments Function

data_pattern_checker_start <service-path> Starts the data pattern checker.

data_pattern_checker_stop <service-path> Stops the data pattern checker.

data_pattern_checker_is_checking <service-path> Returns a non-zero value if the checker is
running.

data_pattern_checker_is_locked <service-path> Returns non-zero if the checker is locked
onto the incoming data.

data_pattern_checker_set_pattern <service-path>
<pattern-name>

Sets the expected pattern to <pattern-
name>.

data_pattern_checker_get_pattern <service-path> Returns the currently selected expected
pattern by name.

data_pattern_checker_get_available_patterns <service-path> Returns a list of available data patterns by
name.

continued...

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

data_pattern_checker_get_data <service-path> Returns a list of the current checker data.
The results are in the following order:
number of bits, number of errors, and bit
error rate.

data_pattern_checker_reset_counters <service-path> Resets the bit and error counters inside
the checker.

data_pattern_checker_fcnter_start <service-
path><max-
cycles>

Sets the max cycle count and starts the
frequency counter.

data_pattern_checker_check_status <service-path>
<service-path>

Queries the data pattern checker for
current status. Returns a bitmap
indicating status:

Value Status

0 Enabled

1 Locked

2 Bypass enabled

3 Avalon

4 Sink ready

5 Source valid

6 Frequency counter enabled

data_pattern_checker_fcnter_report <service-
path><force-stop>

Reports the current measured clock ratio,
stopping the counting first depending on
<force-stop>.

Table 57. Hard Data Pattern Checker Commands

Command Arguments Function

hard_prbs_checker_start <service-path> Starts the specified hard PRBS checker.

hard_prbs_checker_stop <service-path> Stops the specified hard PRBS checker.

hard_prbs_checker_is_checking <service-path> Checks the running status of the specified
hard PRBS checker. Returns a non-zero value
if the checker is running.

hard_prbs_checker_set_pattern <service-path>
<pattern>

Sets the pattern of the specified hard PRBS
checker to parameter <pattern>.

hard_prbs_checker_get_pattern <service-path> Returns the current pattern for a given hard
PRBS checker.

hard_prbs_checker_get_available_patterns <service-path> Returns the available patterns for a given
hard PRBS checker.

hard_prbs_checker_get_data <service-path> Returns the current bit and error count data
from the specified hard PRBS checker.

hard_prbs_checker_reset_counters <service-path> Resets the bit and error counts of the
specified hard PRBS checker.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.14. Debugging Transceiver Links Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.07.03 18.0.0 • Added Device Family column to table: Transceiver Toolkit Control Pane
Settings

2017.11.06 17.1.0 • Renamed EyeQ to Eye Viewer.
• Updated topic "Transceiver Debugging Flow" and renamed to

"Transceiver Debugging Flow Walkthrough".
• Updated instructions for instantiating and parameterizing Debug IP

cores.
— Removed figure: "Altera Debug Master Endpoint Block Diagram".

• Added step on programming designs as a part of the debugging flow.
• Updated information about debugging transceiver links for Intel Arria

10 devices.

2016.10.31 16.1.0 • Removed EyeQ support for Intel Arria 10.
• Renamed "Continuous Adaptation" to "Adaptation Enabled".

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.
• Added description of new Refresh button.
• Added description of VGA dialog box.
• Added two tables in Transceiver Toolkit Commands section.

— Hard Data Pattern Generator Commands
— Hard Data Pattern Checker Commands

• Separated Arria 10 and Stratix V system configuration steps.

May 2015 15.0.0 • Added section about Implementation Differences Between Stratix V and
Arria 10.

• Added section about Recommended Flow for Arria 10 Transceiver
Toolkit Design with the Quartus II Software.

• Added section about Transceiver Toolkit Troubleshooting
• Updated the following sections with information about using the

Transceiver Toolkit with Arria 10 devices:
— Serial Bit Comparator Mode
— Arria 10 Support and Limitations
— Configuring BER Tests
— Configuring PRBS Signal Eye Tests
— Adapting Altera Design Examples
— Modifying Design Examples
— Configuring Custom Traffic Signal Eye Tests
— Configuring Link Optimization Tests
— Configuring PMA Analog Setting Control
— Running BER Tests
— Toolkit GUI Setting Reference

• Reworked Table: Transceiver Toolkit IP Core Configuration
• Replaced Figure: EyeQ Settings and Status Showing Results of Two Test

Runs with Figure: EyeQ Settings and Status Showing Results of Three
Test Runs.

• Added Figure: Arria 10 Altera Debug Master Endpoint Block Diagram.
• Added Figure: BER Test Configuration (Arria10/ Gen 10/ 20nm) Block

Diagram.
• Added Figure: PRBS Signal Test Configuration (Arria 10/ 20nm) Block

Diagram.
• Added Figure: Custom Traffic Signal Eye Test Configuration (Arria 10/

Gen 10/ 20nm) Block Diagram.

continued...

3. Debugging Transceiver Links

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

• Added Figure: PMA Analog Setting Control Configuration (Arria 10/ Gen
10/ 20nm) Block Diagram.

• Added Figure: One Channel Loopback Mode (Arria 10/ 20nm) Block
Diagram.

• Added Figure: Four Channel Loopback Mode (Arria 10/ Gen 10/ 20nm)
Block Diagram.

Software Version 15.0 Limitations
• Transceiver Toolkit supports EyeQ for Arria 10 designs.
• Supports optional hard acceleration for EyeQ. This allows for much

faster EyeQ data collection. Enable this in the Arria 10 Transceiver
Native PHY IP core under the Dynamic Configuration tab. Turn on
Enable ODI acceleration logic.

December, 2014 14.1.0 • Added section about Arria 10 support and limitations.

June, 2014 14.0.0 • Updated GUI changes for Channel Manager with popup menus, IP
Catalog, Quartus II, and Qsys.

• Added ADME and JTAG debug link info for Arria 10.
• Added instructions to run Tcl script from command line.
• Added heat map display option.
• Added procedure to use internal PLL to generate reconfig_clk.
• Added note stating RX CDR PLL status can toggle in LTD mode.

November, 2013 13.1.0 • Reorganization and conversion to DITA.

May, 2013 13.0.0 • Added Conduit Mode Support, Serial Bit Comparator, Required Files and
Tcl command tables.

November, 2012 12.1.0 • Minor editorial updates. Added Tcl help information and removed Tcl
command tables. Added 28-Gbps Transceiver support section.

August, 2012 12.0.1 • General reorganization and revised steps in modifying Altera example
designs.

June, 2012 12.0.0 • Maintenance release for update of Transceiver Toolkit features.

November, 2011 11.1.0 • Maintenance release for update of Transceiver Toolkit features.

May, 2011 11.0.0 • Added new Tcl scenario.

December, 2010 10.1.0 • Changed to new document template. Added new 10.1 release features.

August, 2010 10.0.1 • Corrected links.

July 2010 10.0.0 • Initial release.

3. Debugging Transceiver Links

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

135

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Quick Design Debugging Using Signal Probe
The Signal Probe incremental routing feature helps reduce the hardware verification
process and time-to-market for system-on-a-programmable-chip (SOPC) designs.
Easy access to internal device signals is important in the design or debugging process.
The Signal Probe feature makes design verification more efficient by routing internal
signals to I/O pins quickly without affecting the design. When you start with a fully
routed design, you can select and route signals for debugging to either previously
reserved or currently unused I/O pins.

The Signal Probe feature supports the Arria series, Cyclone series, MAX II, and Stratix
series device families.

Related Information

System Debugging Tools Overview on page 7

4.1. Design Flow Using Signal Probe

The Signal Probe feature allows you to reserve available pins and route internal signals
to those reserved pins, while preserving the behavior of your design. Signal Probe is
an effective debugging tool that provides visibility into your FPGA.

You can reserve pins for Signal Probe and assign I/O standards after a full compilation.
Each Signal Probe-source to Signal Probe-pin connection is implemented as an
engineering change order (ECO) that is applied to your netlist after a full compilation.

To route the internal signals to the device’s reserved pins for Signal Probe, perform
the following tasks:

1. Perform a full compilation.

2. Reserve Signal Probe Pins.

3. Assign Signal Probe sources.

4. Add registers between pipeline paths and Signal Probe pins.

5. Perform a Signal Probe compilation.

6. Analyze the results of a Signal Probe compilation.

4.1.1. Perform a Full Compilation

You must complete a full compilation to generate an internal netlist containing a list of
internal nodes to probe.

To perform a full compilation, on the Processing menu, click Start Compilation.

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

4.1.2. Reserve Signal Probe Pins

Signal Probe pins can only be reserved after a full compilation. You can also probe any
unused I/Os of the device. Assigning sources is a simple process after reserving Signal
Probe pins. The sources for Signal Probe pins are the internal nodes and registers in
the post-compilation netlist that you want to probe.

Note: Although you can reserve Signal Probe pins using many features within the Intel
Quartus Prime software, including the Pin Planner and the Tcl interface, you should
use the Signal Probe Pins dialog box to create and edit your Signal Probe pins.

4.1.3. Assign Signal Probe Sources

A Signal Probe source can be any combinational node, register, or pin in your post-
compilation netlist. To find a Signal Probe source, in the Node Finder, use the Signal
Probe filter to remove all sources that cannot be probed. You might not be able to find
a particular internal node because the node can be optimized away during synthesis,
or the node cannot be routed to the Signal Probe pin. For example, you cannot probe
nodes and registers within Gigabit transceivers in Stratix IV devices because there are
no physical routes available to the pins.

Note: To probe virtual I/O pins generated in low-level partitions in an incremental
compilation flow, select the source of the logic that feeds the virtual pin as your Signal
Probe source pin.

Because Signal Probe pins are implemented and routed as ECOs, turning the Signal
Probe enable option on or off is the same as selecting Apply Selected Change or
Restore Selected Change in the Change Manager window. If the Change Manager
window is not visible at the bottom of your screen, on the View menu, point to Utility
Windows and click Change Manager.

4.1.4. Add Registers Between Pipeline Paths and Signal Probe Pins

You can specify the number of registers placed between a Signal Probe source and a
Signal Probe pin. The registers synchronize data to a clock and control the latency of
the Signal Probe outputs. The Signal Probe feature automatically inserts the number
of registers specified into the Signal Probe path.

The figure shows a single register between the Signal Probe source Reg_b_1 and
Signal Probe Signal Probe_Output_2 output pin added to synchronize the data
between the two Signal Probe output pins.

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

137

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: When you add a register to a Signal Probe pin, the Signal Probe compilation attempts
to place the register to best meet timing requirements. You can place Signal Probe
registers either near the Signal Probe source to meet fMAX requirements, or near the
I/O to meet tCO requirements.

Figure 39. Synchronizing Signal Probe Outputs with a Signal Probe Register

Reg_b_1

SignalProbe
Pipeline
Register

SignalProbe_Output_1

SignalProbe_Output_2

D Q

DFF

Reg_b_2

D Q

DFF

D Q

D Q

DFF

Reg_a_1

D Q

DFF
Reg_a_2

Logic

Logic

Logic

Logic

In addition to clock input for pipeline registers, you can also specify a reset signal pin
for pipeline registers. To specify a reset pin for pipeline registers, use the Tcl command
make_sp.

4.1.5. Perform a Signal Probe Compilation

Perform a Signal Probe compilation to route your Signal Probe pins. A Signal Probe
compilation saves and checks all netlist changes without recompiling the other parts of
the design. A Signal Probe compilation takes a fraction of the time of a full compilation
to finish. The design’s current placement and routing are preserved.

To perform a Signal Probe compilation, on the Processing menu, point to Start and
click Start Signal Probe Compilation.

4.1.6. Analyze the Results of a Signal Probe Compilation

After a Signal Probe compilation, the results are available in the compilation report
file. Each Signal Probe pin is displayed in the Signal Probe Fitting Result page in
the Fitter section of the Compilation Report. To view the status of each Signal Probe
pin in the Signal Probe Pins dialog box, on the Tools menu, click Signal Probe Pins.

The status of each Signal Probe pin appears in the Change Manager window. If the
Change Manager window is not visible at the bottom of your GUI, from the View
menu, point to Utility Windows and click Change Manager.

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

138

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 40. Change Manager Window with Signal Probe Pins

To view the timing results of each successfully routed Signal Probe pin, on the
Processing menu, point to Start and click Start Timing Analysis.

Related Information

Engineering Change Management with the Chip Planner

4.1.7. What a Signal Probe Compilation Does

After a full compilation, you can start a Signal Probe compilation either manually or
automatically. A Signal Probe compilation performs the following functions:

• Validates Signal Probe pins

• Validates your specified Signal Probe sources

• Adds registers into Signal Probe paths, if applicable

• Attempts to route from Signal Probe sources through registers to Signal Probe
pins

To run the Signal Probe compilation immediately after a full compilation, on the Tools
menu, click Signal Probe Pins. In the Signal Probe Pins dialog box, click Start
Check & Save All Netlist Changes.

To run a Signal Probe compilation manually after a full compilation, on the Processing
menu, point to Start and click Start Signal Probe Compilation.

Note: You must run the Fitter before a Signal Probe compilation. The Fitter generates a list
of all internal nodes that can serve as Signal Probe sources.

Turn the Signal Probe enable option on or off in the Signal Probe Pins dialog box
to enable or disable each Signal Probe pin.

4.1.8. Understanding the Results of a Signal Probe Compilation

After a Signal Probe compilation, the results appear in two sections of the compilation
report file. The fitting results and status of each Signal Probe pin appears in the
Signal Probe Fitting Result screen in the Fitter section of the Compilation Report.

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

139

https://www.intel.com/content/www/us/en/docs/programmable/683230/current/engineering-change-orders-with-the-chip-41583.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 58. Status Values

Status Description

Routed Connected and routed successfully

Not Routed Not enabled

Failed to Route Failed routing during last Signal Probe compilation

Need to Compile Assignment changed since last Signal Probe compilation

Figure 41. Signal Probe Fitting Results Page in the Compilation Report Window

The Signal Probe source to output delays screen in the Timing Analysis section of
the Compilation Report displays the timing results of each successfully routed Signal
Probe pin.

Figure 42. Signal Probe Source to Output Delays Page in the Compilation Report Window

Note: After a Signal Probe compilation, the processing screen of the Messages window also
provides the results for each Signal Probe pin and displays slack information for each
successfully routed Signal Probe pin.

4.1.8.1. Analyzing Signal Probe Routing Failures

A Signal Probe compilation can fail for any of the following reasons:

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

140

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Route unavailable—the Signal Probe compilation failed to find a route from the
Signal Probe source to the Signal Probe pin because of routing congestion.

• Invalid or nonexistent Signal Probe source—you entered a Signal Probe
source that does not exist or is invalid.

• Unusable output pin—the output pin selected is found to be unusable.

Routing failures can occur if the Signal Probe pin’s I/O standard conflicts with other
I/O standards in the same I/O bank.

If routing congestion prevents a successful Signal Probe compilation, you can allow
the compiler to modify routing to the specified Signal Probe source. On the Tools
menu, click Signal Probe Pins and turn on Modify latest fitting results during
Signal Probe compilation. This setting allows the Fitter to modify existing routing
channels used by your design.

Note: Turning on Modify latest fitting results during Signal Probe compilation can
change the performance of your design.

4.2. Scripting Support

You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Intel Quartus Prime command-line and
Tcl API Help browser. To run the Help browser, type the following command at the
command prompt:

quartus_sh --qhelp

Note: The Tcl commands in this section are part of the ::quartus::chip_planner Intel
Quartus Prime Tcl API. Source or include the ::quartus::chip_planner Tcl
package in your scripts to make these commands available.

Related Information

• Tcl Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

• Command Line Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

4.2.1. Making a Signal Probe Pin

To make a Signal Probe pin, type the following command:

make_sp [-h | -help] [-long_help] [-clk <clk>] [-io_std <io_std>] \
-loc <loc> -pin_name <pin name> [-regs <regs>] [-reset <reset>] \
-src_name <source name>

4.2.2. Deleting a Signal Probe Pin

To delete a Signal Probe pin, type the following Tcl command:

delete_sp [-h | -help] [-long_help] -pin_name <pin name>

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

141

https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2.3. Enabling a Signal Probe Pin

To enable a Signal Probe pin, type the following Tcl command:

enable_sp [-h | -help] [-long_help] -pin_name <pin name>

4.2.4. Disabling a Signal Probe Pin

To disable a Signal Probe pin, type the following Tcl command:

disable_sp [-h | -help] [-long_help] -pin_name <pin name>

4.2.5. Performing a Signal Probe Compilation

To perform a Signal Probe compilation, type the following command:

quartus_sh --flow signalprobe <project name>

4.2.5.1. Script Example

The example shows a script that creates a Signal Probe pin called sp1 and connects
the sp1 pin to source node reg1 in a project that was already compiled.

 Creating a Signal Probe Pin Called sp1

package require ::quartus::chip_planner
project_open project
read_netlist
make_sp -pin_name sp1 -src_name reg1
check_netlist_and_save
project_close

4.2.6. Reserving Signal Probe Pins

To reserve a Signal Probe pin, add the commands shown in the example to the Intel
Quartus Prime Settings File (.qsf) for your project.

 Reserving a Signal Probe Pin

set_location_assignment <location> -to <Signal Probe pin name>
set_instance_assignment -name RESERVE_PIN \
"AS SIGNALPROBE OUTPUT" -to <Signal Probe pin name>

Valid locations are pin location names, such as Pin_A3.

4.2.6.1. Common Problems When Reserving a Signal Probe Pin

If you cannot reserve a Signal Probe pin in the Intel Quartus Prime software, it is likely
that one of the following is true:

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

142

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• You have selected multiple pins.

• A compilation is running in the background. Wait until the compilation is complete
before reserving the pin.

• You have the Intel Quartus Prime Lite Edition software, in which the Signal Probe
feature is not enabled by default.

• You have not set the pin reserve type to As Signal Probe Output. To reserve a
pin, on the Assignments menu, in the Assign Pins dialog box, select As Signal
Probe Output.

• The pin is reserved from a previous compilation. During a compilation, the Intel
Quartus Prime software reserves each pin on the targeted device. If you end the
Intel Quartus Prime process during a compilation, for example, with the Windows
Task Manager End Process command or the UNIX kill command, perform a
full recompilation before reserving pins as Signal Probe outputs.

• The pin does not support the Signal Probe feature. Select another pin.

• The current device family does not support the Signal Probe feature.

4.2.7. Adding Signal Probe Sources

• To assign the node name to a Signal Probe pin, type the following Tcl command:

set_instance_assignment -name SIGNALPROBE_SOURCE <node name> \
 -to <signalprobe pin name>

• To turn off individual Signal Probe pins, specify OFF instead of ON with the
following command:

set_instance_assignment -name SIGNALPROBE_ENABLE ON \
 -to <Signal Probe pin name>

4.2.8. Assigning I/O Standards

• To assign an I/O standard to a pin, type the following Tcl command:

set_instance_assignment -name IO_STANDARD <I/O standard> -to <Signal Probe
pin name>

Related Information

I/O Standards Definition

4.2.9. Adding Registers for Pipelining

To add registers for pipelining, type the following Tcl command:

set_instance_assignment -name SIGNALPROBE_CLOCK <clock name> \
-to <Signal Probe pin name>

set_instance_assignment -name SIGNALPROBE_NUM_REGISTERS <number of registers> \
-to <Signal Probe pin name>

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

143

http://quartushelp.altera.com/current/#reference/glossary/def_iostandard.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2.10. Running Signal Probe Immediately After a Full Compilation

To run Signal Probe immediately after a full compilation, type the following Tcl
command:

set_global_assignment -name SIGNALPROBE_DURING_NORMAL_COMPILATION ON

4.2.11. Running Signal Probe Manually

To run Signal Probe as part of a scripted flow using Tcl, use the following in your
script:

execute_flow -signalprobe

To perform a Signal Probe compilation interactively at a command prompt, type the
following command:

quartus_sh_fit --flow signalprobe <project name>

4.2.12. Enabling or Disabling All Signal Probe Routing

Use the Tcl command in the example to turn on or turn off Signal Probe routing. When
using this command, to turn Signal Probe routing on, specify ON. To turn Signal Probe
routing off, specify OFF.

 Turning Signal Probe On or Off with Tcl Commands

set spe [get_all_assignments -name SIGNALPROBE_ENABLE] \
foreach_in_collection asgn $spe {
 set signalprobe_pin_name [lindex $asgn 2]
 set_instance_assignment -name SIGNALPROBE_ENABLE \
-to $signalprobe_pin_name <ON|OFF> }

4.2.13. Allowing Signal Probe to Modify Fitting Results

To turn on Modify latest fitting results, type the following Tcl command:

set_global_assignment -name SIGNALPROBE_ALLOW_OVERUSE ON

4.3. Quick Design Debugging Using Signal Probe Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 Dita conversion.

May 2013 13.0.0 Changed sequence of flow to clarify that you need to perform a full
compilation before reserving Signal Probe pins. Affected sections are
“Debugging Using the Signal Probe Feature” on page 12–1 and “Reserving
Signal Probe Pins” on page 12–2. Moved “Performing a Full Compilation”
on page 12–2 before “Reserving Signal Probe Pins” on page 12–2.

continued...

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

144

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 • Revised for new UI.
• Removed section Signal Probe ECO flows
• Removed support for Signal Probe pin preservation when recompiling

with incremental compilation turned on.
• Removed outdated FAQ section.
• Added links to Quartus II Help for procedural content.

November 2009 9.1.0 • Removed all references and procedures for APEX devices.
• Style changes.

March 2009 9.0.0 • Removed the “Generate the Programming File” section
• Removed unnecessary screenshots
• Minor editorial updates

November 2008 8.1.0 • Modified description for preserving Signal Probe connections when
using Incremental Compilation

• Added plausible scenarios where Signal Probe connections are not
reserved in the design

May 2008 8.0.0 • Added “Arria GX” to the list of supported devices
• Removed the “On-Chip Debugging Tool Comparison” and replaced with

a reference to the Section V Overview on page 13–1
• Added hyperlinks to referenced documents throughout the chapter
• Minor editorial updates

4. Quick Design Debugging Using Signal Probe

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

145

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Design Debugging with the Signal Tap Logic Analyzer

5.1. The Signal Tap Logic Analyzer

The Signal Tap Logic Analyzer captures and displays real-time signal behavior in an
FPGA design, allowing to examine the behavior of internal signals during normal
device operation without the need for extra I/O pins or external lab equipment.

To facilitate the debugging process, you can save the captured data in device memory
for later analysis. You can also filter data that is not relevant for debug by defining
custom trigger-condition logic. The Signal Tap Logic Analyzer supports the highest
number of channels, largest sample depth, and fastest clock speeds of any logic
analyzer in the programmable logic market.

Figure 43. Signal Tap Logic Analyzer Block Diagram

Design Logic

1 2 30

1 2 30

Signal Tap
Instances

Intel FPGA
Programming

Hardware

Quartus Prime
Software

Buffers (Device Memory)

FPGA Device

JTAG
Hub

Note to figure:

1. This diagram assumes that you compiled the Signal Tap Logic Analyzer with the
design as a separate design partition using the Intel Quartus Prime incremental
compilation feature. If you do not use incremental compilation, the Compiler
integrates the Signal Tap logic with the design.

The Signal Tap Logic Analyzer is available as a stand-alone package or with a software
subscription.

To take advantage of faster compile times when making changes to the Signal Tap
Logic Analyzer, knowledge of the Intel Quartus Prime incremental compilation feature
is helpful.

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

5.1.1. Hardware and Software Requirements

You need the following hardware and software to perform logic analysis with the
Signal Tap Logic Analyzer:

• Signal Tap Logic Analyzer

The following software includes the Signal Tap Logic Analyzer:

— Intel Quartus Prime Design Software

— Intel Quartus Prime Lite Edition

Alternatively, use the Signal Tap Logic Analyzer standalone software and
standalone Programmer software.

• Download/upload cable

• Intel development kit or your design board with JTAG connection to device under
test

Note: The Intel Quartus Prime Lite Edition software does not support incremental
compilation integration with the Signal Tap Logic Analyzer.

During data acquisition, the memory blocks in the device store the captured data, and
then transfer the data to the logic analyzer over a JTAG communication cable, such as
or Intel FPGA Download Cable.

5.1.1.1. Opening the Standalone Signal Tap Logic Analyzer GUI

1. To open a new Signal Tap through the command-line, type:

quartus_stpw <stp_file.stp>

5.1.2. Signal Tap Logic Analyzer Features and Benefits

Feature Benefit

Quick access toolbar Provides single-click operation of commonly-used menu items. You
can hover over the icons to see tool tips.

Multiple logic analyzers in a single device Allows you to capture data from multiple clock domains in a design at
the same time.

Multiple logic analyzers in multiple devices in a
single JTAG chain

Allows you to capture data simultaneously from multiple devices in a
JTAG chain.

Nios II plug-in support Allows you to specify nodes, triggers, and signal mnemonics for IP,
such as the Nios II processor.

Up to 10 basic, comparison, or advanced trigger
conditions for each analyzer instance

Allows you to send complex data capture commands to the logic
analyzer, providing greater accuracy and problem isolation.

Power-up trigger Captures signal data for triggers that occur after device programming,
but before manually starting the logic analyzer.

Custom trigger HDL object You can code your own trigger in Verilog HDL or VHDL and tap specific
instances of modules located anywhere in the hierarchy of your
design, without needing to manually route all the necessary
connections. This simplifies the process of tapping nodes spread out
across your design.

State-based triggering flow Enables you to organize your triggering conditions to precisely define
what your logic analyzer captures.

continued...

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

147

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature Benefit

Incremental compilation Allows you to modify the signals and triggers that the Signal Tap Logic
Analyzer monitors without performing a full compilation, saving time.

Incremental route with rapid recompile Allows you to manually allocate trigger input, data input, storage
qualifier input, and node count, and perform a full compilation to
include the Signal Tap Logic Analyzer in your design. Then, you can
selectively connect, disconnect, and swap to different nodes in your
design. Use Rapid Recompile to perform incremental routing and gain
a 2-4x speedup over the initial full compilation.

Flexible buffer acquisition modes The buffer acquisition control allows you to precisely control the data
that is written into the acquisition buffer. Both segmented buffers and
non-segmented buffers with storage qualification allow you to discard
data samples that are not relevant to the debugging of your design.

MATLAB integration with included MEX function Collects the data the Signal Tap Logic Analyzer captures into a
MATLAB integer matrix.

Up to 2,048 channels per logic analyzer instance Samples many signals and wide bus structures.

Up to 128K samples per instance Captures a large sample set for each channel.

Fast clock frequencies Synchronous sampling of data nodes using the same clock tree driving
the logic under test.

Resource usage estimator Provides an estimate of logic and memory device resources that the
Signal Tap Logic Analyzer configurations use.

No additional cost Intel Quartus Prime subscription and the Intel Quartus Prime Lite
Edition include the Signal Tap Logic Analyzer.

Compatibility with other on-chip debugging
utilities

You can use the Signal Tap Logic Analyzer in tandem with any JTAG-
based on-chip debugging tool, such as an In-System Memory Content
editor, allowing you to change signal values in real-time while you are
running an analysis with the Signal Tap Logic Analyzer.

Floating-Point Display Format To enable, click Edit ➤ Bus Display Format ➤ Floating-point
Supports:
• Single-precision floating-point format IEEE754 Single (32-bit).
• Double-precision floating-point format IEEE754 Double (64-bit).

Related Information

System Debugging Tools Overview on page 7

5.1.3. Backward Compatibility with Previous Versions of Intel Quartus
Prime Software

When you open an .stp file created in a previous version of Intel Quartus Prime
software in a newer version of the software, the .stp file cannot be opened in a
previous version of the Intel Quartus Prime software.

If you have a Intel Quartus Prime project file from a previous version of the software,
you may have to update the .stp configuration file to recompile the project. You can
update the configuration file by opening the Signal Tap Logic Analyzer. If you need to
update your configuration, a prompt appears asking if you want to update the .stp to
match the current version of the Intel Quartus Prime software.

5.2. Signal Tap Logic Analyzer Task Flow Overview

To use the Signal Tap Logic Analyzer to debug your design, you perform a number of
tasks to add, configure, and run the logic analyzer.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 44. Signal Tap Logic Analyzer Task Flow

End

Yes

NoFunctionality
Satisfied or Bug

Fixed?

Add Signal Tap Logic
Analyzer to Design Instance

Configure
Signal Tap Logic Analyzer

Program Target
Device or Devices

View, Analyze, and
Use Captured Data

Define Triggers

Run Signal Tap
Logic Analyzer

Adjust Options,
Triggers, or Both

Continue Debugging

Recompilation
Necessary?

Yes

Create New Project or
Open Existing Project

NoCompile Design

No

5.2.1. Add the Signal Tap Logic Analyzer to Your Design

Create an .stp or create a parameterized HDL instance representation of the logic
analyzer using the IP Catalog and parameter editor. If you want to monitor multiple
clock domains simultaneously, add additional instances of the logic analyzer to your
design, limited only by the available resources in your device.

5.2.2. Configure the Signal Tap Logic Analyzer

After you add the Signal Tap Logic Analyzer to your design, configure the logic
analyzer to monitor the signals you want.

You can add signals manually or use a plug-in, such as the Nios II processor plug-in,
to add entire sets of associated signals for a particular IP.

Specify settings for the data capture buffer, such as its size, the method in which the
Signal Tap Logic Analyzer captures and stores the data. If your device supports
memory type selection, you can specify the memory type to use for the buffer.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

149

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Configuring the Signal Tap Logic Analyzer on page 151

5.2.3. Define Trigger Conditions

By default, the Signal Tap Logic Analyzer captures data continuously while the logic
analyzer is running. To capture and store specific signal data you can set up triggers
that specify conditions to start or stop capturing data.

The Signal Tap Logic Analyzer allows you to define trigger conditions that range from
very simple, such as the rising edge of a single signal, to very complex, involving
groups of signals, extra logic, and multiple conditions. Power-Up Triggers allow you to
capture data from trigger events occurring immediately after the device enters user-
mode after configuration.

Related Information

Defining Triggers on page 169

5.2.4. Compile the Design

Once you configure the .stp file and define trigger conditions, compile your project
including the logic analyzer in your design.

Note: Because you may need to change monitored signal nodes or adjust trigger settings
frequently during debugging, Intel FPGA recommends that you use the incremental
compilation feature built into the Signal Tap Logic Analyzer, along with Intel Quartus
Prime incremental compilation, to reduce recompile times. You can also use
Incremental Route with Rapid Recompile to reduce recompile times.

Related Information

Compiling the Design on page 193

5.2.5. Program the Target Device or Devices

When you debug a design with the Signal Tap Logic Analyzer, you can program a
target device directly from the .stp without using the Intel Quartus Prime
Programmer. You can also program multiple devices with different designs and
simultaneously debug them.

Related Information

• Program the Target Device or Devices on page 199

• Manage Multiple Signal Tap Files and Configurations on page 167

5.2.6. Run the Signal Tap Logic Analyzer

In normal device operation, you control the logic analyzer through the JTAG
connection, specifying when to start looking for trigger conditions to begin capturing
data. With Runtime or Power-Up Triggers, read and transfer the captured data from
the on-chip buffer to the .stp for analysis.

Related Information

Running the Signal Tap Logic Analyzer on page 200

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

150

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.2.7. View, Analyze, and Use Captured Data

The data you capture and read into the .stp file is available for analysis and
debugging. You can save the data for later analysis, or convert the data to other
formats for sharing and further study.

• To simplify reading and interpreting the signal data you capture, set up mnemonic
tables, either manually or with a plug-in.

• To speed up debugging, use the Locate feature in the Signal Tap node list to
find the locations of problem nodes in other tools in the Intel Quartus Prime
software.

Related Information

View, Analyze, and Use Captured Data on page 204

5.3. Configuring the Signal Tap Logic Analyzer

You configure instances of the Signal Tap Logic Analyzer in the Signal Configuration
pane of the Signal Tap Logic Analyzer window.

Figure 45. Signal Tap Logic Analyzer Signal Configuration Pane

Signal Configuration Pane

5.3.1. Assigning an Acquisition Clock

To control how the Signal Tap Logic Analyzer acquires data you must assign a clock
signal. The logic analyzer samples data on every positive (rising) edge of the
acquisition clock. The logic analyzer does not support sampling on the negative
(falling) edge of the acquisition clock.

You can use any signal in your design as the acquisition clock. However, for best
results in data acquisition, use a global, non-gated clock that is synchronous to the
signals under test. Using a gated clock as your acquisition clock can result in
unexpected data that does not accurately reflect the behavior of your design. The Intel
Quartus Prime static timing analysis tools show the maximum acquisition clock
frequency at which you can run your design. To find the maximum frequency of the
logic analyzer clock, refer to the Timing Analysis section of the Compilation Report.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Caution: Be careful when using a recovered clock from a transceiver as an acquisition clock for
the Signal Tap Logic Analyzer. A recovered clock can cause incorrect or unexpected
behavior, particularly when the transceiver recovered clock is the acquisition clock with
the power-up trigger feature.

If you do not assign an acquisition clock in the Signal Tap Logic Analyzer Editor, Intel
Quartus Prime software automatically creates a clock pin called
auto_stp_external_clk. You must make a pin assignment to this pin, and make
sure that a clock signal in your design drives the acquisition clock.

Related Information

• Adding Signals with a Plug-In on page 155

• Managing Device I/O Pins
In Intel Quartus Prime Standard Edition: Design Constraints

5.3.2. Adding Signals to the Signal Tap File

Add the signals that you want to monitor to the .stp node list. You can also select
signals to define triggers. You can assign the following two signal types:

• Pre-synthesis—These signals exist after design elaboration, but before any
synthesis optimizations are done. This set of signals must reflect your Register
Transfer Level (RTL) signals.

• Post-fitting—These signals exist after physical synthesis optimizations and place-
and-route.

Note: If you are not using incremental compilation, add only pre-synthesis signals to
the .stp. Using pre-synthesis helps when you want to add a new node after you
change a design. After you perform Analysis and Elaboration, the source file changes
appear in the Node Finder.

Intel Quartus Prime software does not limit the number of signals available for
monitoring in the Signal Tap window waveform display. However, the number of
channels available is directly proportional to the number of logic elements (LEs) or
adaptive logic modules (ALMs) in the device. Therefore, there is a physical restriction
on the number of channels that are available for monitoring. Signals shown in blue
text are post-fit node names. Signals shown in black text are pre-synthesis node
names.

After successful Analysis and Elaboration, invalid signals appear in red. Unless you are
certain that these signals are valid, remove them from the .stp file for correct
operation. The Signal Tap Status Indicator also indicates if an invalid node name exists
in the .stp file.

You can tap signals if a routing resource (row or column interconnects) exists to route
the connection to the Signal Tap instance. For example, you cannot tap signals that
exist in the I/O element (IOE), because there are no direct routing resources from the
signal in an IOE to a core logic element. For input pins, you can tap the signal that is
driving a logic array block (LAB) from an IOE, or, for output pins, you can tap the
signal from the LAB that is driving an IOE.

Related Information

Faster Compilations with Intel Quartus Prime Incremental Compilation on page 194

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

152

https://www.intel.com/content/www/us/en/docs/programmable/683492/current/managing-device-i-o-pins.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.2.1. Pre-Synthesis Signals

When you add pre-synthesis signals, make all connections to the Signal Tap Logic
Analyzer before synthesis. The Compiler allocates logic and routing resources to make
the connection as if you changed your design files. For signals driving to and from
IOEs, pre-synthesis signal names coincide with the pin's signal names.

5.3.2.2. Post-Fit Signals

When you tap post-fit signals, you are connecting to actual atoms in the post-fit
netlist. You can only tap signals that exist in the post-fit netlist, and existing routing
resources must be available.

In the case of post-fit output signals, tap the COMBOUT or REGOUT signal that drives
the IOE block. For post-fit input signals, signals driving into the core logic coincide
with the pin's signal name.

Note: Because NOT-gate push back applies to any register that you tap, the signal from the
atom may be inverted. You can check this by locating the signal in either the Resource
Property Editor or the Technology Map Viewer. You can also use the Technology Map
viewer and the Resource Property Editor to find post-fit node names.

Related Information

Design Flow with the Netlist Viewers

5.3.2.2.1. Assigning Data Signals with the Technology Map Viewer

The Technology Map Viewer allows you to to add post-fit signal.

1. After compilation, launch the Technology Map Viewer from the Intel Quartus
Prime software, by clicking Tools ➤ Netlist Viewers ➤ Technology Map
Viewer (Post-Fitting).

2. Find the node that you want to tap.

3. Copy the node to either the active .stp for the design or a new .stp.

5.3.2.3. Signal Preservation

The Intel Quartus Prime software provides synthesis attributes that prevent the
Compiler from performing optimizations on specific signals, allowing them to persist
into the post-fit netlist.

The Intel Quartus Prime software optimizes the RTL signals during synthesis and
place-and-route. RTL signal names may not appear in the post-fit netlist after
optimizations.

The optimization attributes are:

• keep—Prevents removal of combinational signals during optimization.

• preserve—Prevents removal of registers during optimization.

However, preserving attributes can increase device resource utilization or decrease
timing performance.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

153

https://www.intel.com/content/www/us/en/docs/programmable/683641/current/design-flow-with-the-netlist-viewers.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: These processing results can cause problems with the incremental compilation flow in
Signal Tap Logic Analyzer. Because you can only add post-fitting signals to the Signal
Tap Logic Analyzer in partitions of type post-fit, RTL signals that you want to monitor
may not be available, preventing their use. To avoid this issue, add synthesis
attributes that preserve signals during synthesis and place-and-route.

Preserving nodes is often necessary when you add groups of signals for an IP with a
plug-in. If you are debugging an encrypted IP core, such as the Nios II CPU, you
might need to preserve nodes from the core to keep available for debugging with the
Signal Tap Logic Analyzer.

In incremental compilation flows, pre-synthesis nodes may not be connected to the
Signal Tap Logic Analyzer for post-fit partitions. Signal Tap issues a critical warning for
all pre-synthesis node names that do not exist in the post-fit netlist.

5.3.2.4. Node List Signal Use Options

When you add a signal to the node list, you can select options that specify how the
logic analyzer uses the signal.

To prevent a signal from triggering the analysis, disable the signal's Trigger Enable
option in the .stp file. This option is useful when you only want to see the signal's
captured data.

You can turn off the ability to view data for a signal by disabling the Data Enable
column in the .stp file. This option is useful when you want to trigger on a signal, but
have no interest in viewing that signal's data.

Related Information

Defining Triggers on page 169

5.3.2.4.1. Disabling and Enabling a Signal Tap Instance

Disable and enable Signal Tap instances in the Instance Manager pane. Physically
adding or removing instances requires recompilation after disabling and enabling a
Signal Tap instance.

5.3.2.5. Signals Unavailable for Signal Tap Debugging

Not all the post-fitting signals in your design are available in the Signal Tap: post-
fitting filter in the Node Finder dialog box.

You cannot tap any of the following signal types:

• Post-fit output pins—You cannot tap a post-fit output pin directly. To make an
output signal visible, tap the register or buffer that drives the output pin. This
includes pins defined as bidirectional.

• Signals that are part of a carry chain—You cannot tap the carry out (cout0 or
cout1) signal of a logic element. Due to architectural restrictions, the carry out
signal can only feed the carry in of another LE.

• JTAG Signals—You cannot tap the JTAG control (TCK, TDI, TDO, and TMS)
signals.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

154

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• ALTGXB IP core—You cannot directly tap any ports of an ALTGXB instantiation.

• LVDS—You cannot tap the data output from a serializer/deserializer (SERDES)
block.

• DQ, DQS Signals—You cannot directly tap the DQ or DQS signals in a DDR/DDRII
design.

5.3.3. Adding Signals with a Plug-In

Instead of adding individual or grouped signals through the Node Finder, you can use
a plug-in to add groups of relevant signals of a particular type of IP. Besides easy
signal addition, plug-ins provide features such as pre-designed mnemonic tables,
useful for trigger creation and data viewing, as well as the ability to disassemble code
in captured data. The Signal Tap Logic Analyzer comes with one plug-in for the Nios II
processor.

The Nios II plug-in, for example, creates one mnemonic table in the Setup tab and
two tables in the Data tab:

• Nios II Instruction (Setup tab)—Capture all the required signals for triggering
on a selected instruction address.

• Nios II Instance Address (Data tab)—Display address of executed instructions
in hexadecimal format or as a programming symbol name if defined in an optional
Executable and Linking Format (.elf) file.

• Nios II Disassembly (Data tab)—Display disassembled code from the
corresponding address.

To add signals to the .stp file using a plug-in, perform the following steps after
running Analysis and Elaboration on your design:

1. To ensure that all the required signals are available, in the Intel Quartus Prime
software, click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced
Settings (Synthesis). Turn on Create debugging nodes for IP cores.
All the signals included in the plug-in are added to the node list.

2. Right-click the node list. On the Add Nodes with Plug-In submenu, select the
plug-in you want to use, such as the included plug-in named Nios II.
The Select Hierarchy Level dialog box appears showing the IP hierarchy of your
design. If the IP for the selected plug-in does not exist in your design, a message
informs you that you cannot use the selected plug-in.

3. Select the IP that contains the signals you want to monitor with the plug-in, and
click OK.

— If all the signals in the plug-in are available, a dialog box might appear,
depending on the plug-in, where you can specify options for the plug-in.

4. With the Nios II plug-in, you can optionally select an .elf containing program
symbols from your Nios II Integrated Development Environment (IDE) software
design. Specify options for the selected plug-in, and click OK.

Related Information

• Defining Triggers on page 169

• View, Analyze, and Use Captured Data on page 151

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

155

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.4. Adding Finite State Machine State Encoding Registers

Finding the signals to debug finite state machines (FSM) can be challenging. Finding
nodes from the post-fit netlist may be impossible, since the Compiler may change or
optimize away FSM encoding signals. To find and map FSM signal values to the state
names that you specified in your HDL, you must perform an additional step.

The Signal Tap Logic Analyzer can detect FSMs in your compiled design. The
configuration automatically tracks the FSM state signals as well as state encoding
through the compilation process.

To add all the FSM state signals to your logic analyzer with a single command Shortcut
menu commands allow you .

For each FSM added to your Signal Tap configuration, the FSM debugging feature adds
a mnemonic table to map the signal values to the state enumeration that you provided
in your source code. The mnemonic tables enable you to visualize state machine
transitions in the waveform viewer. The FSM debugging feature supports adding FSM
signals from both the pre-synthesis and post-fit netlists.

Figure 46. Decoded FSM Mnemonics
The waveform viewer with decoded signal values from a state machine added with the FSM debugging feature.

Related Information

State Machine HDL Guidelines

5.3.4.1. Modify and Restore Mnemonic Tables for State Machines

Edit any mnemonic table using the Mnemonic Table Setup dialog box. When you
add FSM state signals via the FSM debugging feature, the Signal Tap Logic Analyzer
GUI creates a mnemonic table using the format <StateSignalName>_table, where
StateSignalName is the name of the state signals that you have declared in your
RTL.

If you want to restore a mnemonic table that was modified, right-click anywhere in the
node list window and select Recreate State Machine Mnemonics. By default,
restoring a mnemonic table overwrites the existing mnemonic table that you modified.
To restore a FSM mnemonic table to a new record, turn off Overwrite existing
mnemonic table in the Recreate State Machine Mnemonics dialog box.

Note: If you have added or deleted a signal from the FSM state signal group from within the
setup tab, delete the modified register group and add the FSM signals back again.

Related Information

Creating Mnemonics for Bit Patterns on page 207

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

156

https://www.intel.com/content/www/us/en/docs/programmable/683323/current/state-machine-hdl-guidelines.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.4.2. Additional Considerations for State Machines in Signal Tap

• The Signal Tap configuration GUI recognizes state machines from your design only
if you use Intel Quartus Prime Integrated Synthesis. Conversely, the state machine
debugging feature is not able to track the FSM signals or state encoding if you use
other EDA synthesis tools.

• If you add post-fit FSM signals, the Signal Tap Logic Analyzer FSM debug feature
may not track all optimization changes that are a part of the compilation process.

• If the following two specific optimizations are enabled, the Signal Tap FSM debug
feature may not list mnemonic tables for state machines in the design:

— If you enabled the Physical Synthesis optimization, state registers may be
resource balanced (register retiming) to improve fMAX. The FSM debug feature
does not list post-fit FSM state registers if register retiming occurs.

— The FSM debugging feature does not list state signals that the Compiler
packed into RAM and DSP blocks during synthesis or Fitter optimizations.

• You can still use the FSM debugging feature to add pre-synthesis state signals.

Related Information

Enabling Physical Synthesis Optimization

5.3.5. Specifying Sample Depth

The Sample depth setting specifies the number of samples the Signal Tap Logic
Analyzer captures and stores, for each signal in the captured data buffer.

To specify the sample depth:

1. Select the desired number in the Sample Depth drop-down menu.

The sample depth ranges from 0 to 128K.

In cases with limited device memory resources, the design may not be able to compile
due to the selected sample buffer size. Try reducing the sample depth to reduce
resource usage.

5.3.6. Capture Data to a Specific RAM Type

You have the option to select the RAM type where the Signal Tap Logic Analyzer stores
acquisition data. Once you allocate the Signal Tap Logic Analyzer buffer to a particular
RAM block, the entire RAM block becomes a dedicated resource for the logic analyzer.

RAM selection allows you to preserve a specific memory block for your design, and
allocate another portion of memory for Signal Tap Logic Analyzer data acquisition.

For example, if your design has an application that requires a large block of memory
resources, such as a large instruction or data cache, you can use MLAB, M512, or M4k
blocks for data acquisition and leave M9k blocks for the rest of your design.

To specify the RAM type to use for the Signal Tap Logic Analyzer buffer, go to the
Signal Configuration pane in the Signal Tap window, and select one Ram type
from the drop-down menu.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

157

https://www.intel.com/content/www/us/en/docs/programmable/683236/current/disabling-or-enabling-physical-synthesis.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use this feature only when the acquired data is smaller than the available memory of
the RAM type that you selected. The amount of data appears in the Signal Tap
resource estimator.

5.3.7. Select the Buffer Acquisition Mode

When you specify how the logic analyzer organizes the captured data buffer, you can
potentially reduce the amount of memory that Signal Tap requires for data acquisition.

There are two types of acquisition buffer within the Signal Tap Logic Analyzer—a non-
segmented (or circular) buffer and a segmented buffer.

• With a non-segmented buffer, the Signal Tap Logic Analyzer treats entire memory
space as a single FIFO, continuously filling the buffer until the logic analyzer
reaches a defined set of trigger conditions.

• With a segmented buffer, the memory space is split into separate buffers. Each
buffer acts as a separate FIFO with its own set of trigger conditions, and behaves
as a non-segmented buffer. Only a single buffer is active during an acquisition.
The Signal Tap Logic Analyzer advances to the next segment after the trigger
condition or conditions for the active segment has been reached.

When using a non-segmented buffer, you can use the storage qualification feature to
determine which samples are written into the acquisition buffer. Both the segmented
buffers and the non-segmented buffer with the storage qualification feature help you
maximize the use of the available memory space.

Figure 47. Buffer Type Comparison in the Signal Tap Logic Analyzer
The figure illustrates the differences between the two buffer types.

Newly
Captured
Data

Oldest Data
 Removed

Post-Trigger Pre-Trigger Center Trigger

1 1

All
Trigger Level

Segment 1 Segment 2 Segment 3 Segment 4

Segment
Trigger Level

1 1 ... 0 1 1 0 ... 0 1 1 1 ... 0 1 1 0 ... 0 1

0 0 1 0 0 1 0 1

Segment
Trigger Level

Segment
Trigger Level

1

(b) Segmented Buffer

(a) Circular Buffer

Both non-segmented and segmented buffers can use a preset trigger position (Pre-
Trigger, Center Trigger, Post-Trigger). Alternatively, you can define a custom trigger
position using the State-Based Triggering tab. Refer to Specify Trigger Position for
more details.

Related Information

• Specify Trigger Position on page 190

• Filtering Relevant Samples on page 160

5.3.7.1. Non-Segmented Buffer

The non-segmented buffer is the default buffer type in the Signal Tap Logic Analyzer.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

158

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

At runtime, the logic analyzer stores data in the buffer until the buffer fills up. From
that point on, new data overwrites the oldest data, until a specific trigger event
occurs. The amount of data the buffer captures after the trigger event depends on the
Trigger position setting:

• To capture most data before the trigger occurs, select Post trigger position from
the list

• To capture most data after the trigger, select Pre trigger position.

• To center the trigger position in the data, select Center trigger position.

Alternatively, use the custom State-based triggering flow to define a custom trigger
position within the capture buffer.

Related Information

Specify Trigger Position on page 190

5.3.7.2. Segmented Buffer

In a segmented buffer, the acquisition memory is split into segments of even size, and
you define a set of trigger conditions for each segment. Each segment acts as a non-
segmented buffer. A segmented buffer allows you to debug systems that contain
relatively infrequent recurring events.

If you want to have separate trigger conditions for each of the segmented buffers, you
must use the state-based trigger flow. The figure shows an example of a segmented
buffer system.

Figure 48. System that Generates Recurring Events
In this design, you want to ensure that the correct data is written to the SRAM controller by monitoring the
RDATA port whenever the address H'0F0F0F0F is sent into the RADDR port.

QDR SRAM
Controller

WADDR[17..0]
RADDR[17..0]

WDATA[35..0]
RDATA[35..0]

CMD[1..0]

INCLK

A[17..0]
Q[17..0]
D[17..0]
BWSn[1..0]
RPSn
WPSn

K, Kn

QDR
SRAM

Reference Design Top-Level File

Stratix Device

Pipeline
Registers

(Optional)

K_FB_OUT
K_FB_IN

C, Cn

SRAM Interface Signals

With the buffer acquisition feature. you can monitor multiple read transactions from
the SRAM device without running the Signal Tap Logic Analyzer again, because you
split the memory to capture the same event multiple times, without wasting allocated
memory. The buffer captures as many cycles as the number of segments you define
under the Data settings in the Signal Configuration pane.

To enable and configure buffer acquisition, select Segmented in the Signal Tap Logic
Analyzer Editor and determine the number of segments to use. In the example in the
figure, selecting sixty-four 64-sample segments allows you to capture 64 read cycles.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

159

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Capturing Data Using Segmented Buffers on page 204

5.3.8. Specifying Pipeline Settings

The Pipeline factor setting indicates the number of pipeline registers that the Intel
Quartus Prime software can add to boost the fMAX of the Signal Tap Logic Analyzer.

To specify the pipeline factor from the Signal Tap GUI:

• In the Signal Configuration pane, specify a pipeline factor ranging from 0 to 5.
The default value is 0.

Note: Setting the pipeline factor does not guarantee an increase in fMAX, as the pipeline
registers may not be in the critical paths.

5.3.8.1. Specifying Pipeline Settings from Platform Designer (Standard)

The Pipeline factor setting indicates the number of pipeline registers that you can
add to boost the fMAX of the Signal Tap Logic Analyzer. You can specify the pipeline
factor in the Signal Configuration pane. The pipeline factor ranges from 0 to 5, with
a default value of 0.

To specify the pipeline factor when you instantiate the Signal Tap Logic Analyzer
component from the Platform Designer (Standard) system:

1. Double-click Signal Tap Logic Analyzer component in the IP Catalog.

2. Specify the Pipeline Factor, along with other parameter values

Figure 49. Specifying the Pipeline Factor from Platform Designer (Standard)

5.3.9. Filtering Relevant Samples

The Storage Qualifier feature allows you to filter out individual samples not relevant to
debugging the design.

The Signal Tap Logic Analyzer offers a snapshot in time of the data stored in the
acquisition buffers. By default, the Signal Tap Logic Analyzer writes into acquisition
memory with data samples on every clock cycle. With a non-segmented buffer, there

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

160

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

is one data window that represents a comprehensive snapshot of the data stream.
Conversely, segmented buffers use several smaller sampling windows spread out over
more time, with each sampling window representing a contiguous data set.

With analysis using acquisition buffers you can capture most functional errors in a
chosen signal set, provided adequate trigger conditions and a generous sample depth
for the acquisition. However, each data window can have a considerable amount of
unnecessary data; for example, long periods of idle signals between data bursts. The
default behavior in the Signal Tap Logic Analyzer doesn't discard the redundant sample
bits.

The Storage Qualifier feature allows you to establish a condition that acts as a write
enable to the buffer during each clock cycle of data acquisition, thus allowing a more
efficient use of acquisition memory over a longer period of analysis.

Because you can create a discontinuity between any two samples in the buffer, the
Storage Qualifier feature is equivalent to creating a custom segmented buffer in which
the number and size of segment boundaries are adjustable.

Note: You can only use the Storage Qualifier feature with a non-segmented buffer. The IP
Catalog flow only supports the Input Port mode for the Storage Qualifier feature.

Figure 50. Data Acquisition Using Different Modes of Controlling the Acquisition Buffer

Notes to figure:

1. Non-segmented buffers capture a fixed sample window of contiguous data.

2. Segmented buffers divide the buffer into fixed sized segments, with each segment
having an equal sample depth.

3. Storage Qualifier allows you to define a custom sampling window for each
segment you create with a qualifying condition, thus potentially allowing a larger
time scale of coverage.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

161

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

There are six storage qualifier types available under the Storage Qualifier feature:

• Continuous (default) Turns the Storage Qualifier off.

• Input port

• Transitional

• Conditional

• Start/Stop

• State-based

Figure 51. Storage Qualifier Settings

Upon the start of an acquisition, the Signal Tap Logic Analyzer examines each clock
cycle and writes the data into the buffer based upon the storage qualifier type and
condition. Acquisition stops when a defined set of trigger conditions occur.

The Signal Tap Logic Analyzer evaluates trigger conditions independently of storage
qualifier conditions.

Related Information

Define Trigger Conditions on page 150

5.3.9.1. Input Port Mode

When using the Input port mode, the Signal Tap Logic Analyzer takes any signal from
your design as an input. During acquisition, if the signal is high on the clock edge, the
Signal Tap Logic Analyzer stores the data in the buffer. If the signal is low on the clock
edge, the Logic Analyzer ignores the data sample. If you don't specify an internal
node, the Logic Analyzer creates and connects a pin to this input port.

If you are creating a Signal Tap Logic Analyzer instance through an .stp file, specify
the storage qualifier signal using the input port field located on the Setup tab. You
must specify this port for your project to compile.

If you use the parameter editor, the storage qualification input port, if specified,
appears in the generated instantiation template. You can then connect this port to a
signal in your RTL.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

162

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 52. Comparing Continuous and Input Port Capture Mode in Data Acquisition of a
Recurring Data Pattern

• Continuous Mode:

• Input Port Storage Qualifier:

5.3.9.2. Transitional Mode

In Transitional mode, the Logic Analyzer monitors changes in a set of signals, and
writes new data in the acquisition buffer only after detecting a change. You select the
signals for monitoring using the check boxes in the Storage Qualifier column.

Figure 53. Transitional Storage Qualifier Setup

Select signals to monitor

Figure 54. Comparing Continuous and Transitional Capture Mode in Data Acquisition of a
Recurring Data Pattern

• Continuous:

• Transitional mode:

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

163

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.9.3. Conditional Mode

In Conditional mode, the Signal Tap Logic Analyzer determines whether to store a
sample by evaluating a combinational function of predefined signals within the node
list. The Signal Tap Logic Analyzer writes into the buffer during the clock cycles in
which the condition you specify evaluates TRUE.

You can select either Basic AND, Basic OR, Comparison, or Advanced storage
qualifier conditions. A Basic AND or Basic OR condition matches each signal to one
of the following:

• Don’t Care

• Low

• High

• Falling Edge

• Rising Edge

• Either Edge

If you specify a Basic AND storage qualifier condition for more than one signal, the
Signal Tap Logic Analyzer evaluates the logical AND of the conditions.

You can specify any other combinational or relational operators with the enabled signal
set for storage qualification through advanced storage conditions.

You can define storage qualification conditions similar to the manner in which you
define trigger conditions.

Figure 55. Conditional Storage Qualifier Setup
The figure details the conditional storage qualifier setup in the .stp file.

Signals not enabled for storage cannot be part
of the Storage Qualifier condition

Storage Enable Storage Condition

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

164

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 56. Comparing Continuous and Conditional Capture Mode in Data Acquisition of a
Recurring Data Pattern

The data pattern is the same in both cases.

• Continuous sampling capture mode:

• Conditional sampling capture mode:

Related Information

• Basic Trigger Conditions on page 169

• Comparison Trigger Conditions on page 170

• Advanced Trigger Conditions on page 172

5.3.9.4. Start/Stop Mode

The Start/Stop mode uses two sets of conditions, one to start data capture and one to
stop data capture. If the start condition evaluates to TRUE, Signal Tap Logic Analyzer
stores the buffer data every clock cycle until the stop condition evaluates to TRUE,
which then pauses the data capture. The Logic Analyzer ignores additional start
signals received after the data capture starts. If both start and stop evaluate to TRUE
at the same time, the Logic Analyzer captures a single cycle.

Note: You can force a trigger by pressing the Stop button if the buffer fails to fill to
completion due to a stop condition.

Figure 57. Start/Stop Mode Storage Qualifier Setup
Start condition Stop Condition

Storage Qualifier Enabled signals

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

165

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 58. Comparing Continuous and Start/Stop Acquisition Modes for a Recurring Data
Pattern

• Continuous Mode:

• Start/Stop Storage Qualifier:

5.3.9.5. State-Based

The State-based storage qualification mode is part of the State-based triggering flow.
The state based triggering flow evaluates a conditional language to define how the
Signal Tap Logic Analyzer writes data into the buffer. With the State-based trigger
flow, you have command over boolean and relational operators to guide the execution
flow for the target acquisition buffer.

When you enable the storage qualifier feature for the State-based flow, two additional
commands become available: start_store and stop_store. These commands are
similar to the Start/Stop capture conditions. Upon the start of acquisition, the Signal
Tap Logic Analyzer doesn't write data into the buffer until a start_store action is
performed. The stop_store command pauses the acquisition. If both start_store
and stop_store actions occur within the same clock cycle, the Logic Analyzer stores
a single sample into the acquisition buffer.

Related Information

State-Based Triggering on page 183

5.3.9.6. Showing Data Discontinuities

When you turn on Record data discontinuities, the Signal Tap Logic Analyzer marks
the samples during which the acquisition paused from a storage qualifier. This marker
is displayed in the waveform viewer after acquisition completes.

5.3.9.7. Disable Storage Qualifier

You can quickly turn off the storage qualifier with the Disable Storage Qualifier
option, and perform a continuous capture. This option is run-time reconfigurable.
Changing storage qualifier mode from the Type field requires a recompilation of the
project.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

166

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Runtime Reconfigurable Options on page 201

5.3.10. Manage Multiple Signal Tap Files and Configurations

You can debug different blocks in your design by grouping related monitoring signals.
Likewise, you can use a group of signals to define multiple trigger conditions. Each
combination of signals, capture settings, and trigger conditions determines a debug
configuration, and one configuration can have zero or more associated data logs.

Signal Tap Logic Analyzer allows you to save debug configurations in more than
one .stp file. Alternatively, you can embed multiple configurations within the
same .stp file, and use the Data Log as a managing tool.

Note: Each .stp file is associated with a programming (.sof) file. To function correctly, the
settings in the .stp file you use at runtime must match Signal Tap settings in
the .sof file you use to program the device.

Related Information

Ensure Setting Compatibility Between .stp and .sof Files on page 200

5.3.10.1. Data Log Pane

The Data Log pane displays all Signal Tap configurations and data capture results
stored within a single .stp file.

• To save the current configuration or capture in the Data Log—and .stp file, click

Edit ➤ Save to Data Log. Alternatively, click the Save to Data Log icon at
the top of the Data Log pane.

• To generate a log entry after every data capture, click Edit ➤ Enable Data Log.
Alternatively, check the box at the top of the Data Log pane.

The Data Log displays its contents in a tree hierarchy. The active items display a
different icon.

Table 59. Data Log Items

Item Icon Contains one or
more

Comments

Unselected Selected

Instance Signal Set

Signal Set Trigger The Signal Set changes whenever you add a new
signal to Signal Tap. After a change in the Signal
Set, you need to recompile.

Trigger Capture Log A trigger changes when you change any trigger
condition. These changes do not require
recompilation.

Capture Log

The name on each entry displays the wall-clock time when Signal Tap Logic Analyzer
triggered, and the time elapsed from start acquisition to trigger activation. You can
rename entries so they make sense to you.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To switch between configurations, double-click an entry in the Data Log. As a result,
the Setup tab updates to display the active signal list and trigger conditions.

Example 21. Simple Data Log

On this example, the Data Log displays one instance with three signal set
configurations.

5.3.10.2. SOF Manager

The SOF Manager is in the JTAG Chain Configuration pane.

With the SOF Manager you can embed multiple SOFs into one .stp file. This action
lets you move the .stp file to a different location, either on the same computer or
across a network, without including the associated .sof separately. To embed a new

SOF in the .stp file, click the Attach SOF File icon .

Figure 59. SOF Manager

Attach SOF File Icon

As you switch between configurations in the Data Log, you can extract the SOF that is
compatible with that configuration.

To download the new SOF to the FPGA, click the Program Device icon in the SOF
Manager, after ensuring that the configuration of your .stp matches the design
programmed into the target device.

Related Information

Data Log Pane on page 167

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

168

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4. Defining Triggers

At runtime the Signal Tap Logic Analyzer continuously samples activity from the
monitored signals. A trigger activates—that is, the logic analyzer stops and displays
the data—when the monitored signals reach the condition or set of conditions that you
specify.You specify trigger conditions in the Signal Tap Logic Analyzer Signal
Configuration pane.

5.4.1. Basic Trigger Conditions

If you select the Basic AND or Basic OR trigger type, you must specify the trigger
pattern for each signal you added in the .stp. To specify the trigger pattern, right-
click the Trigger Conditions column and click the desired pattern. Set the trigger
pattern to any of the following conditions:

• Don’t Care

• Low

• High

• Falling Edge

• Rising Edge

• Either Edge

For buses, type a pattern in binary, or right-click and select Insert Value to enter the
pattern in other number formats. Note that you can enter X to specify a set of “don’t
care” values in either your hexadecimal or your binary string. For signals in the .stp
file that have an associated mnemonic table, you can right-click and select an entry
from the table to specify pre-defined conditions for the trigger.

When you add signals through plug-ins, you can create basic triggers using predefined
mnemonic table entries. For example, with the Nios II plug-in, if you specify an .elf
file from your Nios II IDE design, you can type the name of a function from your Nios
II code. The logic analyzer triggers when the Nios II instruction address matches the
address of the code function name that you specify.

Data capture stops and the Logic Analyzer stores the data in the buffer when the
logical AND of all the signals for a given trigger condition evaluates to TRUE.

Related Information

View, Analyze, and Use Captured Data on page 204

5.4.1.1. Using the Basic OR Trigger Condition with Nested Groups

When you specify a set of signals as a nested group (group of groups) with the Basic
OR trigger type, Signal Tap Logic Analyzer generates an advanced trigger condition.
This condition sorts signals within groups to minimize the need to recompile your
design. As long as the parent-child relationships of nodes are kept constant, the
advanced trigger condition does not change. You can modify the sibling relationships
of nodes and not need to recompile your design.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The evaluation precedence of a nested trigger condition starts at the bottom-level with
the leaf-groups. The Logic Analyzer uses the resulting logic value to compute the
parent group’s logic value. If you manually set the value of a group, the logic value of
the group's members doesn't influence the result of the group trigger. To create a
nested trigger condition:

1. Select Basic OR under Trigger Conditions.

2. In the Setup tab, select several nodes. Include groups in your selection.

3. Right-click the Setup tab and select Group.

4. Select the nested group and right-click to set a group trigger condition that applies
the reduction AND, OR, NAND, NOR, XOR, XNOR, or logical TRUE or FALSE.

Note: You can only select OR and AND group trigger conditions for bottom-level
groups (groups with no groups as children).

Figure 60. Applying Trigger Condition to Nested Group

5.4.2. Comparison Trigger Conditions

The Comparison trigger allows you to compare multiple grouped bits of a bus to an
expected integer value by specifying simple comparison conditions on the bus node.
The Comparison trigger preserves all the trigger conditions that the Basic OR trigger
includes. You can use the Comparison trigger in combination with other triggers. You
can also switch between Basic OR trigger and Comparison trigger at run-time,
without the need for recompilation.

Signal Tap Logic Analyzer supports the following types of Comparison trigger
conditions:

• Single-value comparison—compares a bus node’s value to a numeric value that
you specify. Use one of these operands for comparison: >, >=, ==, <=, <.
Returns 1 when the bus node matches the specified numeric value.

• Interval check—verifies whether a bus node’s value confines to an interval that
you define. Returns 1 when the bus node's value lies within the specified bounded
interval.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these rules when using the Comparison trigger condition:

• Apply the Comparison trigger only to bus nodes consisting of leaf nodes.

• Do not form sub-groups within a bus node.

• Do not enable or disable individual trigger nodes within a bus node.

• Do not specify comparison values (in case of single-value comparison) or
boundary values (in case of interval check) exceeding the selected node’s bus-
width.

5.4.2.1. Specifying the Comparison Trigger Conditions

Follow these steps to specify the Comparison trigger conditions:

1. From the Setup tab, select Comparison under Trigger Conditions.

2. Right-click the node in the trigger editor, and select Compare.

Figure 61. Selecting the Comparison Trigger Condition

Select Comparison from the
Trigger Conditions list

Right-click your node and select Compare
to set trigger condition values

3. Select the Comparison type from the Compare window.

— If you choose Single-value comparison as your comparison type, specify
the operand and value.

— If you choose Interval check as your comparison type, provide the lower and
upper bound values for the interval.

You can also specify if you want to include or exclude the boundary values.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

171

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 62. Specifying the Comparison Values
Compares the bus node’s value to
a specified numeric value

Verifies whether the bus node’s value
confines to a specified bounded interval

Specify inclusion or exclusion of boundary values

4. Click OK. The trigger editor displays the resulting comparison expression in the
group node condition text box.

Note: You can modify the comparison condition in the text box with a valid
expression.

Figure 63. Resulting Comparison Condition in Text Box

Group node condition text box displaying
the resulting comparison expression

Modify the comparison condition in the text box
with a valid expression

5.4.3. Advanced Trigger Conditions

To capture data for a given combination of conditions, build an advanced trigger. The
Signal Tap Logic Analyzer provides the Advanced Trigger tab, which helps you build
a complex trigger expression using a GUI.

Open the Advanced Trigger tab by selecting Advanced in the Trigger Conditions
drop-down menu.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

172

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 64. Accessing the Advanced Trigger Condition Tab

Select Advanced from the
Trigger Conditions List

Figure 65. Advanced Trigger Condition Tab

Node List Pane

Object Library Pane

Advanced Trigger Condition Editor Window

To build a complex trigger condition in an expression tree, drag-and-drop operators
from the Object Library pane and the Node List pane into the Advanced Trigger
Configuration Editor window.

To configure the operators’ settings, double-click or right-click the operators that you
placed and click Properties.

Table 60. Advanced Triggering Operators

Category Name

Signal Detection Edge and Level Detector

Input Objects Bit
Bit Value
Bus
Bus Value

Comparison Less Than
Less Than or Equal To
Equality
Inequality
Greater Than or Equal To
Greater Than

Bitwise Bitwise Complement
Bitwise AND
Bitwise OR
Bitwise XOR

Logical Logical NOT
Logical AND
Logical OR
Logical XOR

Reduction Reduction AND
Reduction OR
Reduction XOR

Shift Left Shift

continued...

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Category Name

Right Shift

Custom Trigger HDL

Adding many objects to the Advanced Trigger Condition Editor can make the work
space cluttered and difficult to read. To keep objects organized while you build your
advanced trigger condition, use the shortcut menu and select Arrange All Objects.
Alternatively, use the Zoom-Out command to fit more objects into the Advanced
Trigger Condition Editor window.

5.4.3.1. Examples of Advanced Triggering Expressions

The following examples show how to use Advanced Triggering:

Figure 66. Bus outa Is Greater Than or Equal to Bus outb
Trigger when bus outa is greater than or equal to outb.

Figure 67. Enable Signal Has a Rising Edge
Trigger when bus outa is greater than or equal to bus outb, and when the enable signal has a rising edge.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

174

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 68. Bitwise AND Operation
Trigger when bus outa is greater than or equal to bus outb, or when the enable signal has a rising edge. Or,
when a bitwise AND operation has been performed between bus outc and bus outd, and all bits of the result
of that operation are equal to 1.

5.4.4. Custom Trigger HDL Object

Signal Tap Logic Analyzer allows you to use your own HDL module to create a custom
trigger condition. You can use the Custom Trigger HDL object to simulate your
triggering logic and ensure that the logic itself is not faulty. Additionally, you can tap
instances of modules anywhere in the hierarchy of your design, without having to
manually route all the necessary connections.

The Custom Trigger HDL object appears in the Object Library pane of the Advanced
Trigger editor.

Figure 69. Object Library

5.4.4.1. Using the Custom Trigger HDL Object

To define a custom trigger flow:

1. Select the trigger you want to edit.

2. Open the Advanced Trigger tab by selecting Advanced in the Trigger
Conditions drop-down menu.

3. Add to your project the HDL source file that contains the trigger module using the
Project Navigator.

— Alternatively, append the HDL for your trigger module to a source file already
included in the project.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

175

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 70. HDL Trigger in the Project Navigator

4. Implement the inputs and outputs that your Custom Trigger HDL module requires.

5. Drag in your Custom Trigger HDL object and connect the object’s data input bus
and result output bit to the final trigger result.

Figure 71. Custom Trigger HDL Object

6. Right-click your Custom Trigger HDL object and configure the object’s properties.

Figure 72. Configure Object Properties

7. Compile your design.

8. Acquire data with Signal Tap using your custom Trigger HDL object.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

176

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 22. Verilog HDL Triggers

The following trigger uses configuration bitstream:

module test_trigger
 (
 input acq_clk, reset,
 input[3:0] data_in,
 input[1:0] pattern_in,
 output reg trigger_out
);
 always @(pattern_in) begin
 case (pattern_in)
 2'b00:
 trigger_out = &data_in;
 2'b01:
 trigger_out = |data_in;
 2'b10:
 trigger_out = 1'b0;
 2'b11:
 trigger_out = 1'b1;
 endcase
 end
endmodule

This trigger does not have configuration bitstream:

module test_trigger_no_bs
 (
 input acq_clk, reset,
 input[3:0] data_in,
 output reg trigger_out
);
 assign trigger_out = &data_in;
endmodule

5.4.4.2. Required Inputs and Outputs of Custom Trigger HDL Module

Table 61. Custom Trigger HDL Module Required Inputs and Outputs

Name Description Input/Output Required/ Optional

acq_clk Acquisition clock that Signal Tap uses Input Required

reset Reset that Signal Tap uses when restarting a
capture.

Input Required

data_in • Data input you connect in the Advanced
Trigger editor.

• Data your module uses to trigger.

Input Required

pattern_in • Module’s input for the configuration bitstream
property.

• Runtime configurable property that you can
set from Signal Tap GUI to change the
behavior of your trigger logic.

Input Optional

trigger_out Output signal of your module that asserts when
trigger conditions met.

Output Required

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

177

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.4.3. Custom Trigger HDL Module Properties

Table 62. Custom Trigger HDL Module Properties

Property Description

Custom HDL Module Name Module name of the triggering logic.

Configuration Bitstream • Allows to create trigger logic that you can configure at runtime, based upon
the value of the configuration bitstream.

• The Signal Tap logic analyzer reads the configuration bitstream property as
binary, therefore the bitstream must contain only the characters 1 and 0.

• The bit-width (number of 1s and 0s) must match the pattern_in bit width.
• A blank configuration bitstream implies that the module does not have a

pattern_in input.

Pipeline Specifies the number of pipeline stages in the triggering logic.
For example, if after receiving a triggering input the LA needs three clock cycles
to assert the trigger output, you can denote a pipeline value of three.

5.4.5. Trigger Condition Flow Control

The Trigger Condition Flow allows you to define the relationship between a set of
triggering conditions. Signal Tap Logic Analyzer Signal Configuration pane offers two
flow control mechanisms for organizing trigger conditions:

• Sequential Triggering—default triggering flow. Sequential triggering allows you
to define up to 10 triggering levels that must be satisfied before the acquisition
buffer finishes capturing.

• State-Based Triggering—gives the greatest control over your acquisition buffer.
Custom-based triggering allows you to organize trigger conditions into states
based on a conditional flow that you define.

You can use sequential or state based triggering with either a segmented or a non-
segmented buffer.

5.4.5.1. Sequential Triggering

When you specify a sequential trigger the Signal Tap Logic Analyzer sequentially
evaluates each the conditions. The sequential triggering flow allows you to cascade up
to 10 levels of triggering conditions.

When the last triggering condition evaluates to TRUE, the Signal Tap Logic Analyzer
starts the data acquisition. For segmented buffers, every acquisition segment after the
first starts on the last condition that you specified. The Simple Sequential Triggering
feature allows you to specify basic triggers, comparison triggers, advanced triggers, or
a mix of all three.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

178

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 73. Sequential Triggering Flow
The figure illustrates the simple sequential triggering flow for non-segmented and segmented buffers.

Segmented BufferNon Segmented Buffer
n ≤ 10

Trigger Condition n

Trigger Condition 1

Trigger Condition 2

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

Trigger Condition n

Trigger Condition n

n - 2 transitions

Acquisition Segment m
trigger

trigger

trigger

Acquisition Buffer
trigger

n - 2 transitions

m-2 transitions

Acquisition Segment 2

Acquisition Segment 1

Notes to figure:

1. The acquisition buffer starts capture when all n triggering levels are satisfied,
where n<10.

The Signal Tap Logic Analyzer considers external triggers as level 0, evaluating
external triggers before any other trigger condition.

5.4.5.1.1. Configuring the Sequential Triggering Flow

To configure Signal Tap Logic Analyzer for sequential triggering:

1. On Trigger Flow Control, select Sequential

2. On Trigger Conditions, select the number of trigger conditions from the drop-
down list.
The Node List pane now displays the same number of trigger condition columns.

3. Configure each trigger condition in the Node List pane.

You can enable/disable any trigger condition from the column header.

Figure 74. Sequential Triggering Flow Configuration

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

179

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.5.1.2. Trigger that Skips Clock Cycles after Hitting Condition

Example 23. Trigger flow description that skips three clock cycles of samples after hitting
condition 1

Code:

State 1: ST1
 start_store
 if (condition1)
 begin
 stop_store;
 goto ST2;
 end
State 2: ST2
 if (c1 < 3)
 increment c1; //skip three clock cycles; c1 initialized to 0
 else if (c1 == 3)
 begin
 start_store;//start_store necessary to enable writing to finish
 //acquisition
 trigger;
 end

The figures show the data transaction on a continuous capture and the data capture
when you apply the Trigger flow description.

Figure 75. Continuous Capture of Data Transaction

Figure 76. Capture of Data Transaction with Trigger Flow Description Applied

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

180

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.5.1.3. Storage Qualification with Post-Fill Count Value Less than m

Example 24. Real data acquisition of the previous scenario

Figure 77. Storage Qualification with Post-Fill Count Value Less than m (Acquisition
Successfully Completes)
The data capture finishes successfully. It uses a buffer with a sample depth of 64, m = n = 10 , and post-
fill count = 5.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

181

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 78. Storage Qualification with Post-Fill Count Value Greater than m (Acquisition
Indefinitely Paused)
The logic analyzer pauses indefinitely, even after a trigger condition occurs due to a stop_store condition.
This scenario uses a sample depth of 64, with m = n = 10 and post-fill count = 15.

Figure 79. Waveform After Forcing the Analysis to Stop

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

182

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The combination of using counters, Boolean and relational operators in conjunction
with the start_store and stop_store commands can give a clock-cycle level of
resolution to controlling the samples that are written into the acquisition buffer.

5.4.5.2. State-Based Triggering

With state-based triggering, a state diagram organizes the events that trigger the
acquisition buffer. The states capture all actions that the acquisition buffer performs,
and each state contains conditional expressions that define transition conditions.

Custom state-based triggering grants control over triggering condition arrangement.
Because the Logic Analyzer only captures samples of interest, custom state-based
triggering allows for more efficient use of the space available in the acquisition buffer.

To help you describe the relationship between triggering conditions, the state-based
triggering flow provides tooltips within the flow GUI. Additionally, you can use the
Signal Tap Trigger Flow Description Language, which is based upon conditional
expressions.

Figure 80. State-Based Triggering Flow

n ≤ 20

Segmented Acquisition Buffer

First Acquisition Segment Next Acquisition Segment Next Acquisition Segment Last Acquisition Segment

Transition
 Condition: i

TC: j

TC: k

TC: l S: 2
TCS: b S: 3

TCS: c

State: 1
Trigger Condition Set: a

 S: n (last state)
TCS: d

segment_trigger segment_trigger segment_trigger segment_trigger

Notes to figure:

1. You can define up to 20 different states.

2. The logic analyzer evaluates external trigger inputs that you define before any
conditions in the custom state-based triggering flow.

Each state allows you to define a set of conditional expressions. Conditional
expressions are Boolean expressions that depend on a combination of triggering
conditions, counters, and status flags. You configure the triggering conditions within
the Setup tab. The Signal Tap Logic Analyzer custom-based triggering flow provides
counters and status flags.

Within each conditional expression you define a set of actions. Actions include
triggering the acquisition buffer to stop capture, a modification to either a counter or
status flag, or a state transition.

Trigger actions can apply to either a single segment of a segmented acquisition buffer
or to the entire non-segmented acquisition buffer. Each trigger action provides an
optional count that specifies the number of samples the buffer captures before the
logic analyzer stops acquisition of the current segment. The count argument allows
you to control the amount of data the buffer captures before and after a triggering
event occurs.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

183

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Resource manipulation actions allow you to increment and decrement counters or set
and clear status flags. The logic analyzer uses counter and status flag resources as
optional inputs in conditional expressions. Counters and status flags are useful for
counting the number of occurrences of certain events and for aiding in triggering flow
control.

The state-based triggering flow allows you to capture a sequence of events that may
not necessarily be contiguous in time. For example, a communication transaction
between two devices that includes a hand shaking protocol containing a sequence of
acknowledgments.

5.4.5.2.1. State-Based Triggering Flow Tab

The State-Based Trigger Flow tab is the control interface for the custom state-
based triggering flow.

This tab is only available when you select State-Based on the Trigger Flow Control
list. If you specify Trigger Flow Control as Sequential, the State-Based Trigger
Flow tab is not visible.

Figure 81. State-Based Triggering Flow Tab

The State-Based Trigger Flow tab contains three panes:

State Diagram Pane

The State Diagram pane provides a graphical overview of your triggering flow. this
pane displays the number of available states and the state transitions. To adjust the
number of available states, use the menu above the graphical overview.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

184

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

State Machine Pane

The State Machine pane contains the text entry boxes where you define the
triggering flow and actions associated with each state.

• You can define the triggering flow using the Signal Tap Trigger Flow Description
Language, a simple language based on “if-else” conditional statements.

• Tooltips appear when you move the mouse over the cursor, to guide command
entry into the state boxes.

• The GUI provides a syntax check on your flow description in real-time and
highlights any errors in the text flow.

The State Machine description text boxes default to show one text box per state. You
can also have the entire flow description shown in a single text field. This option can
be useful when copying and pasting a flow description from a template or an external
text editor. To toggle between one window per state, or all states in one window,
select the appropriate option under State Display mode.

Related Information

Signal Tap Trigger Flow Description Language on page 186

Resources Pane

The Resources pane allows you to declare status flags and counters for your Custom
Triggering Flow's conditional expressions.

• You can increment/decrement counters or set/clear status flags within your
triggering flow.

• You can specify up to 20 counters and 20 status flags.

• To initialize counter and status flags, right-click the row in the table and select Set
Initial Value.

• To specify a counter width, right-click the counter in the table and select Set
Width.

• To assist in debugging your trigger flow specification, the logic analyzer
dynamically updates counters and flag values after acquisition starts.

The Configurable at runtime settings allow you to control which options can change
at runtime without requiring a recompilation.

Table 63. Runtime Reconfigurable Settings, State-Based Triggering Flow

Setting Description

Destination of goto action Allows you to modify the destination of the state transition at runtime.

Comparison values Allows you to modify comparison values in Boolean expressions at runtime. In
addition, you can modify the segment_trigger and trigger action post-fill
count argument at runtime.

Comparison operators Allows you to modify the operators in Boolean expressions at runtime.

Logical operators Allows you to modify the logical operators in Boolean expressions at runtime.

Related Information

• Performance and Resource Considerations on page 198

• Runtime Reconfigurable Options on page 201

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

185

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.5.2.2. Trigger Lock Mode

Trigger lock mode restricts changes to only the configuration settings that you specify
as Configurable at runtime. The runtime configurable settings for the Custom
Trigger Flow tab are on by default.

Note: You may get some performance advantages by disabling some of the runtime
configurable options.

You can restrict changes to your Signal Tap configuration to include only the options
that do not require a recompilation. Trigger lock-mode allows you to make changes
that reflect immediately in the device.

1. On the Setup tab, point to Lock Mode and select Allow trigger condition
changes only.

Figure 82. Allow Trigger Conditions Change Only

2. Modify the Trigger Flow conditions.

Incremental Route lock-mode restricts the GUI to only allow changes that require an
Incremental Route compilation using Rapid Recompile. Use Rapid Recompile to
perform incremental routing and gain a 2-4x speedup over the initial full compilation.

5.4.5.3. Signal Tap Trigger Flow Description Language

The Trigger Flow Description Language is based on a list of conditional expressions per
state to define a set of actions.

To describe the actions the Logic Analyzer evaluates when a state is reached, you
follow this syntax:

Syntax of Trigger Flow Description Language

state <state_label>:
 <action_list>
 if (<boolean_expression>)
 <action_list>
 [else if (<boolean_expression>)
 <action_list>]
 [else
 <action_list>]

• Non-terminals are delimited by "<>".

• Optional arguments are delimited by "[]"

• The priority for evaluation of conditional statements is from top to bottom.

• The Trigger Flow Description Language allows multiple else if conditions.

<state_label> on page 187

<boolean_expression> on page 187

<action_list> on page 188

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

186

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Custom Triggering Flow Application Examples on page 214

5.4.5.3.1. <state_label>

Identifies a given state. You use the state label to start describing the actions the
Logic Analyzer evaluates once said state is reached. You can also use the state label
with the goto command.

The state description header syntax is:
state <state_label>

The description of a state ends with the beginning of another state or the end of the
whole trigger flow description.

5.4.5.3.2. <boolean_expression>

Collection of operators and operands that evaluate into a Boolean result. The
operators can be logical or relational. Depending on the operator, the operand can
reference a trigger condition, a counter and a register, or a numeric value. To group a
set of operands within an expression, you use parentheses.

Table 64. Logical Operators
Logical operators accept any boolean expression as an operand.

Operator Description Syntax

! NOT operator ! expr1

&& AND operator expr1 && expr2

|| OR operator expr1 || expr2

Table 65. Relational Operators
You use relational operators on counters or status flags.

Operator Description Syntax

> Greater than <identifier> > <numerical_value>

>= Greater than or Equal
to

<identifier> >= <numerical_value>

== Equals <identifier> == <numerical_value>

!= Does not equal <identifier> != <numerical_value>

<= Less than or equal to <identifier> <= <numerical_value>

< Less than <identifier> < <numerical_value>

Notes to table:
1. <identifier> indicates a counter or status flag.
2. <numerical_value> indicates an integer.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

187

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: • The <boolean_expression> in an if statement can contain a single event or
multiple event conditions.

• When the boolean expression evaluates TRUE, the logic analyzer evaluates all the
commands in the <action_list> concurrently.

5.4.5.3.3. <action_list>

List of actions that the Logic Analyzer performs within a state once a condition is
satisfied.

• Each action must end with a semicolon (;).

• If you specify more than one action within an if or an else if clause, you must
delimit the action_list with begin and end tokens.

Possible actions include:

Resource Manipulation Action

The resources the trigger flow description uses can be either counters or status flags.

Table 66. Resource Manipulation Actions

Action Description Syntax

increment Increments a counter resource by 1 increment <counter_identifier>;

decrement Decrements a counter resource by 1 decrement <counter_identifier>;

reset Resets counter resource to initial value reset <counter_identifier>;

set Sets a status flag to 1 set <register_flag_identifier>;

clear Sets a status flag to 0 clear <register_flag_identifier>;

Buffer Control Actions

Actions that control the acquisition buffer.

Table 67. Buffer Control Actions

Action Description Syntax

trigger Stops the acquisition for the current buffer and
ends analysis. This command is required in every
flow definition.

trigger <post-fill_count>;

segment_trigger Available only in segmented acquisition mode.
Ends acquisition of the current segment. After
evaluating this command, the Signal Tap Logic
Analyzer starts acquiring from the next segment. If
all segments are written, the Logic Analyzer
overwrites the oldest segment with the latest
sample. When a trigger action is evaluated the
acquisition stops.

segment_trigger <post-fill_count>;

start_store Active only in state-based storage qualifier mode.
Asserts the write_enable to the Signal Tap
acquisition buffer.

start_store

continued...

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

188

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Action Description Syntax

stop_store Active only in state-based storage qualifier mode.
De-asserts the write_enable signal to the Signal
Tap acquisition buffer.

stop_store

Both trigger and segment_trigger actions accept an optional post-fill_count
argument.

Related Information

Post-fill Count on page 191

State Transition Action

Specifies the next state in the custom state control flow. The syntax is:
goto <state_label>;

5.4.5.4. State-Based Storage Qualifier Feature

Selecting a state-based storage qualifier type enables the start_store and
stop_store actions. When you use these actions in conjunction with the expressions
of the State-based trigger flow, you get maximum flexibility to control data written
into the acquisition buffer.

Note: You can only apply the start_store and stop_store commands to a non-
segmented buffer.

The start_store and stop_store commands are similar to the start and stop
conditions of the start/stop storage qualifier mode. If you enable storage
qualification, Signal Tap Logic Analyzer doesn't write data into the acquisition buffer
until the start_store command occurs. However, in the state-based storage
qualifier type you must include a trigger command as part of the trigger flow
description. This trigger command is necessary to complete the acquisition and
display the results on the waveform display.

5.4.5.4.1. Storage Qualification Feature for the State-Based Trigger Flow.

This trigger flow description contains three trigger conditions that happen at different
times after you click Start Analysis:

State 1: ST1:
 if (condition1)
 start_store;
 else if (condition2)
 trigger value;
 else if (condition3)
 stop_store;

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

189

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 83. Capture Scenario for Storage Qualification with the State-Based Trigger Flow

a b c Sample

n samples

m samples

Time Scale for data stream
at the start of acquisition

Condition 1 occurs Condition 3 occursCondition 2 occurs

When you apply the trigger flow to the scenario in the figure:

1. The Signal Tap Logic Analyzer does not write into the acquisition buffer until
Condition 1 occurs (sample a).

2. When Condition 2 occurs (sample b), the logic analyzer evaluates the trigger
value command, and continues to write into the buffer to finish the acquisition.

3. The trigger flow specifies a stop_store command at sample c, which occurs m
samples after the trigger point.

4. If the data acquisition finishes the post-fill acquisition samples before Condition 3
occurs, the logic analyzer finishes the acquisition and displays the contents of the
waveform. In this case, the capture ends if the post-fill count value is < m.

5. If the post-fill count value in the Trigger Flow description 1 is > m samples, the
buffer pauses acquisition indefinitely, provided there is no recurrence of Condition
1 to trigger the logic analyzer to start capturing data again.

The Signal Tap Logic Analyzer continues to evaluate the stop_store and
start_store commands even after evaluating the trigger. If the acquisition paused,
click Stop Analysis to manually stop and force the acquisition to trigger. You can use
counter values, flags, and the State diagram to help you perform the trigger flow. The
counter values, flags, and the current state update in real-time during a data
acquisition.

5.4.6. Specify Trigger Position

You can specify the amount of data the Logic Analyzer acquires before and after a
trigger event. Positions for Runtime and Power-Up triggers are separate.

Signal Tap Logic Analyzer offers three pre-defined ratios of pre-trigger data to post-
trigger data:

• Pre—Saves signal activity that occurred after the trigger (12% pre-trigger, 88%
post-trigger).

• Center—Saves 50% pre-trigger and 50% post-trigger data.

• Post—Saves signal activity that occurred before the trigger (88% pre-trigger,
12% post-trigger).

These pre-defined ratios apply to both non-segmented buffers and segmented buffers.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

190

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

State-Based Triggering on page 183

5.4.6.1. Post-fill Count

In a custom state-based triggering flow with the segment_trigger and trigger
buffer control actions, you can use the post-fill_count argument to specify a
custom trigger position.

• If you do not use the post-fill_count argument, the trigger position for the
affected buffer defaults to the trigger position you specified in the Setup tab.

• In the trigger buffer control action (for non-segmented buffers), post-
fill_count specifies the number of samples to capture before stopping data
acquisition.

• In the segment_trigger buffer control action (for segmented buffer), post-
fill_count specifies a data segment.

Note: In the case of segment_trigger, acquisition of the current buffer stops
immediately if a subsequent triggering action is issued in the next state,
regardless of the current buffer's post-fill count. The Logic Analyzer discards
the remaining unfilled post-count acquisitions in the current buffer, and
displays them as grayed-out samples in the data window.

When the Signal Tap data window displays the captured data, the trigger position
appears as the number of post-count samples from the end of the acquisition segment
or buffer.

Sample Number of Trigger Position = (N – Post-Fill Count)

In this case, N is the sample depth of either the acquisition segment or non-
segmented buffer.

Related Information

Buffer Control Actions on page 188

5.4.7. Power-Up Triggers

Power-up triggers capture events that occur during device initialization, immediately
after you power or reset the FPGA.

The typical use of Signal Tap Logic Analyzer is triggering events that occur during
normal device operation. You start an analysis manually once the target device is fully
powered on and the JTAG connection for the device is available. With Signal Tap
Power-Up Trigger feature, the Signal Tap Logic Analyzer captures data immediately
after device initialization.

You can add a different Power-Up Trigger to each logic analyzer instance in the Signal
Tap Instance Manager pane.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

191

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.7.1. Enabling a Power-Up Trigger

To enable the Power-Up Trigger for a logic analyzer instance:

• Right-click the instance and click Enable Power-Up Trigger.

Figure 84. Enabling Power-Up Trigger in Signal Tap Logic Analyzer Editor

Power-Up Trigger appears as a child instance below the name of the selected
instance. The node list displays the default trigger conditions.

To disable a Power-Up Trigger, right-click the instance and click Disable Power-Up
Trigger.

5.4.7.2. Configuring Power-Up Trigger Conditions

• Any change that you make to a Power-Up Trigger conditions requires that you
recompile the Signal Tap Logic Analyzer instance, even if a similar change to the
Runtime Trigger conditions does not require a recompilation.

• You can also force trigger conditions with the In-System Sources and Probes in
conjunction with the Signal Tap Logic Analyzer. The In-System Sources and Probes
feature allows you to drive and sample values on to selected nets over the JTAG
chain.

Related Information

Design Debugging Using In-System Sources and Probes on page 232

5.4.7.3. Managing Signal Tap Instances with Run-Time and Power-Up Trigger
Conditions

On instances that have two both types of trigger conditions, Power-Up Trigger
conditions are color coded light blue, while Run-Time Trigger conditions remain white.

• To switch between the trigger conditions of the Power-Up Trigger and the Run-
Time Trigger, double-click the instance name or the Power-Up Trigger name in the
Instance Manager.

• To copy trigger conditions from a Run-Time Trigger to a Power-Up Trigger or vice
versa, right-click the trigger name in the Instance Manager and click Duplicate
Trigger. Alternatively, select the trigger name and click Edit ➤ Duplicate
Trigger.

Note: Run-time trigger conditions allow fewer adjustments than power-up trigger conditions.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

192

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.8. External Triggers

External trigger inputs allow you to trigger the Signal Tap Logic Analyzer from an
external source.

The external trigger input behaves like trigger condition 0, in that the condition must
evaluate to TRUE before the logic analyzer evaluates any other trigger conditions.

The Signal Tap Logic Analyzer supplies a signal to trigger external devices or other
logic analyzer instances. These features allow you to synchronize external logic
analysis equipment with the internal logic analyzer. Power-Up Triggers can use the
external triggers feature, but they must use the same source or target signal as their
associated Run-Time Trigger.

You can use external triggers to perform cross-triggering on a hard processor system
(HPS):

• The processor debugger allows you to configure the HPS to obey or disregard
cross-trigger request from the FPGA, and to issue or not issue cross-trigger
requests to the FPGA.

• The processor debugger in combination with the Signal Tap external trigger
feature allow you to develop a dynamic combination of cross-trigger behaviors.

• You can implement a system-level debugging solution for an Intel FPGA SoC by
using the cross-triggering feature with the ARM Development Studio 5 (DS-5)
software.

5.4.8.1. Using the Trigger Out of One Analyzer as the Trigger In of Another
Analyzer

An advanced feature of the Signal Tap Logic Analyzer is the ability to use the
Trigger out of one analyzer as the Trigger in to another analyzer. This feature allows
you to synchronize and debug events that occur across multiple clock domains.

To perform this operation, first turn on Trigger out for the source logic analyzer
instance. On the Instance list of the Trigger out trigger, select the targeted logic
analyzer instance. For example, if the instance named auto_signaltap_0 should
trigger auto_signaltap_1, select auto_signaltap_1|trigger_in .

Turning on Trigger out automatically enables the Trigger in of the targeted logic
analyzer instance and fills in the Instance field of the Trigger in trigger with the
Trigger out signal from the source logic analyzer instance. In this example,
auto_signaltap_0 is targeting auto_signaltap_1. The Trigger In Instance field
of auto_signaltap_1 is automatically filled in with auto_signaltap_0|
trigger_out.

5.5. Compiling the Design

To incorporate the Signal Tap logic in your design and enable the JTAG connection, you
must compile your project. When you add a .stp file to your project, the Signal Tap
Logic Analyzer becomes part of your design. When you debug your design with a
traditional external logic analyzer, you must often make changes to the signals you
want to monitor as well as the trigger conditions.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

193

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Because these adjustments require that you recompile your design when using the
Signal Tap Logic Analyzer, use the Signal Tap Logic Analyzer feature along with
incremental compilation in the Intel Quartus Prime software to reduce recompilation
time.

5.5.1. Faster Compilations with Intel Quartus Prime Incremental
Compilation

You can add a Signal Tap Logic Analyzer instance to your design without recompiling
your original source code. Incremental compilation enables you to preserve the
synthesis and fitting results of your original design.

When you compile your design including a .stp file, Intel Quartus Prime software
automatically adds the sld_signaltap and sld_hub entities to the compilation
hierarchy. These two entities are the main components of the Signal Tap Logic
Analyzer, providing the trigger logic and JTAG interface required for operation.

Incremental compilation is also useful when you want to modify the configuration of
the .stp file. For example, you can change the buffer sample depth or memory type
without performing a full compilation. Instead, you only recompile the Signal Tap Logic
Analyzer, configured as its own design partition.

5.5.1.1. Enabling Incremental Compilation for Your Design

When enabled for your design, the Signal Tap Logic Analyzer is always a separate
partition. After the first compilation, you can use the Signal Tap Logic Analyzer to
analyze signals from the post-fit netlist. If your partitions are designed correctly,
subsequent compilations due to Signal Tap Logic Analyzer settings take less time.

The netlist type for the top-level partition defaults to source. To take advantage of
incremental compilation, specify the Netlist types for the partitions you want to tap as
Post-fit.

Related Information

Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
documentation

5.5.1.2. Using Incremental Compilation with the Signal Tap Logic Analyzer

The Signal Tap Logic Analyzer uses the incremental compilation flow by default. For all
signals that you want to connect to the Signal Tap Logic Analyzer from the post-fit
netlist:

1. In the Design Partitions window, set the netlist type of the partition that contains
the signals to Post-Fit, with a Fitter Preservation Level of Placement and
Routing.

2. In the Node Finder, use the Signal Tap: post-fitting filter to add the signals of
interest to your Signal Tap configuration file.

3. If you want to add signals from the pre-synthesis netlist, set the netlist type to
Source File and use the Signal Tap: pre-synthesis filter in the Node Finder.
Do not use the netlist type Post-Synthesis with the Signal Tap Logic Analyzer.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

194

https://www.intel.com/content/www/us/en/docs/programmable/683283.html
https://www.intel.com/content/www/us/en/docs/programmable/683283.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Caution: When using post-fit and pre-synthesis nodes:

• Read all incremental compilation guidelines to ensure the proper partitioning of a
project.

• To speed up compile time, use only post-fit nodes for partitions specified as
preservation-level post-fit.

• Do not mix pre-synthesis and post-fit nodes in any partition. If you must tap pre-
synthesis nodes for a particular partition, make all tapped nodes in that partition
pre-synthesis nodes and change the netlist type to source in the design partitions
window.

Node names can differ between a pre-synthesis netlist and a post-fit netlist. In
general, registers and user input signals share common names between the two
netlists. During compilation, certain optimizations change the names of combinational
signals in your RTL. If the type of node name chosen does not match the netlist type,
the compiler may not be able to find the signal to connect to your Signal Tap Logic
Analyzer instance for analysis. The compiler issues a critical warning to alert you of
this scenario. The signal that is not connected is tied to ground in the Signal Tap
data tab.

If you do use incremental compilation flow with the Signal Tap Logic Analyzer and
source file changes are necessary, be aware that you may have to remove compiler-
generated post-fit net names. Source code changes force the affected partition to go
through resynthesis. During synthesis, the compiler cannot find compiler-generated
net names from a previous compilation.

Note: Intel FPGA recommends using only registered and user-input signals as debugging
taps in your .stp whenever possible.

Both registered and user-supplied input signals share common node names in the pre-
synthesis and post-fit netlist. As a result, using only registered and user-supplied
input signals in your .stp limits the changes you need to make to your Signal Tap
Logic Analyzer configuration.

You can check the nodes that are connected to each Signal Tap instance using the In-
System Debugging compilation reports. These reports list each node name you
selected to connect to a Signal Tap instance, the netlist type used for the particular
connection, and the actual node name used after compilation. If the incremental
compilation flow is not used, the In-System Debugging reports are located in the
Analysis & Synthesis folder. If the incremental compilation flow is used, this report is
located in the Partition Merge folder.

To verify that your original design was not modified, examine the messages in the
Partition Merge section of the Compilation Report.

Unless you make changes to your design partitions that require recompilation, only
the Signal Tap design partition is recompiled. If you make subsequent changes to only
the .stp, only the Signal Tap design partition must be recompiled, reducing your
recompilation time.

5.5.2. Prevent Changes Requiring Recompilation

Configure the .stp to prevent changes that normally require recompilation. To do
this, select a Lock mode from above the node list in the Setup tab. To lock your
configuration, choose Allow trigger condition changes only.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

195

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 85. Allow Trigger Conditions Change Only

Related Information

Verify Whether You Need to Recompile Your Project on page 196

5.5.3. Verify Whether You Need to Recompile Your Project

Before starting a debugging session, do not make any changes to the .stp settings
that require recompiling the project.

To verify whether a change you made requires recompiling the project, check the
Signal Tap status display at the top of the Instance Manager pane. This feature
allows you to undo the change, so that you do not need to recompile your project.

Related Information

Prevent Changes Requiring Recompilation on page 195

5.5.4. Incremental Route with Rapid Recompile

You can use Incremental Route with Rapid Recompile to decrease compilation times.
After performing a full compilation on your design, you can use the Incremental Route
flow to achieve a 2-4x speedup over a flat compile. The Incremental Route flow is not
compatible with Partial Reconfiguration.

Intel Quartus Prime Standard Edition software supports Incremental Route with Rapid
Recompile for Arria V, Cyclone V, and Stratix V devices.

5.5.4.1. Using the Incremental Route Flow

To use the Incremental Route flow:

1. Open your design and run Analysis & Elaboration (or a full compilation) to give
node visibility in Signal Tap.

2. Add Signal Tap to your design.

3. In the Signal Tap Signal Configuration pane, specify Manual in the Nodes
Allocated field for Trigger and Data nodes (and Storage Qualifier, if used).

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

196

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 86. Manually Allocate Nodes

Manual node allocation allows you to control the number of nodes compiled into
the design, which is critical for the Incremental Route flow.

When you select Auto allocation, the number of nodes compiled into the design
matches the number of nodes in the Setup tab. If you add a node later, you
create a mismatch between the amount of nodes the device requires and the
amount of compiled nodes, and you must perform a full compilation.

4. Specify the number of nodes that you estimate necessary for the debugging
process. You can increase the number of nodes later, but this requires more
compilation time.

5. Add the nodes that you want to tap.

6. If you have not fully compiled your project, run a full compilation. Otherwise, start
incremental compile using Rapid Recompile.

7. Debug and determine additional signals of interest.

8. (Optional) Select Allow incremental route changes only lock-mode.

Figure 87. Incremental Route Lock-Mode

9. Add additional nodes in the Signal Tap Setup tab.

— Do not exceed the number of manually allocated nodes you specified.

— Avoid making changes to non-runtime configurable settings.

10. Click the Rapid Recompile icon from the toolbar. Alternatively, click Processing
➤ Start Rapid Recompile.

Note: The previous steps set up your design for Incremental Route, but the actual
Incremental Route process begins when you perform a Rapid Recompile.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

197

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.4.2. Tips to Achieve Maximum Speedup

• Basic AND (which applies to Storage Qualifier as well as trigger input) is the
fastest for the Incremental Route flow.

• Basic OR is slower for the Incremental Route flow, but if you avoid changing the
parent-child relationship of nodes within groups, you can minimize the impact on
compile time. You can change the sibling relationships of nodes.

— Basic OR and advanced triggers require re-synthesis when you change the
number/names of tapped nodes.

• Use the Incremental Route lock-mode to avoid inadvertent changes requiring a full
compilation.

5.5.5. Timing Preservation with the Signal Tap Logic Analyzer

In addition to verifying functionality, timing closure is one of the most crucial
processes in successful operation of a design.

Note: When you compile a project with a Signal Tap Logic Analyzer without the use of
incremental compilation, you must add IP to the existing design. This addition often
impacts the existing placement, routing, and timing of the design. To minimize the
effect that the Signal Tap Logic Analyzer has on the design, use incremental
compilation for the project. Incremental compilation is the default setting in new
designs. You can easily enable incremental compilation in existing designs. When the
Signal Tap Logic Analyzer is in a design partition, it has little to no affect on the
design.

For Intel Arria 10 devices, the Intel Quartus Prime Standard Edition software does not
support timing preservation for post-fit taps with Rapid Recompile.

The following techniques can help you maintain timing:

• Avoid adding critical path signals to the .stp file.

• Minimize the number of combinational signals you add to the .stp file, and add
registers whenever possible.

• Specify an fMAX constraint for each clock in the design.

Related Information

Timing Closure and Optimization
>In Intel Quartus Prime Standard Edition User Guide: Design Optimization

5.5.6. Performance and Resource Considerations

When you perform logic analysis of your design, you can see the necessary trade-off
between runtime flexibility, timing performance, and resource usage.

The Signal Tap Logic Analyzer allows you to select runtime configurable parameters to
balance the need for runtime flexibility, speed, and area.

The default values of the runtime configurable parameters provide maximum
flexibility, so you can complete debugging as quickly as possible; however, you can
adjust these settings to determine whether there is a more appropriate configuration

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

198

https://www.intel.com/content/www/us/en/docs/programmable/683230/current/timing-closure-and-optimization.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

for your design. Because performance results are design-dependent, try these options
in different combinations until you achieve the desired balance between functionality,
performance, and utilization.

5.5.6.1. Signal Tap Logic in Critical Path

If Signal Tap logic is part of your critical path, follow these tips to speed up the
performance of the Signal Tap Logic Analyzer:

• Disable runtime configurable options—Certain resources are allocated to
accommodate for runtime flexibility. If you use either advanced triggers or State-
based triggering flow, disable runtime configurable parameters for a boost in fMAX
of the Signal Tap logic.

— If you are using State-based triggering flow, try disabling the Goto state
destination option and performing a recompilation before disabling the other
runtime configurable options. The Goto state destination option has the
greatest impact on fMAX, as compared to the other runtime configurable
options.

• Minimize the number of signals that have Trigger Enable selected—By
default, Signal Tap Logic Analyzer enable the Trigger Enable option for all signals
that you add to the .stp file. For signals that you do not plan to use as triggers,
turn this option off.

• Turn on Physical Synthesis for register retiming—If many (more than the
number of inputs that fit in a LAB) enabled triggering signals fan-in logic to a
gate-based triggering condition (basic trigger condition or a logical reduction
operator in the advanced trigger tab), turn on Perform register retiming. This
can help balance combinational logic across LABs.

5.5.6.2. Signal Tap Logic Using Critical Resources

If your design is resource constrained, follow these tips to reduce the logic or memory
the Signal Tap Logic Analyzer uses:

• Disable runtime configurable options—Disabling runtime configurability for
advanced trigger conditions or runtime configurable options in the State-based
triggering flow results in fewer LEs.

• Minimize the number of segments in the acquisition buffer—You can reduce
the logic resources that the Signal Tap Logic Analyzer uses if you limit the
segments in your sampling buffer

• Disable the Data Enable for signals that you use only for triggering—By
default, Signal Tap Logic Analyzer enables data enable options for all signals.
Turning off the data enable option for signals you use only as trigger inputs saves
on memory resources.

5.6. Program the Target Device or Devices

After you add the Signal Tap Logic Analyzer to your project and re-compile, you can
configure the FPGA target device.

If you want to debug multiple designs simultaneously, configure the device from
the .stp instead of the Intel Quartus Prime Programmer. This allows you to open
more than one .stp file and program multiple devices.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

199

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.6.1. Ensure Setting Compatibility Between .stp and .sof Files

A .stp file is compatible with a .sof file when the settings for the logic analyzer,
such as the size of the capture buffer and the monitoring and triggering signals match
the programming settings of the target device. If the files are not compatible you can
still program the device, but you cannot run or control the logic analyzer from the
Signal Tap Logic Analyzer Editor.

• To ensure programming compatibility, program the device with the .sof file
generated in the most recent compilation.

• To check whether a particular .sof is compatible with the current Signal Tap
configuration, attach the .sof to the SOF manager.

Note: When the Signal Tap Logic Analyzer detects incompatibility after the analysis starts,
the Intel Quartus Prime software generates a system error message containing two
CRC values: the expected value and the value retrieved from the .stp instance on the
device. The CRC value comes from all Signal Tap settings that affect the compilation.

As a best practice, use the .stp file with a Intel Quartus Prime project. The project
database contains information about the integrity of the current Signal Tap Logic
Analyzer session. Without the project database, there is no way to verify that the
current .stp file matches the .sof file in the device. If you have an .stp file that
does not match the .sof file, the Signal Tap Logic Analyzer can capture incorrect
data.

Related Information

Manage Multiple Signal Tap Files and Configurations on page 167

5.7. Running the Signal Tap Logic Analyzer

Debugging Signal Tap Logic Analyzer is similar using an external logic analyzer. You
initialize the logic analyzer by starting an analysis. When your trigger event occurs,
the logic analyzer stores the captured data in the device's memory buffer, and then
transfers this data to the .stp file with the JTAG connection.

You can also perform the equivalent of a force trigger instruction that lets you view
the captured data currently in the buffer without a trigger event occurring.

The flowchart shows how you operate the Signal Tap Logic Analyzer. indicates where
Power-Up and Runtime Trigger events occur and when captured data from these
events is available for analysis.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

200

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 88. Power-Up and Runtime Trigger Events Flowchart

Manually Run
Signal Tap Logic Analyzer

Compile Design

Start

End

Yes

No

No

Yes

Yes

No

Program Device

No

Yes

Manually Read
Data from Device

Trigger Occurred?

Analyze Data: Power-Up
or Run-Time Trigger

Continue Debugging?Make Changes to Setup
(If Needed)

Changes Require
Recompile?

Data Downloaded?

Manually Stop Analyzer

Possible Missed Trigger
(Unless Power-Up
Trigger Enabled)

You can also use In-System Sources and Probes in conjunction with the Signal Tap
Logic Analyzer to force trigger conditions. The In-System Sources and Probes feature
allows you to drive and sample values on to selected signals over the JTAG chain.

Related Information

Design Debugging Using In-System Sources and Probes on page 232

5.7.1. Runtime Reconfigurable Options

When you use Runtime Trigger mode, you can change certain settings in the .stp
without recompiling your design.

Table 68. Runtime Reconfigurable Features

Runtime Reconfigurable Setting Description

Basic Trigger Conditions and Basic Storage
Qualifier Conditions

You can change without recompiling all signals that have the Trigger
condition turned on to any basic trigger condition value

Comparison Trigger Conditions and Comparison
Storage Qualifier Conditions

All the comparison operands, the comparison numeric values, and the
interval bound values are runtime-configurable.
You can also switch from Comparison to Basic OR trigger at runtime
without recompiling.

Advanced Trigger Conditions and Advanced
Storage Qualifier Conditions

Many operators include runtime configurable settings. For example, all
comparison operators are runtime-configurable. Configurable settings
appear with a white background in the block representation. This
runtime reconfigurable option is turned on in the Object Properties
dialog box.

Switching between a storage-qualified and a
continuous acquisition

Within any storage-qualified mode, you can switch to continuous
capture mode without recompiling the design. To enable this feature,
turn on disable storage qualifier.

State-based trigger flow parameters Refer to Runtime Reconfigurable Settings, State-Based Triggering
Flow

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

201

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Runtime Reconfigurable options can save time during the debugging cycle by allowing
you to cover a wider possible scenario of events without the need to recompile the
design. You may experience a slight impact to the performance and logic utilization.
You can turn off runtime re-configurability for advanced trigger conditions and the
state-based trigger flow parameters, boosting performance and decreasing area
utilization.

To configure the .stp file to prevent changes that normally require recompilation in
the Setup tab, select Allow Trigger Condition changes only above the node list.

In Incremental Route lock mode, Allow incremental route changes only, limits to
changes that only require an Incremental Route compilation, and not a full compile.

This example illustrates a potential use case for Runtime Reconfigurable features, by
providing a storage qualified enabled State-based trigger flow description, and
showing how to modify the size of a capture window at runtime without a recompile.
This example gives you equivalent functionality to a segmented buffer with a single
trigger condition where the segment sizes are runtime reconfigurable.

state ST1:
if (condition1 && (c1 <= m))// each "segment" triggers on condition
 // 1
begin // m = number of total "segments"
 start_store;
 increment c1;
 goto ST2:
End

else (c1 > m) // This else condition handles the last
 // segment.
begin
 start_store
 Trigger (n-1)
end

state ST2:
if (c2 >= n) //n = number of samples to capture in each
 //segment.
begin
 reset c2;
 stop_store;
 goto ST1;
end

else (c2 < n)
begin
 increment c2;
 goto ST2;
end

Note: m x n must equal the sample depth to efficiently use the space in the sample buffer.

The next figure shows the segmented buffer that the trigger flow example describes.

Figure 89. Segmented Buffer Created with Storage Qualifier and State-Based Trigger
Total sample depth is fixed, where m x n must equal sample depth.

Segment 1

1 n

Segment 2

1 n

Segment m

1 n

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

202

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

During runtime, you can modify the values m and n. Changing the m and n values in
the trigger flow description adjust the segment boundaries without recompiling.

You can add states into the trigger flow description and selectively mask out specific
states and enable other ones at runtime with status flags.

This example is like the previous example with an additional state inserted. You use
this extra state to specify a different trigger condition that does not use the storage
qualifier feature. You insert status flags into the conditional statements to control the
execution of the trigger flow.

state ST1 :
 if (condition2 && f1) // additional state added for a non-
segmented
 // acquisition set f1 to enable state
 begin
 start_store;
 trigger
 end
 else if (! f1)
 goto ST2;
state ST2:
 if ((condition1 && (c1 <= m) && f2) // f2 status flag used to mask state.
Set f2
 // to enable
 begin
 start_store;
 increment c1;
 goto ST3:
 end
 else (c1 > m)
 start_store
 Trigger (n-1)
 end
state ST3:
 if (c2 >= n)
 begin
 reset c2;
 stop_store;
 goto ST1;
 end
 else (c2 < n)
 begin
 increment c2;
 goto ST2;
 end

5.7.2. Signal Tap Status Messages

The following table describes the text messages that might appear in the Signal Tap
Status Indicator in the Instance Manager pane before, during, or after data
acquisition. These messages allow you to monitor the state of the logic analyzer and
identify the operation that the Logic Analyzer is performing.

Table 69. Messages in the Signal Tap Status Indicator

Message Message Description

Not running The Signal Tap Logic Analyzer is not running.
This message appears when there is no connection to a device, or
the device is not configured.

(Power-Up Trigger) Waiting for clock (1) The Signal Tap Logic Analyzer is performing a Runtime or Power-Up
Trigger acquisition and is waiting for the clock signal to transition.

continued...

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

203

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Message Message Description

Acquiring (Power-Up) pre-trigger data (1) The trigger condition has not been evaluated yet.
If the acquisition mode is non-segmented buffer and the storage
qualifier type is continuous, the Signal Tap Logic Analyzer collects a
full buffer of data.

Trigger In conditions met Trigger In condition has occurred. The Signal Tap Logic Analyzer is
waiting for the first trigger condition to occur.
This message only appears when a Trigger In condition exists.

Waiting for (Power-up) trigger (1) The Signal Tap Logic Analyzer is waiting for the trigger event to
occur.

Trigger level <x> met Trigger condition x occurred. The Signal Tap Logic Analyzer is
waiting for condition x + 1 to occur.

Acquiring (power-up) post-trigger data (1) The entire trigger event occurred. The Signal Tap Logic Analyzer is
acquiring the post-trigger data.
You define the amount of post-trigger data to collect (between
12%, 50%, and 88%) when you select the non-segmented buffer
acquisition mode.

Offload acquired (Power-Up) data (1) The JTAG chain is transmitting data to the Intel Quartus Prime
software.

Ready to acquire The Signal Tap Logic Analyzer is waiting for you to initialize the
analyzer.

1. This message can appear for both Runtime and Power-Up Trigger events. When referring to a Power-Up Trigger, the
text in parentheses appears.

Note: In segmented acquisition mode, pre-trigger and post-trigger do not apply.

5.8. View, Analyze, and Use Captured Data

The Signal Tap Logic Analyzer interface allows you to examine the data captured
manually or with a trigger. When in the Data view, you isolate the data of interest with
the drag-to-zoom feature, enabled with a left-click.

5.8.1. Capturing Data Using Segmented Buffers

Segmented Acquisition buffers can perform captures with separate trigger conditions
for each acquisition segment. These buffers allow you to capture recurring events or
sequences of events that span over a long period.

Each acquisition segment acts as a non-segmented buffer, continuously capturing data
after activation. When you run analyses with segmented buffers, the Signal Tap Logic
Analyzer captures back-to-back data for each acquisition segment within the data
buffer. You define the trigger flow, or the type and order in which the trigger
conditions evaluate for each buffer, either in the Sequential trigger flow control or in
the Custom State-based trigger flow control.

The following figure shows a segmented acquisition buffer with four segments
represented as four separate non-segmented buffers.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

204

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 90. Segmented Acquisition Buffer

0

1

1

Segment 1 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 1
Post Pre

0

1

1

Segment 2 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 2
Post Pre

0

1

1

Segment 3 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 3
Post Pre

0

1

1

Segment 4 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 4
Post Pre

When the Signal Tap Logic Analyzer finishes an acquisition with a segment and
advances to the next segment to start a new acquisition. The data capture that
appears in the waveform viewer depends on when a trigger condition occurs. The
figure illustrates the data capture method. The Trigger markers—Trigger 1, Trigger 2,
Trigger 3 and Trigger 4—refer to the evaluation of the segment_trigger and
trigger commands in the Custom State-based trigger flow. In sequential flows, the
Trigger markers refer to trigger conditions that you specify within the Setup tab.

If the Segment 1 Buffer is the active segment and Trigger 1 occurs, the Signal Tap
Logic Analyzer starts evaluating Trigger 2 immediately. Data Acquisition for Segment 2
buffer starts when either Segment Buffer 1 finishes its post-fill count, or when Trigger
2 evaluates as TRUE, whichever condition occurs first. Thus, trigger conditions
associated with the next buffer in the data capture sequence can preempt the post-fill
count of the current active buffer. This allows the Signal Tap Logic Analyzer to
accurately capture all the trigger conditions that occurred. Unused samples appear as
a blank space in the waveform viewer.

Figure 91. Segmented Capture with Preemption of Acquisition Segments
The figure shows a capture using sequential flow control with the trigger condition for each segment specified
as Don’t Care.

Each segment before the last captures only one sample, because the next trigger
condition immediately preempts capture of the current buffer. The trigger position for
all segments is specified as pre-trigger (10% of the data is before the trigger condition
and 90% of the data is after the trigger position). Because the last segment starts
immediately with the trigger condition, the segment contains only post-trigger data.
The three empty samples in the last segment are left over from the pre-trigger
samples that the Signal Tap Logic Analyzer allocated to the buffer.

For the sequential trigger flow, the Trigger Position option applies to every segment
in the buffer. A custom state-based trigger flow provides maximum flexibility defining
the trigger position. By adjusting the trigger position specific to the debugging
requirements, you can help maximize the use of the allocated buffer space.

Related Information

Segmented Buffer on page 159

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

205

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.8.2. Differences in Pre-Fill Write Behavior Between Different Acquisition
Modes

Different acquisition modes capture different amounts of data immediately after
running the Signal Tap Logic Analyzer and before any trigger conditions occur.

Non-Segmented Buffers in Continuous Mode

In configurations with non-segmented buffers running in continuous mode, the buffer
must be full with sampled data before evaluating any trigger condition. Only after the
buffer is full, the Signal Tap logic analyzer starts retrieving data through the JTAG
connection and evaluates the trigger condition.

If you perform a Stop Analysis, Signal Tap prevents the buffer from being dumped
during the first acquisition prior to a trigger condition.

Buffers with Storage Qualification

For buffers using a storage qualification mode, the Signal Tap Logic Analyzer
immediately evaluates all trigger conditions while writing samples into the acquisition
memory. This evaluation is especially important when using any storage qualification
on the data set. The logic analyzer may miss a trigger condition if it waits to capture a
full buffer's worth of data before evaluating any trigger conditions.

If a trigger activates before the specified amount of pre-trigger data has occurred, the
Signal Tap Logic Analyzer begins filling memory with post-trigger data, regardless of
the amount of pre-trigger data you specify. For example, if you set the trigger position
to 50% and set the logic analyzer to trigger on a processor reset, start the logic
analyzer, and then power on the target system, the trigger activates. However, the
logic analyzer memory contains only post-trigger data, and not any pre-trigger data,
because the trigger event has higher precedence than the capture of pre-trigger data.

5.8.2.1. Example

The figures for continuous data capture and conditional data capture show the
difference between a non-segmented buffer in continuous mode and a non-segmented
buffer using a storage qualifier. The configuration of the logic analyzer waveforms is a
base trigger condition, sample depth of 64 bits, and Post trigger position.

Figure 92. Signal Tap Logic Analyzer Continuous Data Capture

In the continuous data capture, Trig1 occurs several times in the data buffer before
the Signal Tap Logic Analyzer trigger activates. The buffer needs to be full before the
logic analyzer evaluates any trigger condition. After the trigger condition occurs, the
logic analyzer continues acquisition for eight additional samples (12% of the buffer, as
defined by the "post-trigger" position).

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

206

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 93. Signal Tap Logic Analyzer Conditional Data Capture

Note to figure:

1. Conditional capture, storage always enabled, post-fill count.

2. Signal Tap Logic Analyzer capture of a recurring pattern using a non-segmented
buffer in conditional mode. The configuration of the logic analyzer is a basic
trigger condition "Trig1" and sample depth of 64 bits. The Trigger in condition is
Don't care, so the buffer captures all samples.

In conditional capture the logic analyzer triggers immediately. As in continuous
capture, the logic analyzer completes the acquisition with eight samples, or 12% of
64, the sample capacity of the acquisition buffer.

5.8.3. Creating Mnemonics for Bit Patterns

A mnemonic table allows you to assign a meaningful name to a set of bit patterns,
such as a bus. To create a mnemonic table:

1. Right-click the Setup or Data tab of a Signal Tap instance, and click Mnemonic
Table Setup.

2. Create a mnemonic table by entering sets of bit patterns and specifying a label to
represent each pattern.

3. Assign the table to a group of signals by right-clicking the group, clicking Bus
Display Format, and selecting the mnemonic table.

4. On the Setup tab, you can create basic triggers with meaningful names by right-
clicking an entry in the Trigger Conditions column and selecting a label from the
table you assigned to the signal group.

On the Data tab, if data captured matches a bit pattern contained in an assigned
mnemonic table, the Signal Tap GUI replaces the signal group data with the
appropriate label, simplifying the visual inspection of expected data patterns.

5.8.4. Automatic Mnemonics with a Plug-In

When you use a plug-in to add signals to an .stp, mnemonic tables for the added
signals are automatically created and assigned to the signals defined in the plug-in. To
enable these mnemonic tables manually, right-click the name of the signal or signal
group. On the Bus Display Format shortcut menu, then click the name of the
mnemonic table that matches the plug-in.

As an example, the Nios II plug-in helps you to monitor signal activity for your design
as the code is executed. If you set up the logic analyzer to trigger on a function name
in your Nios II code based on data from an .elf, you can see the function name in
the Instance Address signal group at the trigger sample, along with the

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

207

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

corresponding disassembled code in the Disassembly signal group, as shown in
Figure 13–52. Captured data samples around the trigger are referenced as offset
addresses from the trigger function name.

Figure 94. Data Tab when the Nios II Plug-In is Used

5.8.5. Locating a Node in the Design

When you find the source of an error in your design using the Signal Tap Logic
Analyzer, you can use the node locate feature to locate that signal in many of the tools
found in the Intel Quartus Prime software, as well as in your design files. This lets you
find the source of the problem quickly so you can modify your design to correct the
flaw. To locate a signal from the Signal Tap Logic Analyzer in one of the Intel Quartus
Prime software tools or your design files, right-click the signal in the .stp, and click
Locate in <tool name>.

You can locate a signal from the node list with the following tools:

• Assignment Editor

• Pin Planner

• Timing Closure Floorplan

• Chip Planner

• Resource Property Editor

• Technology Map Viewer

• RTL Viewer

• Design File

5.8.6. Saving Captured Data

When you save a data capture, Signal Tap Logic Analyzer stores this data in the
active .stp file, and the Data Log adds the capture as a log entry under the current
configuration.

When analysis is set to Auto-run mode, the Logic Analyzer creates a separate entry
in the Data Log to store the data captured each time the trigger occurred. This allows
you to review the captured data for each trigger event.

The default name for a log is based time stamp when the Logic Analyzer acquired the
data. As a best practice, rename the data log with a more meaningful name.

The organization of logs is hierarchical; the Logic Analyzer groups similar logs of
captured data in trigger sets.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

208

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Data Log Pane on page 167

5.8.7. Exporting Captured Data to Other File Formats

You can export captured data to the following file formats, for use with other EDA
simulation tools:

• Comma Separated Values File (.csv)

• Table File (.tbl)

• Value Change Dump File (.vcd)

• Vector Waveform File (.vwf)

• Graphics format files (.jpg, .bmp)

To export the captured data from Signal Tap Logic Analyzer, on the File menu, click
Export and specify the File Name, Export Format, and Clock Period.

5.8.8. Creating a Signal Tap List File

A .stp list file contains all the data the logic analyzer captures for a trigger event, in
text format.

Each row of the list file corresponds to one captured sample in the buffer. Columns
correspond to the value of each of the captured signals or signal groups for that
sample. If you defined a mnemonic table for the captured data, a matching entry from
the table replaces the numerical values in the list.

The .stp list file is especially useful when combined with a plug-in that includes
instruction code disassembly. You can view the order of instruction code execution
during the same time period of the trigger event.

To create a .stp list file in the Intel Quartus Prime software, click File ➤ Create/
Update ➤ Create Signal Tap List File.

Related Information

Adding Signals with a Plug-In on page 155

5.9. Other Features

The Signal Tap Logic Analyzer provides optional features not specific to a task flow.
The following techniques can offer advantages in specific scenarios.

5.9.1. Creating Signal Tap File from Design Instances

In addition to providing GUI support for generation of .stp files, the Intel Quartus
Prime software supports generation of a Signal Tap instance from logic defined in HDL
source files. This technique is helpful to modify runtime configurable trigger
conditions, acquire data, and view acquired data on the data log via Signal Tap
utilities.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

209

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.9.1.1. Creating a .stp File from a Design Instance

To generate a .stp file from parameterized HDL instances within your design:

1. Open or create an Intel Quartus Prime project that includes one or more HDL
instances of the Signal Tap logic analyzer.

2. Click Processing ➤ Start ➤ Start Analysis & Synthesis.

3. Click File ➤ Create/Update ➤ Create Signal Tap File from Design
Instance(s).

4. Specify a location for the .stp file that generates, and click Save.

Figure 95. Create Signal Tap File from Design Instances Dialog Box

Note: If your project contains partial reconfiguration partitions, the Create Signal
Tap File from Design Instance(s) dialog box displays a tree view of the
PR partitions in the project. Select a partition from the view, and click
Create Signal Tap file. The resultant .stp file that generates contains all
HDL instances in the corresponding PR partition. The resultant .stp file
does not include the instances in any nested partial reconfiguration
partition.

Figure 96. Selecting Partition for .stp File Generation

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

210

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

After successful .stp file creation, the Signal Tap Logic Analyzer appears. All the
fields are read-only, except runtime-configurable trigger conditions.

Figure 97. Generated .stp File

Related Information

Custom Trigger HDL Object on page 175

5.9.2. Using the Signal Tap MATLAB MEX Function to Capture Data

When you use MATLAB for DSP design, you can acquire data from the Signal Tap Logic
Analyzer directly into a matrix in the MATLAB environment by calling the MATLAB MEX
function alt_signaltap_run, built into the Intel Quartus Prime software. If you use
the MATLAB MEX function in a loop, you can perform as many acquisitions in the same
amount of time as you can when using Signal Tap in the Intel Quartus Prime software
environment.

Note: The Signal Tap MATLAB MEX function is available in the Windows* version and Linux
version of the Intel Quartus Prime software. This function is compatible with MATLAB
Release 14 Original Release Version 7 and later.

To set up the Intel Quartus Prime software and the MATLAB environment to perform
Signal Tap acquisitions:

1. In the Intel Quartus Prime software, create an .stp file.

2. In the node list in the Data tab of the Signal Tap Logic Analyzer Editor, organize
the signals and groups of signals into the order in which you want them to appear
in the MATLAB matrix.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

211

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Each column of the imported matrix represents a single Signal Tap acquisition
sample, while each row represents a signal or group of signals in the order you
defined in the Data tab.

Note: Signal groups that the Signal Tap Logic Analyzer acquires and transfers into
the MATLAB MEX function have a width limit of 32 signals. To use the
MATLAB MEX function with a bus or signal group that contains more than 32
signals, split the group into smaller groups that do not exceed the limit.

3. Save the .stp file and compile your design. Program your device and run the
Signal Tap Logic Analyzer to ensure your trigger conditions and signal acquisition
work correctly.

4. In the MATLAB environment, add the Intel Quartus Prime binary directory to your
path with the following command:

addpath <Quartus install directory>\win

You can view the help file for the MEX function by entering the following command
in MATLAB without any operators:

alt_signaltap_run

5. Use the MATLAB MEX function to open the JTAG connection to the device and run
the Signal Tap Logic Analyzer to acquire data. When you finish acquiring data,
close the JTAG connection.

To open the JTAG connection and begin acquiring captured data directly into a
MATLAB matrix called stp, use the following command:

stp = alt_signaltap_run \
('<stp filename>'[,('signed'|'unsigned')[,'<instance names>'[, \
'<signalset name>'[,'<trigger name>']]]]);

When capturing data, you must assign a filename, for example, <stp filename> as
a requirement of the MATLAB MEX function. Other MATLAB MEX function options
are described in the table:

Table 70. Signal Tap MATLAB MEX Function Options

Option Usage Description

signed

unsigned

'signed'

'unsigned'

The signed option turns signal group data into 32-bit two’s-
complement signed integers. The MSB of the group as
defined in the Signal Tap Data tab is the sign bit. The
unsigned option keeps the data as an unsigned integer.
The default is signed.

<instance name> 'auto_signaltap_0' Specify a Signal Tap instance if more than one instance is
defined. The default is the first instance in the .stp,
auto_signaltap_0.

<signal set name>
<trigger name>

'my_signalset'

'my_trigger'

Specify the signal set and trigger from the Signal Tap data
log if multiple configurations are present in the .stp. The
default is the active signal set and trigger in the file.

During data acquisition, you can enable or disable verbose mode to see the status
of the logic analyzer. To enable or disable verbose mode, use the following
commands:

alt_signaltap_run('VERBOSE_ON');-alt_signaltap_run('VERBOSE_OFF');

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

212

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you finish acquiring data, close the JTAG connection with the following
command:

alt_signaltap_run('END_CONNECTION');

For more information about the use of MATLAB MEX functions in MATLAB, refer to
the MATLAB Help.

5.9.3. Using Signal Tap in a Lab Environment

You can install a stand-alone version of the Signal Tap Logic Analyzer. This version is
particularly useful in a lab environment in which you do not have a workstation that
meets the requirements for a complete Intel Quartus Prime installation, or if you do
not have a license for a full installation of the Intel Quartus Prime software. The
standalone version of the Signal Tap Logic Analyzer is included with and requires the
Intel Quartus Prime stand-alone Programmer which is available from the Downloads
page of the Intel website.

5.9.4. Remote Debugging Using the Signal Tap Logic Analyzer

5.9.4.1. Debugging Using a Local PC and an SoC

You can use the System Console with Signal Tap Logic Analyzer to remote debug your
Intel FPGA SoC. This method requires one local PC, an existing TCP/IP connection, a
programming device at the remote location, and an Intel FPGA SoC.

Related Information

Remote Hardware Debugging over TCP/IP

5.9.4.2. Debugging Using a Local PC and a Remote PC

You can use the Signal Tap Logic Analyzer to debug a design that is running on a
device attached to a PC in a remote location.

To perform a remote debugging session, you must have the following setup:

• The Intel Quartus Prime software installed on the local PC

• Stand-alone Signal Tap Logic Analyzer or the full version of the Intel Quartus
Prime software installed on the remote PC

• Programming hardware connected to the device on the PCB at the remote location

• TCP/IP protocol connection

5.9.4.2.1. Equipment Setup

1. On the PC in the remote location, install the standalone version of the Signal Tap
Logic Analyzer, included in the Intel Quartus Prime stand-alone Programmer, or
the full version of the Intel Quartus Prime software.

2. Connect the remote computer to Intel programming hardware, such as the or Intel
FPGA Download Cable.

3. On the local PC, install the full version of the Intel Quartus Prime software.

4. Connect the local PC to the remote PC across a LAN with the TCP/IP protocol.

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

213

https://www.intel.com/content/www/us/en/collections/products/fpga/software/downloads.html
https://www.intel.com/content/www/us/en/docs/programmable/723698.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.9.5. Using the Signal Tap Logic Analyzer in Devices with Configuration
Bitstream Security

Certain device families support bitstream decryption during configuration using an on-
device AES decryption engine. You can still use the Signal Tap Logic Analyzer to
analyze functional data within the FPGA. However, note that JTAG configuration is not
possible after the security key has been programmed into the device.

Intel FPGA recommends that you use an unencrypted bitstream during the prototype
and debugging phases of the design. Using an unencrypted bitstream allows you to
generate new programming files and reconfigure the device over the JTAG connection
during the debugging cycle.

If you must use the Signal Tap Logic Analyzer with an encrypted bitstream, first
configure the device with an encrypted configuration file using Passive Serial (PS),
Fast Passive Parallel (FPP), or Active Serial (AS) configuration modes. The design must
contain at least one instance of the Signal Tap Logic Analyzer. After the FPGA is
configured with a Signal Tap Logic Analyzer instance in the design, when you open the
Signal Tap Logic Analyzer in the Intel Quartus Prime software, you then scan the chain
and are ready to acquire data with the JTAG connection.

5.9.6. Monitor FPGA Resources Used by the Signal Tap Logic Analyzer

The Signal Tap Logic Analyzer has a built-in resource estimator that calculates the
logic resources and amount of memory that each logic analyzer instance uses.
Furthermore, because the most demanding on-chip resource for the logic analyzer is
memory usage, the resource estimator reports the ratio of total RAM usage in your
design to the total amount of RAM available, given the results of the last compilation.
The resource estimator provides a warning if a potential for a “no-fit” occurs.

You can see resource usage (by instance and total) in the columns of the Instance
Manager pane of the Signal Tap Logic Analyzer Editor. Use this feature when you
know that your design is running low on resources.

The logic element value that the resource usage estimator reports may vary by as
much as 10% from the actual resource usage.

5.10. Design Example: Using Signal Tap Logic Analyzers

The system in this example contains many components, including a Nios processor, a
direct memory access (DMA) controller, on-chip memory, and an interface to external
SDRAM memory. After you press a button, the processor initiates a DMA transfer,
which you analyze using the Signal Tap Logic Analyzer. In this example, the Nios
processor executes a simple C program from on-chip memory and waits for you to
press a button.

Related Information

Debug Nios® II Systems with SignalTap* II Embedded Logic Analyzer

5.11. Custom Triggering Flow Application Examples

The custom triggering flow in the Signal Tap Logic Analyzer is most useful for
organizing a number of triggering conditions and for precise control over the
acquisition buffer. This section provides two application examples for defining a

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

214

https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/horizontal/exm-debug-signaltap.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

custom triggering flow within the Signal Tap Logic Analyzer. Both examples can be
easily copied and pasted directly into the state machine description box by using the
state display mode All states in one window.

Related Information

On-chip Debugging Design Examples website

5.11.1. Design Example 1: Specifying a Custom Trigger Position

Actions to the acquisition buffer can accept an optional post-count argument. This
post-count argument enables you to define a custom triggering position for each
segment in the acquisition buffer.

The example shows how to apply a trigger position to all segments in the acquisition
buffer. The example describes a triggering flow for an acquisition buffer split into four
segments. If each acquisition segment is 64 samples in depth, the trigger position for
each buffer is at sample #34. The acquisition stops after all segments are filled once.

if (c1 == 3 && condition1)
 trigger 30;
else if (condition1)
begin
 segment_trigger 30;
 increment c1;
end

Each segment acts as a non-segmented buffer that continuously updates the memory
contents with the signal values.

The Data tab displays the last acquisition before stopping the buffer as the last
sample number in the affected segment. The trigger position in the affected segment
is then defined by N – post count fill, where N is the number of samples per
segment.

Figure 98. Specifying a Custom Trigger Position

0

1

1

11
1

1

1

1
1

1 1
1

1

1

0
00

0

0

0

0 0

0

Trigger

Sample #1

Post Count

Last Sample

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

215

https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/horizontal/on-chip-debugging.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.11.2. Design Example 2: Trigger When triggercond1 Occurs Ten Times
between triggercond2 and triggercond3

The custom trigger flow description is often useful to count a sequence of events
before triggering the acquisition buffer. The example shows such a sample flow. This
example uses three basic triggering conditions configured in the Signal Tap Setup tab.

This example triggers the acquisition buffer when condition1 occurs after
condition3 and occurs ten times prior to condition3. If condition3 occurs prior
to ten repetitions of condition1, the state machine transitions to a permanent wait
state.

state ST1:
if (condition2)
begin
 reset c1;
 goto ST2;
end
State ST2 :
if (condition1)
 increment c1;
else if (condition3 && c1 < 10)
 goto ST3;
else if (condition3 && c1 >= 10)
 trigger;
ST3:
goto ST3;

5.12. Signal Tap Scripting Support

The Intel Quartus Prime supports automating Signal Tap procedures in a scripting
environment, as Tcl scripts or through the quartus_stp executable. For detailed
information about scripting command options, refer to the Intel Quartus Prime
Command-Line and Tcl API Help browser. To run the Help browser, type quartus_sh
--qhelp at the command prompt.

Related Information

• Tcl Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

• Command Line Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

5.12.1. Signal Tap Command-Line Options

You can use the following options with the quartus_stp executable:

Table 71. quartus_stp Command-Line Options

Option Usage Description

--stp_file <stp_filename> Required Specifies the name of the .stp file.

--enable Optional Sets the ENABLE_SIGNALTAP option to ON in the project's .qsf file, so
the Signal Tap Logic Analyzer runs in the next compilation.
If you omit this option, the Intel Quartus Prime software uses the current
value of ENABLE_SIGNALTAP in the .qsf file.

continued...

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

216

https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

Writes subsequent Signal Tap assignments to the .stp that appears in
the .qsf file. If the .qsf file does not specify a .stp file, you must use
the --stp_file option.

--disable Optional Sets the ENABLE_SIGNALTAP option to OFF in the project's .qsf file, so
the Signal Tap Logic Analyzer does not in the next compilation.
If you omit the --disable option, the Intel Quartus Prime software
uses the current value of ENABLE_SIGNALTAP in the .qsf file.

--
create_signaltap_hdl_file

Optional Creates an .stp file representing the Signal Tap instance. You must use
the --stp_file option to create an .stp.
Equivalent to the Create Signal Tap File from Design Instances
command in the Intel Quartus Prime software
.

Examples

The first example illustrates how to compile a design with the Signal Tap Logic
Analyzer at the command line.

quartus_stp filtref --stp_file stp1.stp --enable
quartus_map filtref --source=filtref.bdf --family=CYCLONE
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns
quartus_asm filtref

The quartus_stp --stp_file stp1.stp --enable command creates the QSF
variable and instructs the Intel Quartus Prime software to compile the stp1.stp file
with your design. The --enable option must be applied for the Signal Tap Logic
Analyzer to compile into your design.

The following example creates a new .stp after building the Signal Tap Logic Analyzer
instance with the IP Catalog.

quartus_stp filtref --create_signaltap_hdl_file --stp_file stp1.stp

5.12.2. Data Capture from the Command Line

The quartus_stp executable supports a Tcl interface that allows you to capture data
without running the Intel Quartus Prime GUI.

Note: You cannot execute Signal Tap Tcl commands from within the Tcl console in the Intel
Quartus Prime software.

To execute a Tcl script containing Signal Tap Logic Analyzer Tcl commands, use:

quartus_stp -t <Tcl file>

Example 25. Continuously Capturing Data

This excerpt shows commands you can use to continuously capture data. Once the
capture meets trigger condition e, the Signal Tap Logic Analyzer starts the capture and
stores the data in the data log.

Open Signal Tap session
open_session -name stp1.stp

Start acquisition of instances auto_signaltap_0 and
auto_signaltap_1 at the same time

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

217

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Calling run_multiple_end starts all instances
run_multiple_start

run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger \
trigger_1 -data_log log_1 -timeout 5
run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger \
trigger_1 -data_log log_1 -timeout 5

run_multiple_end

Close Signal Tap session
close_session

5.13. Design Debugging with the Signal Tap Logic Analyzer Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.
• Renamed topic: Untappable Signals to Signals Unavailable for Signal

Tap Debugging.

2017.11.06 17.1.0 • Clarified information about the Data Log Pane.
• Updated Figure: Data Log and renamed to Simple Data Log.
• Added Figure: Accessing the Advanced Trigger Condition Tab.

2017.05.08 17.0.0 • Added: Open Standalone Signal Tap Logic Analyzer GUI.
• Updated figures on Create Signal Tap File from Design Instance(s).

2016.10.31 16.1.0 • Added: Create SignalTap II File from Design Instance(s).
• Removed reference to unsupported Talkback feature.

2016.05.03 16.0.0 • Added: Specifying the Pipeline Factor
• Added: Comparison Trigger Conditions

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2015.05.04 15.0.0 Added content for Floating Point Display Format in table: SignalTap II Logic
Analyzer Features and Benefits.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

December 2014 14.1.0 • Added MAX 10 as supported device.
• Removed Full Incremental Compilation setting and Post-Fit (Strict)

netlist type setting information.
• Removed outdated GUI images from "Using Incremental Compilation

with the SignalTap II Logic Analyzer" section.

June 2014 14.0.0 • DITA conversion.
• Replaced MegaWizard Plug-In Manager and Megafunction content with

IP Catalog and parameter editor content.
• Added flows for custom trigger HDL object, Incremental Route with

Rapid Recompile, and nested groups with Basic OR.
• GUI changes: toolbar, drag to zoom, disable/enable instance, trigger

log time-stamping.

November 2013 13.1.0 Removed HardCopy material. Added section on using cross-triggering with
DS-5 tool and added link to white paper 01198. Added section on remote
debugging an Altera SoC and added link to application note 693. Updated
support for MEX function.

continued...

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

218

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

May 2013 13.0.0 • Added recommendation to use the state-based flow for segmented
buffers with separate trigger conditions, information about Basic OR
trigger condition, and hard processor system (HPS) external triggers.

• Updated “Segmented Buffer” on page 13-17, Conditional Mode on page
13-21, Creating Basic Trigger Conditions on page 13-16, and Using
External Triggers on page 13-48.

June 2012 12.0.0 Updated Figure 13–5 on page 13–16 and “Adding Signals to the SignalTap
II File” on page 13–10.

November 2011 11.0.1 Template update.
Minor editorial updates.

May 2011 11.0.0 Updated the requirement for the standalone SignalTap II software.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 • Add new acquisition buffer content to the “View, Analyze, and Use
Captured Data” section.

• Added script sample for generating hexadecimal CRC values in
programmed devices.

• Created cross references to Quartus II Help for duplicated procedural
content.

November 2009 9.1.0 No change to content.

March 2009 9.0.0 • Updated Table 13–1
• Updated “Using Incremental Compilation with the SignalTap II Logic

Analyzer” on page 13–45
• Added new Figure 13–33
• Made minor editorial updates

November 2008 8.1.0 Updated for the Quartus II software version 8.1 release:
• Added new section “Using the Storage Qualifier Feature” on page 14–

25
• Added description of start_store and stop_store commands in

section “Trigger Condition Flow Control” on page 14–36
• Added new section “Runtime Reconfigurable Options” on page 14–63

May 2008 8.0.0 Updated for the Quartus II software version 8.0:
• Added “Debugging Finite State machines” on page 14-24
• Documented various GUI usability enhancements, including

improvements to the resource estimator, the bus find feature, and the
dynamic display updates to the counter and flag resources in the State-
based trigger flow control tab

• Added “Capturing Data Using Segmented Buffers” on page 14–16
• Added hyperlinks to referenced documents throughout the chapter
• Minor editorial updates

5. Design Debugging with the Signal Tap Logic Analyzer

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

219

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. In-System Debugging Using External Logic Analyzers

7.1. About the Intel Quartus Prime Logic Analyzer Interface

The Intel Quartus Prime Logic Analyzer Interface (LAI) allows you to use an external
logic analyzer and a minimal number of Intel-supported device I/O pins to examine
the behavior of internal signals while your design is running at full speed on your
Intel-supported device.

The LAI connects a large set of internal device signals to a small number of output
pins. You can connect these output pins to an external logic analyzer for debugging
purposes. In the Intel Quartus Prime LAI, the internal signals are grouped together,
distributed to a user-configurable multiplexer, and then output to available I/O pins on
your Intel-supported device. Instead of having a one-to-one relationship between
internal signals and output pins, the Intel Quartus Prime LAI enables you to map many
internal signals to a smaller number of output pins. The exact number of internal
signals that you can map to an output pin varies based on the multiplexer settings in
the Intel Quartus Prime LAI.

Note: The term “logic analyzer” when used in this document includes both logic analyzers
and oscilloscopes equipped with digital channels, commonly referred to as mixed
signal analyzers or MSOs.

The LAI does not support Hard Processor System (HPS) I/Os.

Related Information

Device Support Center

7.2. Choosing a Logic Analyzer

The Intel Quartus Prime software offers the following two general purpose on-chip
debugging tools for debugging a large set of RTL signals from your design:

• The Signal Tap Logic Analyzer

• An external logic analyzer, which connects to internal signals in your Intel-
supported device by using the Intel Quartus Prime LAI

Table 72. Comparing the Signal Tap Logic Analyzer with the Logic Analyzer Interface

Feature Description Recommended Logic
Analyzer

Sample Depth You have access to a wider sample depth with an
external logic analyzer. In the Signal Tap Logic
Analyzer, the maximum sample depth is set to

LAI

continued...

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/support/programmable/support-resources/devices/devices-support-index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Feature Description Recommended Logic
Analyzer

128 Kb, which is a device constraint. However, with
an external logic analyzer, there are no device
constraints, providing you a wider sample depth.

Debugging Timing Issues Using an external logic analyzer provides you with
access to a “timing” mode, which enables you to
debug combined streams of data.

LAI

Performance You frequently have limited routing resources
available to place and route when you use the Signal
Tap Logic Analyzer with your design. An external logic
analyzer adds minimal logic, which removes resource
limits on place-and-route.

LAI

Triggering Capability The Signal Tap Logic Analyzer offers triggering
capabilities that are comparable to external logic
analyzers.

LAI or Signal Tap

Use of Output Pins Using the Signal Tap Logic Analyzer, no additional
output pins are required. Using an external logic
analyzer requires the use of additional output pins.

Signal Tap

Acquisition Speed With the Signal Tap Logic Analyzer, you can acquire
data at speeds of over 200 MHz. You can achieve the
same acquisition speeds with an external logic
analyzer; however, you must consider signal integrity
issues.

Signal Tap

Related Information

System Debugging Tools Overview on page 7

7.2.1. Required Components

To perform analysis using the LAI you need the following components:

• Intel Quartus Prime software version 15.1 or later

• The device under test

• An external logic analyzer

• An Intel FPGA communications cable

• A cable to connect the Intel-supported device to the external logic analyzer

7. In-System Debugging Using External Logic Analyzers

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

221

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 99. LAI and Hardware Setup

JTAG

(1)

(2)

FPGA

Connected to
Unused FPGA Pins

LAI

FPGA Programming
Hardware Quartus Prime Software

External Logic Analyzer
Board

Notes to figure:

1. Configuration and control of the LAI using a computer loaded with the Intel
Quartus Prime software via the JTAG port.

2. Configuration and control of the LAI using a third-party vendor logic analyzer via
the JTAG port. Support varies by vendor.

7.3. Flow for Using the LAI

Figure 100. LAI Workflow

Configure Logic Analyzer
Interface File

Create New Logic
Analyzer Interface File

Compile Project

Program Device

Control Output Pin

Debug Project

Start the Quartus Prime Software

Notes to figure:

1. Configuration and control of the LAI using a computer loaded with the Intel
Quartus Prime software via the JTAG port.

2. Configuration and control of the LAI using a third-party vendor logic analyzer via
the JTAG port. Support varies by vendor.

7. In-System Debugging Using External Logic Analyzers

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

222

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.3.1. Defining Parameters for the Logic Analyzer Interface

The Logic Analyzer Interface Editor allows you to define the parameters of the LAI.

• Click Tools ➤ Logic Analyzer Interface Editor.

Figure 101. Logic Analyzer Interface Editor

• In the Setup View list, select Core Parameters.

• Specify the parameters of the LAI instance.

Related Information

LAI Core Parameters on page 226

7.3.2. Mapping the LAI File Pins to Available I/O Pins

To assign pin locations for the LAI:

1. Select Pins in the Setup View list

7. In-System Debugging Using External Logic Analyzers

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

223

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 102. Mapping LAI file Pins

2. Double-click the Location column next to the reserved pins in the Name column,
and select a pin from the list.

3. Right-click the selected pin and locate in the Pin Planner.

Related Information

Managing Device I/O Pins

7.3.3. Mapping Internal Signals to the LAI Banks

After specifying the number of banks to use in the Core Parameters settings page,
you must assign internal signals for each bank in the LAI.

1. Click the Setup View arrow and select Bank n or All Banks.

2. To view all the bank connections, click Setup View and then select All Banks.

3. Before making bank assignments, right click the Node list and select Add Nodes
to open the Node Finder.

4. Find the signals that you want to acquire.

5. Drag the signals from the Node Finder dialog box into the bank Setup View.

When adding signals, use Signal Tap: pre-synthesis for non-incrementally
routed instances and Signal Tap: post-fitting for incrementally routed instances

As you continue to make assignments in the bank Setup View, the schematic of
the LAI in the Logical View pane begins to reflect the changes.

6. Continue making assignments for each bank in the Setup View until you add all
the internal signals that you want to acquire.

Related Information

Node Finder Command

7.3.4. Compiling Your Intel Quartus Prime Project

After you save your .lai file, a dialog box prompts you to enable the Logic Analyzer
Interface instance for the active project. Alternatively, you can define the .lai file
your project uses in the Global Project Settings dialog box. After specifying the
name of your .lai file, compile your project.

7. In-System Debugging Using External Logic Analyzers

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

224

https://www.intel.com/content/www/us/en/docs/programmable/683492/current/managing-device-i-o-pins.html
http://quartushelp.altera.com/current/#assign/unb/unb_com_node_finder.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To verify the Logic Analyzer Interface is properly compiled with your project, expand
the entity hierarchy in the Project Navigator. If the LAI is compiled with your design,
the sld_hub and sld_multitap entities are shown in the Project Navigator.

Figure 103. Project Navigator

7.3.5. Programming Your Intel-Supported Device Using the LAI

After compilation completes, you must configure your Intel-supported device before
using the LAI.

You can use the LAI with multiple devices in your JTAG chain. Your JTAG chain can also
consist of devices that do not support the LAI or non-Intel, JTAG-compliant devices. To
use the LAI in more than one Intel-supported device, create an .lai file and
configure an .lai file for each Intel-supported device that you want to analyze.

7.4. Controlling the Active Bank During Runtime

When you have programmed your Intel-supported device, you can control which bank
you map to the reserved .lai file output pins. To control which bank you map, in the
schematic in the Logical View, right-click the bank and click Connect Bank.

Figure 104. Configuring Banks

7.4.1. Acquiring Data on Your Logic Analyzer

To acquire data on your logic analyzer, you must establish a connection between your
device and the external logic analyzer. For more information about this process and for
guidelines about how to establish connections between debugging headers and logic
analyzers, refer to the documentation for your logic analyzer.

7. In-System Debugging Using External Logic Analyzers

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

225

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.5. Using the LAI with Incremental Compilation

The Incremental Compilation feature in the Intel Quartus Prime software allows you to
preserve the synthesis and fitting results of your design. In cases where you only
modify a portion of a design, or you wish to preserve the optimization results from a
previous compilation, this ability allows reducing compilation times

Because LAI consists of only a small portion of your design, incremental compilation
helps minimizing compilation time. Incremental compilation works best when you are
only changing a small portion of your design. Incremental compilation yields an
accurate representation of your design behavior when changing the .lai file through
multiple compilations.

7.6. LAI Core Parameters

The table lists the LAI file core parameters:

Table 73. LAI File Core Parameters

Parameter Range Value Description

Pin Count 1 - 255 Number of pins dedicated to the LAI. You must connect the pins to a
debug header on the board.
Within the device, The Compiler maps each pin to a user-
configurable number of internal signals.

Bank Count 1 - 255 Number of internal signals that you want to map to each pin.
For example, a Bank Count of 8 implies that you connect eight
internal signals to each pin.

Output/Capture Mode Specifies the acquisition mode. The two options are:
• Combinational/Timing—This acquisition mode uses the

external logic analyzer’s internal clock to determine when to
sample data.
This acquisition mode requires you to manually determine the
sample frequency to debug and verify the system, because the
data sampling is asynchronous to the Intel-supported device.
This mode is effective if you want to measure timing information
such as channel-to-channel skew. For more information about the
sampling frequency and the speeds at which it can run, refer to
the external logic analyzer's data sheet.

• Registered/State—This acquisition mode determines when to
sample from a signal on the system under test. Consequently, the
data samples are synchronous with the Intel-supported device.
The Registered/State mode provides a functional view of the
Intel-supported device while it is running. This mode is effective
when you verify the functionality of the design.

Clock Specifies the sample clock. You can use any signal in the design as a
sample clock. However, for best results, use a clock with an
operating frequency fast enough to sample the data that you want to
acquire.
Note: The Clock parameter is available only when Output/

Capture Mode is set to Registered State.

Power-Up State Specifies the power-up state of the pins designated for use with the
LAI. You can select tri-stated for all pins, or selecting a particular
bank that you enable.

Related Information

Defining Parameters for the Logic Analyzer Interface on page 223

7. In-System Debugging Using External Logic Analyzers

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

226

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.7. In-System Debugging Using External Logic Analyzers Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.05.07 18.0.0 • Moved list of LAI File Core Parameters from Configuring the File Core
Parameters to its own topic, and added links.

2017.05.08 17.0.0 • Updated figure: LAI Instance in Compilation Report.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 • Dita conversion
• Added limitation about HPS I/O support

June 2012 12.0.0 Removed survey link

November 2011 10.1.1 Changed to new document template

December 2010 10.1.0 • Minor editorial updates
• Changed to new document template

August 2010 10.0.1 Corrected links

July 2010 10.0.0 • Created links to the Intel Quartus Prime Help
• Editorial updates
• Removed Referenced Documents section

November 2009 9.1.0 • Removed references to APEX devices
• Editorial updates

March 2009 9.0.0 • Minor editorial updates
• Removed Figures 15–4, 15–5, and 15–11 from 8.1 version

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content

May 2008 8.0.0 • Updated device support list on page 15–3
• Added links to referenced documents throughout the chapter
• Added “Referenced Documents”
• Added reference to Section V. In-System Debugging
• Minor editorial updates

7. In-System Debugging Using External Logic Analyzers

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

227

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. In-System Modification of Memory and Constants
The Intel Quartus Prime In-System Memory Content Editor (ISMCE) allows to view and
update memories and constants at runtime through the JTAG interface. By testing
changes to memory contents in the FPGA while the design is running, you can identify,
test, and resolve issues.

The ability to read data from memories and constants can help you identify the source
of problems, and the write capability allows you to bypass functional issues by writing
expected data.

When you use the In-System Memory Content Editor in conjunction with the Signal
Tap Logic Analyzer, you can view and debug your design in the hardware lab.

Related Information

• System Debugging Tools Overview on page 7

• Design Debugging with the Signal Tap Logic Analyzer on page 146

• Megafunctions/LPM
List of the types of memories and constants currently supported by the Intel
Quartus Prime software

8.1. Setting Up In-System Modifiable Memories and Constants

When you specify that a memory or constant is run-time modifiable, the Intel Quartus
Prime software changes the default implementation. A single-port RAM is converted to
a dual-port RAM, and a constant is implemented in registers instead of look-up tables
(LUTs). These changes enable run-time modification without changing the functionality
of your design.

If you instantiate a memory or constant IP core directly with ports and parameters in
VHDL or Verilog HDL, add or modify the lpm_hint parameter as follows:

In VHDL code, add the following:

lpm_hint => "ENABLE_RUNTIME_MOD = YES,
 INSTANCE_NAME = <instantiation name>";

In Verilog HDL code, add the following:

defparam <megafunction instance name>.lpm_hint =
 "ENABLE_RUNTIME_MOD = YES,
 INSTANCE_NAME = <instantiation name>";

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://quartushelp.altera.com/current/index.htm#hdl/mega/mega_list_mega_lpm.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

8.2. Running the In-System Memory Content Editor

The In-System Memory Content Editor has three separate panes: the Instance
Manager, the JTAG Chain Configuration, and the Hex Editor.

The Instance Manager pane displays all available run-time modifiable memories and
constants in your FPGA device. The JTAG Chain Configuration pane allows you to
program your FPGA and select the Intel FPGA device in the chain to update.

Using the In-System Memory Content Editor does not require that you open a project.
The In-System Memory Content Editor retrieves all instances of run-time configurable
memories and constants by scanning the JTAG chain and sending a query to the
specific device selected in the JTAG Chain Configuration pane.

If you have more than one device with in-system configurable memories or constants
in a JTAG chain, you can launch multiple In-System Memory Content Editors within the
Intel Quartus Prime software to access the memories and constants in each of the
devices. Each In-System Memory Content Editor can access the in-system memories
and constants in a single device.

8.2.1. Instance Manager

You can read and write to in-system memory with the Instance Manager pane.
When you scan the JTAG chain to update the Instance Manager pane, you can view
a list of all run-time modifiable memories and constants in the design. The Instance
Manager pane displays the Index, Instance, Status, Width, Depth, Type, and Mode of
each element in the list.

Note: In addition to the buttons available in the Instance Manager pane, you can read and
write data by selecting commands from the Processing menu, or the right-click menu
in the Instance Manager pane or Hex Editor pane.

The status of each instance is also displayed beside each entry in the Instance
Manager pane. The status indicates if the instance is Not running, Offloading data,
or Updating data. The health monitor provides information about the status of the
editor.

The Intel Quartus Prime software assigns a different index number to each in-system
memory and constant to distinguish between multiple instances of the same memory
or constant function. View the In-System Memory Content Editor Settings section
of the Compilation Report to match an index number with the corresponding instance
ID.

Related Information

Instance Manager Pane
In Intel Quartus Prime Help

8.2.2. Editing Data Displayed in the Hex Editor Pane

You can edit data read from your in-system memories and constants displayed in the
Hex Editor pane by typing values directly into the editor or by importing memory
files.

8. In-System Modification of Memory and Constants

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

229

http://quartushelp.altera.com/current/index.htm#program/red/red_com_instance_manager.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.2.3. Importing and Exporting Memory Files

The In-System Memory Content Editor allows you to import and export data values for
memories that have the In-System Updating feature enabled. Importing from a data
file enables you to quickly load an entire memory image. Exporting to a data file
enables you to save the contents of the memory for future use.

8.2.4. Scripting Support

The Intel Quartus Prime software allows you to perform runtime modification of
memories and constants in scripted flows.

You can enable memory and constant instances to be runtime modifiable from the HDL
code. Additionally, the In-System Memory Content Editor supports reading and writing
of memory contents via Tcl commands from the insystem_memory_edit package.

Related Information

• Tcl Scripting

• Command Line Scripting

• API Functions for Tcl
In Intel Quartus Prime Help

8.2.5. Programming the Device with the In-System Memory Content
Editor

After compilation, you must program the design in the FPGA. You can use the JTAG
Chain Configuration Pane to program the device from within the In-System Memory
Content Editor.

8.2.6. Example: Using the In-System Memory Content Editor with the
Signal Tap Logic Analyzer

The following scenario describes how you can use the In-System Updating of Memory
and Constants feature with the Signal Tap Logic Analyzer to efficiently debug your
design. You can use the In-System Memory Content Editor and the Signal Tap Logic
Analyzer simultaneously with the JTAG interface.

Scenario: After completing your FPGA design, you find that the characteristics of your
FIR filter design are not as expected.

1. To locate the source of the problem, change all your FIR filter coefficients to be in-
system modifiable and instantiate the Signal Tap Logic Analyzer.

2. Using the Signal Tap Logic Analyzer to tap and trigger on internal design nodes,
you find the FIR filter to be functioning outside of the expected cutoff frequency.

3. Using the In-System Memory Content Editor, you check the correctness of the
FIR filter coefficients. Upon reading each coefficient, you discover that one of the
coefficients is incorrect.

4. Because your coefficients are in-system modifiable, you update the coefficients
with the correct data with the In-System Memory Content Editor.

8. In-System Modification of Memory and Constants

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

230

https://www.intel.com/content/www/us/en/docs/programmable/683432/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683325.html
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_list_of_packages.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In this scenario, you can quickly locate the source of the problem using both the
In-System Memory Content Editor and the Signal Tap Logic Analyzer. You can also
verify the functionality of your device by changing the coefficient values before
modifying the design source files.

You can also modify the coefficients with the In-System Memory Content Editor to
vary the characteristics of the FIR filter, for example, filter attenuation, transition
bandwidth, cut-off frequency, and windowing function.

8.3. In-System Modification of Memory and Constants Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.05.07 18.0.0 • Removed obsolete example.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 • Dita conversion.
• Removed references to megafunction and replaced with IP core.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.3 Template update.

December 2010 10.0.2 Changed to new document template. No change to content.

August 2010 10.0.1 Corrected links

July 2010 10.0.0 • Inserted links to Intel Quartus Prime Help
• Removed Reference Documents section

November 2009 9.1.0 • Delete references to APEX devices
• Style changes

March 2009 9.0.0 No change to content

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 • Added reference to Section V. In-System Debugging in volume 3 of the
Intel Quartus Prime Handbook on page 16-1

• Removed references to the Mercury device, as it is now considered to
be a “Mature” device

• Added links to referenced documents throughout document
• Minor editorial updates

8. In-System Modification of Memory and Constants

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

231

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9. Design Debugging Using In-System Sources and Probes
The Signal Tap Logic Analyzer and Signal Probe allow you to read or “tap” internal
logic signals during run time as a way to debug your logic design.

Traditional debugging techniques often involve using an external pattern generator to
exercise the logic and a logic analyzer to study the output waveforms during run time.

You can make the debugging cycle more efficient when you can drive any internal
signal manually within your design, which allows you to perform the following actions:

• Force the occurrence of trigger conditions set up in the Signal Tap Logic Analyzer

• Create simple test vectors to exercise your design without using external test
equipment

• Dynamically control run time control signals with the JTAG chain

The In-System Sources and Probes Editor in the Intel Quartus Prime software extends
the portfolio of verification tools, and allows you to easily control any internal signal
and provides you with a completely dynamic debugging environment. Coupled with
either the Signal Tap Logic Analyzer or Signal Probe, the In-System Sources and
Probes Editor gives you a powerful debugging environment in which to generate
stimuli and solicit responses from your logic design.

The Virtual JTAG IP core and the In-System Memory Content Editor also give you the
capability to drive virtual inputs into your design. The Intel Quartus Prime software
offers a variety of on-chip debugging tools.

The In-System Sources and Probes Editor consists of the ALTSOURCE_PROBE IP core
and an interface to control the ALTSOURCE_PROBE IP core instances during run time.
Each ALTSOURCE_PROBE IP core instance provides you with source output ports and
probe input ports, where source ports drive selected signals and probe ports sample
selected signals. When you compile your design, the ALTSOURCE_PROBE IP core sets
up a register chain to either drive or sample the selected nodes in your logic design.
During run time, the In-System Sources and Probes Editor uses a JTAG connection to
shift data to and from the ALTSOURCE_PROBE IP core instances. The figure shows a
block diagram of the components that make up the In-System Sources and Probes
Editor.

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 105. In-System Sources and Probes Editor Block Diagram

Design Logic

altsource_probe
Megafunction

Probes Sources

JTAG
Controller

FPGA
Programming

Hardware

Quartus Prime
Software

FPGA

D Q

D Q

The ALTSOURCE_PROBE IP core hides the detailed transactions between the JTAG
controller and the registers instrumented in your design to give you a basic building
block for stimulating and probing your design. Additionally, the In-System Sources and
Probes Editor provides single-cycle samples and single-cycle writes to selected logic
nodes. You can use this feature to input simple virtual stimuli and to capture the
current value on instrumented nodes. Because the In-System Sources and Probes
Editor gives you access to logic nodes in your design, you can toggle the inputs of low-
level components during the debugging process. If used in conjunction with the Signal
Tap Logic Analyzer, you can force trigger conditions to help isolate your problem and
shorten your debugging process.

The In-System Sources and Probes Editor allows you to easily implement control
signals in your design as virtual stimuli. This feature can be especially helpful for
prototyping your design, such as in the following operations:

• Creating virtual push buttons

• Creating a virtual front panel to interface with your design

• Emulating external sensor data

• Monitoring and changing run time constants on the fly

The In-System Sources and Probes Editor supports Tcl commands that interface with
all your ALTSOURCE_PROBE IP core instances to increase the level of automation.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

233

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

System Debugging Tools
For an overview and comparison of all the tools available in the Intel Quartus Prime
software on-chip debugging tool suite

9.1. Hardware and Software Requirements

The following components are required to use the In-System Sources and Probes
Editor:

• Intel Quartus Prime software

or

• Intel Quartus Prime Lite Edition

• Download Cable (USB-BlasterTM download cable or ByteBlasterTM cable)

• Intel FPGA development kit or user design board with a JTAG connection to device
under test

The In-System Sources and Probes Editor supports the following device families:

• Arria® series

• Stratix® series

• Cyclone® series

• MAX® series

9.2. Design Flow Using the In-System Sources and Probes Editor

The In-System Sources and Probes Editor supports an RTL flow. Signals that you want
to view in the In-System Sources and Probes editor are connected to an instance of
the In-System Sources and Probes IP core.

After you compile the design, you can control each instance via the In-System
Sources and Probes Editor pane or via a Tcl interface.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

234

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 106. FPGA Design Flow Using the In-System Sources and Probes Editor

Yes

No

Start

End

Functionality
Satisfied?

Create a New Project or Open an
Existing Project

Configure altsource_probe
Megafunction

Instrument selected logic nodes
by Instantiating the

altsource_probe Megafunction
variation file into the HDL

Design

Compile the design

Program Target Device(s)

Control Source and Probe
Instance(s)

Debug/Modify HDL

9.2.1. Instantiating the In-System Sources and Probes IP Core

To instantiate the In-System Sources and Probes IP core in a design:

1. In the IP Catalog (Tools ➤ IP Catalog), type In-System Sources and
Probes.

2. Double-click In-System Sources and Probes to open the parameter editor.

3. Specify a name for the IP variation.

4. Specify the parameters for the IP variation.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

235

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The IP core supports up to 512 bits for each source, and design can include up to
128 instances of this IP core.

5. Click Generate or Finish to generate IP core synthesis and simulation files
matching your specifications.

6. Using the generated template, instantiate the In-System Sources and Probes IP
core in your design.

Note: The In-System Sources and Probes Editor does not support simulation. Remove the
In-System Sources and Probes IP core before you create a simulation netlist.

9.2.2. In-System Sources and Probes IP Core Parameters

Use the template to instantiate the variation file in your design.

Table 74. In-System Sources and Probes IP Port Information

Port Name Required? Direction Comments

probe[] No Input The outputs from your design.

source_clk No Input Source Data is written synchronously to this clock. This input is required
if you turn on Source Clock in the Advanced Options box in the
parameter editor.

source_ena No Input Clock enable signal for source_clk. This input is required if specified in
the Advanced Options box in the parameter editor.

source[] No Output Used to drive inputs to user design.

You can include up to 128 instances of the in-system sources and probes IP core in
your design, if your device has available resources. Each instance of the IP core uses a
pair of registers per signal for the width of the widest port in the IP core. Additionally,
there is some fixed overhead logic to accommodate communication between the IP
core instances and the JTAG controller. You can also specify an additional pair of
registers per source port for synchronization.

You can use the Intel Quartus Prime incremental compilation feature to reduce
compilation time. Incremental compilation allows you to organize your design into
logical partitions. During recompilation of a design, incremental compilation preserves
the compilation results and performance of unchanged partitions and reduces design
iteration time by compiling only modified design partitions.

9.3. Compiling the Design

When you compile your design that includes the In-System Sources and ProbesIP
core, the In-System Sources and Probes and SLD Hub Controller IP core are added to
your compilation hierarchy automatically. These IP cores provide communication
between the JTAG controller and your instrumented logic.

You can modify the number of connections to your design by editing the In-System
Sources and Probes IP core. To open the design instance you want to modify in the
parameter editor, double-click the instance in the Project Navigator. You can then
modify the connections in the HDL source file. You must recompile your design after
you make changes.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

236

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the Intel Quartus Prime incremental compilation feature to reduce
compilation design into logical partitions. During recompilation of a design,
incremental compilation preserves the compilation results and performance of
unchanged partitions and reduces design iteration time by compiling only modified
design partitions.

9.4. Running the In-System Sources and Probes Editor

The In-System Sources and Probes Editor gives you control over all
ALTSOURCE_PROBE IP core instances within your design. The editor allows you to
view all available run time controllable instances of the ALTSOURCE_PROBE IP core in
your design, provides a push-button interface to drive all your source nodes, and
provides a logging feature to store your probe and source data.

To run the In-System Sources and Probes Editor:

• On the Tools menu, click In-System Sources and Probes Editor.

9.4.1. In-System Sources and Probes Editor GUI

The In-System Sources and Probes Editor contains three panes:

• JTAG Chain Configuration—Allows you to specify programming hardware,
device, and file settings that the In-System Sources and Probes Editor uses to
program and acquire data from a device.

• Instance Manager—Displays information about the instances generated when
you compile a design, and allows you to control data that the In-System Sources
and Probes Editor acquires.

• In-System Sources and Probes Editor—Logs all data read from the selected
instance and allows you to modify source data that is written to your device.

When you use the In-System Sources and Probes Editor, you do not need to open a
Intel Quartus Prime software project. The In-System Sources and Probes Editor
retrieves all instances of the ALTSOURCE_PROBE IP core by scanning the JTAG chain
and sending a query to the device selected in the JTAG Chain Configuration pane.
You can also use a previously saved configuration to run the In-System Sources and
Probes Editor.

Each In-System Sources and Probes Editor pane can access the
ALTSOURCE_PROBE IP core instances in a single device. If you have more than one
device containing IP core instances in a JTAG chain, you can launch multiple In-
System Sources and Probes Editor panes to access the IP core instances in each
device.

9.4.2. Programming Your Device With JTAG Chain Configuration

After you compile your project, you must configure your FPGA before you use the In-
System Sources and Probes Editor.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

237

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To configure a device to use with the In-System Sources and Probes Editor, perform
the following steps:

1. Open the In-System Sources and Probes Editor.

2. In the JTAG Chain Configuration pane, point to Hardware, and then select the
hardware communications device. You may be prompted to configure your
hardware; in this case, click Setup.

3. From the Device list, select the FPGA device to which you want to download the
design (the device may be automatically detected). You may need to click Scan
Chain to detect your target device.

4. In the JTAG Chain Configuration pane, click to browse for the SRAM Object File
(.sof) that includes the In-System Sources and Probes instance or instances.
(The .sof may be automatically detected).

5. Click Program Device to program the target device.

9.4.3. Instance Manager

The Instance Manager pane provides a list of all ALTSOURCE_PROBE instances in
the design, and allows you to configure data acquisition.

The Instance Manager pane contains the following buttons and sub-panes:

• Read Probe Data—Samples the probe data in the selected instance and displays
the probe data in the In-System Sources and Probes Editor pane.

• Continuously Read Probe Data—Continuously samples the probe data of the
selected instance and displays the probe data in the In-System Sources and
Probes Editor pane; you can modify the sample rate via the Probe read
interval setting.

• Stop Continuously Reading Probe Data—Cancels continuous sampling of the
probe of the selected instance.

• Read Source Data—Reads the data of the sources in the selected instances.

• Probe Read Interval—Displays the sample interval of all the In-System Sources
and Probe instances in your design; you can modify the sample interval by clicking
Manual.

• Event Log—Controls the event log that appears in the In-System Sources and
Probes Editor pane.

• Write Source Data—Allows you to manually or continuously write data to the
system.

Beside each entry, the Instance Manager pane displays the instance status. The
possible instance statuses are Not running Offloading data, Updating data, and
Unexpected JTAG communication error.

9.4.4. In-System Sources and Probes Editor Pane

The In-System Sources and Probes Editor pane allows you to view data from all
sources and probes in your design.

The data is organized according to the index number of the instance. The editor
provides an easy way to manage your signals, and allows you to rename signals or
group them into buses. All data collected from in-system source and probe nodes is
recorded in the event log and you can view the data as a timing diagram.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

238

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9.4.4.1. Reading Probe Data

You can read data by selecting the ALTSOURCE_PROBE instance in the Instance
Manager pane and clicking Read Probe Data.

This action produces a single sample of the probe data and updates the data column
of the selected index in the In-System Sources and Probes Editor pane. You can
save the data to an event log by turning on the Save data to event log option in the
Instance Manager pane.

If you want to sample data from your probe instance continuously, in the Instance
Manager pane, click the instance you want to read, and then click Continuously
read probe data. While reading, the status of the active instance shows Unloading.
You can read continuously from multiple instances.

You can access read data with the shortcut menus in the Instance Manager pane.

To adjust the probe read interval, in the Instance Manager pane, turn on the
Manual option in the Probe read interval sub-pane, and specify the sample rate in
the text field next to the Manual option. The maximum sample rate depends on your
computer setup. The actual sample rate is shown in the Current interval box. You
can adjust the event log window buffer size in the Maximum Size box.

9.4.4.2. Writing Data

To modify the source data you want to write into the ALTSOURCE_PROBE instance,
click the name field of the signal you want to change. For buses of signals, you can
double-click the data field and type the value you want to drive out to the
ALTSOURCE_PROBE instance. The In-System Sources and Probes Editor stores the
modified source data values in a temporary buffer.

Modified values that are not written out to the ALTSOURCE_PROBE instances appear in
red. To update the ALTSOURCE_PROBE instance, highlight the instance in the
Instance Manager pane and click Write source data. The Write source data
function is also available via the shortcut menus in the Instance Manager pane.

The In-System Sources and Probes Editor provides the option to continuously update
each ALTSOURCE_PROBE instance. Continuous updating allows any modifications you
make to the source data buffer to also write immediately to the ALTSOURCE_PROBE
instances. To continuously update the ALTSOURCE_PROBE instances, change the
Write source data field from Manually to Continuously.

9.4.4.3. Organizing Data

The In-System Sources and Probes Editor pane allows you to group signals into
buses, and also allows you to modify the display options of the data buffer.

To create a group of signals, select the node names you want to group, right-click and
select Group. You can modify the display format in the Bus Display Format and the
Bus Bit order shortcut menus.

The In-System Sources and Probes Editor pane allows you to rename any signal.
To rename a signal, double-click the name of the signal and type the new name.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

239

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The event log contains a record of the most recent samples. The buffer size is
adjustable up to 128k samples. The time stamp for each sample is logged and is
displayed above the event log of the active instance as you move your pointer over
the data samples.

You can save the changes that you make and the recorded data to a Sources and
Probes File (.spf). To save changes, on the File menu, click Save. The file contains
all the modifications you made to the signal groups, as well as the current data event
log.

9.5. Tcl interface for the In-System Sources and Probes Editor

To support automation, the In-System Sources and Probes Editor supports the
procedures described in this chapter in the form of Tcl commands. The Tcl package for
the In-System Sources and Probes Editor is included by default when you run
quartus_stp.

The Tcl interface for the In-System Sources and Probes Editor provides a powerful
platform to help you debug your design. The Tcl interface is especially helpful for
debugging designs that require toggling multiple sets of control inputs. You can
combine multiple commands with a Tcl script to define a custom command set.

Table 75. In-System Sources and Probes Tcl Commands

Command Argument Description

start_insystem_source_prob
e

-device_name <device name>
-hardware_name <hardware name>

Opens a handle to a device with the specified
hardware.
Call this command before starting any
transactions.

get_insystem_source_
probe_instance_info

-device_name <device name>
-hardware_name <hardware name>

Returns a list of all ALTSOURCE_PROBE
instances in your design. Each record
returned is in the following format:
{<instance Index>, <source width>, <probe
width>, <instance name>}

read_probe_data -instance_index <instance_index>
-value_in_hex (optional)

Retrieves the current value of the probe.
A string is returned that specifies the status
of each probe, with the MSB as the left-most
bit.

read_source_data -instance_index <instance_index>
-value_in_hex (optional)

Retrieves the current value of the sources.
A string is returned that specifies the status
of each source, with the MSB as the left-most
bit.

write_source_data -instance_index <instance_index>
-value <value>
-value_in_hex (optional)

Sets the value of the sources.
A binary string is sent to the source ports,
with the MSB as the left-most bit.

end_insystem_source_probe None Releases the JTAG chain.
Issue this command when all transactions are
finished.

The example shows an excerpt from a Tcl script with procedures that control the
ALTSOURCE_PROBE instances of the design as shown in the figure below. The
example design contains a DCFIFO with ALTSOURCE_PROBE instances to read from
and write to the DCFIFO. A set of control muxes are added to the design to control the
flow of data to the DCFIFO between the input pins and the ALTSOURCE_PROBE
instances. A pulse generator is added to the read request and write request control

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

240

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

lines to guarantee a single sample read or write. The ALTSOURCE_PROBE instances,
when used with the script in the example below, provide visibility into the contents of
the FIFO by performing single sample write and read operations and reporting the
state of the full and empty status flags.

Use the Tcl script in debugging situations to either empty or preload the FIFO in your
design. For example, you can use this feature to preload the FIFO to match a trigger
condition you have set up within the Signal Tap Logic Analyzer.

Figure 107. DCFIFO Example Design Controlled by Tcl Script

Write_clock

write_req
data[7..0]

write_clock

read_req

read_clock

wr_full

Q[7..0]

rd_empty

data_out

read_clock
source_read_sel

s_read_req

s_write_req

rd_req_in

wr_req_in

data_in[7..0]

altsource_probe
(Instance 1)

altsource_probe
(Instance 0)

source_write_sel

s_data[7..0]
D Q

D Q

Setup USB hardware - assumes only USB Blaster is installed and
an FPGA is the only device in the JTAG chain
set usb [lindex [get_hardware_names] 0]
set device_name [lindex [get_device_names -hardware_name $usb] 0]
write procedure : argument value is integer
proc write {value} {
global device_name usb
variable full
start_insystem_source_probe -device_name $device_name -hardware_name $usb
#read full flag
set full [read_probe_data -instance_index 0]
if {$full == 1} {end_insystem_source_probe
return "Write Buffer Full"
}
##toggle select line, drive value onto port, toggle enable
##bits 7:0 of instance 0 is S_data[7:0]; bit 8 = S_write_req;
##bit 9 = Source_write_sel
##int2bits is custom procedure that returns a bitstring from an integer
 ## argument
write_source_data -instance_index 0 -value /[int2bits [expr 0x200 | $value]]
write_source_data -instance_index 0 -value [int2bits [expr 0x300 | $value]]
##clear transaction
write_source_data -instance_index 0 -value 0

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

241

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

end_insystem_source_probe
}
proc read {} {
global device_name usb
variable empty
start_insystem_source_probe -device_name $device_name -hardware_name $usb
##read empty flag : probe port[7:0] reads FIFO output; bit 8 reads empty_flag
set empty [read_probe_data -instance_index 1]
if {[regexp {1........} $empty]} { end_insystem_source_probe
return "FIFO empty" }
toggle select line for read transaction
Source_read_sel = bit 0; s_read_reg = bit 1
pulse read enable on DC FIFO
write_source_data -instance_index 1 -value 0x1 -value_in_hex
write_source_data -instance_index 1 -value 0x3 -value_in_hex
set x [read_probe_data -instance_index 1]
end_insystem_source_probe
return $x
}

Related Information

• Tcl Scripting

• Intel Quartus Prime Settings File Manual

• Command Line Scripting

9.6. Design Example: Dynamic PLL Reconfiguration

The In-System Sources and Probes Editor can help you create a virtual front panel
during the prototyping phase of your design. You can create relatively simple, high
functioning designs of in a short amount of time. The following PLL reconfiguration
example demonstrates how to use the In-System Sources and Probes Editor to
provide a GUI to dynamically reconfigure a Stratix PLL.

Stratix PLLs allow you to dynamically update PLL coefficients during run time. Each
enhanced PLL within the Stratix device contains a register chain that allows you to
modify the pre-scale counters (m and n values), output divide counters, and delay
counters. In addition, the ALTPLL_RECONFIG IP core provides an easy interface to
access the register chain counters. The ALTPLL_RECONFIG IP core provides a cache
that contains all modifiable PLL parameters. After you update all the PLL parameters in
the cache, the ALTPLL_RECONFIG IP core drives the PLL register chain to update the
PLL with the updated parameters. The figure shows a Stratix-enhanced PLL with
reconfigurable coefficients.

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

242

https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683084.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 108. Stratix-Enhanced PLL with Reconfigurable Coefficients

÷n Δtn

Δt
m

÷m

÷g0 Δt
g0

÷e3 Δt
e3

÷g3 Δt
g3

PFD VCOCharge
Pump

Loop
Filter

fREF

scandata

scanclk

scanaclr

Counters and Clock
Delay Settings are
Programmable

All Output Counters and
Clock Delay Settings can
be Programmed Dynamically

LSB MSB

LSB MSB

LSB MSB

LSB MSB

LSB

MSB

(1) (2)

The following design example uses an ALTSOURCE_PROBE instance to update the PLL
parameters in the ALTPLL_RECONFIG IP core cache. The ALTPLL_RECONFIG IP core
connects to an enhanced PLL in a Stratix FPGA to drive the register chain containing
the PLL reconfigurable coefficients. This design example uses a Tcl/Tk script to
generate a GUI where you can enter in new m and n values for the enhanced PLL. The
Tcl script extracts the m and n values from the GUI, shifts the values out to the
ALTSOURCE_PROBE instances to update the values in the ALTPLL_RECONFIG IP core
cache, and asserts the reconfiguration signal on the ALTPLL_RECONFIG IP core. The
reconfiguration signal on the ALTPLL_RECONFIG IP core starts the register chain
transaction to update all PLL reconfigurable coefficients.

Figure 109. Block Diagram of Dynamic PLL Reconfiguration Design Example

In-System Sources
and Probes
Tcl Interface

JTAG
Interface

Counter
Parameters

Stratix FPGA50 MHz

PLL_scandata
PLL_scandlk
PLL_scanaclr

E0

C0

C1

fref

Stratix-Enhanced
PLLalt_pll_reconfig

Megafunction

In-System
Sources and

Probes

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

243

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This design example was created using a Nios II Development Kit, Stratix Edition. The
file sourceprobe_DE_dynamic_pll.zip contains all the necessary files for running
this design example, including the following:

• Readme.txt—A text file that describes the files contained in the design example
and provides instructions about running the Tk GUI shown in the figure below.

• Interactive_Reconfig.qar—The archived Intel Quartus Prime project for this
design example.

Figure 110. Interactive PLL Reconfiguration GUI Created with Tk and In-System Sources
and Probes Tcl Package

Related Information

On-chip Debugging Design Examples
to download the In-System Sources and Probes Example

9.7. Design Debugging Using In-System Sources and Probes
Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2018.05.07 18.0.0 Added details on finding the In-System Sources and Probes in the IP
Catalog.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 Updated formatting.

June 2012 12.0.0 Removed survey link.

November 2011 10.1.1 Template update.

December 2010 10.1.0 Minor corrections. Changed to new document template.

July 2010 10.0.0 Minor corrections.

November 2009 9.1.0 • Removed references to obsolete devices.
• Style changes.

continued...

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Debug Tools Send Feedback

244

https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/horizontal/on-chip-debugging.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

March 2009 9.0.0 No change to content.

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 • Documented that this feature does not support simulation on page 17–
5

• Updated Figure 17–8 for Interactive PLL reconfiguration manager
• Added hyperlinks to referenced documents throughout the chapter
• Minor editorial updates

9. Design Debugging Using In-System Sources and Probes

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

245

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683552 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys* that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics*, and Synopsys*. Includes design flow steps,
generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor
Graphics* and Cadence*. Also includes information about signal integrity
analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

A. Intel Quartus Prime Standard Edition User Guides

683552 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Debug Tools

247

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Debug%20Tools%20(683552%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Standard
Edition User Guide
Timing Analyzer

Updated for Intel® Quartus® Prime Design Suite: 18.1

This document is part of a collection - Intel® Quartus® Prime Standard Edition User Guides -
Combined PDF link

Online Version

Send Feedback UG-20183

683068

2024.02.21

https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683068.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Timing Analysis Introduction.. 3
1.1. Timing Analysis Basic Concepts... 3

1.1.1. Timing Path and Clock Analysis..4
1.1.2. Clock Setup Analysis.. 7
1.1.3. Clock Hold Analysis..8
1.1.4. Recovery and Removal Analysis... 9
1.1.5. Multicycle Path Analysis.. 10
1.1.6. Metastability Analysis... 14
1.1.7. Timing Pessimism.. 15
1.1.8. Clock-As-Data Analysis... 16
1.1.9. Multicorner Analysis... 17

1.2. Document Revision History..19

2. Using the Intel Quartus Prime Timing Analyzer.. 20
2.1. Enhanced Timing Analysis for Intel Arria® 10 Devices... 20
2.2. Basic Timing Analysis Flow.. 20

2.2.1. Step 1: Open a Project and Run the Fitter... 20
2.2.2. Step 2: Specify Timing Constraints...21
2.2.3. Step 3: Specify General Timing Analyzer Settings...22
2.2.4. Step 4: Run Timing Analysis..24
2.2.5. Step 5: Analyze Timing Analysis Results..25

2.3. Using Timing Constraints.. 32
2.3.1. Recommended Initial SDC Constraints.. 32
2.3.2. SDC File Precedence...35
2.3.3. Iterative Constraint Modification...36
2.3.4. Creating Clocks and Clock Constraints.. 37
2.3.5. Creating I/O Constraints... 50
2.3.6. Creating Delay and Skew Constraints..52
2.3.7. Creating Timing Exceptions... 55
2.3.8. Example Circuit and SDC File...80

2.4. Timing Analyzer Tcl Commands..82
2.4.1. The quartus_sta Executable...82
2.4.2. Collection Commands... 83
2.4.3. Identifying the Intel Quartus Prime Software Executable from the SDC File......87

2.5. Timing Analysis of Imported Compilation Results..87
2.6. Using the Intel Quartus Prime Timing Analyzer Document Revision History.................. 87

A. Intel Quartus Prime Standard Edition User Guides..90

Contents

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Timing Analysis Introduction
Comprehensive timing analysis of your design allows you to validate circuit
performance, identify timing violations, and drive the Fitter's placement of logic to
meet your timing goals. The Intel® Quartus® Prime Timing Analyzer uses industry-
standard constraint and analysis methodology to report on all data required times,
data arrival times, and clock arrival times for all register-to-register, I/O, and
asynchronous reset paths in your design.

The Timing Analyzer verifies that required timing relationships are met for your design
to correctly function, and confirms actual signal arrival times against the constraints
that you specify. This use guide provides an introduction to basic timing analysis
concepts, along with step-by-step instructions for using the Intel Quartus Prime
Timing Analyzer.

1.1. Timing Analysis Basic Concepts

This user guide introduces the following concepts to describe timing analysis:

Table 1. Timing Analyzer Terminology

Term Definition

Arrival time The Timing Analyzer calculates the data and clock arrival time versus the required time
at register pins.

Cell Device resource that contains look-up tables (LUT), registers, digital signal processing
(DSP) blocks, memory blocks, or input/output elements. In Intel Stratix® series
devices, the LUTs and registers are contained in logic elements (LE) modeled as cells.

Clock Named signal representing clock domains inside or outside of your design.

Clock-as-data analysis More accurate timing analysis for complex paths that includes any phase shift
associated with a PLL for the clock path, and considers any related phase shift for the
data path.

Clock hold time Minimum time interval that a signal must be stable on the input pin that feeds a data
input or clock enable, after an active transition on the clock input.

Clock launch and latch edge The launch edge is the clock edge that sends data out of a register or other sequential
element, and acts as a source for the data transfer. The latch edge is the active clock
edge that captures data at the data port of a register or other sequential element,
acting as a destination for the data transfer.

Clock pessimism Clock pessimism refers to use of the maximum (rather than minimum) delay variation
associated with common clock paths during static timing analysis.

Clock setup Minimum time interval between the assertion of a signal at a data input, and the
assertion of a low-to-high transition on the clock input.

Net A collection of two or more interconnected components.

Node Represents a wire carrying a signal that travels between different logical components
in the design. Most basic timing netlist unit. Used to represent ports, pins, and
registers.

continued...

683068 | 2024.02.21

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Term Definition

Pin Inputs or outputs of cells.

Port Top-level module inputs or outputs; for example, a device pin.

Metastability Metastability problems can occur when a signal transfers between circuitry in unrelated
or asynchronous clock domains. The Timing Analyzer analyzes the potential for
metastability in your design and can calculate the MTBF for synchronization register
chains.

Multicorner analysis Timing analysis of slow and fast timing corners to verify your design under a variety of
voltage, process, and temperature operating conditions.

Multicycle paths A data path that requires a non-default setup or hold relationship for proper analysis.

Recovery and removal time Recovery time is the minimum length of time for the deassertion of an asynchronous
control signal relative to the next clock edge. Removal time is the minimum length of
time the deassertion of an asynchronous control signal must be stable after the active
clock edge.

Timing netlist A Compiler-generated list of your design's synthesized nodes and connections. The
Timing Analyzer requires this netlist to perform timing analysis.

Timing path The wire connection (net) between any two design nodes, such as the output of a
register to the input of another register.

1.1.1. Timing Path and Clock Analysis

The Timing Analyzer measures the timing performance for all timing paths identified in
your design. The Timing Analyzer requires a timing netlist that describes your design's
nodes and connections for analysis. The Timing Analyzer also determines clock
relationships for all register-to-register transfers in your design by analyzing the clock
setup and hold relationship between the launch edge and latch edge of the clock.

1.1.1.1. The Timing Netlist

The Timing Analyzer uses the timing netlist data to determine the data and clock
arrival time versus required time for all timing paths in the design. You can generate
the timing netlist in the Timing Analyzer any time after running the Fitter or full
compilation.

The following figures illustrate how the timing netlist divides the design elements into
cells, pins, nets, and ports for measurement of delay.

Figure 1. Simple Design Schematic

data1

data2

clk

reg1

reg2

and_inst

reg3

1. Timing Analysis Introduction

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Division of Simple Design Schematic Elements in Timing Netlist

reg2

data1

data2

clk clk~clkctrl

reg1

and_inst
reg3 data_out

combout

inclk0

datain

clk regout

regout

datac

datad

combout
datain

Cells
Cell

Cell

Pin

Pin

outclk

Port

Port

Net Net

Net

1.1.1.2. Timing Paths

Timing paths connect two design nodes, such as the output of a register to the input
of another register.

Understanding the types of timing paths is important to timing closure and
optimization. The Timing Analyzer recognizes and analyzes the following timing paths:

• Edge paths—connections from ports-to-pins, from pins-to-pins, and from pins-to-
ports.

• Clock paths—connections from device ports or internally generated clock pins to
the clock pin of a register.

• Data paths—connections from a port or the data output pin of a sequential
element to a port or the data input pin of another sequential element.

• Asynchronous paths—connections from a port or asynchronous pins of another
sequential element such as an asynchronous reset or asynchronous clear.

Figure 3. Path Types Commonly Analyzed by the Timing Analyzer

CLRN

D Q

CLRN

D Q

clk

rst

Clock Path Data Path

Asynchronous Clear Path

data

In addition to identifying various paths in a design, the Timing Analyzer analyzes clock
characteristics to compute the worst-case requirement between any two registers in a
single register-to-register path. You must constrain all clocks in your design before
analyzing clock characteristics.

1. Timing Analysis Introduction

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.1.1.3. Data and Clock Arrival Times

After the Timing Analyzer identifies the path type, the Timing Analyzer can report data
and clock arrival times at register pins.

The Timing Analyzer calculates data arrival time by adding the launch edge time to the
delay from the clock source to the clock pin of the source register, the micro clock-to-
output delay (µtCO) of the source register, and the delay from the source register’s
data output (Q) to the destination register’s data input (D).

The Timing Analyzer calculates data required time by adding the latch edge time to
the sum of all delays between the clock port and the clock pin of the destination
register, including any clock port buffer delays, and subtracts the micro setup time
(µtSU) of the destination register, where the µtSU is the intrinsic setup time of an
internal register in the FPGA.

Figure 4. Data Arrival and Data Required Times

D Q D Q

Data Arrival Time

Data Required Time

The basic calculations for data arrival and data required times including the launch and
latch edges.

Figure 5. Data Arrival and Data Required Time Equations

Data Arrival Time = Launch Edge + Source Clock Delay + µtCO + Register-to-Register Delay
Data Required Time = Latch Edge + Destination Clock Delay – µtSU

1.1.1.4. Launch and Latch Edges

All timing analysis requires the presence of one or more clock signals. The Timing
Analyzer determines clock relationships for all register-to-register transfers in your
design by analyzing the clock setup and hold relationship between the launch edge
and latch edge of the clock.

The launch edge of the clock signal is the clock edge that sends data out of a register
or other sequential element, and acts as a source for the data transfer. The latch edge
is the active clock edge that captures data at the data port of a register or other
sequential element, acting as a destination for the data transfer.

1. Timing Analysis Introduction

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Setup and Hold Relationship for Launch and Latch Edges 10ns Apart
In this example, the launch edge sends the data from register reg1 at 0 ns, and the register reg2 captures
the data when triggered by the latch edge at 10 ns. The data arrives at the destination register before the next
latch edge.

Launch Clock

Latch Clock

0ns 10ns 20ns

Setup relationshipHold relationship

You create define constraints for all clocks and assign the constraints to nodes in your
design. These clock constraints provide the structure required for repeatable data
relationships. If you do not constrain the clocks in your design, the Intel Quartus
Prime software analyzes in terms of a 1 GHz clock to maximize timing based Fitter
effort. To ensure realistic slack values, you must constrain all clocks in your design
with real values.

1.1.2. Clock Setup Analysis

To perform a clock setup check, the Timing Analyzer determines a setup relationship
by analyzing each launch and latch edge for each register-to-register path.

For each latch edge at the destination register, the Timing Analyzer uses the closest
previous clock edge at the source register as the launch edge. The following figure
shows two setup relationships, setup A and setup B. For the latch edge at 10 ns, the
closest clock that acts as a launch edge is at 3 ns and has the setup A label. For the
latch edge at 20 ns, the closest clock that acts as a launch edge is 19 ns and has the
setup B label. The Timing Analyzer analyzes the most restrictive setup relationship, in
this case setup B; if that relationship meets the design requirement, then setup A
meets the requirement by default.

Figure 7. Setup Check

Setup A Setup B

0 ns 8 ns 16 ns 24 ns 32 ns

Source Clock

Destination Clock

The Timing Analyzer reports the result of clock setup checks as slack values. Slack is
the margin by which a timing requirement is met or not met. Positive slack indicates
the margin by which a requirement is met; negative slack indicates the margin by
which a requirement is not met.

1. Timing Analysis Introduction

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8. Clock Setup Slack for Internal Register-to-Register Paths

Clock Setup Slack = Data Required Time – Data Arrival Time
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + µtCO + Register-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register – µtSU – Setup Uncertainty

The Timing Analyzer performs setup checks using the maximum delay when
calculating data arrival time, and minimum delay when calculating data required time.

Figure 9. Clock Setup Slack from Input Port to Internal Register

Clock Setup Slack = Data Required Time – Data Arrival Time
Data Arrival Time = Launch Edge + Clock Network Delay + Input Maximum Delay + Port-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register – µtSU – Setup Uncertainty

Figure 10. Clock Setup Slack from Internal Register to Output Port

Clock Setup Slack = Data Required Time – Data Arrival Time
Data Required Time = Latch Edge + Clock Network Delay to Output Port – Output Maximum Delay
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register +µtCO + Register-to-Port Delay

1.1.3. Clock Hold Analysis

To perform a clock hold check, the Timing Analyzer determines a hold relationship for
each possible setup relationship that exists for all source and destination register
pairs. The Timing Analyzer checks all adjacent clock edges from all setup relationships
to determine the hold relationships.

The Timing Analyzer performs two hold checks for each setup relationship. The first
hold check determines that the data launched by the current launch edge is not
captured by the previous latch edge. The second hold check determines that the data
launched by the next launch edge is not captured by the current latch edge. From the
possible hold relationships, the Timing Analyzer selects the hold relationship that is
the most restrictive. The most restrictive hold relationship is the hold relationship with
the smallest difference between the latch and launch edges and determines the
minimum allowable delay for the register-to-register path. In the following example,
the Timing Analyzer selects hold check A2 as the most restrictive hold relationship of
two setup relationships, setup A and setup B, and their respective hold checks.

Figure 11. Setup and Hold Check Relationships

Setup A Setup B

0 ns 8 ns 16 ns 24 ns 32 ns

Source Clock

Destination Clock

Hold
Check A1

Hold
Check B2

Hold
Check A2

Hold
Check B1

1. Timing Analysis Introduction

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. Clock Hold Slack for Internal Register-to-Register Paths

Clock Hold Slack = Data Arrival Time – Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + µtCO + Register-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + µtH + Hold Uncertainty

The Timing Analyzer performs hold checks using the minimum delay when calculating
data arrival time, and maximum delay when calculating data required time.

Figure 13. Clock Hold Slack Calculation from Input Port to Internal Register

Clock Hold Slack = Data Arrival Time – Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay + Input Minimum Delay + Pin-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + µtH

Figure 14. Clock Hold Slack Calculation from Internal Register to Output Port

Clock Hold Slack = Data Arrival Time – Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + µtCO + Register-to-Pin Delay
Data Required Time = Latch Edge + Clock Network Delay – Output Minimum Delay

1.1.4. Recovery and Removal Analysis

Recovery time is the minimum length of time for the deassertion of an asynchronous
control signal relative to the next clock edge.

For example, signals such as clear and preset must be stable before the next
active clock edge. The recovery slack calculation is similar to the clock setup slack
calculation, but the calculation applies to asynchronous control signals.

Figure 15. Recovery Slack Calculation if the Asynchronous Control Signal is Registered

Recovery Slack Time = Data Required Time – Data Arrival Time
Data Required Time = Latch Edge + Clock Network Delay to Destination Register – µtSU

Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + µtCO + Register-to-Register Delay

Figure 16. Recovery Slack Calculation if the Asynchronous Control Signal is not
Registered

Recovery Slack Time = Data Required Time – Data Arrival Time
Data Required Time = Latch Edge + Clock Network Delay to Destination Register – µtSU

Data Arrival Time = Launch Edge + Clock Network Delay + Input Maximum Delay + Port-to-Register Delay

Note: If the asynchronous reset signal is from a device I/O port, you must create an input
delay constraint for the asynchronous reset port for the Timing Analyzer to perform
recovery analysis on the path.

Removal time is the minimum length of time the deassertion of an asynchronous
control signal must be stable after the active clock edge. The Timing Analyzer removal
slack calculation is similar to the clock hold slack calculation, but the calculation
applies asynchronous control signals.

1. Timing Analysis Introduction

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17. Removal Slack Calculation if the Asynchronous Control Signal is Registered
Removal Slack Time = Data Arrival Time – Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + µtCO of Source Register + Register-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + µtH

Figure 18. Removal Slack Calculation if the Asynchronous Control Signal is not
Registered

Removal Slack Time = Data Arrival Time – Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay + Input Minimum Delay of Pin + Minimum Pin-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + µtH

If the asynchronous reset signal is from a device pin, you must assign the Input
Minimum Delay timing assignment to the asynchronous reset pin for the Timing
Analyzer to perform removal analysis on the path.

1.1.5. Multicycle Path Analysis

Multicycle paths are data paths that require either a non-default setup or hold
relationship, for proper analysis.

For example, a register may be required to capture data on every second or third
rising clock edge. An example of a multicycle path between the input registers of a
multiplier and an output register where the destination latches data on every other
clock edge.

Figure 19. Multicycle Path

2 Cycles

ENA

D Q

ENA

D Q

D Q

ENA

A register-to-register path used for the default setup and hold relationship, the
respective timing diagrams for the source and destination clocks, and the default
setup and hold relationships, when the source clock, src_clk, has a period of 10 ns
and the destination clock, dst_clk, has a period of 5 ns. The default setup
relationship is 5 ns; the default hold relationship is 0 ns.

1. Timing Analysis Introduction

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. Register-to-Register Path and Default Setup and Hold Timing Diagram

reg reg

data_out
data_in

src_clk

dst_clk

D Q D Q

0 10 20 30

setup
hold

To accommodate the system requirements you can modify the default setup and hold
relationships by specifying a multicycle timing constraint to a register-to-register path.

Figure 21. Register-to-Register Path

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLR

CLK

Tclk1

TCO TSU / TH

Tdata

Tclk2

The exception has a multicycle setup assignment of two to use the second occurring
latch edge; in this example, to 10 ns from the default value of 5 ns.

Figure 22. Modified Setup Diagram

 new setup
default setup

0 10 20 30

1.1.5.1. Multicycle Clock Hold

The number of clock periods between the clock launch edge and the latch edge defines
the setup relationship.

1. Timing Analysis Introduction

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

By default, the Timing Analyzer performs a single-cycle path analysis, which results in
the hold relationship being equal to one clock period (launch edge – latch edge).When
analyzing a path, the Timing Analyzer performs two hold checks. The first hold check
determines that the data that launches from the current launch edge is not captured
by the previous latch edge. The second hold check determines that the data that
launches from the next launch edge is not captured by the current latch edge. The
Timing Analyzer reports only the most restrictive hold check. The Timing Analyzer
calculates the hold check by comparing launch and latch edges.

The calculation the Timing Analyzer performs to determine the hold check.

Figure 23. Hold Check

hold check 1 = current launch edge – previous latch edge
hold check 2 = next launch edge – current latch edge

Tip: If a hold check overlaps a setup check, the hold check is ignored.

A start multicycle hold assignment modifies the launch edge of the destination clock
by moving the latch edge the number of clock periods you specify to the right of the
default launch edge. The following figure shows various values of the start multicycle
hold (SMH) assignment and the resulting launch edge.

Figure 24. Start Multicycle Hold Values
-10 0 10 20

Source Clock

Destination Clock

SMH = 1
SMH = 0
(default) SMH = 2

An end multicycle hold assignment modifies the latch edge of the destination clock by
moving the latch edge the specific number of clock periods to the left of the default
latch edge. The following figure shows various values of the end multicycle hold (EMH)
assignment and the resulting latch edge.

Figure 25. End Multicycle Hold Values

Source Clock

Destination Clock

EMH = 0
(Default)

EMH = 2

EMH = 1

-20 -10 0 10 20

1. Timing Analysis Introduction

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following shows the hold relationship the Timing Analyzer reports for the negative
hold relationship:

Figure 26. End Multicycle Hold Values the Timing Analyzer Reports

Source Clock

Destination Clock

EMH = 0
(Default)

EMH = 2

EMH = 1

-10 0 10 20

1.1.5.2. Multicycle Clock Setup

The setup relationship is defined as the number of clock periods between the latch
edge and the launch edge. By default, the Timing Analyzer performs a single-cycle
path analysis, which results in the setup relationship being equal to one clock period
(latch edge – launch edge). Applying a multicycle setup assignment, adjusts the setup
relationship by the multicycle setup value. The adjustment value may be negative.

An end multicycle setup assignment modifies the latch edge of the destination clock by
moving the latch edge the specified number of clock periods to the right of the
determined default latch edge. The following figure shows various values of the end
multicycle setup (EMS) assignment and the resulting latch edge.

Figure 27. End Multicycle Setup Values
-10 0 10 20

REG1.CLK

REG2.CLK

EMS = 2

EMS = 1
(default)

EMS = 3

A start multicycle setup assignment modifies the launch edge of the source clock by
moving the launch edge the specified number of clock periods to the left of the
determined default launch edge. A start multicycle setup (SMS) assignment with
various values can result in a specific launch edge.

1. Timing Analysis Introduction

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 28. Start Multicycle Setup Values

Source Clock

Destination Clock

SMS = 1
(Default)

SMS = 2

SMS = 3

0 10 20 30 40

The setup relationship reported by the Timing Analyzer for the negative setup
relationship.

Figure 29. Start Multicycle Setup Values Reported by the Timing Analyzer
-10 0 10 20

Source Clock

Destination Clock

SMS = 2

SMS = 1
(default) SMS = 3

1.1.6. Metastability Analysis

Metastability problems can occur when a signal transfers between circuitry in
unrelated or asynchronous clock domains because the signal does not meet setup and
hold time requirements.

To minimize the failures due to metastability, circuit designers typically use a sequence
of registers, also known as a synchronization register chain, or synchronizer, in the
destination clock domain to resynchronize the data signals to the new clock domain.

The mean time between failures (MTBF) is an estimate of the average time between
instances of failure due to metastability.

The Timing Analyzer analyzes the potential for metastability in your design and can
calculate the MTBF for synchronization register chains. The Timing Analyzer then
estimates the MTBF of the entire design from the synchronization chains the design
contains.

In addition to reporting synchronization register chains found in the design, the Intel
Quartus Prime software also protects these registers from optimizations that might
negatively impact MTBF, such as register duplication and logic retiming. The Intel
Quartus Prime software can also optimize the MTBF of your design if the MTBF is too
low.

1. Timing Analysis Introduction

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Understanding Metastability in FPGAs

1.1.7. Timing Pessimism

Common clock path pessimism removal accounts for the minimum and maximum
delay variation associated with common clock paths during static timing analysis by
adding the difference between the maximum and minimum delay value of the
common clock path to the appropriate slack equation.

Minimum and maximum delay variation can occur when two different delay values are
used for the same clock path. For example, in a simple setup analysis, the maximum
clock path delay to the source register is used to determine the data arrival time. The
minimum clock path delay to the destination register is used to determine the data
required time. However, if the clock path to the source register and to the destination
register share a common clock path, both the maximum delay and the minimum delay
are used to model the common clock path during timing analysis. The use of both the
minimum delay and maximum delay results in an overly pessimistic analysis since two
different delay values, the maximum and minimum delays, cannot be used to model
the same clock path.

Figure 30. Typical Register to Register Path

D Q

D Q
clk

A

B

C

reg1

reg2

5.5 ns
5.0 ns

2.2 ns
2.0 ns

2.2 ns
2.0 ns

3.2 ns
3.0 ns

Segment A is the common clock path between reg1 and reg2. The minimum delay is
5.0 ns; the maximum delay is 5.5 ns. The difference between the maximum and
minimum delay value equals the common clock path pessimism removal value; in this
case, the common clock path pessimism is 0.5 ns. The Timing Analyzer adds the
common clock path pessimism removal value to the appropriate slack equation to
determine overall slack. Therefore, if the setup slack for the register-to-register path
in the example equals 0.7 ns without common clock path pessimism removal, the
slack is 1.2 ns with common clock path pessimism removal.

You can also use common clock path pessimism removal to determine the minimum
pulse width of a register. A clock signal must meet a register’s minimum pulse width
requirement to be recognized by the register. A minimum high time defines the
minimum pulse width for a positive-edge triggered register. A minimum low time
defines the minimum pulse width for a negative-edge triggered register.

Clock pulses that violate the minimum pulse width of a register prevent data from
being latched at the data pin of the register. To calculate the slack of the minimum
pulse width, the Timing Analyzer subtracts the required minimum pulse width time
from the actual minimum pulse width time. The Timing Analyzer determines the actual
minimum pulse width time by the clock requirement you specified for the clock that

1. Timing Analysis Introduction

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

15

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

feeds the clock port of the register. The Timing Analyzer determines the required
minimum pulse width time by the maximum rise, minimum rise, maximum fall, and
minimum fall times.

Figure 31. Required Minimum Pulse Width time for the High and Low Pulse

High Pulse
Width

Low Pulse
Width

Minimum and
Maximum
Fall Arrival Times

Minimum and
Maximum Rise

Rise Arrival Times

0.8
0.5

0.5
0.8

0.9
0.7

With common clock path pessimism, the minimum pulse width slack can be increased
by the smallest value of either the maximum rise time minus the minimum rise time,
or the maximum fall time minus the minimum fall time. In the example, the slack
value can be increased by 0.2 ns, which is the smallest value between 0.3 ns (0.8 ns –
 0.5 ns) and 0.2 ns (0.9 ns – 0.7 ns).

1.1.8. Clock-As-Data Analysis

The majority of FPGA designs contain simple connections between any two nodes
known as either a data path or a clock path.

A data path is a connection between the output of a synchronous element to the input
of another synchronous element.

A clock is a connection to the clock pin of a synchronous element. However, for more
complex FPGA designs, such as designs that use source-synchronous interfaces, this
simplified view is no longer sufficient. Clock-as-data analysis is performed in circuits
with elements such as clock dividers and DDR source-synchronous outputs.

The connection between the input clock port and output clock port can be treated
either as a clock path or a data path. A design where the path from port clk_in to
port clk_out is both a clock and a data path. The clock path is from the port clk_in
to the register reg_data clock pin. The data path is from port clk_in to the port
clk_out.

Figure 32. Simplified Source Synchronous Output

D Q

clk_in clk_out

reg_data

1. Timing Analysis Introduction

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

With clock-as-data analysis, the Timing Analyzer provides a more accurate analysis of
the path based on user constraints. For the clock path analysis, any phase shift
associated with the phase-locked loop (PLL) is taken into consideration. For the data
path analysis, any phase shift associated with the PLL is taken into consideration
rather than ignored.

The clock-as-data analysis also applies to internally generated clock dividers. An
internally generated clock divider. In this figure, waveforms are for the inverter
feedback path, analyzed during timing analysis. The output of the divider register is
used to determine the launch time and the clock port of the register is used to
determine the latch time.

Figure 33. Clock Divider

D Q

D Q

Launch Clock (2 T)

Data Arrival Time

Latch Clock (T)

1.1.9. Multicorner Analysis

The Timing Analyzer performs multicorner timing analysis to verify your design under
a variety of operating conditions—such as voltage, process, and temperature—while
performing static timing analysis.

To change the operating conditions or speed grade of the current device for timing
analysis, use the set_operating_conditions command.

If you specify an operating condition Tcl object, the -model, -speed, -
temperature, and -voltage options are available. If you do not specify an
operating condition Tcl object, Tcl requires the -model option. -speed, -
temperature, and -voltage are optional.

1. Timing Analysis Introduction

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tip: To obtain a list of available operating conditions for the target device, use the
get_available_operating_conditions -all command.

To ensure that no violations occur under various conditions during the device
operation, perform static timing analysis under all available operating conditions.

Table 2. Operating Conditions for Slow and Fast Models

Model Speed Grade Voltage Temperature

Slow Slowest speed grade in
device density

Vcc minimum supply (1) Maximum TJ (1)

Fast Fastest speed grade in
device density

Vcc maximum supply (1) Minimum TJ (1)

Note :
1. Refer to the DC & Switching Characteristics chapter of the applicable device Handbook for Vcc and TJ.

values

In your design, you can set the operating conditions for to the slow timing model, with
a voltage of 1100 mV, and temperature of 85° C with the following code:

set_operating_conditions -model slow -temperature 85 -voltage 1100

You can set the same operating conditions with a Tcl object:

set_operating_conditions 3_slow_1100mv_85c

The following block of code shows how to use the set_operating_conditions
command to generate different reports for various operating conditions.

Example 1. Script Excerpt for Analysis of Various Operating Conditions

#Specify initial operating conditions
set_operating_conditions -model slow -speed 3 -grade c -temperature 85 -voltage
1100
#Update the timing netlist with the initial conditions
update_timing_netlist
#Perform reporting
#Change initial operating conditions. Use a temperature of 0C
set_operating_conditions -model slow -speed 3 -grade c -temperature 0 -voltage
1100
#Update the timing netlist with the new operating condition
update_timing_netlist
#Perform reporting
#Change initial operating conditions. Use a temperature of 0C and a model of fast
set_operating_conditions -model fast -speed 3 -grade c -temperature 0 -voltage
1100
#Update the timing netlist with the new operating condition
update_timing_netlist
#Perform reporting

1. Timing Analysis Introduction

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2. Document Revision History

Table 3. Document Revision History

Date Version Changes

2018.09.24 18.1.0 • Minor text enhancements for clarity and style.

2016.05.02 16.0.0 Corrected typo in Fig 6-14: Clock Hold Slack Calculation from Internal
Register to Output Port

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2014.12.15 14.1.0 Moved Multicycle Clock Setup Check and Hold Check Analysis section from
the Timing Analyzer chapter.

June 2014 14.0.0 Updated format

June 2012 12.0.0 Added social networking icons, minor text updates

November 2011 11.1.0 Initial release.

1. Timing Analysis Introduction

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Using the Intel Quartus Prime Timing Analyzer
The Intel Quartus Prime Timing Analyzer is a powerful ASIC-style timing analysis tool
that validates the timing performance of all logic in your design using an industry-
standard constraint, analysis, and reporting methodology. Use the Timing Analyzer
GUI or command-line interface to constrain, analyze, and report results for all timing
paths in your design.

Related Information

Intel FPGA Technical Training

2.1. Enhanced Timing Analysis for Intel Arria® 10 Devices

The Timing Analyzer supports new timing algorithms for the Intel Arria® 10 device
family which significantly improve the speed of the analysis.

These algorithms are enabled by default for Intel Arria 10 devices, and can be enabled
for earlier families with an assignment. The new analysis engine analyzes the timing
graph a fixed number of times. Previous Timing Analyzer analysis analyzed the timing
graph as many times as there were constraints in your Synopsys Design Constraint
(SDC) file.

The new algorithms also support incremental timing analysis, which allows you to
modify a single block and re-analyze while maintaining a fully analyzed design.

You can turn on the new timing algorithms for use with Arria V, Cyclone® V, and
Stratix V devices with the following QSF assignment:

set_global_assignment -name TIMEQUEST2 ON

2.2. Basic Timing Analysis Flow

The Intel Quartus Prime Timing Analyzer performs constraint validation and reports
timing performance as part of the full compilation flow. After creating your design and
setting up a project, you define the required timing parameters (that is, constraints)
for your design in a Synopsys* Design Constraints (.sdc) file. The Fitter attempts to
place logic to meet or exceed the constraints you specify. The Timing Analyzer reports
conditions that do not meet your constraints, allowing you to locate and correct critical
timing issues. The following steps describe the basic timing analysis flow in the Intel
Quartus Prime software.

2.2.1. Step 1: Open a Project and Run the Fitter

Before running timing analysis, you must open an Intel Quartus Prime project and run
the Fitter to elaborate the design hierarchy, synthesize logic, and perform place and
route.

683068 | 2024.02.21

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://www.altera.com/education/training/trn-index.jsp
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

1. Click File > New Project Wizard to create a new project, or click File ➤ Open
Project to open an existing project.

2. To run the Fitter (and any prerequisite Compiler modules), click Processing ➤
Start ➤ Start Fitter.

2.2.2. Step 2: Specify Timing Constraints

You must specify timing constraints that describe the clock frequency requirements,
timing exceptions, and I/O timing requirements of your design for comparison against
actual conditions during timing analysis. You define timing constraints in one or more
Synopsys Design Constraints (.sdc) files that you add to the project.

If you are unfamiliar with .sdc files, you can create an initial .sdc file in the Timing
Analyzer GUI, or with provided .sdc file templates. If you are familiar with timing
analysis, you can create an .sdc file in any text editor, and then add the file to the
project.

1. Use any combination of the following to enter the timing constraints for your
design in an .sdc file:

• Enter constraints in the Timing Analyzer GUI—click Tools ➤ Timing
Analyzer, click Update Timing Netlist, and then enter constraints from the
Constraints menu. The GUI displays the corresponding SDC command that
applies.

• Create an .sdc file on your own. You can start by adding the Recommended
Initial SDC Constraints on page 32, and then iteratively modify .sdc
constraints and reanalyze the timing results. You must first create clock
constraints before entering any constraints dependent on the clock.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 34. Create Clock Dialog Defines Clock Constraints

2. Save the .sdc file. When entering constraints in the Timing Analyzer GUI, click
Constraints ➤ Write SDC File to save the constraints you enter in the GUI to
an .sdc file.

3. Add the .sdc file to your project, as Step 3: Specify General Timing Analyzer
Settings on page 22 describes.

2.2.3. Step 3: Specify General Timing Analyzer Settings

Before running timing analysis, you can consider and optionally specify the following
Timing Analyzer and Compiler settings that have an impact on the analysis results:

Table 4. Timing Analyzer and Compiler Settings

Setting Description Location

SDC files to include in the
project

Specifies the name and order of Synopsis Design
Constraint (.sdc) files in the project.

Assignments ➤ Settings ➤
Timing Analyzer

Report worst-case paths
during compilation

Displays summary of the worst-case timing paths in the
design.

Assignments ➤ Settings ➤
Timing Analyzer

Tcl Script File name Specifies the file name for a custom analysis script. You
can specify whether to Run default timing analysis
before running the custom script.

Assignments ➤ Settings ➤
Timing Analyzer

Metastability analysis Specifies how the Timing Analyzer identifies registers as
being part of a synchronization register chain for
metastability analysis.

Assignments ➤ Settings ➤
Timing Analyzer

Enable multicorner
support for Timing
Analyzer and EDA Netlist
Writer

Directs the Timing Analyzer to perform multicorner
timing analysis by default, which analyzes the design
against best-case and worst-case operating conditions.

Assignments ➤ Settings ➤
Compilation Process
Settings

Optimization Mode Specifies the focus of Compiler optimization efforts
during synthesis and fitting. Specify a Balanced
strategy, or optimize for Performance, Area, Power,
Routability, or Compile Time.

Assignments ➤ Settings ➤
Compiler Settings

continued...

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Description Location

SDC Constraint Protection Verifies.sdc constraints in register merging. This option
helps to maintain the validity of .sdc constraints
through compilation.

Assignments ➤ Settings ➤
Compiler Settings ➤
Advanced Settings
(Synthesis)

Synchronization Register
Chain Length

Specifies the maximum number of registers in a row that
the Compiler considers as a synchronization chain.
Synchronization chains are sequences of registers with
the same clock and no fan-out in between, such that the
first register is fed by a pin, or by logic in another clock
domain. The Compiler considers these registers for
metastability analysis. The Compiler prevents
optimizations of these registers, such as retiming. When
gate-level retiming is enabled, the Compiler does not
remove these registers. The default length is set to two.

Assignments ➤ Settings ➤
Compiler Settings ➤
Advanced Settings
(Synthesis)

Optimize Design for
Metastability

This setting improves the reliability of the design by
increasing its Mean Time Between Failures (MTBF). When
you enable this setting, the Fitter increases the output
setup slacks of synchronizer registers in the design. This
slack can exponentially increase the design MTBF. This
option only applies when using the Timing Analyzer for
timing-driven compilation. Use the Timing Analyzer
report_metastability command to review the
synchronizers detected in your design and to produce
MTBF estimates.

Assignments ➤ Settings ➤
Compiler Settings ➤
Advanced Settings (Fitter)

Figure 35. Timing Analyzer Settings

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.4. Step 4: Run Timing Analysis

After specifying initial timing constraints, you can run the Fitter or full compilation to
generate the timing netlist and run the Timing Analyzer. During compilation, the Fitter
attempts to place logic of your design to comply with the timing constraints that you
specify. The Timing Analyzer reports the margin (slack) by which your design meets or
fails each constraint.

1. To generate the timing netlist, perform either of the following:

• To run full compilation that includes timing analysis, click Processing ➤ Start
Compilation. The Timing Analyzer automatically performs multi-corner
signoff timing analysis after the Fitter completes.

Or

• To run the Fitter, click Processing ➤ Start ➤ Start Fitter.

2. To launch the Timing Analyzer, click Tools ➤ Timing Analyzer.

3. In the Tasks pane, double-click Update Timing Netlist. The Timing Analyzer
loads the timing netlist, reads all of the project's .sdc files, and generates a
default set of timing reports, including the Timing Analyzer Summary and
Advanced I/O Timing reports.

Figure 36. Timing Analyzer Tasks

4. In the In the Tasks pane, under Reports, double-click any individual task to
generate the report and analyze the results, as Step 5: Analyze Timing Analysis
Results on page 25 describes.

Related Information

• Timing Analysis of Imported Compilation Results on page 87

• Timing Analyzer Tcl Commands on page 82

• Basic Timing Analysis Flow on page 20

• The quartus_sta Executable on page 82

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.5. Step 5: Analyze Timing Analysis Results

During analysis, the Timing Analyzer examines the timing paths in the design,
calculates the propagation delay along each path, checks for timing constraint
violations, and reports timing results as positive slack or negative slack. Negative
slack indicates a timing violation. Positive slack indicates the design meets the
constraint.

The Timing Analyzer provides very fine-grained reporting and analysis capabilities to
identify and correct violations along timing paths. Generate timing reports to view how
to best optimize the critical paths in your design. If you modify, remove, or add
constraints, re-run timing analysis. This iterative process helps resolve timing
violations in your design.

Figure 37. Timing Analyzer Shows Failing Paths in Red

Reports that indicate failing timing performance appear in red text, reports that pass
appear in black text. A gold question mark icon indicates reports that are outdated
due to SDC changes since generation. Regenerate these reports to show the latest
data.

The following sections describe how to generate various timing reports for analysis.

2.2.5.1. Timing Report Commands

The Timing Analyzer generates only a subset of all available reports by default,
including the Timing Analyzer Summary report. However, you can generate many
other detailed reports in the Timing Analyzer GUI, or with command-line commands.
You can customize the display of information in the reports.

Table 5. Timing Analyzer Report Generation Command Summary

Timing Analyzer Tasks Pane GUI Command-Line Generates

Custom Reports ➤ Report Timing report_timing Timing report

Custom Reports ➤ Report Exceptions report_exceptions Exceptions report

Diagnostic ➤ Report Clock Transfers report_clock_transfers Clock Transfers report

Slack ➤ Report Minimum Pulse Width Summary report_min_pulse_width Minimum Pulse Width Summary
report

Diagnostic ➤ Report Unconstrained Paths report_ucp Unconstrained Paths report

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.5.2. Set Operating Conditions

You can specify various operating conditions to analyze timing under different power
and temperature ranges. There are four operating conditions available that represent
the four "timing corners" in multi-corner timing analysis. The Timing Analyzer
generates separate reports for each set of operating conditions.

• Slow 900mV 100C Model—specifies low voltage, high temperature operating
conditions for timing analysis.

• Slow 900mV 0C Model—specifies low voltage, low temperature operating
conditions for timing analysis.

• Fast 900mV 100C Model—specifies high voltage, high temperature operating
conditions for timing analysis.

• Fast 900mV 100C Model—specifies high voltage, low temperature operating
conditions for timing analysis.

Select a voltage/temperature combination and double-click Report Timing under
Custom Reports in the Tasks pane to generate timing analysis reports for that
model. After generating the report for that model, you can double-click the listings for
the other models to generate analysis for those reports without re-generating the
timing netlist.

You can use the following context menu options to generate or regenerate reports in
the Report window:

• Regenerate—Regenerates the report you select.

• Generate in All Corners—Generate a timing report using all four corners.

• Regenerate All Out of Date—Regenerate all reports.

• Delete All Out of Date—Removes all previous report data.

2.2.5.3. Fmax Summary Report

The Fmax Summary Report panel lists the maximum frequency of each clock in your
design.

Figure 38. Fmax Summary Report

In some cases the Fmax Summary may indicate a "Limit due to hold check." Typically,
hold checks do not limit the maximum frequency (fMAX) because these checks are for
same-edge relationships, and therefore independent of clock frequency. For example,
when launch equals zero and latch equals zero.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

However, if you have an inverted clock transfer, or a multicycle transfer (such as
setup=2, hold=0), then the hold relationship is no longer a same-edge transfer and
changes as the clock frequency changes.

The value in the Restricted Fmax column incorporates limits due to hold time
checks, as well as minimum period and pulse width checks. If hold checks limit the
fMAX more than setup checks, that is indicated in the Note column as "Limit due to
hold check."

2.2.5.4. Report Timing Command

The Report Timing command allows you to specify options for reporting the timing
on any path or clock domain in the design.

To access Report Timing in the Timing Analyzer:

• In the Tasks pane, click Reports ➤ Custom Reports ➤ Report Timing.

• Right-click on nodes or assignments, and then click Report Timing.

You can specify the Clocks, Targets, Analysis Type, and Output options that you
want to include in the report. For example, you can increase the number of paths to
report, add a Target filter, add a From Clock, or write the report to a text file.

Figure 39. Report Timing Dialog Box

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 6. Report Timing Options

Option Description

Clocks From Clock and To Clock filter paths in the report to show only the launching or latching
clocks you specify.

Targets Specifies the target node for From Clock and To Clock to report paths with only those
endpoints. Specify an I/O or register name or I/O port for this option. The field also supports
wildcard characters. For example, to report only paths within a specific hierarchy:

report_timing -from *|egress:egress_inst|* \
 -to *|egress:egress_inst|* -(other options)

When the From, To, or Through boxes are empty, the Timing Analyzer assumes all possible
targets in the device. The Through option limits the report for paths that pass through
combinatorial logic, or a particular pin on a cell.

Analysis type The Analysis type options are Setup, Hold, Recovery, or Removal.

Output The Detail level, allows you to specify the path types the analysis includes in output.
Summary level includes basic summary reports. Path only displays all the detailed
information, except the Data Path tab displays the clock tree as one line item. Review the
Clock Skew column in the Summary report. If the skew is less than +/-150ps, the clock tree
is well balanced between source and destination.
When higher clock skew is present, enable the Full path option. This option breaks the clock
tree into greater detail, showing every cell, including the input buffer, PLL, global buffer (called
CLKCTRL_), and any logic. Review this data to determine the cause of clock skew in your
design. Use the Full path option for I/O analysis because only the source clock or destination
clock is inside the FPGA, and therefore the delay is a critical factor to meet timing.

Enable multi corner
reports

Enables or disables multi-corner timing analysis. This option is on by default.

Report panel name Displays the name of the report panel. You can enable File name to write the information to a
file. If you append .htm as a suffix, the Timing Analyzer produces the report as HTML.

Paths Specifies the number of paths to display by endpoint and slack level. The default value for
Report number of paths is 10, otherwise, the report can be very long. Enable Pairs only to
list only one path for each pair of source and destination. Limit further with Maximum
number of paths per endpoints. You can also filter paths by entering a value in the
Maximum slack limit field.

Tcl command Displays the Tcl syntax that corresponds with the GUI options you select. You can copy the
command from the Console into a Tcl file.

2.2.5.5. Correlating Constraints to the Timing Report

Understanding how timing constraints and violations appear in the timing analysis
reports is critical to understanding the results. The following examples show how
specific constraints impact the timing analysis reports. Most timing constraints only
affect the clock launch and latch edges. Specifically, create_clock and
create_generated_clock create clocks with default relationships. However, the
set_multicycle_path exception modifies the default setup and hold relationship.
The set_max_delay and set_min_delay constraints are low-level overrides that
explicitly indicate the maximum and minimum delays for the launch and latch edges.

The following figures show the results of running Report Timing on a particular path.

In the following example, the design includes a clock driving the source and
destination registers with a period of 10 ns. This results in a setup relationship of 10
ns (launch edge = 0 ns, latch edge = 10ns) and hold relationship of 0 ns (launch edge
= 0 ns, latch edge = 0 ns) from the command:

create_clock -name clocktwo -period 10.000 [get_ports {clk2}]

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 40. Setup Relationship 10ns, Hold Relationship 0ns

The set_multicycle_path constraint adds multicycles to relax the setup
relationship, or open the window, making the setup relationship 20 ns while the hold
relationship is still 0 ns:

set_multicycle_path -from clocktwo -to clocktwo -setup -end 2
set_multicycle_path -from clocktwo -to clocktwo -hold -end 1

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 41. Setup Relationship 20ns

The set_max_delay and set_min_delay constraints explicitly override the setup
relationship. Note that the only thing changing for these different constraints are the
launch edge time and latch edge times for setup and hold analysis. Every other line
item comes from delays inside the FPGA and are static for a given fit. View these
reports to analyze how your constraints affect the timing reports.

Figure 42. Using set_max_delay

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 43. Using set_min_delay

For I/O, you must add the -max and -min values. They are display as iExt or oExt in
the Type column. An example is an output port with a set_output_delay -max
1.0 and set_output_delay -min -0.5:

The clock relationships determine the launch and latch edge times, multicycles, and
possibly set_max_delay or set_min_delay constraints. The Timing Analyzer also
adds the value of set_output_delay as an oExt value. For outputs this value is part
of the Data Required Path, since this is the external part of the analysis. The setup
report on the left subtracts the -max value, making the setup relationship harder to
meet, since the Data Arrival Path must be shorter than the Data Required Path.
The Timing Analyzer also subtracts the -min value. This subtraction is why a negative
number causes more restrictive hold timing. The Data Arrival Path must be longer
than the Data Required Path.

Related Information

Relaxing Setup with Multicycle (set_multicyle_path) on page 59

2.2.5.6. Locating Timing Paths in Other Tools

You can locate from paths and elements in the Timing Analyzer to other tools in the
Intel Quartus Prime software.

You can right-click most paths or node names in the Timing Analyzer GUI and click the
Locate or Locate Path commands. Use these commands in the Timing Analyzer GUI
or the locate command in the Tcl console to locate to that node in other Intel
Quartus Prime tools.

The following examples show how to locate the ten paths with the worst timing slack
from Timing Analyzer to the Technology Map Viewer, and locate all ports matching
data* in the Chip Planner.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 2. Locating from the Timing Analyzer

Locate in the Technology Map Viewer the ten paths with the worst slack
locate [get_timing_paths -npaths 10] -tmv
locate all ports that begin with data in the Chip Planner
locate [get_ports data*] -chip

2.3. Using Timing Constraints

The following section describes correct application of SDC timing constraints that
guide Fitter placement and allow accurate timing analysis. You can create an .sdc file
with a set of initial recommended constraints, and then iteratively modify those
constraints as the design progresses.

2.3.1. Recommended Initial SDC Constraints

Include the following basic SDC constraints in your initial .sdc file. The following
example shows application of the recommended initial SDC constraints for a simple
dual-clock design:

create_clock -period 20.00 -name adc_clk [get_ports adc_clk]
create_clock -period 8.00 -name sys_clk [get_ports sys_clk]

derive_pll_clocks

derive_clock_uncertainty

Create Clock (create_clock) on page 32

Derive PLL Clocks (derive_pll_clocks) on page 33

Derive Clock Uncertainty (derive_clock_uncertainty) on page 34

Set Clock Groups (set_clock_groups) on page 34

2.3.1.1. Create Clock (create_clock)

The Create Clock (create_clock) constraint allows you to define the properties and
requirements for a clock in the design. You must define clock constraints to determine
the performance of your design and constrain the external clocks coming into the
FPGA. You can enter the constraints in the Timing Analyzer GUI, or in the .sdc file
directly.

You specify the Clock name (-name), clock Period (-period), rising and falling
Waveform edge values (-waveform), and the target signal(s) to which the
constraints apply.

The following command creates the sys_clk clock with an 8ns period, and applies
the clock to the fpga_clk port.:

create_clock -name sys_clk -period 8.0 \
 [get_ports fpga_clk]

Note: Tcl and .sdc files are case-sensitive. Ensure that references to pins, ports, or nodes
match the case of names in your design.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

By default, the clock has a rising edge at time 0 ns, a 50% duty cycle, and a falling
edge at time 4 ns. If you require a different duty cycle, or to represent an offset,
specify the -waveform option.

Typically you name a clock with the same name as the port you assign. In the
example above, the following constraint accomplishes this:

create_clock -name fpga_clk -period 8.0 [get_ports fpga_clk]

There are now two unique objects called fpga_clk, a port in your design and a clock
applied to that port.

Note: In Tcl syntax, square brackets execute the command inside them. [get_ports
fpga_clk] executes a command that finds and returns a collection of all ports in the
design that match fpga_clk. You can enter the command without using the
get_ports collection command, as shown in the following example:

create_clock -name sys_clk -period 8.0 fpga_clk

Warning: Constraints that you define in the Timing Analyzer apply directly to the timing
database, but do not automatically transfer to the .sdc file. Click Write SDC File on
the Timing Analyzer Tasks pane to preserve constraints changes from the GUI in
an .sdc file.

Related Information

Creating Base Clocks on page 37

2.3.1.2. Derive PLL Clocks (derive_pll_clocks)

The Derive PLL Clocks (derive_pll_clocks) constraint automatically creates
clocks for each output of any PLL in your design.

The constraint can generate multiple clocks for each output clock pin if the PLL is
using clock switchover: one clock for the inclk[0] input clock pin, and one clock for
the inclk[1] input clock pin. Specify the Create base clocks (-
create_base_clocks) option to create base clocks on the inputs of the PLLs by
default. By default the clock name is the same as the output clock pin name, or
specify the Use net name as clock name (-use_net_name) option to use the net
name.

create_clock -period 10.0 -name fpga_sys_clk [get_ports fpga_sys_clk] \
 derive_pll_clocks

When you create PLLs, you must define the configuration of each PLL output. This
definition allows the Timing Analyzer to automatically constrain the PLLs with the
derive_pll_clocks command. This command also constrains transceiver clocks
and adds multicycles between LVDS SERDES and user logic.

The derive_pll_clocks command prints an Info message to show each generated
clock the command creates.

As an alternative to derive_pll_clocks you can copy-and-paste each
create_generated_clock assignment into the .sdc file. However, if you
subsequently modify the PLL setting, you must also change the generated clock

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

constraint in the .sdc file. Examples of this type of change include modifying an
existing output clock, adding a new PLL output, or making a change to the PLL's
hierarchy. Use of derive_pll_clocks eliminates this requirement.

Related Information

• Creating Base Clocks on page 37

• Deriving PLL Clocks on page 43

2.3.1.3. Derive Clock Uncertainty (derive_clock_uncertainty)

The Derive Clock Uncertainty (derive_clock_uncertainty) constraint applies
setup and hold clock uncertainty for clock-to-clock transfers in the design. This
uncertainty represents characteristics like PLL jitter, clock tree jitter, and other factors
of uncertainty.

You can enable the Add clock uncertainty assignment (-add) to add clock
uncertainty values from any Set Clock Uncertainty (set_clock_uncertainty)
constraint. You can Overwrite existing clock uncertainty assignments (-
overwrite) any set_clock_uncertainty constraints.

create_clock -period 10.0 -name fpga_sys_clk [get_ports fpga_sys_clk] \
 derive_clock_uncertainty -add - overwrite

The Timing Analyzer generates a warning if you omit derive_clock_uncertainty
from the .sdc file.

Related Information

Accounting for Clock Effect Characteristics on page 48

2.3.1.4. Set Clock Groups (set_clock_groups)

The Set Clock Groups (set_clock_groups) constraint allows you specify which
clocks in the design are unrelated. By default, the Timing Analyzer assumes that all
clocks with a common base or parent clock are related, and that all transfers between
those clock domains are valid for timing analysis. You can exclude transfers between
specific clock domains from timing analysis by cutting clock groups.

Conversely, clocks without a common parent or base clock are always unrelated, but
timing analysis includes the transfers between such clocks, unless those clocks are in
different clock groups (or if all of their paths are cut with false path constraints).

You define groups of clock signals, and then define the relationship between the each
group. You define the clock signals to include in each Group (-group), and then specify
whether the groups are Logically exclusive (-logically_exclusive), Physically
exclusive (-physically_exclusive, or Asynchronous (-asynchronous) from
one another.

set_clock_groups -asynchronous -group {<clock1>...<clockn>} ... \
 -group {<clocka>...<clockn>}

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• -logically_exclusive—defines clocks that are logically exclusive and not
active at the same time, such as multiplexed clocks

• -physically_exclusive—defines clocks that are physically exclusive not active
at the same time.

• The -asynchronous—defines completely unrelated clocks that have different
ideal clock sources. flag means the clocks are both switching, but not in a way
that can synchronously pass data.

For example, if there are paths between an 8ns clock and 10ns clock, even if the
clocks are completely asynchronous, the Timing Analyzer attempts to meet a 2ns
setup relationship between these clocks, unless you specify that they are not related.

Although the Set Clock Groups dialog box only permits two clock groups, you can
specify an unlimited number of -group {<group of clocks>} options in the .sdc
file. If you omit an unrelated clock from the assignment, the Timing Analyzer acts
conservatively and analyzes that clock in context with all other domains to which the
clock connects.

The Timing Analyzer does not currently analyze crosstalk explicitly. Instead, the timing
models use extra guard bands to account for any potential crosstalk-induced delays.
The Timing Analyzer treats the -asynchronous and -exclusive options the same.

A clock cannot be within multiple groups (-group) in a single assignment; however,
you can have multiple set_clock_groups assignments.

Another way to cut timing between clocks is to use set_false_path. To cut timing
between sys_clk and dsp_clk, you can use:

set_false_path -from [get_clocks sys_clk] -to [get_clocks dsp_clk]

set_false_path -from [get_clocks dsp_clk] -to [sys_clk]

This technique is effective if there are only a few clocks, but can become
unmanageable with a large number of constraints. In a simple design with three PLLs
that have multiple outputs, the set_clock_groups command can show which clocks
are related in less than ten lines, while using set_false_path commands can use
more than 50 lines.

Related Information

• Creating Generated Clocks (create_generated_clock) on page 40

• Relaxing Setup with Multicycle (set_multicyle_path) on page 59

• Accounting for a Phase Shift (-phase) on page 60

2.3.2. SDC File Precedence

You must add any .sdc file that you create to the project to be read during fitting and
timing analysis. The Fitter and the Timing Analyzer process .sdc files in the order
they appear in the .qsf. If no .sdc appears in the .qsf, the Intel Quartus Prime
software searches for an .sdc with the name <current revision>.sdc in the
project directory.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 44. .sdc File Order of Precedence

Is one or more .sdc file specified in
the .qsf?

No

Yes

Does an .sdc named
<current revision>.sdc

exist in the project
directory?

No

Yes

Analyze the design

Click Settings ➤ Timing Analyzer to add, remove, or change the processing order
of .sdc files in the project, as Step 3: Specify General Timing Analyzer Settings on
page 22 describes.

If you use the Intel Quartus Prime Text Editor to create an .sdc file, the option to
Add file to the project enables by default when you save the file. If you use any
other editor to create an .sdc file, you must add the file to the project.

The .sdc file must contain only timing constraint commands. Tcl commands to
manipulate the timing netlist or control the compilation must be in a separate Tcl
script.

When you use IP from Intel, and some third-parties, the .sdc files become part of the
project through an intermediate Intel Quartus Prime IP File (.qip). The .qip file
references all source and constraints files for the IP. If .sdc files for IP blocks in your
design are included through with a .qip, do not re-add them manually. An .sdc file
can also be added from a Intel Quartus Prime IP File (.qip) included in the .qsf.

Note: If you type the read_sdc command at the command line without any arguments, the
Timing Analyzer reads constraints embedded in HDL files, then follows the .sdc file
precedence order.

2.3.3. Iterative Constraint Modification

You can iteratively modify .sdc constraints and reanalyze the timing results to ensure
that you have the optimum constraints for your design.

Use the following steps to iteratively modify constraints:

1. Click Tools ➤ Timing Analyzer.

2. Generate the reports you want to analyze. Double-click Report All Summaries
under Macros to generate setup, hold, recovery, and removal summaries, as well
as minimum pulse width checks, and a list of all the clock you define. These

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

summaries cover all paths you constrain in your design. Whenever modifying or
correcting constraints, generate the Diagnostic reports to identify unconstrained
parts of your design, or ignored constraints.

3. Analyze the results in the reports. When you are modifying constraints, rerun the
reports to find any unexpected results. For example, a cross-domain path might
indicate that you forgot to cut a transfer by including a clock in a clock group.

4. Create or edit the appropriate constraints in your .sdc file and save the file.

5. Double-click Reset Design in the Tasks pane. This removes all constraints from
your design. Removing all constraints from your design allows rereading the .sdc
files, including your changes.

6. Regenerate the reports you want to analyze.

7. Reanalyze the results.

8. Repeat steps 4-7 as necessary.

This method performs timing analysis using new constraints, without any change to
logic placement. While the Fitter uses the original constraints for place and route, the
Timing Analyzer applies the new constraints. If there is any failing timing against the
new constraints, this indicates a need to run place-and-route again.

Related Information

Relaxing Setup with Multicycle (set_multicyle_path) on page 59

2.3.4. Creating Clocks and Clock Constraints

You must define all clocks and any associated clock characteristics, such as
uncertainty, latency or skew. The Timing Analyzer supports .sdc commands that
accommodate various clocking schemes, such as:

• Base clocks

• Virtual clocks

• Multifrequency clocks

• Generated clocks

2.3.4.1. Creating Base Clocks

Base clocks are the primary input clocks to the device. The Create Clock
(create_clock) constraint allows you to define the properties and requirements for
clocks in the design. Unlike clocks that are generated in the device (such as an on-
chip PLL), base clocks are generated by off-chip oscillators or forwarded from an
external device. Define base clocks at the top of your .sdc file, because generated
clocks and other constraints often reference base clocks. The Timing Analyzer ignores
any constraints that reference an undefined clock.

The following examples show common use of the create_clock constraint:

 create_clock Command

The following specifies a 100 MHz requirement on a clk_sys input clock port:

create_clock -period 10 -name clk_sys [get_ports clk_sys]

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

100 MHz Shifted by 90 Degrees Clock Creation

The following creates a 10 ns clock, with a 50% duty cycle, that is phase shifted by
90 degrees, and applies to port clk_sys. This type of clock definition commonly
refers to source synchronous, double-rate data that is center-aligned with respect to
the clock.

create_clock -period 10 -waveform { 2.5 7.5 } [get_ports clk_sys]

Two Oscillators Driving the Same Clock Port

You can apply multiple clocks to the same target with the -add option. For example,
to specify that you can drive the same clock input at two different frequencies, enter
the following commands in your .sdc file:

create_clock -period 10 -name clk_100 [get_ports clk_sys]
create_clock -period 5 -name clk_200 [get_ports clk_sys] -add

Although uncommon to define more than two base clocks for a port, you can define as
many as are appropriate for your design, making sure you specify -add for all clocks
after the first.

Creating Multifrequency Clocks

You must create a multifrequency clock if your design has more than one clock source
feeding a single clock node. The additional clock may act as a low-power clock, with a
lower frequency than the primary clock. If your design uses multifrequency clocks, use
the set_clock_groups command to define clocks that are exclusive.

Use the create_clock command with the -add option to create multiple clocks on a
clock node. You can create a 10 ns clock applied to clock port clk, and then add an
additional 15 ns clock to the same clock port. The Timing Analyzer analyzes both
clocks.

create_clock –period 10 –name clock_primary –waveform { 0 5 } \
 [get_ports clk]
create_clock –period 15 –name clock_secondary –waveform { 0 7.5 } \
 [get_ports clk] -add

Related Information

Accounting for Clock Effect Characteristics on page 48

2.3.4.1.1. Automatic Clock Detection and Constraint Creation

Use the derive_clocks command to automatically create base clocks in your design
The derive_clocks command is equivalent to using the create_clock command
for each register or port feeding the clock pin of a register. The derive_clocks
command creates clock constraints on ports or registers to ensure every register in
your design has a clock constraints, and it applies one period to all base clocks in your
design.

The following command specifies a base clock with a 100 MHz requirement for
unconstrained base clock nodes.

derive_clocks -period 10

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Warning: Do not use the derive_clocks command for final timing sign-off; instead, you
create clocks for all clock sources with the create_clock and
create_generated_clock commands. If your design has more than a single clock,
the derive_clocks command constrains all the clocks to the same specified
frequency. To achieve a thorough and realistic analysis of your design’s timing
requirements, make individual clock constraints for all clocks in your design.

If you want to create some base clocks automatically, use the -
create_base_clocks option to derive_pll_clocks. With this option, the
derive_pll_clocks command automatically creates base clocks for each PLL,
based on the input frequency information that you specify when you generate the PLL.
This feature works for simple port-to-PLL connections. Base clocks do not
automatically generate for complex PLL connectivity, such as cascaded PLLs. You can
also use the command derive_pll_clocks -create_base_clocks to create the
input clocks for all PLL inputs automatically.

2.3.4.2. Creating Virtual Clocks

A virtual clock is a clock without a real source in the design, or a clock that does not
interact directly with the design. You can use Virtual clocks in I/O constraints to
represent the clock at the external device connected to the FPGA.

To create virtual clocks, use the create_clock constraint with no value for the
<targets> option.

This following example defines a 100Mhz virtual clock because the command includes
no <targets>.

create_clock -period 10 -name my_virt_clk

I/O Constraints with Virtual Clocks

For the output circuit shown in the following figure, you can use a base clock to
constrain the circuit in the FPGA, and a virtual clock to represent the clock driving the
external device. The following figure shows the base clock (system_clk), virtual
clock (virt_clk), and output delay for the Virtual Clock Constraints example below.

Figure 45. Virtual Clock Board Topology

FPGA External Device

system_clk virt_clk

reg_a reg_b
dataout

datain

The following creates the 10 ns virt_clk virtual clock, with a 50% duty cycle, with
the first rising edge occurring at 0 ns. The virtual clock can then become the clock
source for an output delay constraint.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 3. Virtual Clock Constraints

#create base clock for the design
create_clock -period 5 [get_ports system_clk]
#create the virtual clock for the external register
create_clock -period 10 -name virt_clk
#set the output delay referencing the virtual clock
set_output_delay -clock virt_clk -max 1.5 [get_ports dataout]
set_output_delay -clock virt_clk -min 0.0 [get_ports dataout]

2.3.4.2.1. Specifying I/O Interface Uncertainty

Virtual clocks are recommended for I/O constraints because they most accurately
represent the clocking topology of the design. An additional benefit is that you can
specify different uncertainty values on clocks that interface with external I/O ports and
clocks that feed register-to-register paths inside the FPGA.

2.3.4.2.2. I/O Interface Clock Uncertainty Example

To specify I/O interface uncertainty, you must create a virtual clock and constrain the
input and output ports with the set_input_delay and set_output_delay
commands that reference the virtual clock.

When the set_input_delay or set_output_delay commands reference a clock
port or PLL output, the virtual clock allows the derive_clock_uncertainty
command to apply separate clock uncertainties for internal clock transfers and I/O
interface clock transfers

Create the virtual clock with the same properties as the original clock that is driving
the I/O port, as the following example shows:

Example 4. SDC Commands to Constrain the I/O Interface

Create the base clock for the clock port
create_clock -period 10 -name clk_in [get_ports clk_in]
Create a virtual clock with the same properties of the base clock
driving the source register
create_clock -period 10 -name virt_clk_in
Create the input delay referencing the virtual clock and not the base
clock
DO NOT use set_input_delay -clock clk_in <delay value>
[get_ports data_in]
set_input_delay -clock virt_clk_in <delay value> [get_ports data_in]

2.3.4.3. Creating Generated Clocks (create_generated_clock)

The Create Generate Clock (create_generated_clock) constraint allows you to
define the properties and constraints of an internally generated clock in the design.
You specify the Clock name (-name), the Source node (-source) from which clock
derives, and the Relationship to the source properties. Define generated clocks for
any node that modifies the properties of a clock signal, including modifying the phase,
frequency, offset, or duty cycle.

You apply generated clocks most commonly on the outputs of PLLs, on register clock
dividers, clock muxes, and clocks forwarded to other devices from an FPGA output
port, such as source synchronous and memory interfaces. In the .sdc file, enter
generated clocks after the base clocks definitions. Generated clocks automatically
account for all clock delays and clock latency to the generated clock target.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The -source option specifies the name of a node in the clock path that you use as
reference for your generated clock. The source of the generated clock must be a node
in your design netlist, and not the name of a clock you previously define. You can use
any node name on the clock path between the input clock pin of the target of the
generated clock and the target node of its reference clock as the source node.

Specify the input clock pin of the target node as the source of your new generated
clock. The source of the generated clock decouples from the naming and hierarchy of
the clock source. If you change the clock source, you do not have to edit the
generated clock constraint.

If you have multiple base clocks feeding a node that is the source for a generated
clock, you must define multiple generated clocks. You associate each generated clock
with one base clock using the -master_clock option in each generated clock
statement. In some cases, generated clocks generate with combinational logic.

Depending on how your clock-modifying logic synthesizes, the signal name can change
from one compilation to the next. If the name changes after you write the generated
clock constraint, the Compiler ignores the generated clock because that target name
no longer exists in the design. To avoid this problem, use a synthesis attribute or
synthesis assignment to retain the final combinational node name of the clock-
modifying logic. Then use the kept name in your generated clock constraint.

Figure 46. Example of clock-as-data

When you create a generated clock on a node that ultimately feeds the data input of a
register, this creates a special case of “clock-as-data." The Timing Analyzer treats
clock-as-data differently. For example, if you use clock-as-data with DDR, you must
consider both the rise and the fall of this clock, and the Timing Analyzer reports both
rise and fall. With clock-as-data, the Compiler treats the From Node as the target of
the generated clock, and the Launch Clock as the generated clock.

In Example of Clock as Data, the first path is from toggle_clk (INVERTED) to clk,
and the second path is from toggle_clk to clk. The slack in both cases is slightly
different due to the difference in rise and fall times along the path. The Data Delay
column reports the ~5 ps difference. Only the path with the lowest slack value
requires consideration. The Timing Analyzer only reports the worst-case path between
the two (rise and fall). In this example, if you do not define the generated clock on the
register output, then timing analysis reports only one path with the lowest slack value.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the derive_pll_clocks command to automatically generate clocks for
all PLL clock outputs. The properties of the generated clocks on the PLL outputs match
the properties you define for the PLL.

Related Information

Deriving PLL Clocks on page 43

2.3.4.3.1. Clock Divider Example (-divide_by)

A common form of generated clock is the divide-by-two register clock divider. The
following example constraint creates a half-rate clock on the divide-by-two register.

create_clock -period 10 -name clk_sys [get_ports clk_sys]
create_generated_clock -name clk_div_2 -divide_by 2 -source \
 [get_ports clk_sys] [get_pins reg|q]

To specify the clock pin of the register as the clock source:

create_clock -period 10 -name clk_sys [get_ports clk_sys]
create_generated_clock -name clk_div_2 -divide_by 2 -source \
 [get_pins reg|clk] [get_pins reg|q]

Figure 47. Clock Divider

reg

clk_sys

Figure 48. Clock Divider Waveform

1 2 3 4 5 6 7 8Edges

clk_sys

clk_div_2

0 10 20 30Time

2.3.4.3.2. Clock Multiplexor Example

The output of a clock multiplexor (mux) is a form of generated clock. Each input clock
requires one generated clock on the output. The following .sdc example also includes
the set_clock_groups command to indicate that the two generated clocks can
never be active simultaneously in the design. Therefore, the Timing Analyzer does not
analyze cross-domain paths between the generated clocks on the output of the clock
mux.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 49. Clock Mux

clk_b

clk_a mux_out

create_clock -name clock_a -period 10 [get_ports clk_a]
create_clock -name clock_b -period 10 [get_ports clk_b]
create_generated_clock -name clock_a_mux -source [get_ports clk_a] \
 [get_pins clk_mux|mux_out]
create_generated_clock -name clock_b_mux -source [get_ports clk_b] \
 [get_pins clk_mux|mux_out] -add
set_clock_groups -exclusive -group clock_a_mux -group clock_b_mux

2.3.4.4. Deriving PLL Clocks

The Derive PLL Clocks (derive_pll_clocks) constraint automatically creates
clocks for each output of any PLL in your design. derive_pll_clocks detects your
current PLL settings and automatically creates generated clocks on the outputs of
every PLL by calling the create_generated_clock command.

Create Base Clock for PLL input Clock Ports

If your design contains transceivers, LVDS transmitters, or LVDS receivers, use the
derive_pll_clocks to constrain this logic in your design and create timing
exceptions for those blocks.

create_clock -period 10.0 -name fpga_sys_clk [get_ports fpga_sys_clk] \
 derive_pll_clocks

Include the derive_pll_clocks command in your .sdc file after any
create_clock command. Each time the Timing Analyzer reads the .sdc file, the
appropriate generated clock is created for each PLL output clock pin. If a clock exists
on a PLL output before running derive_pll_clocks, the pre-existing clock has
precedence, and an auto-generated clock is not created for that PLL output.

The following shows a simple PLL design with a register-to-register path:

Figure 50. Simple PLL Design

reg_1 reg_2

pll_inclk pll_inst

dataout

The Timing Analyzer generates messages like the following example when you use the
derive_pll_clocks command to constrain the PLL.

Example 5. derive_pll_clocks Command Messages

Info:
Info: Deriving PLL Clocks:
Info: create_generated_clock -source pll_inst|altpll_component|pll|inclk[0] -
divide_by 2 -name
pll_inst|altpll_component|pll|clk[0] pll_inst|altpll_component|pll|clk[0]
Info:

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The input clock pin of the PLL is the node pll_inst|altpll_component|pll|
inclk[0] which is the -source option. The name of the output clock of the PLL is
the PLL output clock node, pll_inst|altpll_component|pll|clk[0].

If the PLL is in clock switchover mode, multiple clocks generate for the output clock of
the PLL; one for the primary input clock (for example, inclk[0]), and one for the
secondary input clock (for example, inclk[1]). Create exclusive clock groups for the
primary and secondary output clocks since they are not active simultaneously.

Related Information

Creating Clock Groups (set_clock_groups) on page 44

2.3.4.5. Creating Clock Groups (set_clock_groups)

The Set Clock Groups (set_clock_groups) constraint allows you specify which
clocks in the design are unrelated. By default, the Timing Analyzer assumes that all
clocks with a common base or parent clock are related, and that all transfers between
those clock domains are valid for timing analysis. You can exclude transfers between
specific clock domains from timing analysis by cutting clock groups.

The set_clock_groups command allows you to cut timing between unrelated clocks
in different groups. The Timing Analyzer performs the same analysis regardless of
whether you specify -exclusive or -asynchronous groups. You define a group
with the -group option. The Timing Analyzer excludes the timing paths between
clocks for each of the separate groups.

The following tables show the impact of set_clock_groups.

Table 7. set_clock_groups -group A

Dest\Source A B C D

A Analyzed Cut Cut Cut

B Cut Analyzed Analyzed Analyzed

C Cut Analyzed Analyzed Analyzed

D Cut Analyzed Analyzed Analyzed

Table 8. set_clock_groups -group {A B}

Dest\Source A B C D

A Analyzed Analyzed Cut Cut

B Analyzed Analyzed Cut Cut

C Cut Cut Analyzed Analyzed

D Cut Cut Analyzed Analyzed

Table 9. set_clock_groups -group A -group B

Dest\Source A B C D

A Analyzed Cut Cut Cut

continued...

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

B Cut Analyzed Cut Cut

C Cut Cut Analyzed Analyzed

D Cut Cut Analyzed Analyzed

Table 10. set_clock_groups -group {A C} -group {B D}

Dest\Source A B C D

A Analyzed Cut Analyzed Cut

B Cut Analyzed Cut Analyzed

C Analyzed Cut Analyzed Cut

D Cut Analyzed Cut Analyzed

Table 11. set_clock_groups -group {A C D}

Dest\Source A B C D

A Analyzed Cut Analyzed Analyzed

B Cut Analyzed Cut Cut

C Analyzed Cut Analyzed Analyzed

D Analyzed Cut Analyzed Analyzed

2.3.4.5.1. Exclusive Clock Groups (-exclusive)

You can use the -exclusive option to declare that two clocks are mutually exclusive.

If you define multiple clocks for the same node, you can use clock group assignments
with the -exclusive option to declare clocks as mutually exclusive. This technique
can be useful for multiplexed clocks.

For example, consider an input port that is clocked by either a 100-MHz or 125-MHz
clock. You can use the -exclusive option to declare that the clocks are mutually
exclusive and eliminate clock transfers between the 100-MHz and 125-MHz clocks, as
the following diagrams and example SDC constraints illustrate:

Figure 51. Synchronous Path with Clock Mux Internal to FPGA

clkB
clkA

out

sel

clkmux
reg1 reg2

FPGA

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example SDC Constraints for Internal Clock Mux

Create a clock on each port
create_clock -name clk_100 -period 10 [get_ports clkA]
create_clock -name clk_125 -period 8 [get_ports clkB]
Set the two clocks as exclusive clocks
set_clock_groups -exclusive -group {clk_100} -group {clk_125}

Figure 52. Synchronous Path with Clock Mux External to FPGA

clkB
clkA

out

sel

clkmux
reg1 reg2

FPGA

clk

Example SDC Constraints for External Clock Mux

Create two clocks on the port clk
create_clock -name clkA -period 10 [get_ports clk]
create_clock -name clkB -period 8 [get_ports clk] -add
Set the two clocks as exclusive clocks
set_clock_groups -exclusive -group {clkA} -group {clkB}

2.3.4.5.2. Asynchronous Clock Groups (-asynchronous)

Use the -asynchronous option to create asynchronous clock groups. You can use
asynchronous clock groups to break the timing relationship when data transfers
through a FIFO between clocks running at different rates.

2.3.4.5.3. set_clock_groups Constraint Tips

When you use derive_pll_clocks to create clocks, it can be time consuming to
determine all the clock names to include in set_clock_groups constraints. However,
you can use the following technique to somewhat automate clock constraint creation,
even if you do not know all of the clock names.

1. Create a basic .sdc file that contains the Recommended Initial SDC Constraints
on page 32, except omit the set_clock_groups constraint for now.

2. To add the .sdc to the project, click Assignments ➤ Settings ➤ Timing
Analyzer. Specify the .sdc file under SDC files to include in the project.

3. To open the Timing Analyzer, click Tools ➤ Timing Analyzer.

4. In the Task pane, double-click Report Clocks. The Timing Analyzer reads
your .sdc, applies the constraints (including derive_pll_clocks), and reports
all the clocks.

5. From the Clocks Summary report, copy all the clock names that appear in the first
column. The report lists the clock names in the correct format for recognition in
the Timing Analyzer.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Open .sdc file and the paste the clock names into the file, one clock name per line.

7. Format the list of clock names list into the set_clock_groups command by
cutting and pasting clock names into appropriate groups. Next, paste the following
template into the .sdc file:

set_clock_groups -asynchronous -group { \
} \
 -group { \
} \
-group { \
} \
-group { \
}

8. Cut and paste the clock names into groups to define their relationship, adding or
removing groups as necessary. Format the groups to make the code readable.

Note: This command can be difficult to read on a single line. You can use the Tcl
line continuation character "\" to make this more readable. Place a space
after the last character, and then place the "\" character at the end of the
line. This characters escapes, Be careful not to include any spaces after the
escape character, otherwise the space becomes the escape character, rather
than the end-of-line character).

set_clock_groups -asynchronous \
 -group {adc_clk \
 the_adc_pll|altpll_component_autogenerated|pll|clk[0] \
 the_adc_pll|altpll_component_autogenerated|pll|clk[1] \
 the_adc_pll|altpll_component_autogenerated|pll|clk[2] \
 } \
 -group {sys_clk \
 the_system_pll|altpll_component_autogenerated|pll|clk[0] \
 the_system_pll|altpll_component_autogenerated|pll|clk[1] \
 } \
 -group {the_system_pll|altpll_component_autogenerated|pll|clk[2] \
 }

Note: The last group has a PLL output system_pll|..|clk[2] while the input clock and
other PLL outputs are in different groups. If you use PLLs, and the input clock
frequency does not relate to the frequency of the PLL's outputs, you must treat the
PLLs asynchronously. Usually most outputs of a PLL relate and are in the same group,
but this is not a requirement.

For designs with complex clocking, creating clock groups can be an iterative process.
For example, a design with two DDR3 cores and high-speed transceivers can have
thirty or more clocks. In such cases, you start by adding the clocks that you manually
create. Since the Timing Analyzer assumes that the clocks not appearing in the
command relate to every clock, this conservatively groups the known clocks. If there
are still failing paths in the design between unrelated clock domains, you can start add
the new clock domains as necessary. In this case, a large number of the clocks are not
in the set_clock_groups command, since they are either cut in the .sdc file for
the IP core (such as the .sdc files that the DDR3 cores generate), or they connect
only to related clock domains.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For many designs, that is all that's necessary to constrain the core. Some common
core constraints that this section does not describe in detail are:

• Adding multicycles between registers for analysis at a slower rate than the default
analysis, increasing the time when data can be read. For example, a 10 ns clock
period has a 10 ns setup relationship. If the data changes at a slower rate, or
perhaps the registers switch at a slower rate due to a clock enable, then you can
apply a multicycle that relaxes the setup relationship (opens the window so that
valid data can pass). This is a multiple of the clock period, making the setup
relationship 20 ns, 40 ns, and so on, while keeping the hold relationship at 0 ns.
You generally apply these types of multicycles to paths.

• You can also use multicycle when you want to advance the cycle in which data is
read, shifting the timing window. This generally occurs when your design performs
a small phase-shift on a clock. For example, if your design has two 10 ns clocks
exiting a PLL, but the second clock has a 0.5 ns phase-shift, the default setup
relationship from the main clock to the phase-shift clock is 0.5 ns and the hold
relationship is -9.5 ns. Meeting a 0.5 ns setup relationship is nearly impossible,
and most likely you intend the data to transfer in the next window. By adding a
multicycle from the main clock to the phase-shift clock, the setup relationship
becomes 10.5 ns and the hold relationship becomes 0.5 ns. You generally apply
this multicycle between clocks.

• Add a create_generated_clock to ripple clocks. When a register's output
drives the clk port of another register, that is a ripple clock. Clocks do not
propagate through registers, so you must apply the create_generated_clock
constraint to all ripple clocks for correct analysis. Unconstrained ripple clocks
appear in the Report Unconstrained Paths report, so you can easily recognize
them. In general, avoid ripple clocks. Use a clock enable instead.

• Add a create_generated_clock to clock mux outputs. Without this clock, all
clocks propagate through the mux and are related. The Timing Analyzer analyzes
paths downstream from the mux where one clock input feeds the source register
and the other clock input feeds the destination, and vice-versa. Although this
behavior can be valid, this is typically not the behavior you want. By applying
create_generated_clock constraints on the mux output, which relates them
to the clocks coming into the mux, you can correctly group these clocks with other
clocks.

2.3.4.6. Accounting for Clock Effect Characteristics

The clocks you create with the Timing Analyzer are ideal clocks that do not account for
any board effects. You can account for clock effect characteristics with clock latency
and clock uncertainty constraints.

2.3.4.6.1. Set Clock Latency (set_clock_latency)

The Set Clock Latency (set_clock_latency) constraint allows you to specify
additional delay (that is, latency) in a clock network. This delay value represents the
external delay from a virtual (or ideal) clock through the longest Late (-late) or
shortest Early (-early) path, with reference to the Rise (-rise) or Fall (-fall) of
the clock transition.

The Timing Analyzer uses the late clock latency for the data arrival path, and the early
clock latency for the clock arrival path, when calculating setup analysis. The Timing
Analyzer uses the early clock latency for the data arrival time, and the late clock
latency for the clock arrival time, for hold analysis.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

There are two forms of clock latency: clock source latency, and clock network latency.
Source latency is the propagation delay from the origin of the clock to the clock
definition point (for example, a clock port). Network latency is the propagation delay
from a clock definition point to a register’s clock pin. The total latency at a register’s
clock pin is the sum of the source and network latencies in the clock path.

To specify source latency to any clock ports in your design, use the
set_clock_latency command.

Note: The Timing Analyzer automatically computes network latencies; therefore, you only
can characterize source latency with the set_clock_latency command. You must
use the -source option.

2.3.4.6.2. Clock Uncertainty

By default, the Timing Analyzer creates clocks that are ideal and have perfect edges.
To mimic clock-level effects like jitter, you can add uncertainty to those clock edges.
The Timing Analyzer automatically calculates appropriate setup and hold uncertainties
and applies those uncertainties to all clock transfers in your design, even if you do not
include the derive_clock_uncertainty command in your .sdc file. Setup and
hold uncertainties are a critical part of constraining your design correctly.

The Timing Analyzer subtracts setup uncertainty from the data required time for each
applicable path and adds the hold uncertainty to the data required time for each
applicable path. This slightly reduces the setup and hold slack on each path.

The Timing Analyzer accounts for uncertainty clock effects for three types of clock-to-
clock transfers: intraclock transfers, interclock transfers, and I/O interface clock
transfers.

• Intraclock transfers occur when the register-to-register transfer takes place in the
device and the source and destination clocks come from the same PLL output pin
or clock port.

• Interclock transfers occur when a register-to-register transfer takes place in the
core of the device and the source and destination clocks come from a different PLL
output pin or clock port.

• I/O interface clock transfers occur when data transfers from an I/O port to the
core of the device or from the core of the device to the I/O port.

To manually specify clock uncertainty, use the set_clock_uncertainty command.
You can specify the uncertainty separately for setup and hold. You can also specify
separate values for rising and falling clock transitions. You can override the value that
the derive_clock_uncertainty command automatically applies.

The derive_clock_uncertainty command accounts for PLL clock jitter, if the clock
jitter on the input to a PLL is within the input jitter specification for PLL's in the target
device. If the input clock jitter for the PLL exceeds the specification, add additional
uncertainty to your PLL output clocks to account for excess jitter with the
set_clock_uncertainty -add command. Refer to the device handbook for your
device for jitter specifications.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can also use set_clock_uncertainty -add to account for peak-to-peak jitter
from a board when the jitter exceeds the jitter specification for that device. In this
case you add uncertainty to both setup and hold equal to 1/2 the jitter value:

set_clock_uncertainty –setup –to <clock name> \
 -setup –add <p2p jitter/2>

set_clock_uncertainty –hold –enable_same_physical_edge –to <clock name> \
 –add <p2p jitter/2>

There is a complex set of precedence rules for how the Timing Analyzer applies values
from derive_clock_uncertainty and set_clock_uncertainty, which depend
on the order of commands and options in your .sdc files. The Help topics below
contain complete descriptions of these rules. These precedence rules are easier to
implement if you follow these recommendations:

• To assign your own clock uncertainty values to any clock transfers, put your
set_clock_uncertainty exceptions after the derive_clock_uncertainty
command in the .sdc file.

• When you use the -add option for set_clock_uncertainty, the value you
specify is additive to the derive_clock_uncertainty value. If you do not
specify -add, the value you specify replaces the value from
derive_clock_uncertainty.

2.3.5. Creating I/O Constraints

The Timing Analyzer reviews setup and hold relationships for designs in which an
external source interacts with a register internal to the design. The Timing Analyzer
supports input and output external delay modeling with the set_input_delay and
set_output_delay commands. You can specify the clock and minimum and
maximum arrival times relative to the clock.

Specify internal and external timing requirements before you fully analyze a design.
With external timing requirements specified, the Timing Analyzer verifies the I/O
interface, or periphery of the device, against any system specification.

2.3.5.1. Input Constraints (set_input_delay)

Input constraints allow specify all the external delays feeding the device. Specify input
requirements for all input ports in your design.

set_input_delay -clock { clock } -clock_fall -fall -max 20 foo

Use the Set Input Delay (set_input_delay) constraint to specify external input
delay requirements. Specify the Clock name (-clock) to reference the virtual or
actual clock. You can specify a clock to allow the Timing Analyzer to correctly derive
clock uncertainties for interclock and intraclock transfers. The clock defines the
launching clock for the input port. The Timing Analyzer automatically determines the
latching clock inside the device that captures the input data, because all clocks in the
device are defined.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 53. Input Delay Diagram

External Device FPGA

Oscillator

dd

cd_altrcd_ext

tco_ext

Figure 54. Input Delay Calculation

input delayMAX = (cd_extMAX – cd_altrMIN) + tco_extMAX + ddMAX

input delayMIN = (cd_extMIN – cd_altrMAX) + tco_extMIN + ddMIN

2.3.5.2. Output Constraints (set_output_delay)

Output constraints specify all external delays from the device for all output ports in
your design.

set_output_delay -clock { clock } -clock_fall -rise -max 2 foo

Use the Set Output Delay (set_output_delay) constraint to specify external
output delay requirements. Specify the Clock name (-clock) to reference the virtual
or actual clock. When specifying a clock, the clock defines the latching clock for the
output port. The Timing Analyzer automatically determines the launching clock inside
the device that launches the output data, because all clocks in the device are defined.
The following figure is an example of an output delay referencing a virtual clock.

Figure 55. Output Delay Diagram

External DeviceFPGA

Oscillator

dd

cd_altr

cd_ext

tsu_ext/th_ext

Figure 56. Output Delay Calculation

output delayMAX = ddMAX + tsu_ext + (cd_altrMAX – cd_extMIN)
output delayMIN = (ddMIN – th_ext +(cd_altrMIN – cd_extMAX))

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.6. Creating Delay and Skew Constraints

You can specify skew and delays to model external device timing and board timing
parameters.

2.3.6.1. Advanced I/O Timing and Board Trace Model Delay

The Timing Analyzer can use advanced I/O timing and board trace model constraints
to model I/O buffer delays in your design.

If you change any advanced I/O timing settings or board trace model assignments,
recompile your design before you analyze timing, or use the -force_dat option to
force delay annotation when you create a timing netlist.

Example 6. Forcing Delay Annotation

create_timing_netlist -force_dat

2.3.6.2. Maximum Skew (set_max_skew)

The Set Max Skew (set_max_skew) constraint specifies the maximum allowable
skew between the sets of registers or ports or ports you specify. In order to constrain
skew across multiple paths, you must constrain all such paths within a single
set_max_skew constraint.

set_max_skew -from_clock { clock } -to_clock { * } -from foo -to blat 2

The set_max_delay, set_min_delay, and set_multicycle_path do not affect
set_max_skew timing constraints for this 18.1 version of the Timing Analyzer.
However, set_false_path and set_clock_groups do impact set_max_skew. If
your design targets an Intel Arria 10 device or Intel Cyclone 10 device,
set_clock_groups does not affect set_max_skew constraints.

Table 12. set_max_skew Options

Arguments Description

-h | -help Short help.

-long_help Long help with examples and possible return values.

-exclude <Tcl list> A Tcl list of parameters to exclude during skew analysis. This list
includes one or more of the following: utsu, uth, utco,
from_clock, to_clock, clock_uncertainty, ccpp,
input_delay, output_delay, odv.
Note: Intel Arria 10 devices do no support this argument.

-fall_from_clock <names> Valid source clocks (Tcl matches string patterns).

names> Valid destination clocks (Tcl matches string patterns).

-from <-fall_to_clock <names>(1) Valid sources (Tcl matches string patterns).

-fall_to_clock -from_clock <names> Valid source clocks (Tcl matches string patterns).

continued...

(1) Legal values for the -from and -to options are collections of clocks, registers, ports, pins, cells
or partitions in a design.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments Description

-get_skew_value_from_clock_period
<src_clock_period|dst_clock_period|
min_clock_period>

Option to interpret skew constraint as a multiple of the clock
period.

-include <Tcl list> Tcl list of parameters to include during skew analysis. This list can
include one or more of the following: utsu, uth, utco,
from_clock, to_clock, clock_uncertainty, ccpp,
input_delay, output_delay, odv.
Note: Intel Arria 10 devices do not support this argument .

-rise_from_clock <names> Valid source clocks (Tcl matches string patterns).

-rise_to_clock <names> Valid destination clocks (Tcl matches string patterns).

-skew_value_multiplier <multiplier> Value by which the clock period multiplies to compute skew
requirement.

-to <names>(1) Valid destinations (Tcl matches string patterns)

-to_clock <names> Valid destination clocks (Tcl matches string patterns).

<skew> Skew you require.

Applying maximum skew constraints between clocks applies the constraint from all
register or ports driven by the clock you specify (with the -from option) to all
registers or ports driven by the clock you specify (with the -to option).

Use the -include and -exclude options to include or exclude one or more of the
following: register micro parameters (utsu, uth, utco), clock arrival times
(from_clock, to_clock), clock uncertainty (clock_uncertainty), common clock
path pessimism removal (ccpp), input and output delays (input_delay,
output_delay) and on-die variation (odv).

Max skew analysis can include data arrival times, clock arrival times, register micro
parameters, clock uncertainty, on-die variation, and ccpp removal. Among these, only
ccpp removal disables during the Fitter by default. When you use -include , the
default analysis includes those in the inclusion list. Similarly, if you use -exclude, the
default analysis excludes those in the exclusion list. When both the -include and -
exclude options specify the same parameter, that parameter is excluded.

Note: If your design targets an Intel Arria 10 device, -exclude and -include are not
supported.

Use -get_skew_value_from_clock_period to set the skew as a multiple of the
launching or latching clock period, or whichever of the two has a smaller period. If you
use this option, set -skew_value_multiplier, and you may not set the positional
skew option. If more than one clock clocks the set of skew paths, Timing Analyzer
uses the clock with smallest period to compute the skew constraint.

Click Report Max Skew (report_max_skew) to view the max skew analysis. Since
skew occurs between two or more paths, no results display if the -from/-
from_clock and -to/-to_clock filters satisfy less than two paths.

2.3.6.3. Net Delay (set_net_delay)

Use the set_net_delay command to set the net delays and perform minimum or
maximum timing analysis across nets.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The -from and -to options can be string patterns or pin, port, register, or net
collections. When you use pin or net collection, include output pins or nets in the
collection.

set_net_delay -from reg_a -to reg_c -max 20

Table 13. set_net_delay Options

Arguments Description

-h | -help Short help.

-long_help Long help with examples and possible return values.

-from <names> Valid source pins, ports, registers or nets (Tcl matches
string patterns).

-get_value_from_clock_period
<src_clock_period|dst_clock_period|
min_clock_period|max_clock_period>

Option to interpret net delay constraint as a multiple of the
clock period.

-max Specifies maximum delay.

-min Specifies minimum delay.

-to <names>(2) Valid destination pins, ports, registers or nets (Tcl matches
string patterns).

-value_multiplier <multiplier> Value by which the clock period multiplies to compute net
delay requirement.

<delay> Delay value.

If you use the -min option, the Timing Analyzer calculates slack by determining the
minimum delay on the edge. If you use -max option, the Timing Analyzer calculates
slack by determining the maximum edge delay.

Use -get_skew_value_from_clock_period to set the net delay requirement as a
multiple of the launching or latching clock period, or whichever of the two has a
smaller or larger period. If you use this option, you must also set -
value_multiplier, and you must not set the positional delay option. If more than
one clock clocks the set of nets, the Timing Analyzer uses the net with smallest period
to compute the constraint for a -max constraint, and the largest period for a -min
constraint. If there are no clocks clocking the endpoints of the net (that is, if the
endpoints of the nets are not registers or constraint ports), then the Timing Analyzer
ignores the net delay constraint.

2.3.6.4. Create Timing Netlist

You can configure or load the timing netlist that the Timing Analyzer uses to calculate
path delay data.

You must generate the timing netlist before running timing analysis. You can use the
Create Timing Netlist dialog box or the Create Timing Netlist command in the
Tasks pane. Create Timing Netlist also generates Advanced I/O Timing reports if
you turn on Enable Advanced I/O Timing in the Timing Analyzer page of the
Settings dialog box.

(2) If no -to option, or if -to is a wildcard ("*") character, all the output pins and registers on
timing netlist become valid destination points.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Compiler creates the timing netlist during compilation. The timing netlist does not
reflect any configuration changes that occur after the device enters user mode, such
as dynamic transceiver reconfiguration. This applies to all device families except
transceivers on Intel Arria 10 devices with the Multiple Reconfiguration Profiles
feature.

The following diagram shows how the Timing Analyzer interprets and classifies timing
netlist data for a sample design.

Figure 57. How Timing Analyzer Interprets the Timing Netlist

2.3.7. Creating Timing Exceptions

Timing exceptions modify (or provide exception to) the default timing analysis
behavior to account for your specific design conditions. Specify timing exceptions after
specifying clocks and input and output delay constraints, because timing exceptions
modify the default analysis.

2.3.7.1. Timing Constraint Precedence

If the same clock or node names occur in multiple timing exceptions, the Timing
Analyzer observes the following order of timing constraint precedence:

1. Set False Path (set_false_path) is the first priority

2. Set Minimum Delay (set_min_delay) and Set Maximum Delay
(set_max_delay) are the second priority.

3. Set Multicycle Path (set_multicycle_path) is the third priority.

The false path timing exception has the highest precedence. Within each category,
assignments to individual nodes have precedence over assignments to clocks. For
exceptions of the same type:

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. -from <node> is the first priority.

2. -to <node> is the second priority.

3. -thru <node> is the third priority.

4. -from <clock> is the fourth priority.

5. -to <clock> is the fifth priority.

An asterisk wildcard (*) for any of these options applies the same precedence as not
specifying the option at all. For example, -from a -to * is treated identically to -
from a with regards precedence.

Precedence example:

1. set_max_delay 1 -from x -to y

2. set_max_delay 2 -from x

3. set_max_delay 3 -to y

The first exception has higher priority than either of the other two, since the first
exception specifies a -from (while #3 doesn't) and specifies a -to (while #2
doesn't). In the absence of the first exception, the second exception has higher
priority than the third, since the second exception specifies a -from, which the third
does not. Finally, the remaining order of precedence for additional exceptions is order-
dependent, such that the assignments most recently created overwrite, or partially
overwrite, earlier assignments.

set_net_delay or set_max_skew exceptions analyze independently of minimum or
maximum delays, or multicycle path constraints.

• The set_net_delay exception applies regardless the existence of a
set_false_path exception, or set_clock_group exception, on the same
nodes.

• When targeting the Intel Arria 10 device or Intel Cyclone 10 device and using the
18.1 version of the Timing Analyzer, the set_max_skew exception applies
regardless of any set_clock_group exception on the same nodes, but a
set_false_path exception overrides a set_max_skew exception.

2.3.7.2. False Paths (set_false_path)

The Set False Path (set_false_path) constraint allows you to exclude a path from
timing analysis, such as test logic or any other path not relevant to the circuit's
operation. You can specify the source (-from), common through elements (- thru),
and destination (-to) elements of that path.

The following SDC command makes false path exceptions from all registers beginning
with A, to all registers beginning with B:

set_false_path -from [get_pins A*] -to [get_pins B*]

You can specify either a point-to-point or clock-to-clock path as a false path. For
example, you can specify a false path for a static configuration register that is written
once during power-up initialization, but does not change state again.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Although signals from static configuration registers often cross clock domains, you
may not want to make false path exceptions to a clock-to-clock path, because some
data may transfer across clock domains. However, you can selectively make false path
exceptions from the static configuration register to all endpoints.

The Timing Analyzer assumes all clocks are related unless you specify otherwise. Use
clock groups to more efficiently make false path exceptions between clocks, rather
than writing multiple set_false_path exceptions between each clock transfer you
want to eliminate.

Related Information

Creating Clock Groups (set_clock_groups) on page 44

2.3.7.3. Minimum and Maximum Delays

To specify an absolute minimum or maximum delay for a path, use the Set Minimum
Delay (set_min_delay) or the Set Maximum Delay (set_max_delay)
constraints, respectively. Specifying minimum and maximum delay directly overwrites
existing setup and hold relationships with the minimum and maximum values.

Use the set_max_delay and set_min_delay constraints for asynchronous signals
that do not have a specific clock relationship in your design, but require a minimum
and maximum path delay. You can create minimum and maximum delay exceptions
for port-to-port paths through the device without a register stage in the path. If you
use minimum and maximum delay exceptions to constrain the path delay, specify both
the minimum and maximum delay of the path; do not constrain only the minimum or
maximum value.

If the source or destination node is clocked, the Timing Analyzer takes into account
the clock paths, allowing more or less delay on the data path. If the source or
destination node has an input or output delay, the minimum or maximum delay check
also includes that delay.

If you specify a minimum or maximum delay between timing nodes, the delay applies
only to the path between the two nodes. If you specify a minimum or maximum delay
for a clock, the delay applies to all paths where the clock clocks the source node or
destination node.

You can create a minimum or maximum delay exception for an output port that does
not have an output delay constraint. You cannot report timing for the paths that relate
to the output port; however, the Timing Analyzer reports any slack for the path in the
setup summary and hold summary reports. Because there is no clock that relates to
the output port, the Timing Analyzer reports no clock for timing paths of the output
port.

Note: To report timing with clock filters for output paths with minimum and maximum delay
constraints, you can set the output delay for the output port with a value of zero. You
can use an existing clock from the design or a virtual clock as the clock reference.

2.3.7.4. Multicycle Paths

By default, the Timing Analyzer performs a single-cycle analysis, which is the most
restrictive type of analysis. When analyzing a path without a multicycle constraint, the
Timing Analyzer determines the setup launch and latch edge times by identifying the
closest two active edges in the respective waveforms.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 58. Default Setup and Hold Relationship (No Multicycle)

0 ns 10 ns 20 ns 30 ns No Multicycles
(Default Relationship)

Setup = 10 ns
Hold = 0 ns

For hold time analysis, the timing analyzer analyzes the path for two timing conditions
for every possible setup relationship, not just the worst-case setup relationship.
Therefore, the hold launch and latch times can be unrelated to the setup launch and
latch edges. The Timing Analyzer does not report negative setup or hold relationships.
When the Timing Analyzer detects either a negative setup or a negative hold
relationship, the Timing Analyzer moves both the launch and latch edges until the
setup and hold relationship becomes positive.

A multicycle constraint adjusts this default setup or hold relationship by the number of
clock cycles you specify, based on the source (-start) or destination (-end) clock. A
setup multicycle constraint of 2 extends the worst-case setup latch edge by one
destination clock period. If you do not specify -start and -end values, the default
constraint is -end.

Figure 59. Setup and Hold Relationship with Multicycle = 2

0 ns 10 ns 20 ns 30 ns Setup = 2
Hold = 1

Setup = 20 ns
Hold = 0 ns

Hold multicycle constraints derive from the default hold position (the default value
is 0). An end hold multicycle constraint of 1 effectively subtracts one destination clock
period from the default hold latch edge.

When the objects are timing nodes, the multicycle constraint only applies to the path
between the two nodes. When an object is a clock, the multicycle constraint applies to
all paths where the source node (-from) or destination node (-to) is clocked by the
clock. When you adjust a setup relationship with a multicycle constraint, the hold
relationship adjusts automatically.

You can use timing constraints to modify either the launch or latch edge times that the
Timing Analyzer uses to determine a setup relationship or hold relationship.

Table 14. Multicycle Constraints

Command Modification

set_multicycle_path -setup -end <value> Latch edge time of the setup
relationship.

set_multicycle_path -setup -start<value> Launch edge time of the setup
relationship.

set_multicycle_path -hold -end <value> Latch edge time of the hold
relationship.

set_multicycle_path -hold -start <value> Launch edge time of the hold
relationship.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.7.4.1. Common Multicycle Applications

Multicycle exceptions adjust the timing requirements for a register-to-register path,
allowing the Fitter to optimally place and route a design. Two common multicycle
applications are relaxing setup to allow a slower data transfer rate, and altering the
setup to account for a phase shift.

2.3.7.4.2. Relaxing Setup with Multicycle (set_multicyle_path)

You can use a multicycle exception when the data transfer rate is slower than the
clock cycle. Relaxing the setup relationship increases the window when timing analysis
accepts data as valid.

In the following example, the source clock has a period of 10 ns, but the clock enables
a group of registers, so the registers only enable every other cycle. Since the registers
are fed by a 10 ns clock, the Timing Analyzer reports a setup of 10 ns and a hold of
0 ns. However, since the data is transferring every other cycle, the Timing Analyzer
must analyze the relationships as if the clock is operating at 20 ns. That results in a
setup of 20 ns, while the hold remains 0 ns, thus extending the window for data
recognition.

The following pair of multicycle assignments relax the setup relationship by specifying
the -setup value of N and the -hold value as N-1. You must specify the hold
relationship with a -hold assignment to prevent a positive hold requirement.

Constraint to Relax Setup and Maintain Hold

set_multicycle_path -setup -from src_reg* -to dst_reg* 2
set_multicycle_path -hold -from src_reg* -to dst_reg* 1

Figure 60. Multicycle Setup Relationships

0 ns 10 ns 20 ns 30 ns

0 ns 10 ns 20 ns 30 ns

0 ns 10 ns 20 ns 30 ns

No Multicycles
(Default Relationship)

Setup = 10 ns
Hold = 0 ns

Setup = 2
Hold = 1

Setup = 20 ns
Hold = 0 ns

Setup = 3
Hold = 2

Setup = 30 ns
Hold = 0 ns

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can extend this pattern to create larger setup relationships to ease timing closure
requirements. A common use for this exception is when writing to asynchronous RAM
across an I/O interface. The delay between address, data, and a write enable may be
several cycles. A multicycle exception to I/O ports allows extra time for the address
and data to resolve before the enable occurs.

The following constraint relaxes the setup by three cycles:

Three Cycle I/O Interface Constraint

set_multicycle_path -setup -to [get_ports {SRAM_ADD[*] SRAM_DATA[*]} 3
set_multicycle_path -hold -to [get_ports {SRAM_ADD[*] SRAM_DATA[*]} 2

2.3.7.4.3. Accounting for a Phase Shift (-phase)

In the following example, the design contains a PLL that performs a phase-shift on a
clock whose domain exchanges data with domains that do not experience the phase
shift. This occurs when the destination clock phase-shifts forward, and the source
clock does not shift. The default setup relationship becomes that phase-shift, thus
shifting the window when data is valid.

For example, the following code phase-shifts one output of a PLL forward by a small
amount, in this case 0.2 ns.

Cross Domain Phase-Shift

create_generated_clock -source pll|inclk[0] -name pll|clk[0] pll|clk[0]
create_generated_clock -source pll|inclk[0] -name pll|clk[1] -phase 30 pll|clk[1]

The default setup relationship for this phase-shift is 0.2 ns, shown in Figure A,
creating a scenario where the hold relationship is negative, which makes achieving
timing closure nearly impossible.

Figure 61. Phase-Shifted Setup and Hold

-10 ns 0 ns 10 ns 20 ns

-10 ns 0 ns 10 ns 20 ns

No Multicycles
(Default Relationship)

Setup = 0.2 ns
Hold = -9.8 ns

Setup = 2

Setup = 10.2 ns
Hold = 0.2 ns

The following constraint allows the data to transfer to the following edge:

set_multicycle_path -setup -from [get_clocks clk_a] -to [get_clocks clk_b] 2

The hold relationship derives from the setup relationship, making a multicycle hold
constraint unnecessary.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Same Frequency Clocks with Destination Clock Offset on page 69

2.3.7.5. Multicycle Exception Examples

The examples in this section illustrate how the multicycle exceptions affect the default
setup and hold analysis in the Timing Analyzer. The multicycle exceptions apply to a
simple register-to-register circuit. Both the source and destination clocks are set to
10 ns.

2.3.7.5.1. Default Multicycle Analysis

By default, the Timing Analyzer performs a single-cycle analysis to determine the
setup and hold checks. Also, by default, the Timing Analyzer sets the end multicycle
setup assignment value to one and the end multicycle hold assignment value to zero.

The source and the destination timing waveform for the source register and
destination register, respectively where HC1 and HC2 are hold checks 1 and 2 and SC
is the setup check.

Figure 62. Default Timing Diagram

-10 0 10 20
Current Launch

Current Latch

0 1 2

HC1 HC2SC

REG1.CLK

REG2.CLK

Figure 63. Setup Check Calculation

setup check = current latch edge – closest previous launch edge
 = 10 ns – 0 ns
 = 10 ns

The most restrictive setup relationship with the default single-cycle analysis, that is, a
setup relationship with an end multicycle setup assignment of one, is 10 ns.

The setup report for the default setup in the Timing Analyzer with the launch and latch
edges highlighted.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 64. Setup Report

Figure 65. Hold Check Calculation

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 0 ns
 = 0 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 10 ns
 = 0 ns

The most restrictive hold relationship with the default single-cycle analysis, that a hold
relationship with an end multicycle hold assignment of zero, is 0 ns.

The hold report for the default setup in the Timing Analyzer with the launch and latch
edges highlighted.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 66. Hold Report

2.3.7.5.2. End Multicycle Setup = 2 and End Multicycle Hold = 0

In this example, the end multicycle setup assignment value is two, and the end
multicycle hold assignment value is zero.

Multicycle Constraint

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -end 2

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Timing Analyzer does not require an end multicycle hold value because the default
end multicycle hold value is zero.

In this example, the setup relationship relaxes by a full clock period by moving the
latch edge to the next latch edge. The hold analysis is does not change from the
default settings.

The following shows the setup timing diagram for the analysis that the Timing
Analyzer performs. The latch edge is a clock cycle later than in the default single-cycle
analysis.

Figure 67. Setup Timing Diagram

-10 0

0 1 2

10 20

SC

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

Figure 68. Setup Check Calculation

setup check = current latch edge – closest previous launch edge
 = 20 ns – 0 ns
 = 20 ns

The most restrictive setup relationship with an end multicycle setup assignment of two
is 20 ns.

The following shows the setup report in the Timing Analyzer and highlights the launch
and latch edges.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 69. Setup Report

Because the multicycle hold latch and launch edges are the same as the results of
hold analysis with the default settings, the multicycle hold analysis in this example is
equivalent to the single-cycle hold analysis. The hold checks are relative to the setup
check. Normally, the Timing Analyzer performs hold checks on every possible setup
check, not only on the most restrictive setup check edges.

Figure 70. Hold Timing Diagram

-10 0 10 20
Current Launch

Current Latch

REG1.CLK

REG2.CLK

SCHC1Data HC2

Figure 71. Hold Check Calculation

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 10 ns
 = –10 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 20 ns
 = –10 ns

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This is the most restrictive hold relationship with an end multicycle setup assignment
value of two and an end multicycle hold assignment value of zero is 10 ns.

Figure 72. Hold Report

2.3.7.5.3. End Multicycle Setup = 2 and End Multicycle Hold = 1

In this example, the end multicycle setup assignment value is two, and the end
multicycle hold assignment value is one.

Multicycle Constraint

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -end 2
set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] -hold -
end 1

In this example, the setup relationship relaxes by two clock periods by moving the
latch edge to the left two clock periods. The hold relationship relaxes by a full period
by moving the latch edge to the previous latch edge.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following shows the setup timing diagram for the analysis that the Timing
Analyzer performs:

Figure 73. Setup Timing Diagram

-10 0

0 1 2

10 20

SC

SRC.CLK

DST.CLK

Current
Launch

Current
Latch

Figure 74. Setup Check Calculation

setup check = current latch edge – closest previous launch edge
 = 20 ns – 0 ns
 = 20 ns

The most restrictive hold relationship with an end multicycle setup assignment value
of two is 20 ns.

The following shows the setup report for this example in the Timing Analyzer and
highlights the launch and latch edges.

Figure 75. Setup Report

The following shows the timing diagram for the hold checks for this example. The hold
checks are relative to the setup check.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 76. Hold Timing Diagram

-10 0 10 20

SRC.CLK

DST.CLK

Current
Launch

Current
Latch

SC
HC1

HC2

Figure 77. Hold Check Calculation

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 0 ns
 = 0 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 10 ns
 = 0 ns

The most restrictive hold relationship with an end multicycle setup assignment value
of two and an end multicycle hold assignment value of one is 0 ns.

The following shows the hold report for this example in the Timing Analyzer and
highlights the launch and latch edges.

Figure 78. Hold Report

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.7.5.4. Same Frequency Clocks with Destination Clock Offset

In this example, the source and destination clocks have the same frequency, but the
destination clock is offset with a positive phase shift. Both the source and destination
clocks have a period of 10 ns. The destination clock has a positive phase shift of 2 ns
with respect to the source clock.

The following example shows a design with the same frequency clocks and a
destination clock offset.

Figure 79. Same Frequency Clocks with Destination Clock Offset Diagram

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLR

clk1

In

clk0

Out

The following timing diagram shows the default setup check analysis that the Timing
Analyzer performs.

Figure 80. Setup Timing Diagram

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

Figure 81. Setup Check Calculation

setup check = current latch edge – closest previous launch edge
 = 2 ns – 0 ns
 = 2 ns

The setup relationship shown is too pessimistic and is not the setup relationship
required for typical designs. To adjust the default analysis, you assign an end
multicycle setup exception of two. The following shows a multicycle exception that
adjusts the default analysis:

Multicycle Constraint

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -end 2

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following timing diagram shows the preferred setup relationship for this example:

Figure 82. Preferred Setup Relationship

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

The following timing diagram shows the default hold check analysis that the Timing
Analyzer performs with an end multicycle setup value of two.

Figure 83. Default Hold Check

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SCHC1 HC2

Figure 84. Hold Check Calculation

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 2 ns
 = –2 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 12 ns
 = –2 ns

In this example, the default hold analysis returns the preferred hold requirements and
no multicycle hold exceptions are required.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The associated setup and hold analysis if the phase shift is –2 ns. In this example, the
default hold analysis is correct for the negative phase shift of 2 ns, and no multicycle
exceptions are required.

Figure 85. Negative Phase Shift

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SCHC1 HC2

2.3.7.5.5. Destination Clock Frequency is a Multiple of the Source Clock Frequency

In this example, the destination clock frequency value of 5 ns is an integer multiple of
the source clock frequency of 10 ns. The destination clock frequency can be an integer
multiple of the source clock frequency when a PLL generates both clocks with a phase
shift on the destination clock.

The following example shows a design in which the destination clock frequency is a
multiple of the source clock frequency.

Figure 86. Destination Clock is Multiple of Source Clock

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following timing diagram shows the default setup check analysis that the Timing
Analyzer performs:

Figure 87. Setup Timing Diagram

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

Figure 88. Setup Check Calculation

setup check = current latch edge – closest previous launch edge
 = 5 ns – 0 ns
 = 5 ns

The setup relationship demonstrates that the data requires capture at edge two;
therefore, you can relax the setup requirement. To correct the default analysis, you
shift the latch edge by one clock period with an end multicycle setup exception of two.
The following multicycle exception assignment adjusts the default analysis in this
example:

Multicycle Constraint

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -end 2

The following timing diagram shows the preferred setup relationship for this example:

Figure 89. Preferred Setup Analysis

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following timing diagram shows the default hold check analysis the Timing
Analyzer performs with an end multicycle setup value of two.

Figure 90. Default Hold Check

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SC
HC1

HC2

Figure 91. Hold Check Calculation

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 5 ns
 = –5 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 10 ns
 = 0 ns

In this example, hold check one is too restrictive. The data is launched by the edge at
0 ns and must check against the data captured by the previous latch edge at 0 ns,
which does not occur in hold check one. To correct the default analysis, you must use
an end multicycle hold exception of one.

2.3.7.5.6. Destination Clock Frequency is a Multiple of the Source Clock Frequency with an
Offset

This example is a combination of the previous two examples. The destination clock
frequency is an integer multiple of the source clock frequency, and the destination
clock has a positive phase shift. The destination clock frequency is 5 ns, and the
source clock frequency is 10 ns. The destination clock also has a positive offset of 2 ns
with respect to the source clock. The destination clock frequency can be an integer
multiple of the source clock frequency. The destination clock frequency can be with an
offset when a PLL generates both clocks with a phase shift on the destination clock.

The following example shows a design in which the destination clock frequency is a
multiple of the source clock frequency with an offset.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 92. Destination Clock is Multiple of Source Clock with Offset
REG1 REG2

Combinational
Logic

SET SET
D Q D Q

CLR CLRclk

In

clk0

clk1

Out

The timing diagram for the default setup check analysis the Timing Analyzer performs.

Figure 93. Setup Timing Diagram

-10 0

1 2 3

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

Figure 94. Hold Check Calculation

setup check = current latch edge – closest previous launch edge
 = 2 ns – 0 ns
 = 2 ns

The setup relationship in this example demonstrates that the data does not require
capture at edge one, but rather requires capture at edge two; therefore, you can relax
the setup requirement. To adjust the default analysis, you shift the latch edge by one
clock period, and specify an end multicycle setup exception of three.

The multicycle exception adjusts the default analysis in this example:

Multicycle Constraint

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -end 3

The timing diagram for the preferred setup relationship for this example.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 95. Preferred Setup Analysis

SC

-10 0

1 2 3

10 20

REG1.CLK

REG2.CLK

Launch

Latch

The following timing diagram shows the default hold check analysis that the Timing
Analyzer performs with an end multicycle setup value of three:

Figure 96. Default Hold Check

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1
HC2

Figure 97. Hold Check Calculation

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 5 ns
 = –5 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 10 ns
 = 0 ns

In this example, the hold check one is too restrictive. The data is launched by the
edge at 0 ns, and must check against the data that the previous latch edge at 2 ns
captures. This event does not occur in hold check one. To adjust the default analysis,
you assign end multicycle hold exception of one.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.7.5.7. Source Clock Frequency is a Multiple of the Destination Clock Frequency

In this example, the source clock frequency value of 5 ns is an integer multiple of the
destination clock frequency of 10 ns. The source clock frequency can be an integer
multiple of the destination clock frequency when a PLL generates both clocks and use
different multiplication and division factors.

In the following example the source clock frequency is a multiple of the destination
clock frequency:

Figure 98. Source Clock Frequency is Multiple of Destination Clock Frequency:
REG1 REG2

Combinational
Logic

SET SET
D Q D Q

CLR CLRclk

In

clk0

clk1

Out

The following timing diagram shows the default setup check analysis the Timing
Analyzer performs:

Figure 99. Default Setup Check Analysis

SC

-10 0

2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

Figure 100. Setup Check Calculation

setup check = current latch edge – closest previous launch edge
 = 10 ns – 5 ns
 = 5 ns

The setup relationship demonstrates that the data launched at edge one does not
require capture, and the data launched at edge two requires capture; therefore, you
can relax the setup requirement. To correct the default analysis, you shift the launch
edge by one clock period with a start multicycle setup exception of two.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following multicycle exception adjusts the default analysis in this example:

Multicycle Constraint

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -start 2

The following timing diagram shows the preferred setup relationship for this example:

Figure 101. Preferred Setup Check Analysis

SC

-10 0

2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

The following timing diagram shows the default hold check analysis the Timing
Analyzer performs for a start multicycle setup value of two:

Figure 102. Default Hold Check

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1 HC2

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 103. Hold Check Calculation

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 0 ns
 = 0 ns

hold check 2 = next launch edge – current latch edge
 = 5 ns – 10 ns
 = –5 ns

In this example, the hold check two is too restrictive. The data is launched next by the
edge at 10 ns and must check against the data captured by the current latch edge at
10 ns, which does not occur in hold check two. To correct the default analysis, you use
a start multicycle hold exception of one.

2.3.7.5.8. Source Clock Frequency is a Multiple of the Destination Clock Frequency with an
Offset

In this example, the source clock frequency is an integer multiple of the destination
clock frequency and the destination clock has a positive phase offset. The source clock
frequency is 5 ns and destination clock frequency is 10 ns. The destination clock also
has a positive offset of 2 ns with respect to the source clock. The source clock
frequency can be an integer multiple of the destination clock frequency with an offset
when a PLL generates both clocks with different multiplication.

Figure 104. Source Clock Frequency is Multiple of Destination Clock Frequency with Offset

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out

The following timing diagram shows the default setup check analysis the Timing
Analyzer performs:

Figure 105. Setup Timing Diagram

SC

-10 0

3 2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 106. Setup Check Calculation

setup check = current latch edge – closest previous launch edge
 = 12 ns – 10 ns
 = 2 ns

The setup relationship in this example demonstrates that the data is not launched at
edge one, and the data that is launched at edge three must be captured; therefore,
you can relax the setup requirement. To correct the default analysis, you shift the
launch edge by two clock periods with a start multicycle setup exception of three.

The following multicycle exception adjusts the default analysis in this example:

 Multicycle Constraint

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -start 3

The following timing diagram shows the preferred setup relationship for this example:

Figure 107. Preferred Setup Check Analysis

-10 0

3 2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following timing diagram shows the default hold check analysis the Timing
Analyzer performs for a start multicycle setup value of three:

Figure 108. Default Hold Check Analysis

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1

HC2

SC

The Timing Analyzer performs the following calculation to determine the hold check:

Figure 109. Hold Check Calculation

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 2 ns
 = –2 ns

hold check 2 = next launch edge – current latch edge
 = 5 ns – 12 ns
 = –7 ns

In this example, the hold check two is too restrictive. The data is launched next by the
edge at 10 ns and must check against the data captured by the current latch edge at
12 ns, which does not occur in hold check two. To correct the default analysis, you
must specify a multicycle hold exception of one.

2.3.7.6. Delay Annotation

To modify the default delay values used during timing analysis, use the
set_annotated_delay and set_timing_derate commands. You must update the
timing netlist to apply these commands.

To specify different operating conditions in a single .sdc file, rather than having
multiple .sdc files that specify different operating conditions, use the
set_annotated_delay -operating_conditions command.

2.3.8. Example Circuit and SDC File

The following circuit and corresponding .sdc file demonstrates constraining a design
that includes two clocks, a phase-locked loop (PLL), and other common synchronous
design elements.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 110. Dual-Clock Design Constraint Example

data1

data2

clk1

clk2

inst

inst1

inst2lpm_add_sub0 myfifo

altpll0

dataout

The .sdc file contains basic constraints for the example circuit.

Example 7. Basic .sdc Constraints Example

Create clock constraints
create_clock -name clockone -period 10.000 [get_ports {clk1}]
create_clock -name clocktwo -period 10.000 [get_ports {clk2}]
Create virtual clocks for input and output delay constraints
create clock -name clockone_ext -period 10.000
create clock -name clocktwo_ext -period 10.000
derive_pll_clocks
derive clock uncertainty
derive_clock_uncertainty
Specify that clockone and clocktwo are unrelated by assigning
them to separate asynchronous groups
set_clock_groups \
 -asynchronous \
 -group {clockone} \
 -group {clocktwo altpll0|altpll_component|auto_generated|pll1|clk[0]}
set input and output delays
set_input_delay -clock { clockone_ext } -max 4 [get_ports {data1}]\
 set_input_delay -clock { clockone_ext } -min -1 [get_ports {data1}]
set_input_delay -clock { clockone_ext } -max 4 [get_ports {data2}]\
 set_input_delay -clock { clockone_ext } -min -1 [get_ports {data2}]
set_output_delay -clock { clocktwo_ext } -max 6 [get_ports {dataout}]
set_output_delay -clock { clocktwo_ext } -min -3 [get_ports {dataout}]

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The .sdc file contains the following basic constraints that you typically include for
most designs:

• Definitions of clockone and clocktwo as base clocks, and assignment of those
constraints to nodes in the design.

• Definitions of clockone_ext and clocktwo_ext as virtual clocks, which
represent clocks driving external devices interfacing with the FPGA.

• Automated derivation of generated clocks on PLL outputs.

• Derivation of clock uncertainty.

• Specification of two clock groups, the first containing clockone and its related
clocks, the second containing clocktwo and its related clocks, and the third
group containing the output of the PLL. This specification overrides the default
analysis of all clocks in the design as related to each other.

• Specification of input and output delays for the design.

Related Information

Asynchronous Clock Groups (-asynchronous) on page 46

2.4. Timing Analyzer Tcl Commands

You can optionally use Tcl commands from the Intel Quartus Prime software Tcl
Application Programming Interface (API) to constrain, analyze, and collect timing
information for your design. This section describes running the Timing Analyzer and
setting constraints using Tcl commands. You can alternatively perform these same
functions in the Timing Analyzer GUI. Tcl .sdc extensions provide additional methods
for controlling timing analysis and reporting. The following Tcl packages support the
Tcl timing analysis commands this chapter describes:

• ::quartus::sta

• ::quartus::sdc

• ::quartus::sdc_ext

2.4.1. The quartus_sta Executable

The quartus_sta executable allows you to run timing analysis without running the
full Intel Quartus Prime software GUI. The following methods are available:

• To run the Timing Analyzer as a stand-alone GUI application, type the following at
the command prompt:

quartus_staw

• To run the Timing Analyzer in interactive command-shell mode, type the following
at the command prompt:

quartus_sta -s <options><project_name>

• To run multi-corner timing analysis from a system command prompt, type the
following command:

quartus_sta <options><project_name>

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 15. quartus_sta Command-Line Options

Command-Line Option Description

-h | --help Provides help information on quartus_sta.

-t <script file> | --script=<script
file>

Sources the <script file>.

-s | --shell Enters shell mode.

--tcl_eval <tcl command> Evaluates the Tcl command <tcl command>.

--do_report_timing For all clocks in the design, run the following commands:

report_timing -npaths 1 -to_clock $clock
report_timing -setup -npaths 1 -to_clock $clock
report_timing -hold -npaths 1 -to_clock $clock
report_timing -recovery -npaths 1 -to_clock $clock
report_timing -removal -npaths 1 -to_clock $clock

--force_dat Forces an update of the project database with new delay
information.

--lower_priority Lowers the computing priority of the quartus_sta process.

--post_map Uses the post-map database results.

--sdc=<SDC file> Specifies the .sdc file to use.

--report_script=<custom script> Specifies a custom report script to call.

--speed=<value> Specifies the device speed grade used for timing analysis.

--tq2pt Generates temporary files to convert the Timing Analyzer.sdc file
to a PrimeTime .sdc file.

-f <argument file> Specifies a file containing additional command-line arguments.

-c <revision name> | --
rev=<revision_name>

Specifies which revision and its associated Intel Quartus Prime
Settings File (.qsf) to use.

--multicorner Specifies that the Timing Analyzer generates all slack summary
reports for both slow- and fast-corners.

--multicorner[=on|off] Turns off multicorner timing analysis.

--voltage=<value_in_mV> Specifies the device voltage, in mV used for timing analysis.

--temperature=<value_in_C> Specifies the device temperature in degrees Celsius, used for timing
analysis.

--parallel [=<num_processors>] Specifies the number of computer processors to use on a
multiprocessor system.

--64bit Enables 64-bit version of the executable.

2.4.2. Collection Commands

The Timing Analyzer supports collection commands that provide easy access to ports,
pins, cells, or nodes in the design. Use collection commands with any constraints or Tcl
commands specified in the Timing Analyzer.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16. Collection Commands

Command Collection Returned

all_clocks All clocks in the design

all_inputs All input ports in the design.

all_outputs All output ports in the design.

all_registers All registers in the design.

get_cells Cells in the design. All cell names in the collection match the specified pattern. Wildcards can be used
to select multiple cells at the same time.

get_clocks Lists clocks in the design. When used as an argument to another command, such as the -from or -to
of set_multicycle_path, each node in the clock represents all nodes clocked by the clocks in the
collection. The default uses the specific node (even if the node is a clock) as the target of a command.

get_nets Nets in the design. All net names in the collection match the specified pattern. You can use wildcards to
select multiple nets at the same time.

get_pins Pins in the design. All pin names in the collection match the specified pattern. You can use wildcards to
select multiple pins at the same time.

get_ports All ports (design inputs and outputs) in the design.

You can also examine collections and experiment with collections using wildcards in
the Timing Analyzer by clicking Name Finder from the View menu.

2.4.2.1. Wildcard Characters

To apply constraints to many nodes in a design, use the “*” and “?” wildcard
characters. The “*” wildcard character matches any string; the “?” wildcard character
matches any single character.

If you apply a constraint to node reg*, the Timing Analyzer searches for and applies
the constraint to all design nodes that match the prefix reg with any number of
following characters, such as reg, reg1, reg[2], regbank, and reg12bank.

If you apply a constraint to a node specified as reg?, the Timing Analyzer searches
and applies the constraint to all design nodes that match the prefix reg and any single
character following; for example, reg1, rega, and reg4.

2.4.2.2. Adding and Removing Collection Items

Wildcards that you use with collection commands define collection items that the
command identifies. For example, if a design contains registers with the name src0,
src1, src2, and dst0, the collection command [get_registers src*] identifies
registers src0, src1, and src2, but not register dst0. To identify register dst0, you
must use an additional command, [get_registers dst*]. To include dst0, you
can also specify a collection command [get_registers {src* dst*}].

To modify collections, use the add_to_collection and remove_from_collection
commands. The add_to_collection command allows you to add additional items to
an existing collection.

add_to_collection Command

add_to_collection <first collection> <second collection>

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The add_to_collection command creates a new collection that is the union of the
two collections you specify.

The remove_from_collection command allows you to remove items from an
existing collection.

 remove_from_collection Command

remove_from_collection <first collection> <second collection>

The following example shows use of add_to_collection to add items to a
collection.

 Adding Items to a Collection

#Setting up initial collection of registers
set regs1 [get_registers a*]
#Setting up initial collection of keepers
set kprs1 [get_keepers b*]
#Creating a new set of registers of $regs1 and $kprs1
set regs_union [add_to_collection $kprs1 $regs1]
#OR
#Creating a new set of registers of $regs1 and b*
#Note that the new collection appends only registers with name b*
not all keepers
set regs_union [add_to_collection $regs1 b*]

In the Intel Quartus Prime software, keepers are I/O ports or registers. An .sdc file
that includes get_keepers is incompatible with third-party timing analysis flows.

2.4.2.3. Query of Collections

You can display the contents of a collection with the query_collection command.
Use the -report_format option to return the contents in a format of one element
per line. The -list_format option returns the contents in a Tcl list.

query_collection -report_format -all $regs_union

Use the get_collection_size command to return the number of items the
collection contains. If your collection is in a variable with the name col, use set
num_items [get_collection_size $col] rather than set num_items
[llength [query_collection -list_format $col]] for more efficiency.

2.4.2.4. Using the get_pins Command

The get_pins command supports options that control the matching behavior of the
wildcard character (*). Depending on the combination of options you use, you can
make the wildcard character (*) respect or ignore individual levels of hierarchy. The
pipe character (|) indicates levels of hierarchy. By default, the wildcard character (*)
matches only a single level of hierarchy.

These examples filter the following node and pin names to illustrate function:

• lvl (a hierarchy level with the name lvl)

• lvl|dataa (an input pin in the instance lvl)

• lvl|datab (an input pin in the instance lvl)

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• lvl|cnod (a combinational node with the name cnod in the lvl instance)

• lvl|cnod|datac (an input pin to the combinational node with the name cnod)

• lvl|cnod|datad (an input pin to the combinational node cnod)

Table 17. Sample Search Strings and Search Results

Search String Search Result

get_pins *|dataa lvl|dataa

get_pins *|datac <empty>(3)

get_pins *|*|datac lvl|cnod|datac

get_pins lvl*|* lvl|dataa, lvl|datab

get_pins -hierarchical *|*|datac <empty>(3)

get_pins -hierarchical lvl|* lvl|dataa, lvl|datab

get_pins -hierarchical *|datac lvl|cnod|datac

get_pins -hierarchical lvl|*|datac <empty>(3)

get_pins -compatibility_mode *|datac lvl|cnod|datac (4)

get_pins -compatibility_mode *|*|datac lvl|cnod|datac

The default method separates hierarchy levels of instances from nodes and pins with
the pipe character (|). A match occurs when the levels of hierarchy match, and the
string values including wildcards match the instance or pin names. For example, the
command get_pins <instance_name>|*|datac returns all the datac pins for
registers in a given instance. However, the command get_pins *|datac returns
and empty collection because the levels of hierarchy do not match.

Use the -hierarchical matching scheme to return a collection of cells or pins in all
hierarchies of your design.

For example, the command get_pins -hierarchical *|datac returns all the
datac pins for all registers in your design. However, the command get_pins -
hierarchical *|*|datac returns an empty collection because more than one pipe
character (|) is not supported.

The -compatibility_mode option returns collections matching wildcard strings
through any number of hierarchy levels. For example, an asterisk can match a pipe
character when using -compatibility_mode.

(3) The search result is <empty> because the wildcard character (*) does not match more than
one hierarchy level, that a pipe character (|) indicates, by default. This command matches
any pin with the name datac in instances at the top level of the design.

(4) When you use -compatibility_mode, the Timing Analyzer does not treat pipe characters
(|) as special characters when you use the characters with wildcards.

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.3. Identifying the Intel Quartus Prime Software Executable from the
SDC File

To identify which Intel Quartus Prime software executable is currently running you can
use the $::TimingAnalyzerInfo(nameofexecutable) variable from within an
SDC file. This technique is most commonly used when you want to use an
overconstraint to cause the Fitter to work harder on a particular path or set of paths in
the design.

 Identifying the Intel Quartus Prime Executable

#Identify which executable is running:
set current_exe $::TimingAnalyzerInfo(nameofexecutable)
if { [string equal $current_exe "quartus_fit"] } {
 #Apply .sdc assignments for Fitter executable here
} else {
 #Apply .sdc assignments for non-Fitter executables here
}
if { ! [string equal "quartus_sta" $::TimingAnalyzerInfo(nameofexecutable)] } {
 #Apply .sdc assignments for non-Timing Analyzer executables here
} else {
 #Apply .sdc assignments for Timing Analyzer executable here
}

Examples of different executable names are quartus_map for Analysis & Synthesis,
quartus_fit for Fitter, and quartus_sta for the Timing Analyzer.

2.5. Timing Analysis of Imported Compilation Results

You can preserve the compilation results for your design as a version-compatible
Quartus database file (.qdb) that you can open in a later version of the Intel Quartus
Prime software without compatibility issues.

When you import and open the .qdb in a later version of software, you can run timing
analysis on the imported compilation results without re-running the Compiler.

2.6. Using the Intel Quartus Prime Timing Analyzer Document
Revision History

Document Version Intel Quartus
Prime Version

Changes

2024.02.21 18.1.0 • Clarified constraint precedence in Maximum Skew and Timing
Constraint Precedence topics.

2018.09.24 18.1.0 • Revised "Basic Timing Analysis Flow" section to add sequential step
organization, update steps, and add supporting screenshots.

• Retitled "SDC Constraint Creation Summary" to " Dual Clock SDC
Example."

• Retitled "Default Settings" to "Default Multicycle Analysis."
• Retitled "SDC (Clock and Exception) Assignments on Blackbox Ports" to

"Constraining Design Partition Ports."

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.
• Updated information on using Intel Arria 10 devices with enhanced

timing algorithms.

continued...

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2015.05.04 15.0.0 Added and updated contents in support of new timing algorithms for Arria
10:
• Enhanced Timing Analysis for Arria 10
• Maximum Skew (set_max_skew command)
• Net Delay (set_net_delay command)
• Create Generated Clocks (clock-as-data example)

2014.12.15 14.1.0 Major reorganization. Revised and added content to the following topic
areas:
• Timing Constraints
• Create Clocks and Clock Constraints
• Creating Generated Clocks
• Creating Clock Groups
• Clock Uncertainty
• Running the Timing Analyzer
• Generating Timing Reports
• Understanding Results
• Constraining and Analyzing with Tcl Commands

August 2014 14.0a10.0 Added command line compilation requirements for Arria 10 devices.

June 2014 14.0.0 • Minor updates.
• Updated format.

November 2013 13.1.0 • Removed HardCopy device information.

June 2012 12.0.0 • Reorganized chapter.
• Added “Creating a Constraint File from Intel Quartus Prime Templates

with the Intel Quartus Prime Text Editor” section on creating an SDC
constraints file with the Insert Template dialog box.

• Added “Identifying the Intel Quartus Prime Software Executable from
the SDC File” section.

• Revised multicycle exceptions section.

November 2011 11.1.0 • Consolidated content from the Best Practices for the Intel Quartus
Prime Timing Analyzer chapter.

• Changed to new document template.

May 2011 11.0.0 • Updated to improve flow. Minor editorial updates.

December 2010 10.1.0 • Changed to new document template.
• Revised and reorganized entire chapter.
• Linked to Intel Quartus Prime Help.

continued...

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Intel Quartus Prime Standard Edition User Guide: Timing Analyzer Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

July 2010 10.0.0 Updated to link to content on SDC commands and the Timing Analyzer GUI
in Intel Quartus Prime Help.

November 2009 9.1.0 Updated for the Intel Quartus Prime software version 9.1, including:
• Added information about commands for adding and removing items

from collections
• Added information about the set_timing_derate and report_skew

commands
• Added information about worst-case timing reporting
• Minor editorial updates

November 2008 8.1.0 Updated for the Intel Quartus Prime software version 8.1, including:
• Added the following sections:

“set_net_delay” on page 7–42
“Annotated Delay” on page 7–49
“report_net_delay” on page 7–66

• Updated the descriptions of the -append and -file <name> options
in tables throughout the chapter

• Updated entire chapter using 8½” × 11” chapter template
• Minor editorial updates

2. Using the Intel Quartus Prime Timing Analyzer

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683068 | 2024.02.21

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics*, and Synopsys. Includes design flow steps,
generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor
Graphics* and Cadence*. Also includes information about signal integrity
analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

A. Intel Quartus Prime Standard Edition User Guides

683068 | 2024.02.21

Send Feedback Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

91

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Timing%20Analyzer%20(683068%202024.02.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Standard
Edition User Guide
Power Analysis and Optimization

Updated for Intel® Quartus® Prime Design Suite: 18.1

This document is part of a collection - Intel® Quartus® Prime Standard Edition User Guides -
Combined PDF link

Online Version

Send Feedback UG-20184

683506

2018.09.24

https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683506.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Power Analysis... 4
1.1. Comparison of the EPE and the Intel Quartus Prime Power Analyzer............................. 5
1.2. Power Estimations and Design Requirements...6
1.3. Power Analyzer Walkthrough... 6
1.4. Inputs for the Power Analyzer... 7

1.4.1. Operating Settings and Conditions... 7
1.4.2. Sources for Signal Activity Data...8

1.5. Power Analysis in Modular Design Flows..11
1.5.1. Complete Design Simulation..13
1.5.2. Modular Design Simulation..13
1.5.3. Multiple Simulations on the Same Entity..13
1.5.4. Overlapping Simulations... 14
1.5.5. Partial Simulations... 14
1.5.6. Node Name Matching Considerations ... 15
1.5.7. Glitch Filtering...16
1.5.8. Node and Entity Assignments.. 17
1.5.9. Default Toggle Rate Assignment...18
1.5.10. Vectorless Estimation..18

1.6. Power Analyzer Compilation Report.. 18
1.7. Scripting Support...21

1.7.1. Running the Power Analyzer from the Command–Line...................................21
1.8. Power Analysis Revision History... 22

2. Power Optimization.. 25
2.1. Factors Affecting Power Consumption... 25

2.1.1. Design Activity and Power Analysis...25
2.1.2. Device Selection.. 26
2.1.3. Environmental Conditions..26
2.1.4. Device Resource Usage...27
2.1.5. Signal Activity... 27

2.2. Power Dissipation.. 28
2.3. Design Space Explorer II for Power-Driven Optimization..29
2.4. Power-Driven Compilation... 30

2.4.1. Power-Driven Synthesis.. 30
2.4.2. Power-Driven Fitter.. 33
2.4.3. Area-Driven Synthesis.. 34
2.4.4. Gate-Level Register Retiming...34
2.4.5. Intel Quartus Prime Compiler Settings.. 35
2.4.6. Assignment Editor Options.. 36

2.5. Design Guidelines.. 37
2.5.1. Clock Power Management... 37
2.5.2. Pipelining and Retiming...43
2.5.3. Architectural Optimization... 44
2.5.4. I/O Power Guidelines..45
2.5.5. Memory Optimization (M20K/MLAB)... 46
2.5.6. DDR Memory Controller Settings..47
2.5.7. DSP Implementation.. 48

Contents

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.8. Reducing High-Speed Tile (HST) Usage... 48
2.5.9. Unused Transceiver Channels...49
2.5.10. Periphery Power reduction XCVR Settings.. 50

2.6. Power Optimization Advisor...50
2.6.1. Set Realistic Timing Constraints... 51
2.6.2. Appropriate Device Family...51
2.6.3. Dynamic Power..52
2.6.4. Static Power..52
2.6.5. Appropriate I/O Standards.. 53
2.6.6. Use RAM Blocks... 53
2.6.7. Shut Down RAM Blocks...53
2.6.8. Clock Enables on Logic..53
2.6.9. Pipeline Logic to Reduce Glitching...53

2.7. Power Optimization Revision History...54

A. Intel Quartus Prime Standard Edition User Guides..56

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Power Analysis
The Intel® Quartus® Prime Design Suite provides tools to estimate power
consumption in a FPGA design at different stages of the design process. The Intel
Quartus Prime Power Analyzer allows you to estimate power consumption for a post-fit
design. To estimate the power consumption before you compile the design, use the
Early Power Estimator (EPE) spreadsheet.

Note: Do not use the results of the Power Analyzer as design specifications.

As designs grow larger and process technology continues to shrink, power becomes an
increasingly important design consideration. When designing a PCB, you must
estimate the power consumption of a device accurately to develop an appropriate
power budget, and to design the power supplies, voltage regulators, heat sink, and
cooling system.

The Intel Quartus Prime Power Analyzer helps you establish guidelines for the power
budget of your design. Make sure to verify the actual power during device operation,
because this information is sensitive to the actual device design and the
environmental operating conditions.

This chapter describes the Intel Quartus Prime Power Analyzer tool. For details about
the EPE spreadsheets, refer to the Early Power Estimator page in the Altera website.

Note: The Intel Quartus Prime Power Analyzer does not support the Intel Arria® 10 HPS IP.
You can obtain a power estimation for this Intel FPGA IP with the EPE spreadsheet.

Related Information

• Early Power Estimator Page

• Power Analyzer Support Resources

683506 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/support/devices/estimator/pow-powerplay.jsp
https://www.altera.com/support/support-resources/operation-and-testing/power/sof-qts-power.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

1.1. Comparison of the EPE and the Intel Quartus Prime Power
Analyzer

The following figure shows the design stages in which you use power analysis tools,
and compares the accuracy of the estimations for different input types:

Figure 1. Estimation Accuracy for Different Inputs and Power Analysis Tools

Estim
ation Accuracy

Design ImplementationDesign Concept

Lower
Higher

Design Stages

EPE Input
Power Analyzer Input

User Input

Quartus Prime
Design Profile

Placement and
Routing Results

Simulation
Results

The following table lists the differences between the EPE and the Intel Quartus Prime
Power Analyzer.

Table 1. Comparison of the EPE and the Intel Quartus Prime Power Analyzer

Characteristic EPE Intel Quartus Prime Power Analyzer

When to use Any time
Note: For post-fit power analysis, you

get better results with the Intel
Quartus Prime Power Analyzer.

Post-fit

Software requirements Spreadsheet program The Intel Quartus Prime software

Accuracy Medium Medium to very high

Data inputs • Resource usage estimates
• Clock requirements
• Environmental conditions
• Toggle rate

• Post-fit design
• Clock requirements
• Signal activity defaults
• Environmental conditions
• Register transfer level (RTL)

simulation results (optional)
• Post-fit simulation results (optional)
• Signal activities per node or entity

(optional)

Data outputs
Note: The EPE and Power Analyzer

outputs vary by device family.

• Total thermal power dissipation
• Thermal static power
• Thermal dynamic power
• Off-chip power dissipation
• Current drawn from voltage

supplies

• Total thermal power
• Thermal static power
• Thermal dynamic power
• Thermal I/O power
• Thermal power by design hierarchy
• Thermal power by block type
• Thermal power dissipation by clock

domain
• Off-chip (non-thermal) power

dissipation
• Device supply currents

Estimation of transceiver power for
dynamic reconfiguration features

Includes an estimation of the
incremental power consumption by
these features.

Not included

1. Power Analysis

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2. Power Estimations and Design Requirements

Power estimation and analysis helps you satisfy two important planning requirements:

• Thermal—Thermal power is the power that dissipates as heat from the FPGA.
Devices use a heatsink or fan to act as a cooling solution. This cooling solution
must be sufficient to dissipate the heat that the device generates. Additionally, the
computed junction temperature must fall within normal device specifications.

• Power supply—Power supply is the power that the device needs to operate.
Power supplies must provide adequate current to support device operation.

Note: For power supply planning, use the EPE at early stages of the design cycle.
When the design is complete, you can use the Power Analyzer reports for an
estimate of design power requirement.

Thermal and supply power requirements are similar, but not identical, because there
are elements outside the device that also contribute to power dissipation, such as
terminator resistors.

1.3. Power Analyzer Walkthrough

The Intel Quartus Prime Power Analyzer requires post-fit design.

You must either provide timing assignments for all clocks in the design, or generate
activity data from a simulation-based flow. You must specify the I/O standard on each
device input and output, and the board trace model on each output in the design.

To run the Power Analyzer:

1. From the Intel Quartus Prime Software, open the Power Analyzer tool by clicking

Processing ➤ Power Analyzer Tool.

2. If you have signal activity information for the project, turn on Use input files to
initialize toggle rates and static probabilities during power analysis, and
then click Add Power Input Files to specify input files.
For more information about generating those input files, refer to Sources for
Signal Activity Data.

3. To direct the Power Analyzer to write a Signal Activity (.saf) output file, turn on
Write out signal activities used during power analysis, and specify the file
name.

4. To direct the Power Analyzer to generate an Early Power Estimation file, turn on
Write out Early Power Estimation file, and specify the file name.

With this file, you can import design information into the Early Power Estimator
spreadsheet, and perform what-if analyses.

5. Specify the default toggle rate for input I/O signals.

The Power Analyzer uses the default toggle rate when no other method specifies
the signal-activity data.

6. Specify the default toggle rate for the remaining (non input) signals.

7. Define the cooling solution and temperature.

8. Click Start.

1. Power Analysis

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Progress Bar in Intel Quartus Prime Power Analyzer

9. When the tool finishes, click Report to open the Power Analyzer report.

Related Information

Inputs for the Power Analyzer on page 7

1.4. Inputs for the Power Analyzer

The Power Analyzer supports accurate power estimations by allowing you to specify
the important design factors affecting power consumption. The following figure shows
the high-level flow of the Power Analyzer:

Figure 3. Power Analyzer High-Level Flow

Intel Quartus Prime
Power Analyzer

Post-Fit
Design

Operating Conditions(1)

Signal Activity

Input

Power Analysis
Report

Output

(1)Operating condition specifications are available for only some device families

To obtain accurate I/O power estimates, the Power Analyzer requires you to synthesize
the design and then fit the design to the target device. Additionally, you must specify:

• The electrical standard on each I/O cell.

• The board trace model on each I/O standard in the design.

• Timing assignments for all the clocks in your design, or use a simulation-based
flow to generate activity data.

1.4.1. Operating Settings and Conditions

You can specify device power characteristics, operating voltage conditions, and
operating temperature conditions for power analysis in the Intel Quartus Prime
software.

1. Power Analysis

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Operating Settings and Conditions page of the Settings dialog box allows you
to specify whether the device has typical power consumption characteristics or
maximum power consumption characteristics.

The Voltage page of the Settings dialog box allows you to view the operating voltage
conditions for each power rail in the device, and specify supply voltages for power rails
with selectable supply voltages.

If the specifications in the Voltage page conflict with the voltage required for
operation (for example, supply voltages for some transceiver depend on the data
rate), the Fitter overrides the voltage for relevant rails with the value that the Fitter
calculates. The Intel Quartus Prime Power Analyzer also uses the calculated value.

On the Temperature page of the Settings dialog box, you can specify the thermal
operating conditions of the device.

Related Information

• Operating Settings and Conditions Page (Settings Dialog Box)
In Intel Quartus Prime Help

• Voltage Page (Settings Dialog Box)
In Intel Quartus Prime Help

• Temperature Page (Settings Dialog Box)
In Intel Quartus Prime Help

1.4.2. Sources for Signal Activity Data

The accuracy of the power estimation depends on how representative signal-activity
data is during power analysis. The Power Analyzer allows you to specify signal
activities from the following sources:

• Simulation results

• User-entered node, entity, and clock assignments

• User-entered default toggle rate assignment

• Vectorless estimation (selected devices)

You can mix and match the signal-activity data sources on a signal-by-signal basis.
The following figure shows the priority scheme applied to each signal.

Figure 4. Signal-Activity Data Source Priority Scheme

Node or entity
assignment?

Simulation
data?

Is primary
input?

Vectorless
supported and

enabled?
Use vectorless

estimation

Use default
assignment

Use simulation
data

Use node or
entity assignment

Start

Yes Yes Yes No

YesNoNoNo

1. Power Analysis

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

8

http://quartushelp.altera.com/current/optimize/pwr/pwr_tab_pppa_operating_conditions.htm
http://quartushelp.altera.com/current/optimize/pwr/pwr_tab_pppa_operating_conditions-voltage.htm
http://quartushelp.altera.com/current/optimize/pwr/pwr_tab_pppa_operating_conditions-temperature.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.2.1. Waveforms from Supported Simulators

The Power Analyzer can read waveforms generated by a supported design simulation.
From the simulation waveform, the Power Analyzer calculates static probability and
toggle rate can be calculated for each signal.

Note: Power analysis is most accurate when you use representative input stimuli to generate
simulations.

The following simulators generate outputs that the Power Analyzer supports:

• ModelSim®

• ModelSim - Intel FPGA Edition

• QuestaSim

• Active-HDL

• NCSim

• VCS*

• VCS MX

• Riviera-PRO*

Related Information

Signal Activity on page 27

1.4.2.2. .vcd Files from Third-Party Simulation Tools

The Intel Quartus Prime Power Analyzer supports .vcd files generated by a simulation
tool as the source of activity data.

A Verilog Value Change Dump File (.vcd) provides signal activity and static probability
information. These files include all the routing resources and the exact logic array
resource usage.

For third-party simulators, use the EDA Tool Settings to specify the Generate Value
Change Dump (VCD) file script option in the Simulation page of the Settings dialog
box. These scripts instruct the third-party simulators to generate a .vcd that encodes
the simulated waveforms. The Intel Quartus Prime Power Analyzer reads this file
directly to derive the toggle rate and static probability data for each signal.

Note: The Intel Quartus Prime software does not support a built-in simulator.

Other third-party EDA simulators can generate .vcd files that the Power Analyzer can
read. For those simulators, you must manually create a simulation script to generate
the .vcd file.

1.4.2.2.1. Generating a .vcd in a EDA Simulation Tool

To create a .vcd for the design, follow these steps:

1. On the Assignments ➤ Settings.

2. In the Category list, under EDA Tool Settings, click Simulation.

3. In the Tool name list, select the EDA simulator.

1. Power Analysis

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. In the Format for output netlist list, select Verilog HDL, or SystemVerilog
HDL, or VHDL.

5. Turn on Generate Value Change Dump (VCD) file script.

This option turns on the Map illegal HDL characters and Enable glitch
filtering options.

The Map illegal HDL characters option ensures that all signals have legal names
and makes signal toggle rates available to the Power Analyzer.
The Enable glitch filtering option directs the EDA Netlist Writer to perform glitch
filtering when generating VHDL Output Files, Verilog Output Files, and the
corresponding Standard Delay Format Output Files for use with other EDA
simulation tools. This option is available regardless of whether or not you want to
generate .vcd scripts.

Note: For ModelSim simulations , the +nospecify option in the vsim command
disables the Specify path delays and timing checks option. By enabling
glitch filtering on the Simulation page, the simulation models include
specified path delays. Thus, ModelSim might fail to simulate a design. As a
best practice, remove the +nospecify option from the ModelSim vsim
command to ensure accurate simulation for power estimation.

6. Click Script Settings. Select the signals that you want to write to the .vcd.

— If you choose All signals, the generated script instructs the third-party
simulator to write all connected output signals to the .vcd file.

— If you choose All signals except combinational lcell outputs, the
generated script instructs the third-party simulator to write all connected
output signals to the .vcd, except logic cell combinational outputs.

Note: The file can become extremely large if you write all output signals to the
file, because the file size depends on the number of output signals being
monitored and the number of transitions that occur.

7. Click OK.

8. In the Design instance name box, type a name for the testbench.

9. Compile the design with the Intel Quartus Prime software, and generate the
necessary EDA netlist and script that instructs the third-party simulator to
generate a .vcd.

10. In the third-party EDA simulation tool, call the generated script in the simulation
tool before running the simulation.

11. Perform the simulation.

The simulation tool generates the .vcd file in the project directory.

1.4.2.2.2. Generating a .vcd from ModelSim Software

To generate a .vcd with the ModelSim software, follow these steps:

1. In the Intel Quartus Prime software, on the Assignments menu, click Settings.

2. In the Category list, under EDA Tool Settings, click Simulation.

3. In the Tool name list, select your preferred EDA simulator.

4. In the Format for output netlist list, select Verilog HDL, or SystemVerilog
HDL, or VHDL.

5. Turn on Generate Value Change Dump (VCD) file script.

1. Power Analysis

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. To generate the.vcd, perform a full compilation.

7. In the ModelSim software, compile the files necessary for simulation.

8. Load your design by clicking Start Simulation on the Tools menu, or use the
vsim command.

9. Use the .vcd script created in 6 on page 11 using the following command:
source <design>_dump_all_vcd_nodes.tcl

10. Run the simulation (for example, run 2000ns or run -all).

11. Quit the simulation using the quit -sim command, if required.

12. Exit the ModelSim software.
If you do not exit the software, the ModelSim software might end the writing
process of the .vcd improperly, resulting in a corrupt .vcd.

1.4.2.3. Signal Activities from RTL (Functional) Simulation, Supplemented by
Vectorless Estimation

In the functional simulation flow, simulation provides toggle rates and static
probabilities for all pins and registers in your design. Vectorless estimation fills in the
values for all the combinational nodes between pins and registers, giving good results.
This flow usually provides a compilation time benefit when you use the third-party RTL
simulator.

1.4.2.3.1. RTL Simulation Limitation

RTL simulation may not provide signal activities for all registers in the post-fitting
netlist because synthesis loses some register names. For example, synthesis might
automatically transform state machines and counters, thus changing the names of
registers in those structures.

1.4.2.4. Signal Activities from Vectorless Estimation and User-Supplied Input Pin
Activities

The vectorless estimation flow provides a low level of accuracy, because vectorless
estimation for registers is not entirely accurate.

1.4.2.5. Signal Activities from User Defaults Only

The user defaults only flow provides the lowest degree of accuracy.

1.5. Power Analysis in Modular Design Flows

A common design practice is to create modular or hierarchical designs in which you
develop each design entity separately, and then instantiate these modules in a higher-
level entity to form a complete design. You can perform simulation on a complete
design or on each module for verification. The Power Analyzer supports modular
design flows when reading the signal activities from simulation files. The following
figure shows an example of a modular design flow.

1. Power Analysis

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. Modular Simulation Flow

Parameter
Input

Video
Processing

Column
Driver

Memory
Interface

Video
Source

Interface
Timing
Control

system.vcd
video_gizmo.vcd
output_driver.vcd
video_input.vcd

The Power Analyzer supports associating multiple .vcd simulation files to specific
entity names, enabling the integration of partial design simulations into a complete
design power analysis. When specifying multiple .vcd files for the design, more than
one simulation file can contain signal-activity information for the same signal. In those
cases, the Power analyzer follows these rules:

• When you apply multiple .vcd files to the same design entity, the Power Analyzer
calculates the signal activity as the equal-weight arithmetic average of each .vcd.

• When you apply multiple simulation files to design entities at different levels in the
design hierarchy, the signal activity in the power analysis derives from the
simulation file that applies to the most specific design entity.

The following figure shows an example of a hierarchical design:

Figure 6. Example Hierarchical Design

8b10b_dec:decode1

8b10b_dec:decode2

8b10b_dec:decode3

8b10b_rxerr:err1

mux:mux1

8b10b_enc:encode1

Top

The top-level module of the design, called Top, consists of three 8b/10b decoders,
followed by a mux. The software encodes the output of the mux to produce the final
output of the top-level module. An error-handling module handles any 8b/10b
decoding errors. The Top module contains the top-level entity of the design and any
logic not defined as part of another module. The design file for the top-level module
can be a wrapper for the hierarchical entities or can contain its own logic.

1. Power Analysis

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following usage scenarios show common ways that you can simulate the design
and import the .vcd into the Power Analyzer:

1.5.1. Complete Design Simulation

You can simulate the entire design and generate a .vcd from a third-party simulator.
The Power Analyzer can then import the .vcd (specifying the top-level design). The
resulting power analysis uses the signal activities information from the
generated .vcd, including those that apply to submodules, such as decode [1-3],
err1, mux1, and encode1.

1.5.2. Modular Design Simulation

You can independently simulate of the top-level design, and then import all the
resulting .vcd files into the Power Analyzer. For example, you can simulate the
8b10b_dec independent of the entire design and mux, 8b10b_rxerr, and
8b10b_enc. You can then import the .vcd files generated from each simulation by
specifying the appropriate instance name. For example, if the files produced by the
simulations are 8b10b_dec.vcd, 8b10b_enc.vcd, 8b10b_rxerr.vcd, and
mux.vcd, you can use the import specifications in the following table:

Table 2. Import Specifications

File Name Entity

8b10b_dec.vcd Top|8b10b_dec:decode1

8b10b_dec.vcd Top|8b10b_dec:decode2

8b10b_dec.vcd Top|8b10b_dec:decode3

8b10b_rxerr.vcd Top|8b10b_rxerr:err1

8b10b_enc.vcd Top|8b10b_enc:encode1

mux.vcd Top|mux:mux1

The resulting power analysis applies the simulation vectors in each file to the assigned
entity. Simulation provides signal activities for the pins and for the outputs of
functional blocks. If the inputs to an entity instance are input pins for the entire
design, the simulation file associated with that instance does not provide signal
activities for the inputs of that instance. For example, an input to an entity such as
mux1 has its signal activity specified at the output of one of the decode entities.

1.5.3. Multiple Simulations on the Same Entity

You can perform multiple simulations of an entire design or specific modules of a
design. For example, in the process of verifying the top-level design, you can have
three different simulation testbenches: one for normal operation, and two for corner
cases. Each of these simulations produces a separate .vcd. In this case, apply the
different .vcd file names to the same top-level entity, as shown in the following table.

1. Power Analysis

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 3. Multiple Simulation File Names and Entities

File Name Entity

normal.vcd Top

corner1.vcd Top

corner2.vcd Top

The resulting power analysis uses an arithmetic average of the signal activities
calculated from each simulation file to obtain the final signal activities used. If a signal
err_out has a toggle rate of zero transition per second in normal.vcd, 50
transitions per second in corner1.vcd, and 70 transitions per second in
corner2.vcd, the final toggle rate in the power analysis is 40 transitions per second.

If you do not want the Power Analyzer to read information from multiple instances and
take an arithmetic average of the signal activities, use a .vcd that includes only
signals from the instance that you care about.

1.5.4. Overlapping Simulations

You can perform a simulation on the entire design, and more exhaustive simulations
on a submodule, such as 8b10b_rxerr. The following table lists the import
specification for overlapping simulations.

Table 4. Overlapping Simulation Import Specifications

File Name Entity

full_design.vcd Top

error_cases.vcd Top|8b10b_rxerr:err1

In this case, the software uses signal activities from error_cases.vcd for all the
nodes in the generated .vcd and uses signal activities from full_design.vcd for
only those nodes that do not overlap with nodes in error_cases.vcd. In general,
the more specific hierarchy (the most bottom-level module) derives signal activities
for overlapping nodes.

1.5.5. Partial Simulations

You can perform a simulation in which the entire simulation time is not applicable to
signal-activity calculation. For example, if you run a simulation for 10,000 clock cycles
and reset the chip for the first 2,000 clock cycles. If the Power Analyzer performs the
signal-activity calculation over all 10,000 cycles, the toggle rates are only 80% of their
steady state value (because the chip is in reset for the first 20% of the simulation). In
this case, you must specify the useful parts of the .vcd for power analysis. The Limit
VCD Period option enables you to specify a start and end time when performing
signal-activity calculations.

1. Power Analysis

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.5.1. Specifying Start and End Time when Performing Signal-Activity
Calculations using the Limit VCD Period Option

To specify a start and end time when performing signal-activity calculations using the
Limit VCD period option, follow these steps:

1. In the Intel Quartus Prime software, click Assignments ➤ Settings.

2. Under the Category list, click Power Analyzer Settings.

3. Turn on the Use input file(s) to initialize toggle rates and static
probabilities during power analysis option.

4. Click Add.

5. In the File name and Entity fields, browse to the necessary files.

6. Under Simulation period, turn on VCD file and Limit VCD period options.

7. In the Start time and End time fields, specify the desired start and end time.

8. Click OK.

You can also use the following tcl or qsf assignment to specify .vcd files:

set_global_assignment -name POWER_INPUT_FILE_NAME "test.vcd" -section_id test.vcd
set_global_assignment -name POWER_VCD_FILE_START_TIME "10 ns" -section_id
test.vcd
set_global_assignment -name POWER_VCD_FILE_END_TIME "1000 ns" -section_id
test.vcd
set_instance_assignment -name POWER_READ_INPUT_FILE test.vcd -to test_design

Related Information

• set_power_file_assignment on page 0
In Intel Quartus Prime Help

• Add/Edit Power Input File Dialog Box on page 0
In Intel Quartus Prime Help

1.5.6. Node Name Matching Considerations

Node name mismatches happen when you have .vcd applied to entities other than
the top-level entity. In a modular design flow, the gate-level simulation files created in
different Intel Quartus Prime projects might not match their node names with the
current Intel Quartus Prime project.

For example, you may have a file named 8b10b_enc.vcd, which the Intel Quartus
Prime software generates in a separate project called 8b10b_enc while simulating the
8b10b encoder. If you import the .vcd into another project called Top, you might
encounter name mismatches when applying the .vcd to the 8b10b_enc module in
the Top project. This mismatch happens because the Intel Quartus Prime software
might name all the combinational nodes in the 8b10b_enc.vcd differently than in the
Top project.

You can avoid name mismatching with only RTL simulation data, in which register
names do not change, or with an incremental compilation flow that preserves node
names along with a gate-level simulation.

Note: To ensure accuracy, Intel FPGA recommends that you use an incremental compilation
flow to preserve the node names of your design.

1. Power Analysis

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

15

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_project_ui_ver_1.0_cmd_set_power_file_assignment.htm
http://quartushelp.altera.com/current/index.htm#optimize/pwr/pwr_db_add_power_input_file.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.7. Glitch Filtering

The Power Analyzer defines a glitch as two signal transitions so closely spaced in time
that the pulse, or glitch, occurs faster than the logic and routing circuitry can respond.
The output of a transport delay model simulator contains glitches for some signals.
The logic and routing structures of the device form a low-pass filter that filters out
glitches that are tens to hundreds of picoseconds long, depending on the device
family.

Some third-party simulators use different models than the transport delay model as
the default model. Different models cause differences in signal activity and power
estimation. The inertial delay model, which is the ModelSim default model, filters out
more glitches than the transport delay model and usually yields a lower power
estimate.

Note: Intel FPGA recommends that you use the transport simulation model when using the
Intel Quartus Prime software glitch filtering support with third-party simulators.
Simulation glitch filtering has little effect if you use the inertial simulation model.

Glitch filtering in a simulator can also filter a glitch on one logic element (LE) (or other
circuit element) output from propagating to downstream circuit elements to ensure
that the glitch does not affect simulated results. Glitch filtering prevents a glitch on
one signal from producing non-physical glitches on all downstream logic, which can
result in a signal toggle rate and a power estimate that are too high. Circuit elements
in which every input transition produces an output transition, including multipliers and
logic cells configured to implement XOR functions, are especially prone to glitches.
Therefore, circuits with such functions can have power estimates that are too high
when glitch filtering is not used.

Note: Intel FPGA recommends that you use the glitch filtering feature to obtain the most
accurate power estimates. For .vcd files, the Power Analyzer flows support two levels
of glitch filtering.

1.5.7.1. Enabling Tool Based Glitch Filtering

To enable the first level of glitch filtering in the Intel Quartus Prime software for
supported third-party simulators, follow these steps:

1. In the Intel Quartus Prime software, click Assignments ➤ Settings.

2. In the Category list, select Simulation under EDA Tool Settings.

3. Select the Tool name to use for the simulation.

4. Turn on Enable glitch filtering.

1.5.7.2. Enabling Glitch Filtering During Power Analysis

The second level of glitch filtering occurs while the Power Analyzer is reading the .vcd
generated by a third-party simulator. To enable the second level of glitch filtering,
follow these steps:

1. In the Intel Quartus Prime software, click Assignments ➤ Settings.

2. In the Category list, select Power Analyzer Settings.

3. Under Input File(s), turn on Perform glitch filtering on VCD files.

1. Power Analysis

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The .vcd file reader performs filtering complementary to the filtering performed
during simulation and is often not as effective. While the .vcd file reader can remove
glitches on logic blocks, the file reader cannot determine how a given glitch affects
downstream logic and routing, and may eliminate the impact of the glitch completely.
Filtering the glitches during simulation avoids switching downstream routing and logic
automatically.

Note: When running simulation for design verification (rather than to produce input to the
Power Analyzer), Intel recommends that you turn off the glitch filtering option to
produce the most rigorous and conservative simulation from a functionality viewpoint.
When performing simulation to produce input for the Power Analyzer, Intel FPGA
recommends that you turn on the glitch filtering to produce the most accurate power
estimates.

1.5.8. Node and Entity Assignments

You can assign toggle rates and static probabilities to individual nodes and entities in
the design. These assignments have the highest priority, overriding data from all other
signal-activity sources.

You must use the Assignment Editor or Tcl commands to create the Power Toggle
Rate and Power Static Probability assignments. You can specify the power toggle
rate as an absolute toggle rate in transitions per second using the Power Toggle
Rate assignment, or you can use the Power Toggle Rate Percentage assignment
to specify a toggle rate relative to the clock domain of the assigned node for a more
specific assignment made in terms of hierarchy level.

Note: If you use the Power Toggle Rate Percentage assignment, and the node does not
have a clock domain, the Intel Quartus Prime software issues a warning and ignores
the assignment.

Assigning toggle rates and static probabilities to individual nodes and entities is
appropriate for signals in which you have knowledge of the signal or entity being
analyzed. For example, if you know that a 100 MHz data bus or memory output
produces data that is essentially random (uncorrelated in time), you can directly enter
a 0.5 static probability and a toggle rate of 50 million transitions per second.

The Power Analyzer treats bidirectional I/O pins differently. The combinational input
port and the output pad for a pin share the same name. However, those ports might
not share the same signal activities. For reading signal-activity assignments, the
Power Analyzer creates a distinct name <node_name~output> when configuring the
bidirectional signal as an output and <node_name~result> when configuring the
signal as an input. For example, if a design has a bidirectional pin named MYPIN,
assignments for the combinational input use the name MYPIN~result, and the
assignments for the output pad use the name MYPIN~output.

Note: When you create the logic assignment in the Assignment Editor, you cannot find the
MYPIN~result and MYPIN~output node names in the Node Finder. Therefore, to
create the logic assignment, you must manually enter the two differentiating node
names to create the assignment for the input and output port of the bidirectional pin.

1. Power Analysis

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.8.1. Timing Assignments to Clock Nodes

For clock nodes, the Power Analyzer uses timing requirements to derive the toggle
rate when neither simulation data nor user-entered signal-activity data is available.
fMAX requirements specify full cycles per second, but each cycle represents a rising
transition and a falling transition. For example, a clock fMAX requirement of 100 MHz
corresponds to 200 million transitions per second for the clock node.

1.5.9. Default Toggle Rate Assignment

You can specify a default toggle rate for primary inputs and other nodes in your
design. The Power Analyzer uses the default toggle rate when no other method
specifies the signal-activity data.

The Power Analyzer specifies the toggle rate in absolute terms (transitions per
second), or as a fraction of the clock rate in effect for each node. The toggle rate for a
clock derives from the timing settings for the clock. For example, if the Power Analyzer
specifies a clock with an fMAX constraint of 100 MHz and a default relative toggle rate
of 20%, nodes in this clock domain transition in 20% of the clock periods, or 20
million transitions occur per second. In some cases, the Power Analyzer cannot
determine the clock domain for a node because either the Power Analyzer cannot
determine a clock domain for the node, or the clock domain is ambiguous. For
example, the Power Analyzer may not be able to determine a clock domain for a node
if the user did not specify sufficient timing assignments. In these cases, the Power
Analyzer substitutes and reports a toggle rate of zero.

Related Information

Toggle Rate on page 28

1.5.10. Vectorless Estimation

For some device families, the Power Analyzer automatically derives estimates for
signal activity on nodes with no simulation or user-entered signal-activity data.

Vectorless estimation statistically estimates the signal activity of a node based on the
signal activities of nodes feeding that node, and on the actual logic function that the
node implements. Vectorless estimation cannot derive signal activities for primary
inputs. Vectorless estimation is accurate for combinational nodes, but not for
registered nodes. Therefore, the Power Analyzer requires simulation data for at least
the registered nodes and I/O nodes for accuracy.

1.6. Power Analyzer Compilation Report

The Power Analyzer Compilation Report contains the following sections:

Summary

The Summary section of the report shows the estimated total thermal power
consumption of your design. This includes dynamic, static, and I/O thermal power
consumption. The I/O thermal power includes the total I/O power drawn from the
VCCIO and VCCPD power supplies and the power drawn from VCCINT in the I/O
subsystem including I/O buffers and I/O registers. The report also includes a
confidence metric that reflects the overall quality of the data sources for the signal
activities. For example, a Low power estimation confidence value reflects that you
have provided insufficient toggle rate data, or most of the signal-activity information

1. Power Analysis

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

used for power estimation is from default or vectorless estimation settings. For more
information about the input data, refer to the Power Analyzer Confidence Metric
report.

Settings

The Settings section of the report shows the Power Analyzer settings information of
your design, including the default input toggle rates, operating conditions, and other
relevant setting information.

Simulation Files Read

The Simulation Files Read section of the report lists the simulation output file that
the .vcd used for power estimation. This section also includes the file ID, file type,
entity, VCD start time, VCD end time, the unknown percentage, and the toggle
percentage. The unknown percentage indicates the portion of the design module
unused by the simulation vectors.

Operating Conditions Used

The Operating Conditions Used section of the report shows device characteristics,
voltages, temperature, and cooling solution, if any, during the power estimation. This
section also shows the entered junction temperature or auto-computed junction
temperature during the power analysis.

Thermal Power Dissipated by Block

The Thermal Power Dissipated by Block section of the report shows estimated thermal
dynamic power and thermal static power consumption categorized by atoms. This
information provides you with estimated power consumption for each atom in your
design.

By default, this section does not contain any data, but you can turn on the report with
the Write power dissipation by block to report file option on the Power
Analyzer Settings page.

Thermal Power Dissipation by Block Type (Device Resource Type)

This Thermal Power Dissipation by Block Type (Device Resource Type) section of the
report shows the estimated thermal dynamic power and thermal static power
consumption categorized by block types. This information is further categorized by
estimated dynamic and static power and provides an average toggle rate by block
type. Thermal power is the power dissipated as heat from the FPGA device.

Thermal Power Dissipation by Hierarchy

This Thermal Power Dissipation by Hierarchy section of the report shows estimated
thermal dynamic power and thermal static power consumption categorized by design
hierarchy. This information is further categorized by the dynamic and static power that
was used by the blocks and routing in that hierarchy. This information is useful when
locating modules with high power consumption in your design.

Core Dynamic Thermal Power Dissipation by Clock Domain

The Core Dynamic Thermal Power Dissipation by Clock Domain section of the report
shows the estimated total core dynamic power dissipation by each clock domain,
which provides designs with estimated power consumption for each clock domain in

1. Power Analysis

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the design. If the clock frequency for a domain is unspecified by a constraint, the clock
frequency is listed as “unspecified.” For all the combinational logic, the clock domain is
listed as no clock with zero MHz.

Current Drawn from Voltage Supplies

The Current Drawn from Voltage Supplies section of the report lists the current drawn
from each voltage supply. The VCCIO and VCCPD voltage supplies are further categorized
by I/O bank and by voltage. This section also lists the minimum safe power supply
size (current supply ability) for each supply voltage. Minimum current requirement can
be higher than user mode current requirement in cases in which the supply has a
specific power up current requirement that goes beyond user mode requirement, such
as the VCCPD power rail in Stratix® III and Stratix IV devices, and the VCCIO power rail
in Stratix IV devices.

The I/O thermal power dissipation on the summary page does not correlate directly to
the power drawn from the VCCIO and VCCPD voltage supplies listed in this report. This is
because the I/O thermal power dissipation value also includes portions of the VCCINT
power, such as the I/O element (IOE) registers, which are modeled as I/O power, but
do not draw from the VCCIO and VCCPD supplies.

The reported current drawn from the I/O Voltage Supplies (ICCIO and ICCPD) as
reported in the Power Analyzer report includes any current drawn through the I/O into
off-chip termination resistors. This can result in ICCIO and ICCPD values that are
higher than the reported I/O thermal power, because this off-chip current dissipates as
heat elsewhere and does not factor in the calculation of device temperature.
Therefore, total I/O thermal power does not equal the sum of current drawn from each
VCCIO and VCCPD supply multiplied by VCCIO and VCCPD voltage.

For SoC devices or for Arria V SoC and Cyclone® V SoC devices, there is no standalone
ICC_AUX_SHARED current drawn information. The ICC_AUX_SHARED is reported
together with ICC_AUX.

Confidence Metric Details

The Confidence Metric is defined in terms of the total weight of signal activity data
sources for both combinational and registered signals. Each signal has two data
sources allocated to it; a toggle rate source and a static probability source.

The Confidence Metric Details section also indicates the quality of the signal toggle
rate data to compute a power estimate. The confidence metric is low if the signal
toggle rate data comes from poor predictors of real signal toggle rates in the device
during an operation. Toggle rate data that comes from simulation, user-entered
assignments on specific signals or entities are reliable. Toggle rate data from default
toggle rates (for example, 12.5% of the clock period) or vectorless estimation are
relatively inaccurate. This section gives an overall confidence rating in the toggle rate
data, from low to high. This section also summarizes how many pins, registers, and
combinational nodes obtained their toggle rates from each of simulation, user entry,
vectorless estimation, or default toggle rate estimations. This detailed information
helps you understand how to increase the confidence metric, letting you determine
your own confidence in the toggle rate data.

Signal Activities

The Signal Activities section lists toggle rates and static probabilities assumed by
power analysis for all signals with fan-out and pins. This section also lists the signal
type (pin, registered, or combinational) and the data source for the toggle rate and

1. Power Analysis

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

static probability. By default, this section does not contain any data, but you can turn
on the report with the Write signal activities to report file option on the Power
Analyzer Settings page.

Intel recommends that you keep the Write signal activities to report file option
turned off for a large design because of the large number of signals present. You can
use the Assignment Editor to specify that activities for individual nodes or entities are
reported by assigning an on value to those nodes for the Power Report Signal
Activities assignment.

Messages

The Messages section lists the messages that the Intel Quartus Prime software
generates during the analysis.

1.7. Scripting Support

You can run procedures and create settings described in this chapter in a Tcl script.
Alternatively, you can run procedures at a command prompt. For more information
about scripting command options, refer to the Intel Quartus Prime Command-Line and
Tcl API Help browser. To run the Help browser, type the following command at the
command prompt:

quartus_sh --qhelp

Related Information

• Tcl Scripting
In Intel Quartus Prime Standard Edition Handbook Volume 2

• API Functions for Tcl on page 0
In Intel Quartus Prime Help

1.7.1. Running the Power Analyzer from the Command–Line

The executable to run the Power Analyzer is quartus_pow. For a complete listing of
all command–line options supported by quartus_pow, type the following command at
a system command prompt:

quartus_pow --help

or

quartus_sh --qhelp

The following lists the examples of using the quartus_pow executable. Type the
command listed in the following section at a system command prompt:

Note: These examples assume that operations are performed on Intel Quartus Prime project
called sample.

1. Power Analysis

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

21

https://www.intel.com/content/www/us/en/docs/programmable/683774.html
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_list_of_packages.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To instruct the Power Analyzer to generate a EPE File:

quartus_pow sample --output_epe=sample.csv ←

• To instruct the Power Analyzer to generate a EPE File without performing the
power estimate:

quartus_pow sample --output_epe=sample.csv --estimate_power=off ←

• To instruct the Power Analyzer to use a .vcd as input (sample.vcd):

quartus_pow sample --input_vcd=sample.vcd ←

• To instruct the Power Analyzer to use two .vcd files as input files (sample1.vcd
and sample2.vcd), perform glitch filtering on the .vcd and use a default input
I/O toggle rate of 10,000 transitions per second:

quartus_pow sample --input_vcd=sample1.vcd --input_vcd=sample2.vcd \
--vcd_filter_glitches=on --\
default_input_io_toggle_rate=10000transitions/s

• To instruct the Power Analyzer to not use an input file, a default input I/O toggle
rate of 60%, no vectorless estimation, and a default toggle rate of 20% on all
remaining signals:

quartus_pow sample --no_input_file --default_input_io_toggle_rate=60% \
--use_vectorless_estimation=off --default_toggle_rate=20%

Note: No command–line options are available to specify the information found on the Power
Analyzer Settings Operating Conditions page. Use the Intel Quartus Prime GUI to
specify these options.

The quartus_pow executable creates a report file, <revision name>.pow.rpt. You
can locate the report file in the main project directory. The report file contains the
same information that the Power Analyzer Compilation Report.

Related Information

Power Analyzer Compilation Report on page 18

1.8. Power Analysis Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.
• General chapter reorganization.
• Moved Factors Affecting Power Consumption to chapter: Power

Optimization.

continued...

1. Power Analysis

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

• Updated figure: Power Analyzer High-level Flow.
• Divided topic: Types of Power Analysis into two topics: Power

Estimations and Design Requirements and Design Activity and Power
Analysis.

• Updated figure: Power Analysis Tools from Design Concept through
Design Implementation and renamed to: Estimation Accuracy for
Different Inputs and Power Analysis Tools

2018.06.11 18.0.0 • In Comparison of the EPE and the Intel Quartus Prime Power Analyzer,
updated the data output types that the Power Analyzer supports.

• In Comparison of the EPE and the Intel Quartus Prime Power Analyzer,
added row about estimation of transceiver power for features that you
enable only through dynamic reconfiguration.

• Specified features not supported by the Power Analyzer.

2017.05.08 17.0.0 Removed references to PowerPlay name. Power analysis occurs in the Intel
Quartus Prime Power Analyzer.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2014.12.15 14.1.0 • Removed Signal Activities from Full Post-fit Netlist (Timing) Simulation
and Signal Activities from Full Post-fit Netlist (Zero Delay) Simulation
sections as these are no longer supported.

• Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

2014.08.18 14.0a10.0 Updated "Current Drawn from Voltage Supplies" to clarify that for SoC
devices or for Arria V SoC and Cyclone V SoC devices, there is no
standalone ICC_AUX_SHARED current drawn information. The
ICC_AUX_SHARED is reported together with ICC_AUX.

November 2012 12.1.0 • Updated “Types of Power Analyses” on page 8–2, and “Confidence
Metric Details” on page 8–23.

• Added “Importance of .vcd” on page 8–20, and “Avoiding Power
Estimation and Hardware Measurement Mismatch” on page 8–24

June 2012 12.0.0 • Updated “Current Drawn from Voltage Supplies” on page 8–22.
• Added “Using the HPS Power Calculator” on page 8–7.

November 2011 10.1.1 • Template update.
• Minor editorial updates.

December 2010 10.1.0 • Added links to Quartus II Help, removed redundant material.
• Moved “Creating PowerPlay EPE Spreadsheets” to page 8–6.
• Minor edits.

July 2010 10.0.0 • Removed references to the Quartus II Simulator.
• Updated Table 8–1 on page 8–6, Table 8–2 on page 8–13, and Table 8–

3 on page 8–14.
• Updated Figure 8–3 on page 8–9, Figure 8–4 on page 8–10, and Figure

8–5 on page 8–12.

November 2009 9.1.0 • Updated “Creating PowerPlay EPE Spreadsheets” on page 8–6 and
“Simulation Results” on page 8–10.

• Added “Signal Activities from Full Post-fit Netlist (Zero Delay)
Simulation” on page 8–19 and “Generating a .vcd from Full Post-fit
Netlist (Zero Delay) Simulation” on page 8–21.

• Minor changes to “Generating a .vcd from ModelSim Software” on page
8–21.

• Updated Figure 11–8 on page 11–24.

continued...

1. Power Analysis

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

March 2009 9.0.0 • This chapter was chapter 11 in version 8.1.
• Removed Figures 11-10, 11-11, 11-13, 11-14, and 11-17 from 8.1

version.

November 2008 8.1.0 • Updated for the Quartus II software version 8.1.
• Replaced Figure 11-3.
• Replaced Figure 11-14.

May 2008 8.0.0 • Updated Figure 11–5.
• Updated “Types of Power Analyses” on page 11–5.
• Updated “Operating Conditions” on page 11–9.
• Updated “PowerPlay Power Analyzer Compilation Report” on page 11–

31.
• Updated “Current Drawn from Voltage Supplies” on page 11–32.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

1. Power Analysis

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

24

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Power Optimization
The Intel Quartus Prime software offers power-driven compilation to fully optimize
device power consumption. Power-driven compilation focuses on reducing the design’s
total power consumption in synthesis and place-and-route stages.

This chapter describes the power-driven compilation feature and flow in detail, as well
as low power design techniques that can further reduce power consumption in your
design. The techniques primarily target Arria, Stratix, and Cyclone series of devices.
These devices utilize a low-k dielectric material that dramatically reduces dynamic
power and improves performance. Arria series, Stratix IV, and Stratix V device families
include efficient logic structures called adaptive logic modules (ALMs) that obtain
maximum performance while minimizing power consumption. Cyclone device families
offer the optimal blend of high performance and low power in a low-cost FPGA.

This chapter focuses on design optimization options and techniques that help reduce
core dynamic power and I/O power. In addition to these techniques, there are
additional power optimization techniques available for specific devices, including
Programmable Power Technology and Device Speed Grade Selection.

Related Information

• AN 514: Power Optimization in Stratix IV FPGAs

• Power Analysis on page 4

• AN 711: Power Reduction Features in Intel Arria 10 Devices

• Intel FPGA Literature and Technical Documentation

2.1. Factors Affecting Power Consumption

Understanding the following factors that affect power consumption allows you to use
the Power Analyzer and interpret its results effectively:

Design Activity and Power Analysis on page 25

Device Selection on page 26

Environmental Conditions on page 26

Device Resource Usage on page 27

Signal Activity on page 27

2.1.1. Design Activity and Power Analysis

Power consumption of a device also depends on the design's activity over time. Static
power (PSTATIC) is the thermal power that a chip dissipates independent of user clocks.
PSTATIC includes leakage power from all FPGA functional blocks, except for I/O DC bias

683506 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://www.altera.com/literature/an/an514.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683566/current/an-711-power-reduction-features-in-devices.html
http://www.altera.com/literature/lit-index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

power and transceiver DC bias power, which are accounted for in the I/O and
transceiver sections. Dynamic power is the additional power consumption of a device
due to signal activity or switching.

2.1.2. Device Selection

Device families have different power characteristics. Many parameters affect the
device family power consumption, including choice of process technology, supply
voltage, electrical design, and device architecture.

Power consumption also varies in a single device family. A larger device with more
transistors consumes more static power than a smaller device in the same family. In
devices that employ global routing architectures, dynamic power can also increase
with device size.

The choice of device package also affects the ability of the device to dissipate heat,
and you may need to use a different cooling solution to comply with junction
temperature constraints.

Process variation can affect power consumption. Process variation primarily impacts
static power, because sub-threshold leakage current varies exponentially with changes
in transistor threshold voltage. Therefore, you must consult device specifications for
static power, and not rely on empirical observation. Process variation has a weak
effect on dynamic power.

2.1.3. Environmental Conditions

The main environmental parameters affecting junction temperature are operating
temperature and the cooling solution. Operating temperature primarily affects device
static power consumption. Higher junction temperatures result in higher static power
consumption. The device thermal power and cooling solution that you use must keep
the device junction temperature within the maximum operating range for the device.

The following table lists the environmental conditions that influence power
consumption.

Table 5. Environmental Conditions that Affect Power Consumption

Environmental Condition Description

Airflow Measures how quickly the device replaces heated air from the vicinity of the device with air
at ambient temperature.
You can either specify airflow as “still air” when you are not using a fan, or as the linear
feet per minute rating of the fan in the system. Higher airflow decreases thermal
resistance.

Heat Sink and Thermal
Compound

A heat sink allows more efficient heat transfer from the device to the surrounding area
because of its large surface area exposed to the air. The thermal compound that interfaces
the heat sink to the device also influences the rate of heat dissipation. The case-to-ambient
thermal resistance (θCA) parameter describes the cooling capacity of the heat sink and
thermal compound employed at a given airflow. Larger heat sinks and more effective
thermal compounds reduce θCA.

Junction Temperature The junction temperature of a device is equal to:

TJunction=TAmbient+PThermal·θJA

continued...

2. Power Optimization

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Environmental Condition Description

in which θJA is the total thermal resistance from the device transistors to the environment,
in degrees Celsius per watt. The value θJA is equal to the sum of the junction-to-case
(package) thermal resistance (θJC), and the case-to-ambient thermal resistance (θCA) of
the cooling solution.

Board Thermal Model The junction-to-board thermal resistance (θJB) is the thermal resistance of the path through
the board, in degrees Celsius per watt. To compute junction temperature, you can use this
board thermal model along with the board temperature, the top-of-chip θJA and ambient
temperatures.

2.1.4. Device Resource Usage

Power consumption depends on the number and types of device resources that a
design uses.

2.1.4.1. Number, Type, and Loading of I/O Pins

Output pins drive off-chip components, resulting in high-load capacitance that leads to
a high-dynamic power per transition. Terminated I/O standards require external
resistors that draw constant (static) power from the output pin.

2.1.4.2. Number and Type of Hard Logic Blocks

A design with more logic elements (LEs), multiplier elements, memory blocks,
transceiver blocks, or HPS system tends to consume more power than a design with
fewer circuit elements. The operating mode of each circuit element also affects its
power consumption.

For example, a DSP block performing 18 × 18 multiplications and a DSP block
performing multiply-accumulate operations consume different amounts of dynamic
power, because of different amounts of charging internal capacitance on each
transition. The operating mode of a circuit element also affects static power.

2.1.4.3. Number and Type of Global Signals

Global signal networks span large portions of the device and have high capacitance,
resulting in significant dynamic power consumption. The type of global signal is
important as well. Global clocks cover the entire device, whereas quadrant clocks only
span one-fourth of the device. For example, Stratix V devices support global clocks
and quadrant (regional) clocks. Clock networks that span smaller regions have lower
capacitance and tend to consume less power. The location of the logic array blocks
(LABs) driven by the clock network can also have an impact because the Intel Quartus
Prime software automatically disables unused branches of a clock.

2.1.5. Signal Activity

The behavior of each signal in the design is an important factor in estimating power
consumption. To get accurate results from the power analysis, the signal activity must
represent the actual operating behavior of the design.

The two most important behaviors of a signal are toggle rate and static probability.

2. Power Optimization

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1.5.1. Toggle Rate

The toggle rate of a signal is the average number of times that the signal changes
value per unit of time. The units for toggle rate are transitions per second, and a
transition is a change from 1 to 0, or 0 to 1.

Note: Inaccurate signal toggle rate data is the largest source of power estimation error.

Dynamic power increases linearly with the toggle rate as you charge the board trace
model more frequently for logic and routing. The Intel Quartus Prime software models
full rail-to-rail switching. For high toggle rates, especially on circuit output I/O pins,
the circuit can transition before fully charging the downstream capacitance. The result
is a slightly conservative prediction of power by the Power Analyzer.

Related Information

Default Toggle Rate Assignment on page 18

2.1.5.2. Static Probability

The static probability of a signal is the fraction of time that the signal is logic 1 during
device operation. Static probability ranges from 0 (always at ground) to 1 (always at
logic-high).

The static probability of input signals impacts the design's static power consumption,
due to state-dependent leakage in routing and logic. This effect becomes more
important for smaller geometries. In output I/O standards that drive termination
resistors, the static power also depends on the static probability on I/O pins.

2.2. Power Dissipation

You can refine techniques that reduce power consumption in a design by
understanding the sources of power dissipation.

The following figure shows the power dissipation of Stratix and Cyclone devices in
different designs. The analysis considers a fixed clock rate of 100 MHz and exhibits
varied logic resource utilization across available resources.

2. Power Optimization

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7. Average Core Dynamic Power Dissipation

Average Core Dynamic Power Dissipation by Block
 Type in Stratix III Devices at a 12.5% Toggle Rate (1)

Average Core Dynamic Power Dissipation by Block
 Type in Cyclone III Devices at a 12.5% Toggle Rate (2)

Routing
30%

Combinational Logic
16%

Registered Logic
18%

Memory
21%

Global Clock Routing
14%

DSP Blocks
1% (3)

Multipliers
1% (3)

Routing
29%

Combinational Logic
11%

Registered Logic
23%

Memory
20%

Global Clock Routing
16%

Notes:

1. These results originate from 103 designs.

2. These results originate from 96 designs.

3. In designs using DSP blocks, DSPs consumed 5% of core dynamic power.

In Stratix and Cyclone device families, a series of column and row interconnect wires
of varying lengths provide signal interconnections between logic array blocks (LABs),
memory block structures, and digital signal processing (DSP) blocks or multiplier
blocks. These interconnects dissipate the largest component of device power.

FPGA combinational logic is another source of power consumption. For more
information about ALMs and LEs in Cyclone or Stratix devices, refer to the respective
device handbook.

Memory and clock resources are other major consumers of power in FPGAs. Stratix
devices feature the TriMatrix memory architecture. TriMatrix memory includes 512-bit
M512 blocks, 4-Kbit M4K blocks, and 512-Kbit M-RAM blocks, which are configurable
to support many features. Stratix IV TriMatrix on-chip memory is an enhancement
based upon the Stratix II FPGA TriMatrix memory and includes three sizes of memory
blocks: MLAB blocks, M9K blocks, and M144K blocks. Stratix IV and Stratix V devices
feature Programmable Power Technology, an advanced architecture that enables a
smooth trade-off between speed and power. The core of each Stratix IV and Stratix V
device is divided into tiles, each of which may be put into a high-speed or low-power
mode. The primary benefit of Programmable Power Technology is to reduce static
power, with a secondary benefit being a small reduction in dynamic power. Cyclone IV
 GX devices have 9-Kbit M9K memory blocks.

2.3. Design Space Explorer II for Power-Driven Optimization

The Design Space Explorer II (DSE II) tool allows you to find and implement the
project settings that result in best power behavior.

2. Power Optimization

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The DSE II offers two options in Exploration mode that target power optimization:
Power (High Effort) and Power (Aggressive). In both cases, the target is an
overall improvement in the design's power; specifically, reducing the total thermal
power in the design.

When the optimization targets power, the DSE II runs the Intel Quartus Prime Power
Analyzer for every group of settings. The resultant reports help you debug the design
and determine trade-offs between power requirements and performance optimization.

Related Information

• Design Space Explorer II
In Intel Quartus Prime Standard Edition User Guide: Design Optimization

• Launch Design Space Explorer Command (Tools Menu)
In Intel Quartus Prime Help

2.4. Power-Driven Compilation

The standard Intel Quartus Prime compilation flow consists of Analysis and Synthesis,
placement and routing, Assembly, and Timing Analysis. Power-driven compilation
takes place at the Analysis and Synthesis and Place-and-Route stages.

Intel Quartus Prime software settings that control power-driven compilation are
located in the Power optimization during synthesis list in the Advanced Settings
(Synthesis) dialog box, and the Power optimization during fitting list on the
Advanced Fitter Settings dialog box. The following sections describes these power
optimization options at the Analysis and Synthesis and Fitter levels.

2.4.1. Power-Driven Synthesis

Synthesis netlist optimization occurs during the synthesis stage of the compilation
flow. You can apply these settings on a project or entity level.

The Power Optimization During Synthesis logic option determines how
aggressively Analysis & Synthesis optimizes the design for power. To access this option
at a project level, click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced
Settings (Synthesis).

Table 6. Power Optimization During Synthesis Options

Settings Description Optimization Techniques
Included

Off The Compiler does not perform netlist, placement, or
routing optimizations to minimize power.

-

Normal compilation
(Default)

The Compiler applies low compute effort algorithms to
minimize power through netlist optimizations that do not
reduce design performance.

• Memory block
optimization

• Power-aware logic
mapping

Extra effort Besides the techniques in the Normal compilation setting,
the Compiler applies high-compute-effort algorithms to
minimize power through netlist optimizations. Selecting this
option might impact performance.

• Memory block
optimization

• Power-aware logic
mapping

• Power-aware memory
balance

2. Power Optimization

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

30

https://www.intel.com/content/www/us/en/docs/programmable/683230/current/design-space-explorer-ii.html
http://quartushelp.altera.com/current/index.htm#optimize/dse/dse_com_launch_DSE.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can also control memory optimization options from the Intel Quartus Prime
Settings dialog box. The Default Parameters page allows you to edit the
Low_Power_Mode parameter. The settings for this parameter are equivalent to the
values of the Power Optimization During Synthesis logic options. The
Low_Power_Mode parameter always takes precedence over the Optimize Power
for Synthesis option for power optimization on memory.

Table 7. Low Power Mode Parameter Options

Parameter Value Equivalent Setting in Power Optimization During
Synthesis Logic Option

None Off

Auto Normal compilation

All Extra effort

Related Information

• Clock Enable in Memory Blocks on page 38

• Intel Quartus Prime Compiler Settings on page 35

2.4.1.1. Memory Block Optimization

Memory optimization involves moving user-defined read/write enable signals to
associated read-and-write clock enable signals for all memory types.

Memory blocks can represent a large fraction of total design dynamic power.
Minimizing the number of memory blocks accessed during each clock cycle can
significantly reduce memory power.

Figure 8. Memory Block Transformation

Clock

DataData Q Q

Wren Write
Enable

Read
Enable Rden

Write
Address

Write
Address

Read
Address

Read
Address

Wr Clk
Enable

Rd Clk
EnableVCC VCC

Swap Swap

Clock

DataData Q Q

Wren

Write
Enable

Read
Enable

Rden

Write
Address

Write
Address

Read
Address

Read
Address

Wr Clk
Enable

Rd Clk
Enable

VCC VCC

Before Transformation After Transformation

In the default implementation of a simple dual-port memory block, write-clock enable
signals and read-clock enable signals connect to VCC, making both read and write
memory ports active during each clock cycle.

Memory transformation moves the read-enable and write-enable signals to the
respective read-clock enable and write-clock enable signals. This technique reduces
the design’s memory power consumption, because memory ports are shut down when
they are not accessed.

For Stratix IV and Stratix V devices, the memory transformation takes place at the
Fitter level by selecting the Normal compilation settings for the power optimization
option.

2. Power Optimization

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In Cyclone IV GX and StratixIV devices, the read-during-write behavior impacts the
power of single-port and bidirectional dual-port RAMs. As a best practice, you can
allow optimization by setting the read-during-write parameter to “Don’t care” at the
HDL level, and set the read-enable signal to the inversion of the existing write-
enable signal (if one exists). This allows the core of the RAM to shut down, which
prevents switching, saving a significant amount of power.

2.4.1.2. Power-Aware Logic Mapping

Power-aware logic mapping reduces power by rearranging the logic during synthesis to
eliminate nets with high switching rates.

2.4.1.3. Power-Aware Memory Balancing

Power-aware memory balancing chooses the best configuration for a memory
implementation and provides optimal power saving by determining the required
number of memory blocks, decoder, and multiplexer circuits. When the design does
not specify target-embedded memory blocks for the design’s memory functions, the
power-aware balancer automatically selects them during memory implementation.

The Compiler includes this optimization technique when the Power Optimization
During Synthesis logic option is set to Extra effort.

The following figure is an example of a 4k × 4 (4k deep and 4 bits wide) memory
implementation in two different configurations using M4K memory blocks available in
some Stratix devices.

Figure 9. 4K × 4 Memory Implementation Using Multiple M4K Blocks

Addr
Decoder

4

1K Deep × 4 Wide
M4K RAM

Addr[0:9]

Addr[10:11]

Data[0:3]

Addr[10:11]

4K Words Deep &
4 Bits Wide

Addr[0:11]

4K Deep × 1 Wide
M4K RAM

Data[0:3]

Minimum RAM Power
(Power Efficient)

Minimum Logic Area
(Power Inefficient)

The minimum logic area implementation configures M4K blocks as 4k × 1. The Intel
Quartus Prime software uses this implementation as the default, because the resulting
design has the minimum logic area (0 logic cells) and the highest speed. However, all
four M4K blocks are active on each memory access, which increases RAM power.

The minimum RAM power implementation configures four M4K blocks as 1k × 4 for
optimal power saving. The RAM IP core includes an address decoder to select which of
the four M4K blocks is active on a given cycle, based on the state of the top two user
address bits. The RAM IP core implements a multiplexer to feed the downstream logic

2. Power Optimization

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

by choosing the appropriate M4K output. This implementation reduces RAM power
because only one M4K block is active on any cycle, but it requires extra logic cells,
costing logic area and potentially impacting design performance.

There is a trade-off between power saved by accessing fewer memories and power
consumed by the extra decoder and multiplexor logic. The Intel Quartus Prime
software automatically balances the power savings against the costs to choose the
lowest power configuration for each logical RAM. The benchmark data shows that the
power-driven synthesis can reduce memory power consumption by as much as 60% in
Stratix devices.

You can also set the MAXIMUM_DEPTH parameter manually to configure the
memory for low power optimization. This technique is the same as the power-aware
memory balancer, but it is manual rather than automatic like the Extra effort setting
in the Power optimization list. The MAXIMUM_DEPTH parameter always takes
precedence over the Optimize Power for Synthesis options for power optimization
on memory optimization. You can set the MAXIMUM_DEPTH parameter for memory
modules manually in the Intel FPGA IP instantiation or in the IP Catalog.

Related Information

Maximum Block Depth Configuration
In Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and ROM: 2-
PORT) User Guide

2.4.2. Power-Driven Fitter

The Intel Quartus Prime software allows you to control the power-driven compilation
setting of the Fitter on a project-wide basis. The Advanced Fitter Settings dialog
box page provides the Power optimization during Fitting logic option, that
determines how aggressively the Fitter optimizes the design for power.

Table 8. Power-Driven Fitter Option

Option Description

Off The Fitter does not perform optimizations to minimize power.

Normal compilation
(Default)

The Fitter applies low compute effort algorithms to minimize power through placement and
routing optimizations. These techniques do not reduce design performance.
Includes DSP optimizations that create power-efficient DSP block configurations for DSP
functions.

Extra effort Besides the optimization techniques of the Normal Compilation option, the Fitter applies
high compute effort algorithms to minimize power through placement and routing
optimizations. These techniques might impact performance.
The Extra effort setting for the Fitter requires extensive effort to optimize the design for
power and can increase compilation time.

For Stratix IV and Stratix V devices, the Normal compilation setting enables the
Programmable Power Technology to configure tiles as high-speed mode or low-power
mode. Programmable Power Technology is always turned ON even when the OFF
setting is selected for the Power optimization option. Tiles are the combination of
LAB and MLAB pairs (including the adjacent routing associated with LAB and MLAB),
which can be configured to operate in high-speed or low-power mode. This level of
power optimization does not have any affect on the fitting, timing results, or compile
time.

2. Power Optimization

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

33

https://www.intel.com/content/www/us/en/docs/programmable/683240/current/maximum-block-depth-configuration.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Extra effort setting the Fitter works to minimize power even after the design
meets timing requirements by moving the logic closer during placement to localize
high-toggling nets and choosing routes with low capacitance.

The Extra effort setting uses a Value Change Dump (.vcd) file that guides the Fitter
to fully optimize the design for power, based on the signal activity of the design. The
best power optimization during fitting results from using the most accurate signal
activity information. If there is no .vcd file, the Intel Quartus Prime software
estimates the signal activities from the settings in the Power Analyzer Settings
page in the Settings dialog box, such as assignments, clock assignments, and
vectorless estimation values. The benchmark data shows that the power-driven Fitter
technique can reduce power consumption by as much as 19% in Stratix devices. On
average, you can reduce core dynamic power by 16% with the Extra effort synthesis
and Extra effort fitting settings, as compared to the Off settings in both synthesis and
Fitter options for power-driven compilation.

Related Information

• AN 514: Power Optimization in Stratix IV FPGAs

• Power Analyzer Settings Page (Settings Dialog Box) on page 0
In Intel Quartus Prime Help

• Value Change Dump File (.vcd) Definition on page 0
In Intel Quartus Prime Help

• Assignment Editor Options on page 36

2.4.3. Area-Driven Synthesis

Using area optimization rather than timing or delay optimization during synthesis
saves power because you use fewer logic blocks. Using less logic usually means less
switching activity.

The Intel Quartus Prime software provides Speed, Balanced, or Area for the
Optimization Technique option. You can also specify this logic option for specific
modules in your design with the Assignment Editor in cases where you want to reduce
area using the Area setting (potentially at the expense of register-to-register timing
performance) while leaving the default Optimization Technique setting at Balanced
(for the best trade-off between area and speed for certain device families). The Speed
Optimization Technique can increase the resource usage of your design if the
constraints are too aggressive and can also result in increased power consumption.

The benchmark data shows that the area-driven technique can reduce power
consumption by as much as 31% in Stratix devices and as much as 15% in Cyclone
devices.

Related Information

Assignment Editor Options on page 36

2.4.4. Gate-Level Register Retiming

You can also use gate-level register retiming to reduce circuit switching activity.
Retiming shuffles registers across combinational blocks without changing design
functionality.

2. Power Optimization

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

34

http://www.altera.com/literature/an/an514.pdf
https://www.altera.com/quartushelp/current/index.htm#optimize/pwr/pwr_tab_power_analyzer_settings.htm
https://www.altera.com/quartushelp/current/index.htm#reference/glossary/def_vcd.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Perform gate-level register retiming option in the Intel Quartus Prime
software enables the movement of registers across combinational logic to balance
timing, allowing the software to trade off the delay between critical and noncritical
paths.

Retiming uses fewer registers than pipelining. In this example of gate-level register
retiming, the 10 ns critical delay is reduced by moving the register relative to the
combinational logic, resulting in the reduction of data depth and switching activity.

Figure 10. Gate-Level Register Retiming

10 ns 5 ns

7 ns 8 ns

Before

After

Gate-level register retiming makes changes at the gate level. If you are using an atom
netlist from a third-party synthesis tool, you must also select the Perform WYSIWYG
primitive resynthesis option to undo the atom primitives to gates mapping (so that
register retiming can be performed), and then to remap gates to Intel primitives.

When using Intel Quartus Prime integrated synthesis, retiming occurs during synthesis
before the design is mapped to Intel primitives. The benchmark data shows that the
combination of WYSIWYG remapping and gate-level register retiming techniques can
reduce power consumption by as much as 6% in Stratix devices and as much as 21%
in Cyclone devices.

2.4.5. Intel Quartus Prime Compiler Settings

The Intel Quartus Prime software provides settings that optimize power for the full
design.

To set the optimization mode on the Intel Quartus Prime software, click Assignments
➤ Settings ➤ Compiler Settings.

2. Power Optimization

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11. Compiler Settings for Power Optimization

The two power optimization modes direct the Compiler to prioritize one optimization
metric.

Power (High effort—increases runtime)

High effort modes enable additional optimizations that increase compilation time and
do not affect design performance. High Power Effort mode guides the Compiler to
spend additional compilation time reducing routing utilization, which saves dynamic
power.

Power (Aggressive—increases runtime, reduces performance)

Aggressive modes increase compilation time and make trade-offs that may harm other
optimization metrics (performance, area, etc.). In Aggressive Power mode, the
Compiler attempts to reduce the routing usage of signals with the highest specified
(via Signal Activity File) or estimated toggle rates, saving additional dynamic power
but potentially affecting performance.

2.4.6. Assignment Editor Options

The Assignment Editor allows you to select Optimization Technique & Synthesis Power
Optimization for individual modules. With this feature, you can focus on the parts of
the design that require more work.

The Optimization Technique logic option specifies the overall optimization goal for
Analysis & Synthesis: attempt to maximize performance or minimize logic usage.

Figure 12. Optimization Technique Options

The Power Optimization During Synthesis logic option determines how
aggressively Analysis & Synthesis optimizes the design for power.

2. Power Optimization

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13. Power Optimization During Synthesis Options

Table 9. Power Optimization During Synthesis Options

Settings Description Optimization Techniques
Included

Off The Compiler does not perform netlist, placement, or
routing optimizations to minimize power.

-

Normal compilation
(Default)

The Compiler applies low compute effort algorithms to
minimize power through netlist optimizations that do not
reduce design performance.

• Memory block
optimization

• Power-aware logic
mapping

Extra effort Besides the techniques in the Normal compilation setting,
the Compiler applies high-compute-effort algorithms to
minimize power through netlist optimizations. Selecting this
option might impact performance.

• Memory block
optimization

• Power-aware logic
mapping

• Power-aware memory
balance

Related Information

• Area-Driven Synthesis on page 34

• Power-Driven Fitter on page 33

2.5. Design Guidelines

During FPGA design implementation, you can apply the following design techniques to
reduce power consumption. This section provides detailed design techniques for
Cyclone IV GX devices that affect overall design power. The results of these techniques
are different from design to design.

2.5.1. Clock Power Management

Clocks represent a significant portion of dynamic power consumption due to their high
switching activity and long paths. Actual clock-related power consumption is higher,
because the power consumption of a block includes local clock distribution within logic,
memory, and DSP or multiplier blocks.

The Intel Quartus Prime software optimizes clock routing power automatically,
enabling only those portions of the clock network that are necessary to feed
downstream registers.

Related Information

Clock Control Block IP Core User Guide (ALTCLKCTRL)

2. Power Optimization

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

37

http://www.altera.com/literature/ug/ug_altclock.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.1.1. Clock Enable in Memory Blocks

In memory blocks, power consumption is tied to the clock rate, and is insensitive to
the toggle rate on the data and address lines. Memory consumes approximately 20%
of the core dynamic power in typical designs.

When a memory block is clocked, a sequence of timed events occur within the block to
execute a read or write. The circuitry that the clock controls consumes the same
amount of power, independent of changes in address or data from one cycle to the
next. Thus, the toggle rate of input data and the address bus have no impact on
memory power consumption.

The key to reducing memory power consumption is to reduce the number of memory
clocking events. You can achieve this reduction through network-wide clock gating, or
on a per-memory basis through use of the clock enable signals on the memory ports.

Figure 14. Memory Clock Enable Signal
Logical view of the internal clock of the memory block. Use the appropriate enable signals on the memory to
make use of the clock enable signal instead of gating the clock.

Enable Internal Memory Clk

Clk

0

1

The clock enable signal enables the memory only when necessary, and shuts down for
the rest of the time, reducing the overall memory power consumption. You include
these enable signals when generating the memory block function.

Figure 15. Clock Enable in RAM 2-Port

For example, consider a design that contains a 32-bit-wide M4K memory block in ROM
mode that is running at 200 MHz. Assuming that the output of this block is only
required approximately every four cycles, this memory block consumes 8.45 mW of
dynamic power according to the demands of the downstream logic. By adding a small
amount of control logic to generate a read clock enable signal for the memory block
only on the relevant cycles, the power can be cut 75% to 2.15 mW.

You can also use the MAXIMUM_DEPTH parameter in your memory IP core to save
power in Cyclone IV GX, Stratix IV, and Stratix V devices; however, this approach
might increase the number of LEs required to implement the memory and affect
design performance.

2. Power Optimization

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Intel Quartus Prime software automatically chooses the best design memory
configuration for optimal power. However, you can set the MAXIMUM_DEPTH
parameter for memory modules during the IP core instantiation.

Figure 16. RAM 2-Port Maximum Depth

Related Information

• Power-Driven Compilation on page 30

• Clock Power Management on page 37

• Clocking Modes and Clock Enable
In Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and ROM:
2-PORT) User Guide

2.5.1.1.1. Memory Power Reduction Example

Power usage measurements for a 4K × 36 simple dual-port memory implemented
using multiple M4K blocks in a Stratix device. For each implementation, the M4K
blocks are configured with a different memory depth.

Table 10. 4K × 36 Simple Dual-Port Memory Implemented Using Multiple M4K Blocks

M4K Configuration Number of M4K Blocks ALUTs

4K × 1 (Default setting) 36 0

2K × 2 36 40

1K × 4 36 62

512 × 9 32 143

256 × 18 32 302

128 × 36 32 633

Using the MAXIMUM_DEPTH parameter can save power. For all implementations, a
user-provided read enable signal is present to indicate when read data is required.
Using this power-saving technique can reduce power consumption by as much as
60%.

2. Power Optimization

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

39

https://www.intel.com/content/www/us/en/docs/programmable/683240/current/clocking-modes-and-clock-enable.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17. Power Savings Using the MAXIMUM_DEPTH Parameter

0%
10%
20%
30%
40%
50%
60%
70%

4K × 1 2K × 2 256 × 18 128 × 361K × 4 512 × 9
M4K Configuration

Po
we

r S
av

ing
s

As the memory depth becomes more shallow, memory dynamic power decreases
because unaddressed M4K blocks can be shut off using a decoded combination of
address bits and the read enable signal. For a 128-deep memory block, power used by
the extra LEs starts to outweigh the power gain achieved by using a more shallow
memory block depth. The power consumption of the memory blocks and associated
LEs depends on the memory configuration.

Note: The SOPC Builder and Platform Designer (Standard) system do not offer specific
power savings control for on-chip memory block. There is no read enable, write
enable, or clock enable that you can enable in the on-chip RAM megafunction to shut
down the RAM block in the SOPC Builder and Platform Designer (Standard) system.

2.5.1.2. LAB Clock Power

Another contributor to clock power consumption are LAB clocks, which distribute clock
to the registers within a LAB. LAB clock power can be the dominant contributor to
overall clock power.

Figure 18. LAB-Wide Control Signals

6

labclk1 labclk2 labclr2syncload

labclkena1 labclkena2 labclr1 synclr

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Dedicated
LAB Row
Clocks

To reduce LAB-wide clock power consumption without disabling the entire clock tree,
use the LAB-wide clock enable to gate the LAB-wide clock. The Intel Quartus Prime
software automatically promotes register-level clock enable signals to the LAB-level. A
shared gated clock controls all registers within an LAB that share a common clock and
clock enable. To take advantage of these clock enables, use a clock enable construct in
the relevant HDL code for the registered logic.

2. Power Optimization

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.1.2.1. LAB-Wide Clock Enable Example

This VHDL code makes use of a LAB-wide clock enable. This clock-gating logic is
automatically turned into an LAB-level clock enable signal.

IF clk'event AND clock = '1' THEN
 IF logic_is_enabled = '1' THEN
 reg <= value;
 ELSE
 reg <= reg;
 END IF;
END IF;

2.5.1.3. Clock Enables

Use clock enables instead of gated clocks:

assign clk_gate = clk1 & gateA & gateB;
always @ (posedge clk_gate) begin
 sr[N-1:1] <= sr[N-2:0];
 sr[0]<=din1;
end

assign enable = gateA & gateB;
always @(posedge clk2) begin
 if (enable) begin
 sr[N-1:1] <= sr[N-2:0];
 sr[0]<=din2;
 end
end

Reduce LAB-wide clock power consumption without disabling the entire clock tree, use
the LAB-wide clock enable to gate the LAB-wide clock.

always @(posedge clk)
begin
 if (ena)
 temp <= dataa;
 else
 temp <= temp;
 end
end

2.5.1.4. Global Signals

Intel FPGAs have different kinds of global signal resources available. Global signals can
span the entire chip or smaller regions. Choose the clock networks that can cover all
the fanout on a specific domain. For example, you can reduce clock power by
switching from a clock network that spans the entire chip to one quarter of the chip,
provided all the fanout for that clock is within that region of the chip.

2. Power Optimization

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Device Page (Settings Dialog Box) on page 0
In Intel Quartus Prime Help

2.5.1.4.1. Viewing Clock Details in the Chip Planner

1. Open the Chip Planner (Tools ➤ Chi Planner).

2. In the Task pane, under Clock Reports, double-click Report Clock Details.

Figure 21. Chip Planner Task Pane

Figure 22. Report Clock Details

3. Click OK.
The Report pane generates the Clock folder.

4. Expand the Clock folder and select Used spine clock regions to highlight on the
Chip planner.

5. In the Layers Settings pane, turn on Regional/Periphery clock region to see
whether used spine clock regions are within.

Figure 23. Clock Highlight in Chip Planner
This example uses a Regional clock Region instead of a global signal.

2. Power Optimization

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

42

https://www.altera.com/quartushelp/current/index.htm#comp/comp/comp_tab_chips.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.1.5. Merge Clocks

Evaluate the possibility of merging clocks and PLLs in the design.

Design 2clks & 2PLLs 1 Clk & 1 PLL

Oc_dma_stamp25 6.079W 5.46W

• 2clks & 2PLLs

Clk1:350Mhz, Fanout 46788

Clk2: 365Mhz, Fanout 2450

• 1Clk & 1PLL

Merge clks

clk: 365Mhz, Fanout 51277

2.5.2. Pipelining and Retiming

Glitches are unnecessary and unpredictable temporary logic switches at the output of
combinational logic. Designs with glitches consume more power, because of faster
switching activity. A glitch usually occurs when there is a mismatch in input signal
timing, leading to unequal propagation delay.

For example, consider a 2-input XOR gate where one input changes from 1 to 0, and
moments later the other input changes from 0 to 1 For a short time, both inputs
become 1 (high), resulting in 0 (low) at the output of the XOR gate. Then, when the
second input transition takes place, the XOR gate output becomes 1 (high). Therefore,
before the output becomes stable, the input delay produces a glitch in the output.

Figure 24. XOR Gate Showing Glitch at the Output

XOR (Exclusive OR) Gate

A

B Q

A

B

Q

Timing Diagram for the 2-Input XOR Gate

Glitch

t

A glitch can propagate to subsequent logic and create unnecessary switching activity,
increasing power consumption. Circuits with many XOR functions, such as arithmetic
circuits or cyclic redundancy check (CRC) circuits, tend to have many glitches if there
are several levels of combinational logic between registers.

Registers stop glitches from propagating through combinational paths. Pipelining is a
technique that breaks combinational paths by inserting registers. By reducing logic-
level numbers between registers, pipelining can result in higher clock speed
operations. However, pipelining increases the latency of a circuit in terms of the
number of clock cycles to a first result.

The following figure shows how pipelining breaks a long combinational path.

2. Power Optimization

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 25. Pipelining Example

Combinational
Logic

Combinational
Logic

Combinational
Logic

Short Logic
Depth

Short Logic
Depth

Long Logic
Depth

Non-Pipelined

Pipelined

This reduction in switching activity lowers power dissipation in combinational logic.
However, for designs with few glitches, pipelining can increase power consumption by
adding unnecessary registers. Pipelining can also increase resource utilization.
Benchmark data shows that pipelining can reduce dynamic power consumption by as
much as 30% in Cyclone and Stratix devices.

2.5.3. Architectural Optimization

Design-level architectural optimizations allow you to take advantage of device
architecture features. These features include dedicated memory, DSPs, or multiplier
blocks that can perform memory or arithmetic-related functions. You can reduce
power consumption by choosing blocks in place of LUTs. For example, you can build
large shift registers from RAM-based FIFO buffers instead of building the shift registers
from the LE registers.

The Stratix device family allows you to efficiently target small, medium, and large
memories with the TriMatrix memory architecture. Each TriMatrix memory block is
optimized for a specific function. M512 memory blocks are more power-efficient than
the distributed memory structures in some competing FPGAs. With M4K memory
blocks you can implement buffers for a wide variety of applications, including
processor code storage, large look-up table implementation, and large memory
applications. The M-RAM blocks are useful in applications when storing a large volume
of data on-chip is necessary. Effective utilization of these memory blocks can have a
significant impact on power reduction in the design.

The latest Stratix and Cyclone device families have configurable M9K memory blocks
that provide memory functions such as RAM, FIFO buffers, and ROM.

2. Power Optimization

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.4. I/O Power Guidelines

The Power Analyzer calculates I/O power using the default capacitive load set for the
I/O standard in the Capacitive Loading page of the Device and Pin Options dialog
box. Any other components defined in the board trace model are not taken into
account for the power measurement. For Cyclone IV GX, Stratix IV, and Stratix V
devices, Advanced I/O Timing considers the full board trace model.

Nonterminated I/O Standards

Nonterminated I/O standards such as LVTTL and LVCMOS have a rail-to-rail output
swing. The voltage difference between logic-high and logic-low signals at the output
pin is equal to the VCCIO supply voltage. If the capacitive loading at the output pin is
known, the following expression determines the dynamic power consumed in the I/O
buffer:

P = F ⋅ C ⋅ V 2
2

where:

• F is the output transition frequency

• C is the total load capacitance being switched

• V is equal to VCCIO supply voltage

Because of the quadratic dependence on VCCIO, lower voltage standards consume
significantly less dynamic power.

Transistor-to-transistor logic (TTL) I/O buffers consume very little static power. As a
result, the total power that a LVTTL or LVCMOS output consumes is highly dependent
on load and switching frequency.

Resistively Terminated I/O Standards

In resistively terminated I/O standards like SSTL and HSTL, the output load voltage
swings by a small amount around a bias point. The dynamic power equation above is
valid as well, but V is the actual load voltage swing. This voltage is much smaller than
VCCIO, resulting in lower dynamic power when comparing to nonterminated I/O under
similar conditions.

Resistively terminated I/O standards dissipate significant static (frequency-
independent) power, because the I/O buffer is constantly driving current into the
resistive termination network. However, the lower dynamic power of these I/O
standards means they often have lower total power than LVCMOS or LVTTL for high-
frequency applications. As a best practice, when using resistively terminated
standards choose the lowest drive strength I/O setting that meets the speed and
waveform requirements to minimize I/O power.

You can save a small amount of static power by connecting unused I/O banks to the
lowest possible VCCIO voltage.

Related Information

Stratix Series FPGA I/O Connectivity

2. Power Optimization

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

45

https://www.altera.com/products/fpga/features/stx-io-connect.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.5. Memory Optimization (M20K/MLAB)

M20K memory blocks represent a big part of the power consumption in a design. The
Fitter RAM Summary Report displays the utilization of the memory blocks in different
parts of the design.

Figure 26. Fitter RAM Summary Report

Some guidelines to optimize the use of memories are:

• Port shallow memories from M20K to MLAB.

For example, implement in HDL with ramstyle attribute:

(* ramstyle = "MLAB" *) reg [0:7] my_ram[0:63];

• Avoid read-during-write behavior and set to Don’t care (at the HDL level)
wherever possible.

Read-during-write behavior impact the power of single-port and bidirectional dual-
port RAMs. Don’t care allows an optimization that sets the read-enable signal to
the inversion of the existing write-enable signal (if one exists). This allows the
core of the RAM to shut down, which prevents switching, saving a significant
amount of power.

• Pack input/output registers in M20K.

2.5.5.1. Implementation

Table 11. Single-port Embedded Memory Configurations for Devices
This table lists the maximum configurations that single-port RAM and ROM modes support.

Memory Block Depth (bits) Programmable Width

MLAB 32 x16, x18, or x20

64 (1) x8, x9, x10

M20K 512 x40, x32

1K x20, x16

2K x10, x8

4K x5, x4

8K x2

16K x1

(1) Supported through software emulation and consumes additional MLAB blocks.

2. Power Optimization

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 27. Power numbers from EPE

2.5.5.2. Rd/Wr Enables

Dedicated RAM blocks dissipate most energy whenever the RAM is accessed for a read
or write cycle. You can save power by adding Read/Write enable.

2.5.6. DDR Memory Controller Settings

The Intel Arria 10 EMIF IP DDR3 controller provides low power mode options. These
options put DDR in Power saving mode when the controller is idle, providing power
savings on External Memory DDR. These options are Enable Auto Power-Down and
Auto Power-Down Cycles.

Power-Down Mode

Enable Auto Power-Down directs the controller to place the memory device in
power-down mode after a specific number of idle controller clock cycles. You can
configure the idle wait time. All ranks must be idle to enter auto power-down.

Auto Power-Down Cycles Number of cycles the controller must be IDLE before
entering power down state. You determine the number based on the traffic pattern. If
the number is too small, the control enters power down too frequently, affecting
efficiency. The Intel Arria 10 device family supports from 1 to 65534 cycles.

Figure 28. Intel Arria 10 EMIF Controller Parameters

Self-Refresh

Directs the Controller to self-refresh when not sending traffic for very long period.
Self-refresh takes more time compared to power down, but the power saving is higher
than power down.

2. Power Optimization

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Intel Arria 10 EMIF IP DDR3 Parameters: Controller
In External Memory Interfaces Intel Arria 10 FPGA IP User Guide

2.5.7. DSP Implementation

When you maximize the packing of DSP blocks, you reduce Logic Utilization, power
consumption, and increase efficiency. The HDL coding style grants you control of the
DSP resources available in the FPGA.

Example 1. Implement Multiplier + Accumulator in 1 DSP

always @ (posedge clk)
begin
 if (ena)
 begin
 dataout <= dataa * datab + datac * datad;
 end
end

Example 2. Implement multiplication in 2 DSPs and the adder in LABs

always @ (posedge clk)
begin
 if (ena)
 begin
 mult1 <= dataa * datab;
 mult2 <= datac * datad;
 end
end
always @(posedge clk)
begin
 if (ena)
 begin
 dataout <= mult1 + mult2
 end
end

Related Information

Inferring Multipliers and DSP Functions
In Intel Quartus Prime Standard Edition User Guide: Design Recommendations

2.5.8. Reducing High-Speed Tile (HST) Usage

High-Speed tiles are available in Stratix V and Intel Arria 10 device families.

1. In the Advanced Fitter Settings pane, The Programmable Power Technology
Optimization logic option controls how the fitter configures tiles to operate in
high-speed mode or low-power mode. Select Minimize Power Only.

2. Power Optimization

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

48

https://www.intel.com/content/www/us/en/docs/programmable/683106.html
https://www.intel.com/content/www/us/en/docs/programmable/683323/current/inferring-multipliers-and-dsp-functions.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29. Programmable Power Technology Optimization

2. Identify entity modules that use HST by plotting entity modules and HST heatmap
on the Chip Planner and modify the floorplan to reduce usage.

Figure 30. Entity Modules and HST Heatmap on the Chip Planner

2.5.9. Unused Transceiver Channels

Transceivers in the device degrade over time unless you preserve them. The Intel
Quartus Prime software generates a warning message if a design contains unused
XCVRs.

You do not need to preserve transceivers under 8Gbps. For transceivers over 8Gbps,
the best practice is to preserve if there is a possibility for future usage. Otherwise, you
can turn the transceivers off. You enable unused transceivers through dynamic
reconfiguration or a new device programming file.

2. Power Optimization

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.10. Periphery Power reduction XCVR Settings

2.5.10.1. Transceiver Settings

• Use min VCCR/T possible (depending on data rate).

• Certain devices have DFE ON by default. If possible, turn off the channel, This
depends on the how lossy is the channel.

• Turn off PDN compensation.
This setting induces jitter, which is necessary to check system tolerance.

• Use one equalizer stage.

DFE Adaptation Equalizer Stage Transmitter High-Speed
Compensation

Disabled Disabled Non-S1 Mode Disabled

Disabled Disabled Non-S1 Mode Enabled

Disabled Disabled N/A Enabled

2.5.10.2. I/O Current Strength

As a best practice, choose a low voltage I/O standard and the lowest drive strength
that meets the speed requirements.

2.6. Power Optimization Advisor

The Intel Quartus Prime Power Optimization Advisor provides advice and
recommendations based on the current design project settings and assignments. You
run the Advisor after the Power Analyzer.

Figure 31. Power Optimization Advisor
Power Optimization Advisor after compiling a design that is not fully optimized for power.

The Power Optimization Advisor organizes the recommendations into stages that
suggest the implementation order. Each recommendation includes a description,
summary of the effect of the recommendation, and the action required to make the
appropriate setting.

2. Power Optimization

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

An icon indicates whether each recommended setting is made in the current project.
Checkmark icons appear next to recommendations that are already implemented,
warning icons appear next to recommendations that are not followed for this
compilation. Information icons indicate general suggestions.

Recommendations include a link to the location in the Intel Quartus Prime GUI where
you can change the setting. After implementing the recommended changes, recompile
your design. You can verify power results with the Power Analyzer.

Related Information

Advisors in the Intel Quartus Prime Software on page 0
In Intel Quartus Prime Help

2.6.1. Set Realistic Timing Constraints

Timing requirements are too high, the Compiler increases HST Usage. In addition, the
Fitter efforts focus more in timing than power optimization.

2.6.1.1. Find Timing Information

• To find False or Multi-Cycle Paths, click Report Ignored Constraints in the
Timing Analyzer Tasks pane.

Figure 32. Report Ignored Constraints

• To see a list of the 10 paths with highest delay in the design, in the Reports pane
find Fitter Summary Report ➤ Estimate Delay Added for Hold Timing ➤
Details.

2.6.2. Appropriate Device Family

Choose a device family with the dynamic and static power characteristics best suited
to your application.

2. Power Optimization

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

51

https://www.altera.com/quartushelp/current/index.htm#report/oaw/oaw_view_using_oaw.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Device Selection on page 26

• Device Page (Settings Dialog Box) on page 0
In Intel Quartus Prime Help

2.6.3. Dynamic Power

The recommendations in this section can reduce dynamic power.

Figure 33. Dynamic Power Recommendations in the Power Optimization Advisor

Related Information

• Design Space Explorer II for Power-Driven Optimization on page 29

• Power-Driven Synthesis on page 30

• Power-Driven Fitter on page 33

• Area-Driven Synthesis on page 34

2.6.4. Static Power

The recommendations in this section can reduce static power dissipation. Static power
is the frequency independent power that a design dissipates, even when the design
clocks are stopped.

Small Device

Use the smallest device which can fit your design.

Related Information

• Device Selection on page 26

• Device Page (Settings Dialog Box) on page 0
In Intel Quartus Prime Help

2. Power Optimization

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

52

https://www.altera.com/quartushelp/current/index.htm#comp/comp/comp_tab_chips.htm
https://www.altera.com/quartushelp/current/index.htm#comp/comp/comp_tab_chips.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.5. Appropriate I/O Standards

Choose appropriate I/O Standards to minimize design power.

Related Information

I/O Power Guidelines on page 45

2.6.6. Use RAM Blocks

Implement RAMs and medium to large shift registers in RAM blocks instead of logic
cell registers.

Related Information

Memory Optimization (M20K/MLAB) on page 46

2.6.7. Shut Down RAM Blocks

Use the clock enable, read enable and write enable ports on RAM blocks to shut them
down during cycles in which the RAM is not read or written. If your design does not
depend on a specific read result when reading and writing the same address, then
specify "don't care" for the read-during-write parameter in the RAM IP Catalog.

Related Information

• Clock Enable in Memory Blocks on page 38

• Memory Optimization (M20K/MLAB) on page 46

2.6.8. Clock Enables on Logic

Another technique for power reduction is gating clocks when the logic does not require
them. Even though you can build clock-gating logic, this approach can generate clock
glitches in FPGAs using ALMs or LEs.

2.6.9. Pipeline Logic to Reduce Glitching

Long chains of cascaded logic blocks can create glitches due to path delay differences
between the input signals. Inserting Flip-Flops to cut these long chains terminates the
propagation of glitches to consecutive logic cells.

Circuits that heavily use of XIO functions (for example, Cyclic redundancy check) tend
to glitch significantly when cascaded. Add pipeline registers or re-architect to reduce
signal toggling

2. Power Optimization

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 3. Glitch Prone Design

Related Information

Pipelining and Retiming on page 43

2.7. Power Optimization Revision History

The following revision history applies to this chapter:

Table 12. Document Revision History

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.
• Added topic: Factors Affecting Power Consumption, moved from

chapter: Power Analysis
• Extended content about Power Optimization Advisor with a description

of recommendations.
• Added design guidelines: DDR Memory Controller Settings, DSP

Implementation, Reducing High-Speed Tile (HST) Usage, Unused
Transceiver Channels, Periphery Power reduction XCVR Settings

2018.06.11 18.0.0 • Moved general information about the Design Space Explorer (DSE II) to
the Design Optimization Overview chapter, left a section about using
DSE II for Power-Driven Optimization.

2018.05.07 18.0.0 • Moved general information about the Design Space Explorer (DSE II) to
the Design Optimization Overview chapter, left a section about using
DSE II for Power-Driven Optimization.

2016.10.31 16.1.0 • Removed statement of support for gate-level timing simulation.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.
• Updated screenshot for DSE II GUI.
• Added information about remote hosts for DSE II.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

• Updated DSE II GUI and optimization settings.

continued...

2. Power Optimization

683506 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2014.06.30 14.0.0 Updated the format.

May 2013 13.0.0 Added a note to “Memory Power Reduction Example” on Qsys and SOPC
Builder power savings limitation for on-chip memory block.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Template update.

July 2010 10.0.0 • Was chapter 11 in the 9.1.0 release
• Updated Figures 14-2, 14-3, 14-6, 14-18, 14-19, and 14-20
• Updated device support
• Minor editorial updates

November 2009 9.1.0 • Updated Figure 11-1 and associated references
• Updated device support
• Minor editorial update

March 2009 9.0.0 • Was chapter 9 in the 8.1.0 release
• Updated for the Quartus II software release
• Added benchmark results
• Removed several sections
• Updated Figure 13–1, Figure 13–17, and Figure 13–18

November 2008 8.1.0 • Changed to 8½” × 11” page size
• Changed references to altsyncram to RAM
• Minor editorial updates

May 2008 8.0.0 • Added support for Stratix IV devices
• Updated Table 9–1 and 9–9
• Updated “Architectural Optimization” on page 9–22
• Added “Dynamically-Controlled On-Chip Terminations” on page 9–26
• Updated “Referenced Documents” on page 9–29
• Updated references

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

2. Power Optimization

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

55

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683506 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys* that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics*, and Synopsys*. Includes design flow steps,
generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor
Graphics* and Cadence*. Also includes information about signal integrity
analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

A. Intel Quartus Prime Standard Edition User Guides

683506 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Power Analysis and
Optimization

57

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Power%20Analysis%20and%20Optimization%20(683506%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Standard
Edition User Guide
Design Constraints

Updated for Intel® Quartus® Prime Design Suite: 18.1

This document is part of a collection - Intel® Quartus® Prime Standard Edition User Guides -
Combined PDF link

Online Version

Send Feedback UG-20185

683492

2019.01.10

https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683492.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Constraining Designs.. 3
1.1. Specifying Design Constraints Designs in the GUI...3

1.1.1. Global Constraints and Assignments...4
1.1.2. Node, Entity, and Instance-Level Constraints... 4
1.1.3. Probing Between Components of the Intel Quartus Prime GUI..........................7
1.1.4. Specifying Timing Constraints in the GUI.. 7

1.2. Constraining Designs with Tcl Scripts..9
1.2.1. Create a Project and Apply Constraints... 9
1.2.2. Assigning a Pin.. 10
1.2.3. Generating Intel Quartus Prime Settings Files.. 10
1.2.4. Synopsys Design Constraint (.sdc) Files.. 12
1.2.5. Tcl-only Script Flows...13

1.3. A Fully Iterative Scripted Flow... 16
1.4. Constraining Designs Revision History...16

2. Managing Device I/O Pins.. 18
2.1. I/O Planning Overview..19

2.1.1. Basic I/O Planning Flow.. 19
2.1.2. Integrating PCB Design Tools...20
2.1.3. Intel Device Terms... 21

2.2. Assigning I/O Pins..21
2.2.1. Assigning to Exclusive Pin Groups.. 22
2.2.2. Assigning Slew Rate and Drive Strength..22
2.2.3. Assigning Differential Pins... 22
2.2.4. Entering Pin Assignments with Tcl Commands.. 24
2.2.5. Entering Pin Assignments in HDL Code..24

2.3. Importing and Exporting I/O Pin Assignments..26
2.3.1. Importing and Exporting for PCB Tools.. 26
2.3.2. Migrating Assignments to Another Target Device.. 27

2.4. Validating Pin Assignments..28
2.4.1. I/O Assignment Validation Rules.. 28
2.4.2. Checking I/O Pin Assignments in Real-Time... 29
2.4.3. I/O Assignment Analysis... 30
2.4.4. Understanding I/O Analysis Reports..34

2.5. Verifying I/O Timing...34
2.5.1. Running Advanced I/O Timing..35
2.5.2. Adjusting I/O Timing and Power with Capacitive Loading............................... 38

2.6. Viewing Routing and Timing Delays.. 39
2.7. Analyzing Simultaneous Switching Noise... 39
2.8. Scripting API... 39

2.8.1. Generate Mapped Netlist...39
2.8.2. Reserve Pins... 40
2.8.3. Set Location..40
2.8.4. Exclusive I/O Group... 40
2.8.5. Slew Rate and Current Strength...40

2.9. Managing Device I/O Pins Revision History.. 41

A. Intel Quartus Prime Standard Edition User Guides..42

Contents

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Constraining Designs
The design constraints, assignments, and logic options that you specify influence how
the Intel® Quartus® Prime Compiler implements your design. The Compiler attempts
to synthesize and place logic in a manner than meets your constraints. In addition,
design constraints also have an impact on how the Timing Analyzer and the Power
Analyzer influence synthesis, placement, and routing.

You can specify design constraints in the GUI, with scripts, or directly in the files that
store the constraints. The Intel Quartus Prime software preserves the constraints that
you specify in the GUI in the following files:

• Intel Quartus Prime Settings file (<project_directory>/
<revision_name>.qsf)—contains project-wide and instance-level assignments
for the current revision of the project, in Tcl syntax. Each revision of a project has
a separate .qsf file.

• Synopsys* Design Constraints file (<project_directory>/
<revision_name>.sdc)—the Timing Analyzer uses industry-standard Synopsys
Design Constraint format and stores those constraints in .sdc files.

By combining the syntax of the .qsf files and the .sdc files with procedural Tcl, you
can automate iterations over several different settings, changing constraints and
recompiling.

Related Information

• Intel Quartus Prime Standard Edition Settings File Reference Manual
For information about all settings and constraints in the Intel Quartus Prime
software.

• Tcl Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

• Command Line Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

1.1. Specifying Design Constraints Designs in the GUI

Intel Quartus Prime software provides tools that help you manually implement your
project. These tools can also support design visualization, pre-filled parameters, and
window cross probing, facilitating design exploration and debugging.

When you create or update a constraint in the Intel Quartus Prime software, the
System tab of the Messages window displays the equivalent Tcl command. Utilize
these commands as references for future scripted design definition and compilation.

683492 | 2019.01.10

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683084/current/settings-file-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

1.1.1. Global Constraints and Assignments

Global constraints and project settings affect the entire Intel Quartus Prime project
and all the applicable logic in the design. You often define global constraints in early
project development; for example, when running the New Project Wizard. Intel
Quartus Prime software stores global constraints in .qsf files, one for each project
revision.

Table 1. Intel Quartus Prime Tools to Set Global Constraints

Assignment Type Example New Project
Wizard

Device Dialog
Box

Settings
Dialog Box

Options
Dialog Box

Project-wide Project files X X

Synthesis • Device Family
• Top-level Entity

X X X

Fitter • Device
• Fitter Effort
• IO Standard

X X

Simulation Vector input source X

Third-party Tools External Logic Analyzer X

IP Settings Maximum Platform
Designer (Standard)
Memory Usage

X

Related Information

Managing Project Settings
In Intel Quartus Prime Standard Edition Handbook Volume 1

1.1.2. Node, Entity, and Instance-Level Constraints

Node, entity, and instance-level constraints apply to a subset of the design hierarchy.
These constraints take precedence over any global assignment that affects the same
sections of the design hierarchy.

Table 2. Intel Quartus Prime Standard Edition Tools to Set Node, Entity and Instance
Level Constraints

Assignment Type Example Assignment Editor Chip Planner Pin Planner

Pin Project files X X

Location • Device Family
• Top-level Entity

X X

Routing • Device
• Fitter Effort
• IO Standard

X X

Simulation Vector input source X X X

1. Constraining Designs

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

4

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#mwh1409958235168
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.1.2.1. Specify Instance-Specific Constraints in Assignment Editor

Intel Quartus Prime Assignment Editor (Assignments ➤ Assignment Editor)
provides a spreadsheet-like interface for assigning all instance-specific settings and
constraints. To help you explore your design, the Assignment Editor allows you to filter
assignments by node name or category.

Figure 1. Intel Quartus Prime Assignment Editor

Use the Assignment Editor to:

• Add, edit, or delete assignments for selected nodes

• Display information about specific assignments

• Enable or disable individual assignments

• Add comments to an assignment

Additionally, you can export assignments to a Comma-Separated Value File (.csv).

1.1.2.2. Specify I/O Constraints in Pin Planner

Intel Quartus Prime Pin Planner allows you to assign design elements to I/O pins. You
can also plan and assign IP interface or user nodes not yet defined in the design.

1. Constraining Designs

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Pin Planner GUI

Task and
Report
Windows

All Pins
List

Device
 Package
View

Related Information

Managing Device I/O Pins on page 18

1.1.2.3. Adjust Constraints with the Chip Planner

With the Chip Planner you can adjust existing assignments to device resources, such
as pins, logic cells, and LABs in a graphical representation of the device floorplan. You
can also view equations and routing information and demote assignments by dragging
and dropping to Logic Lock (Standard) regions in the Logic Lock (Standard)
Regions Window.

Related Information

Design Floorplan Analysis in the Chip Planner
In Intel Quartus Prime Standard Edition User Guide: Design Optimization

1.1.2.4. Constraining Designs with the Design Partition Planner

The Design Partition Planner allows you to view design connectivity and hierarchy and
can assist you in creating effective design partitions.

Additionally, the Design Partition Planner allows you to optimize design performance
by isolating and resolving failing paths on a partition-by-partition basis.

Related Information

Creating Partitions and Logic Lock (Standard) Regions with the Design Partition
Planner and the Chip Planner

In Intel Quartus Prime Standard Edition User Guide: Design Optimization

1. Constraining Designs

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

6

https://www.intel.com/content/www/us/en/docs/programmable/683230/current/design-floorplan-analysis-in-the-chip.html
https://www.intel.com/content/www/us/en/docs/programmable/683230/current/creating-partitions-and-regions-with.html
https://www.intel.com/content/www/us/en/docs/programmable/683230/current/creating-partitions-and-regions-with.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.1.3. Probing Between Components of the Intel Quartus Prime GUI

Intel Quartus Prime software allows you to locate nodes and instances across windows
and source files.

When you are in the Project Navigator, Assignment Editor, Chip Planner, or Pin Planner,
and want to display a given resource in other Intel Quartus Prime tool:

1. Right-click the resource you want to display.

2. Click Locate Node, and then click one of the menu options.

The corresponding window opens—or appears in the foreground if it is already open—
and shows the element you clicked.

Example 1. Locate a Resource Selected in the Project Navigator

In the Entity list of the Hierarchy tab, right-click one object, and click Locate ➤
Locate in Chip Planner.

Right-click Instance
in Hierarchy Tab

The Chip Planner opens and displays the instance you selected.

Chip Planner displays
and keeps resource selected

1.1.4. Specifying Timing Constraints in the GUI

You can specify timing constraints in the Timing Analyzer GUI. Click the Constraints
menu in the Timing Analyzer to specify timing constraints that you can apply to your
project.

1. Constraining Designs

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3. Constraint menu in Timing Analyzer

When you specify a constraint in the GUI, the dialog box displays the equivalent SDC
command syntax.

Example 2. Create Clock Dialog Box

Equivalent
SDC Command

Insert Parameters

Individual timing assignments override project-wide requirements.

• To avoid reporting incorrect or irrelevant timing violations, you can assign timing
exceptions to nodes and paths.

• The Timing Analyzer supports point-to-point timing constraints, wildcards to
identify specific nodes when making constraints, and assignment groups to make
individual constraints to groups of nodes.

Related Information

Using the Timing Analyzer
In Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

1. Constraining Designs

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

8

https://www.intel.com/content/www/us/en/docs/programmable/683068/current/using-the-timing-analyzer.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2. Constraining Designs with Tcl Scripts

You can perform all your design assignments using .sdc and .qsf setting files. To
integrate these files in compilation and optimization flows, use Tcl scripts. Even
though .sdc and .qsf files are written in Tcl syntax, they are not executable by
themselves.

When you use Intel Quartus Prime Tcl packages, your scripts can open projects, make
the assignments, compile the design, and compare compilation results against known
goals and benchmarks. Furthermore, such a script can automate the iterative design
process by modifying constraints and recompiling the design.

1.2.1. Create a Project and Apply Constraints

The command-line executables include options for common global project settings and
commands. You can use a Tcl script to apply constraints such as pin locations and
timing assignments. You can write a Tcl constraint file, or generate one for an existing
project by clicking Project ➤ Generate Tcl File for Project.

The example creates a project with a Tcl script and applies project constraints using
the tutorial design files in the <Intel Quartus Prime installation directory>/
qdesigns/fir_filter/ directory.

project_new filtref -overwrite
Assign family, device, and top-level file
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C12F256C6
set_global_assignment -name BDF_FILE filtref.bdf
Assign pins
set_location_assignment -to clk Pin_28
set_location_assignment -to clkx2 Pin_29
set_location_assignment -to d[0] Pin_139
set_location_assignment -to d[1] Pin_140
#
project_close

Save the script in a file called setup_proj.tcl and type the commands illustrated in
the example at a command prompt to create the design, apply constraints, compile
the design, and perform fast-corner and slow-corner timing analysis. Timing analysis
results are saved in two files, filtref_sta_1.rpt and filtref_sta_2.rpt.

quartus_sh -t setup_proj.tcl
quartus_map filtref
quartus_fit filtref
quartus_asm filtref
quartus_sta filtref --model=fast --export_settings=off
mv filtref_sta.rpt filtref_sta_1.rpt
quartus_sta filtref --export_settings=off
mv filtref_sta.rpt filtref_sta_2.rpt

Type the following commands to create the design, apply constraints, and compile the
design, without performing timing analysis:

quartus_sh -t setup_proj.tcl
quartus_sh --flow compile filtref

The quartus_sh --flow compile command performs a full compilation, and is
equivalent to clicking the Start Compilation button in the toolbar.

1. Constraining Designs

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.2. Assigning a Pin

To assign a signal to a pin or device location, use the Tcl command shown in this
example:

set_location_assignment -to <signal name> <location>

Valid locations are pin location names. Some device families also support edge and I/O
bank locations. Edge locations are EDGE_BOTTOM, EDGE_LEFT, EDGE_TOP, and
EDGE_RIGHT. I/O bank locations include IOBANK_1 to IOBANK_n, where n is the
number of I/O banks in a device.

1.2.3. Generating Intel Quartus Prime Settings Files

Intel Quartus Prime software allows you to generate .qsf files from your revision. You
can embed these constraints in a scripted compilation flow, and even create sets
of .qsf files for design optimization.

To generate a .qsf file from the Intel Quartus Prime software, click Assignments ➤
Export Assignments.

To organize the .qsf in a human readable form, Project ➤ Organize Intel Quartus
Prime Settings File.

Example 3. Organized .qsf File

This example shows how .qsf files characterize a design revision. The
set_global_assignment command makes all global constraints and software
settings and set_location_assignment constrains each I/O node in the design to
a physical pin on the device.

Project-Wide Assignments
========================
set_global_assignment -name ORIGINAL_QUARTUS_VERSION 9.1
set_global_assignment -name PROJECT_CREATION_TIME_DATE "10:37:10 MAY 7, 2009"
set_global_assignment -name LAST_QUARTUS_VERSION "17.0.0 Standard Edition"
set_global_assignment -name VERILOG_FILE mult.v
set_global_assignment -name VERILOG_FILE accum.v
set_global_assignment -name BDF_FILE filtref.bdf
set_global_assignment -name VERILOG_FILE hvalues.v
set_global_assignment -name VERILOG_FILE taps.v
set_global_assignment -name VERILOG_FILE state_m.v
set_global_assignment -name VERILOG_FILE acc.v
set_global_assignment -name SMART_RECOMPILE ON
set_global_assignment -name VECTOR_WAVEFORM_FILE fir.vwf

Pin & Location Assignments
==========================
set_location_assignment PIN_F13 -to reset
set_location_assignment PIN_G10 -to d[2]
set_location_assignment PIN_F12 -to clk
set_location_assignment PIN_A10 -to clkx2
set_location_assignment PIN_G9 -to d[1]
set_location_assignment PIN_C12 -to d[7]
set_location_assignment PIN_F10 -to follow
set_location_assignment PIN_F9 -to yvalid
set_location_assignment PIN_E13 -to yn_out[2]
set_location_assignment PIN_E10 -to yn_out[3]
set_location_assignment PIN_C11 -to d[4]
set_location_assignment PIN_F11 -to d[0]
set_location_assignment PIN_C13 -to d[6]
set_location_assignment PIN_C8 -to yn_out[6]

1. Constraining Designs

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_location_assignment PIN_B13 -to d[5]
set_location_assignment PIN_B11 -to d[3]
set_location_assignment PIN_B10 -to yn_out[5]
set_location_assignment PIN_B8 -to yn_out[0]
set_location_assignment PIN_A13 -to yn_out[7]
set_location_assignment PIN_A11 -to yn_out[4]
set_location_assignment PIN_A12 -to yn_out[1]
set_location_assignment PIN_A9 -to newt

Classic Timing Assignments
==========================
set_global_assignment -name FMAX_REQUIREMENT "85 MHz"

Analysis & Synthesis Assignments
================================
set_global_assignment -name FAMILY "Cyclone IV GX"
set_global_assignment -name TOP_LEVEL_ENTITY filtref
set_global_assignment -name DEVICE_FILTER_PACKAGE FBGA
set_global_assignment -name DEVICE_FILTER_PIN_COUNT 256
set_global_assignment -name DEVICE_FILTER_SPEED_GRADE 6
set_global_assignment -name CYCLONE_OPTIMIZATION_TECHNIQUE SPEED
set_global_assignment -name MUX_RESTRUCTURE OFF

Fitter Assignments
==================
set_global_assignment -name DEVICE EP4CGX15BF14C6
set_global_assignment -name FITTER_EFFORT "STANDARD FIT"
set_global_assignment -name PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON
set_global_assignment -name PHYSICAL_SYNTHESIS_EFFORT EXTRA
set_global_assignment -name STRATIX_DEVICE_IO_STANDARD "2.5 V"

Simulator Assignments
=====================
set_global_assignment -name VECTOR_INPUT_SOURCE fir.vwf

start CLOCK(clockb)

Classic Timing Assignments
 # ==========================
 set_global_assignment -name BASED_ON_CLOCK_SETTINGS clocka -section_id clockb
 set_global_assignment -name DIVIDE_BASE_CLOCK_PERIOD_BY 2 -section_id clockb
 set_global_assignment -name OFFSET_FROM_BASE_CLOCK "500 ps" -section_id
clockb

end CLOCK(clockb)

start CLOCK(clocka)

Classic Timing Assignments
 # ==========================
 set_global_assignment -name FMAX_REQUIREMENT "100 MHz" -section_id clocka

end CLOCK(clocka)

start ENTITY(filtref)
Classic Timing Assignments
 # ==========================
 set_instance_assignment -name CLOCK_SETTINGS clocka -to clk
 set_instance_assignment -name CLOCK_SETTINGS clockb -to clkx2
 set_instance_assignment -name MULTICYCLE 2 -from clk -to clkx2
Fitter Assignments
 # ==================
 set_instance_assignment -name SLEW_RATE 2 -to yvalid
 set_instance_assignment -name SLEW_RATE 2 -to yn_out[0]
 set_instance_assignment -name SLEW_RATE 2 -to follow
 set_instance_assignment -name SLEW_RATE 2 -to yn_out[7]
 set_instance_assignment -name SLEW_RATE 2 -to yn_out[6]
 set_instance_assignment -name SLEW_RATE 2 -to yn_out[5]

1. Constraining Designs

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 set_instance_assignment -name SLEW_RATE 2 -to yn_out[4]
 set_instance_assignment -name SLEW_RATE 2 -to yn_out[3]
 set_instance_assignment -name SLEW_RATE 2 -to yn_out[2]
 set_instance_assignment -name SLEW_RATE 2 -to yn_out[1]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
follow
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[7]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[6]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[5]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[4]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[3]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[2]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[1]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[0]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yvalid
start DESIGN_PARTITION(Top)
 # ---------------------------
Incremental Compilation Assignments
===================================
set_global_assignment -name PARTITION_NETLIST_TYPE SOURCE -section_id Top
set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL
PLACEMENT_AND_ROUTING -section_id Top
set_global_assignment -name PARTITION_COLOR 16764057 -section_id Top
end DESIGN_PARTITION(Top)
 # -------------------------

end ENTITY(filtref)

set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -
section_id Top

Related Information

Intel Quartus Prime Standard Edition Settings File Reference Manual
For information about all settings and constraints in the Intel Quartus Prime
software.

1.2.4. Synopsys Design Constraint (.sdc) Files

Intel Quartus Prime software keeps timing constraints in .sdc files, which use Tcl
syntax. You can embed these constraints in a scripted compilation flow, and even
create sets of .sdc files for timing optimization.

Example 4. .sdc File

The example shows the timing constrains of a small design.

PROGRAM "Quartus Prime"
VERSION "Version 17.0.0 Build 595 04/25/2017 SJ Standard Edition"
DATE "Wed May 10 14:03:25 2017"
##
DEVICE "EP4CGX15BF14C6"
##
#**
Time Information
#**
set_time_format -unit ns -decimal_places 3

1. Constraining Designs

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

12

https://www.intel.com/content/www/us/en/docs/programmable/683084/current/settings-file-reference-manual.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

#**
Create Clock
#**
create_clock -name {clk} -period 4.000 -waveform { 0.000 2.000 } [get_ports
{clk}]
create_clock -name {clkx2} -period 4.000 -waveform { 0.000 2.000 } [get_ports
{clkx2}]
#**
Set Clock Uncertainty
#**
set_clock_uncertainty -rise_from [get_clocks {clkx2}] -rise_to [get_clocks
{clkx2}] 0.020
set_clock_uncertainty -rise_from [get_clocks {clkx2}] -fall_to [get_clocks
{clkx2}] 0.020
set_clock_uncertainty -fall_from [get_clocks {clkx2}] -rise_to [get_clocks
{clkx2}] 0.020
set_clock_uncertainty -fall_from [get_clocks {clkx2}] -fall_to [get_clocks
{clkx2}] 0.020
set_clock_uncertainty -rise_from [get_clocks {clk}] -rise_to [get_clocks
{clkx2}] 0.040
set_clock_uncertainty -rise_from [get_clocks {clk}] -fall_to [get_clocks
{clkx2}] 0.040
set_clock_uncertainty -rise_from [get_clocks {clk}] -rise_to [get_clocks {clk}]
0.020
set_clock_uncertainty -rise_from [get_clocks {clk}] -fall_to [get_clocks {clk}]
0.020
set_clock_uncertainty -fall_from [get_clocks {clk}] -rise_to [get_clocks
{clkx2}] 0.040
set_clock_uncertainty -fall_from [get_clocks {clk}] -fall_to [get_clocks
{clkx2}] 0.040
set_clock_uncertainty -fall_from [get_clocks {clk}] -rise_to [get_clocks {clk}]
0.020
set_clock_uncertainty -fall_from [get_clocks {clk}] -fall_to [get_clocks {clk}]
0.020
#**
Set False Path
#**
set_false_path -from [get_clocks {clk clkx2}] -through [get_pins -
compatibility_mode *] -to [get_clocks {clk clkx2}]

Related Information

Constraining and Analyzing with Tcl Commands
In Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

1.2.5. Tcl-only Script Flows

As an alternative to .sdc and .qsf files, you can perform all design assignments and
timing constraints inside the Tcl scripts. In this case, the script that automates
compilation and custom results reporting also contains the design constraints.

You can export a design's contents to a procedural, executable Tcl (.tcl) file, and
then use the generated script to restore settings after experimenting with other
constraints.

To export your constraints as an executable Tcl script, click Project ➤ Generate Tcl
File for Project.

Example 5. fir_filter_generated.tcl Tcl file

Quartus Prime: Generate Tcl File for Project
File: fir_filter_generated.tcl
Generated on: Tue May 9 18:41:24 2017
Load Quartus Prime Tcl Project package

package require ::quartus::project

1. Constraining Designs

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

13

https://www.intel.com/content/www/us/en/docs/programmable/683068/current/timing-analyzer-tcl-commands.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set need_to_close_project 0
set make_assignments 1

Check that the right project is open
if {[is_project_open]} {
 if {[string compare $quartus(project) "fir_filter"]} {
 puts "Project fir_filter is not open"
 set make_assignments 0
 }
} else {
 # Only open if not already open
 if {[project_exists fir_filter]} {
 project_open -revision filtref fir_filter
 } else {
 project_new -revision filtref fir_filter
 }
 set need_to_close_project 1
}

Make assignments
if {$make_assignments} {
 set_global_assignment -name ORIGINAL_QUARTUS_VERSION 9.1
 set_global_assignment -name PROJECT_CREATION_TIME_DATE "10:37:10 MAY 7,
2009"
 set_global_assignment -name LAST_QUARTUS_VERSION "17.0.0 Standard Edition"
 set_global_assignment -name VERILOG_FILE mult.v
 set_global_assignment -name VERILOG_FILE accum.v
 set_global_assignment -name BDF_FILE filtref.bdf
 set_global_assignment -name VERILOG_FILE hvalues.v
 set_global_assignment -name VERILOG_FILE taps.v
 set_global_assignment -name VERILOG_FILE state_m.v
 set_global_assignment -name VERILOG_FILE acc.v
 set_global_assignment -name SMART_RECOMPILE ON
 set_global_assignment -name VECTOR_WAVEFORM_FILE fir.vwf
 set_global_assignment -name FMAX_REQUIREMENT "85 MHz"
 set_global_assignment -name FAMILY "Cyclone IV GX"
 set_global_assignment -name DEVICE_FILTER_PACKAGE FBGA
 set_global_assignment -name DEVICE_FILTER_PIN_COUNT 256
 set_global_assignment -name DEVICE_FILTER_SPEED_GRADE 6
 set_global_assignment -name CYCLONE_OPTIMIZATION_TECHNIQUE SPEED
 set_global_assignment -name MUX_RESTRUCTURE OFF
 set_global_assignment -name DEVICE EP4CGX15BF14C6
 set_global_assignment -name FITTER_EFFORT "STANDARD FIT"
 set_global_assignment -name PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON
 set_global_assignment -name PHYSICAL_SYNTHESIS_EFFORT EXTRA
 set_global_assignment -name STRATIX_DEVICE_IO_STANDARD "2.5 V"
 set_global_assignment -name VECTOR_INPUT_SOURCE fir.vwf
 set_global_assignment -name BASED_ON_CLOCK_SETTINGS clocka -section_id clockb
 set_global_assignment -name DIVIDE_BASE_CLOCK_PERIOD_BY 2 -section_id clockb
 set_global_assignment -name OFFSET_FROM_BASE_CLOCK "500 ps" -section_id
clockb
 set_global_assignment -name FMAX_REQUIREMENT "100 MHz" -section_id clocka
 set_global_assignment -name PARTITION_NETLIST_TYPE SOURCE -section_id Top
 set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL
PLACEMENT_AND_ROUTING -section_id Top
 set_global_assignment -name PARTITION_COLOR 16764057 -section_id Top
 set_location_assignment PIN_F13 -to reset
 set_location_assignment PIN_G10 -to d[2]
 set_location_assignment PIN_F12 -to clk
 set_location_assignment PIN_A10 -to clkx2
 set_location_assignment PIN_G9 -to d[1]
 set_location_assignment PIN_C12 -to d[7]
 set_location_assignment PIN_F10 -to follow
 set_location_assignment PIN_F9 -to yvalid
 set_location_assignment PIN_E13 -to yn_out[2]
 set_location_assignment PIN_E10 -to yn_out[3]
 set_location_assignment PIN_C11 -to d[4]
 set_location_assignment PIN_F11 -to d[0]
 set_location_assignment PIN_C13 -to d[6]
 set_location_assignment PIN_C8 -to yn_out[6]
 set_location_assignment PIN_B13 -to d[5]

1. Constraining Designs

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 set_location_assignment PIN_B11 -to d[3]
 set_location_assignment PIN_B10 -to yn_out[5]
 set_location_assignment PIN_B8 -to yn_out[0]
 set_location_assignment PIN_A13 -to yn_out[7]
 set_location_assignment PIN_A11 -to yn_out[4]
 set_location_assignment PIN_A12 -to yn_out[1]
 set_location_assignment PIN_A9 -to newt
 set_instance_assignment -name CLOCK_SETTINGS clocka -to clk
 set_instance_assignment -name CLOCK_SETTINGS clockb -to clkx2
 set_instance_assignment -name MULTICYCLE 2 -from clk -to clkx2
 set_instance_assignment -name SLEW_RATE 2 -to yvalid
 set_instance_assignment -name SLEW_RATE 2 -to yn_out[0]
 set_instance_assignment -name SLEW_RATE 2 -to follow
 set_instance_assignment -name SLEW_RATE 2 -to yn_out[7]
 set_instance_assignment -name SLEW_RATE 2 -to yn_out[6]
 set_instance_assignment -name SLEW_RATE 2 -to yn_out[5]
 set_instance_assignment -name SLEW_RATE 2 -to yn_out[4]
 set_instance_assignment -name SLEW_RATE 2 -to yn_out[3]
 set_instance_assignment -name SLEW_RATE 2 -to yn_out[2]
 set_instance_assignment -name SLEW_RATE 2 -to yn_out[1]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
follow
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[7]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[6]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[5]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[4]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[3]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[2]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[1]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yn_out[0]
 set_instance_assignment -name CURRENT_STRENGTH_NEW "MINIMUM CURRENT" -to
yvalid
 set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -
section_id Top

 # Commit assignments
 export_assignments

 # Close project
 if {$need_to_close_project} {
 project_close
 }
}

The example:

• Opens the project

• Assigns Constraints

• Writes assignments to QSF file

• Closes project

1.2.5.1. Tcl-only Timing Analysis

To avoid using a separated file to keep your timing constraints, copy and paste
the .sdc file into your executable timing analysis script.

1. Constraining Designs

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3. A Fully Iterative Scripted Flow

The ::quartus::flow Tcl package in the Intel Quartus Prime Tcl API allows you to
modify design constraints and recompile in an iterative flow.

Related Information

• ::quartus::flow
In Intel Quartus Prime Help

• Command Line Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

1.4. Constraining Designs Revision History

Document Version Intel Quartus
Prime Version

Changes

2019.01.04 18.1.0 • Clarified default location of .sdc and .qsf files in "Constraining Designs"
topic.

• Added two new "Assigning a Pin" and "Creating a Project and Applying
Constraints" topics showing Tcl examples.

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2017.11.06 17.1.0 • Renamed topic: Constraining Designs with the GUI to Constraining
Designs with Quartus Prime Tools.

• Renamed topic: Global Constraints to Global Constraints and
Assignments.

• Added table: Quartus Prime Tools to Set Global Constraints.
• Removed topic: Common Types of Global Constraints.
• Removed topic: Settings That Direct Compilation and Analysis Flows.
• Updated topic: Node, Entity and Instance-Level Constraints.
• Added table: Quartus Prime Tools to Set Node, Entity and Instance

Level Constraints.
• Added topic: Assignment Editor.
• Updated topic: Constraining Designs with the Pin Planner.
• Updated topic: Constraining Designs with the Chip Planner.
• Added topic: Constraining designs with the Design Partition Planner.
• Updated topic: Probing Between Components of the Quartus Prime

GUI.
• Added example: Locate a Resource Selected in the Project Navigator.
• Updated topic: SDC and the Timing Analyzer, and renamed to

Specifying Individual Timing Constraints.
• Added figure: Constraint Menu in Timing Analyzer.
• Added example: Create Clock Dialog Box.
• Updated topic: Constraining Designs with Tcl, and renamed to

Constraining Designs with Tcl Scripts
• Updated topic: Quartus Prime Settings Files and Tcl , and renamed to

Generating Quartus Prime Settings Files.
• Added example: blinking_led.qsf File.
• Updated topic: Timing Analysis with Synopsys Design Constraints and

Tcl, and renamed to Timing Analysis with .sdc Files and Tcl Scripts.
• Added example: .sdc File with Timing Constraints.
• Added topic: Tcl-only Script Flows.
• Updated topic: A Fully Iterative Scripted Flow.

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 Formatting updates.

continued...

1. Constraining Designs

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

16

http://quartushelp.altera.com/current/#tafs/tafs/tcl_pkg_flow_ver_1.1.htm
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

November 2012 12.1.0 Update Pin Planner description for task and report windows.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Template update.

July 2010 10.0.0 Rewrote chapter to more broadly cover all design constraint methods.
Removed procedural steps and user interface details, and replaced with
links to Quartus II Help.

November 2009 9.1.0 • Added two notes.
• Minor text edits.

March 2009 9.0.0 • Revised and reorganized the entire chapter.
• Added section “Probing to Source Design Files and Other Quartus

Windows” on page1–2.
• Added description of node type icons (Table1–3).
• Added explanation of wildcard characters.

November 2008 8.1.0 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0.0 Updated Quartus II software 8.0 revision and date.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

1. Constraining Designs

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

17

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Managing Device I/O Pins
This chapter describes efficient planning and assignment of I/O pins in your target
device. Consider I/O standards, pin placement rules, and your PCB characteristics
early in the design phase.

Figure 4. Pin Planner GUI

Task and
Report
Windows

All Pins
List

Device
 Package
View

Table 3. Intel Quartus Prime I/O Pin Planning Tools

I/O Planning Task Click to Access

Edit, validate, or export pin assignments Assignments ➤ Pin Planner

View tailored pin planning advice Tools ➤ Advisors ➤ Pin Advisor

Validate pin assignments against design rules Processing ➤ Start ➤ Start I/O Assignment Analysis

For more information about special pin assignment features for the Intel Arria® 10
SoC devices, refer to Instantiating the HPS Component in the Intel Arria 10 Hard
Processor System Technical Reference Manual.

Related Information

Instantiating the HPS Component
In Intel Arria 10 Hard Processor System Technical Reference Manual

683492 | 2019.01.10

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683711/current/instantiating-the-hps-component.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2.1. I/O Planning Overview

On FPGA design, I/O planning includes creating pin-related assignments and validating
them against pin placement guidelines. This process ensures a successful fit in your
target device. When you plan and assign I/O pins in the initial stages of your project,
you design for compatibility with your target device and PCB characteristics. As a
result, your design process goes through fewer iterations, and you develop an
accurate PCB layout sooner.

You can plan your I/O pins even before defining design files. Assign expected nodes
not yet defined in design files, including interface IP core signals, and then generate a
top-level file. The top-level file instantiates the next level of design hierarchy and
includes interface port information like memory, high-speed I/O, device configuration,
and debugging tools.

Assign design elements, I/O standards, interface IP, and other properties to the device
I/O pins by name or by dragging to cells. You can then generate a top-level design file
for I/O validation.

Use I/O assignment validation to fully analyze I/O pins against VCCIO, VREF,
electromigration (current density), Simultaneous Switching Output (SSO), drive
strength, I/O standard, PCI_IO clamp diode, and I/O pin direction compatibility rules.

Intel Quartus Prime software provides the Pin Planner tool to view, assign, and
validate device I/O pin logic and properties. Alternatively, you can enter I/O
assignments in a Tcl script, or directly in HDL code.

2.1.1. Basic I/O Planning Flow

The following steps describe the basic flow for assigning and verifying I/O pin
assignments:

1. Click Assignments ➤ Device and select a target device that meets your logic,
performance, and I/O requirements. Consider and specify I/O standards, voltage
and power supply requirements, and available I/O pins.

2. Click Assignments ➤ Pin Planner.

3. To setup a top-level HDL wrapper file that defines early port and interface
information for your design, click Early Pin Planning in the Tasks pane.

a. Click Import IP Core to import any defined IP core, and then assign signals
to the interface IP nodes.

b. Click Set Up Top-Level File and assign user nodes to device pins. User nodes
become virtual pins in the top-level file and are not assigned to device pins.

c. Click Generate Top-Level File. Use top-level file to validate I/O assignments.

4. Assign I/O properties to match your device and PCB characteristics, including
assigning logic, I/O standards, output loading, slew rate, and current strength.

5. Click Run I/O Assignment Analysis in the Tasks pane to validate assignments
and generate a synthesized design netlist. Correct any problems reported.

6. Click Processing ➤ Start Compilation. During compilation, the Intel Quartus
Prime software runs I/O assignment analysis.

2. Managing Device I/O Pins

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1.2. Integrating PCB Design Tools

You can integrate PCB design tools into your work flow to map pin assignments to
symbols in your system circuit schematics and board layout.

The Intel Quartus Prime software integrates with board layout tools by allowing import
and export of pin assignment information in Intel Quartus Prime Settings Files (.qsf),
Pin-Out File (.pin), and FPGA Xchange-Format File (.fx) files.

Table 4. Integrating PCB Design Tools

PCB Tool Integration Supported PCB Tool

Define and validate I/O assignments in the Pin Planner, and then export the
assignments to the PCB tool for validation

Mentor Graphics* I/O Designer
Cadence Allegro

Define I/O assignments in your PCB tool, and then import the assignments into
the Pin Planner for validation

Mentor Graphics I/O Designer
Cadence Allegro

Figure 5. PCB Tool Integration

Create and
Modify Pin

Assignments

PCB Tool

I/O Assignment Analysis

Validate?

Quartus Prime Software

Import Pin Assignments
Design Files
(if available)

Yes

No

Analysis & Synthesis

Pins have been Validated

FPGA Xchange
File

.fx

Related Information

Cadence PCB Design Tools Support
In Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

2. Managing Device I/O Pins

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

20

https://www.intel.com/content/www/us/en/docs/programmable/683619/current/cadence-pcb-design-tools-support-56065.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1.3. Intel Device Terms

The following terms describe Intel device and I/O structures:

2.2. Assigning I/O Pins

Use the Pin Planner to visualize, modify, and validate I/O assignments in a graphical
representation of the target device. You can increase the accuracy of I/O assignment
analysis by reserving specific device pins to accommodate undefined but expected
I/O.

2. Managing Device I/O Pins

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To assign I/O pins in the Pin Planner, follow these steps:

1. Open an Intel Quartus Prime project, and then click Assignments ➤ Pin
Planner.

2. Click Processing ➤ Start Analysis & Elaboration to elaborate the design and
display All Pins in the device view.

3. To locate or highlight pins for assignment, click Pin Finder or a pin type under
Highlight Pins in the Tasks pane.

4. (Optional) To define a custom group of nodes for assignment, select one or more
nodes in the Groups or All Pins list, and click Create Group.

5. Enter assignments of logic, I/O standards, interface IP, and properties for device
I/O pins in the All Pins spreadsheet, or by dragging into the package view.

6. To assign properties to differential pin pairs, click Show Differential Pin Pair
Connections. A red connection line appears between positive (p) and negative
(n) differential pins.

7. (Optional) To create board trace model assignments:

a. Right-click an output or bidirectional pin, and click Board Trace Model. For
differential I/O standards, the board trace model uses a differential pin pair
with two symmetrical board trace models.

b. Specify board trace parameters on the positive end of the differential pin pair.
The assignment applies to the corresponding value on the negative end of the
differential pin pair.

8. To run a full I/O assignment analysis, click Run I/O Assignment Analysis. The
Fitter reports analysis results. Only reserved pins are analyzed prior to design
synthesis.

2.2.1. Assigning to Exclusive Pin Groups

You can designate groups of pins for exclusive assignment. When you assign pins to
an Exclusive I/O Group, the Fitter does not place the signals in the same I/O bank
with any other exclusive I/O group. For example, if you have a set of signals assigned
exclusively to group_a, and another set of signals assigned to group_b, the Fitter
ensures placement of each group in different I/O banks.

2.2.2. Assigning Slew Rate and Drive Strength

You can designate the device pin slew rate and drive strength. These properties affect
the pin’s outgoing signal integrity. Use either the Slew Rate or Slow Slew Rate
assignment to adjust the drive strength of a pin with the Current Strength
assignment.

Note: The slew rate and drive strength apply during I/O assignment analysis.

2.2.3. Assigning Differential Pins

When you assign a differential I/O standard to a single-ended top-level pin in your
design, the Pin Planner automatically recognizes the negative pin as part of the
differential pin pair assignment and creates the negative pin for you. The Intel Quartus
Prime software writes the location assignment for the negative pin to the .qsf;
however, the I/O standard assignment is not added to the .qsf for the negative pin of
the differential pair.

2. Managing Device I/O Pins

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following example shows a design with lvds_in top-level pin, to which you
assign a differential I/O standard. The Pin Planner automatically creates the
differential pin, lvds_in(n) to complete the differential pin pair.

Note: If you have a single-ended clock that feeds a PLL, assign the pin only to the positive
clock pin of a differential pair in the target device. Single-ended pins that feed a PLL
and are assigned to the negative clock pin device cause the design to not fit.

Figure 6. Creating a Differential Pin Pair in the Pin Planner

If your design contains a large bus that exceeds the pins available in a particular I/O
bank, you can use edge location assignments to place the bus. Edge location
assignments improve the circuit board routing ability of large buses, because they are
close together near an edge. The following figure shows Intel device package edges.

Figure 7. Die View and Package View of the Four Edges on an Intel Device

Top Edge

Silicon Die View

Bottom Edge

Left Edge Right Edge Right Edge

Top Edge

Package View (Top)

Bottom Edge

Left Edge

2.2.3.1. Overriding I/O Placement Rules on Differential Pins

I/O placement rules ensure that noisy signals do not corrupt neighboring signals. Each
device family has predefined I/O placement rules.

2. Managing Device I/O Pins

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I/O placement rules define, for example, the allowed placement of single-ended I/O
with respect to differential pins, or how many output and bidirectional pins you can
place within a VREF group when using voltage referenced input standards.

Use the IO_MAXIMUM_TOGGLE_RATE assignment to override I/O placement rules
on pins, such as system reset pins that do not switch during normal design activity.
Setting a value of 0 MHz for this assignment causes the Fitter to recognize the pin at a
DC state throughout device operation. The Fitter excludes the assigned pin from
placement rule analysis. Do not assign an IO_MAXIMUM_TOGGLE_RATE of 0 MHz
to any actively switching pin, or your design may not function as you intend.

2.2.4. Entering Pin Assignments with Tcl Commands

You can apply pin assignments with Tcl scripts, by either entering individual Tcl
commands in the Tcl Console, or creating a .tcl script and the typing the following in
the command line:

Example 6. Applying Tcl Script Assignments

quartus_sh -t <my_tcl_script>.tcl

Example 7. Scripted Pin Assignment

The following example uses set_location_assignment and
set_instance_assignment Tcl commands to assign a pin to a specific location, I/O
standard, and drive strength.

set_location_assignment PIN M20 -to address[10]
set_instance_assignment -name IO_STANDARD "2.5 V" -to address[10]
set_instance_assignment -name
 CURRENT_STRENGTH_NEW "MAXIMUM CURRENT" -to address[10]

Related Information

Tcl Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

2.2.5. Entering Pin Assignments in HDL Code

You can use synthesis attributes or low-level I/O primitives to embed I/O pin
assignments directly in your HDL code. When you analyze and synthesize the HDL
code, the information is converted into the appropriate I/O pin assignments. You can
use either of the following methods to specify pin-related assignments with HDL code:

• Assigning synthesis attributes for signal names that are top-level pins

• Using low-level I/O primitives, such as ALT_BUF_IN, to specify input, output, and
differential buffers, and for setting parameters or attributes

2.2.5.1. Using Synthesis Attributes

The Intel Quartus Prime software translates synthesis attributes into standard
assignments during compilation. These assignments appear in the Pin Planner. Intel
Quartus Prime synthesis supports the chip_pin, useioff, and altera_attribute
synthesis attributes.

If you modify or delete these assignments in the Pin Planner and then recompile your
design, the Pin Planner changes override the synthesis attributes.

2. Managing Device I/O Pins

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

24

https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the altera_attribute synthesis attribute to create other pin-related
assignments in your HDL code. The altera_attribute attribute supports all types
of instance assignments. The following examples use the altera_attribute
attribute to embed Fast Input Register logic option assignments and I/O standard
assignments in both a Verilog HDL and a VHDL design file.

Example 8. altera_attribute Synthesis Attribute in Verilog HDL

input my_pin1 /* synthesis altera_attribute = "-name FAST_INPUT_REGISTER ON; -
name IO_STANDARD \"2.5 V\" " */ ;

Example 9. altera_attribute Synthesis Attribute in VHDL

entity my_entity is
 port(
 my_pin1: in std_logic
);
end my_entity;
architecture rtl of my_entity is
begin

attribute altera_attribute : string;
attribute altera_attribute of my_pin1: signal is "-name FAST_INPUT_REGISTER ON;
-- The architecture body
end rtl;

Use the chip_pin and useioff synthesis attributes to create pin location
assignments and to assign Fast Input Register, Fast Output Register, and Fast
Output Enable Register logic options. The following examples use the chip_pin
and useioff attributes to embed location and Fast Input Register logic option
assignments in Verilog HDL and VHDL design files.

Example 10. useioff and chip_pin Synthesis Attributes in VHDL

entity my_entity is
 port(
 my_pin1: in std_logic
);
end my_entity;

architecture rtl of my_entity is
attribute useioff : boolean;
attribute useioff of my_pin1 : signal is true;
attribute chip_pin : string;
attribute chip_pin of my_pin1 : signal is "C1";
begin -- The architecture body
end rtl;

Example 11. chip_pin Synthesis Attribute in Verilog HDL

input my_pin1 /* synthesis chip_pin = "C1" useioff = 1 */;

2.2.5.2. Using Low-Level I/O Primitives

You can alternatively enter I/O pin assignments using low-level I/O primitives. You can
assign pin locations, I/O standards, drive strengths, slew rates, and on-chip
termination (OCT) value assignments. You can also use low-level differential I/O
primitives to define both positive and negative pins of a differential pair in the HDL
code for your design.

2. Managing Device I/O Pins

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Primitive-based assignments do not appear in the Pin Planner until after you perform a
full compilation and back-annotate pin assignments (Assignments > Back Annotate
Assignments).

Related Information

Designing with Low Level Primitives User Guide

2.3. Importing and Exporting I/O Pin Assignments

The Intel Quartus Prime software supports transfer of I/O pin assignments across
projects, or for analysis in third-party PCB tools. You can import or export I/O pin
assignments in the following ways:

Table 5. Importing and Exporting I/O Pin Assignments

Import Assignments Export Assignments

Scenario • From your PCB design tool or spreadsheet
into Pin Planner during early pin planning or
after optimization in PCB tool

• From another Intel Quartus Prime project
with common constraints

• From Intel Quartus Prime project for optimization
in a PCB design tool

• From Intel Quartus Prime project for spreadsheet
analysis or use in scripting assignments

• From Intel Quartus Prime project for import into
another Intel Quartus Prime project with similar
constraints

Command Assignments ➤ Import Assignments Assignments ➤ Export Assignments

File formats .qsf, .esf, .acf, .csv, .txt,.sdc .pin,.fx,.csv, .tcl, .qsf

Notes N/A Exported .csv files retain column and row order and
format. Do not modify the row of column headings if
importing the .csv file

2.3.1. Importing and Exporting for PCB Tools

The Pin Planner supports import and export of assignments with PCB tools. You can
export valid assignments as a .pin file for analysis in other supported PCB tools. You
can also import optimized assignment from supported PCB tools. The .pin file contains
pin name, number, and detailed properties.

Mentor Graphics I/O Designer requires you to generate and import both an .fx and
a .pin file to transfer assignments. However, the Intel Quartus Prime software requires
only the .fx to import pin assignments from I/O Designer.

Table 6. Contents of .pin File

File Column Name Description

Pin Name/Usage The name of the design pin, or whether the pin is GND or VCC pin

Location The pin number of the location on the device package

Dir The direction of the pin

I/O Standard The name of the I/O standard to which the pin is configured

Voltage The voltage level that is required to be connected to the pin

I/O Bank The I/O bank to which the pin belongs

User Assignment Y or N indicating if the location assignment for the design pin was user assigned
(Y) or assigned by the Fitter (N)

2. Managing Device I/O Pins

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

26

http://www.altera.com/literature/ug/ug_low_level.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Pin-Out Files for Intel Devices

• PCB Design Tools Support
In Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

2.3.2. Migrating Assignments to Another Target Device

Click View ➤ Pin Migration Window to verify whether pin assignments are
compatible with migration to a different Intel device.

You can migrate compatible pin assignments from one target device to another. You
can migrate to a different density and the same device package. You can also migrate
between device packages with different densities and pin counts.

The Intel Quartus Prime software ignores invalid assignments and generates an error
message during compilation. After evaluating migration compatibility, modify any
incompatible assignments, and then click Export to export the assignments to
another project.

Figure 8. Device Migration Compatibility (AC24 does not exist in migration device)

The migration result for the pin function of highlighted PIN_AC23 is not an NC but a
voltage reference VREFB1N2 even though the pin is an NC in the migration device.
VREF standards have a higher priority than an NC, thus the migration result displays
the voltage reference. Even if you do not use that pin for a port connection in the
design, you must use the VREF standard for I/O standards that require it on the actual
board for the migration device.

2. Managing Device I/O Pins

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

27

http://www.altera.com/literature/lit-dp.jsp
https://www.intel.com/content/www/us/en/docs/programmable/683619/current/pcb-design-tools-support.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If one of the migration devices has pins intended for connection to VCC or GND and
these same pins are I/O pins on a different device in the migration path, the Intel
Quartus Prime software ensures these pins are not used for I/O. Ensure that these
pins are connected to the correct PCB plane.

When migrating between two devices in the same package, pins that are not
connected to the smaller die may be intended to connect to VCC or GND on the larger
die. To facilitate migration, you can connect these pins to VCC or GND in the original
design because the pins are not physically connected to the smaller die.

Related Information

AN90: SameFrame PinOut Design for FineLine BGA Packages

2.4. Validating Pin Assignments

The Intel Quartus Prime software validates I/O pin assignments against predefined I/O
rules for your target device. You can use the following tools to validate your I/O pin
assignments throughout the pin planning process:

Table 7. I/O Validation Tools

I/O Validation Tool Description Click to Run

I/O Assignment
Analysis

Verifies I/O assignment legality of synthesized design
against full set of I/O rules for the target device

Processing ➤ Start I/O
Assignment Analysis

Advanced I/O Timing Fully validates I/O assignments against all I/O and timing
checks during compilation

Processing ➤ Start Compilation

2.4.1. I/O Assignment Validation Rules

I/O Assignment Analysis validates your assignments against the following rules:

Table 8. Examples of I/O Rule Checks

Rule Description HDL
Required?

I/O bank capacity Checks the number of pins assigned to an I/O bank against
the number of pins allowed in the I/O bank.

No

I/O bank VCCIO voltage compatibility Checks that no more than one VCCIO is required for the pins
assigned to the I/O bank.

No

I/O bank VREF voltage compatibility Checks that no more than one VREF is required for the pins
assigned to the I/O bank.

No

I/O standard and location conflicts Checks whether the pin location supports the assigned I/O
standard.

No

I/O standard and signal direction conflicts Checks whether the pin location supports the assigned I/O
standard and direction. For example, certain I/O standards on
a particular pin location can only support output pins.

No

Differential I/O standards cannot have
open drain turned on

Checks that open drain is turned off for all pins with a
differential I/O standard.

No

I/O standard and drive strength conflicts Checks whether the drive strength assignments are within the
specifications of the I/O standard.

No

Drive strength and location conflicts Checks whether the pin location supports the assigned drive
strength.

No

continued...

2. Managing Device I/O Pins

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

28

http://www.altera.com/literature/an/an090.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Rule Description HDL
Required?

BUSHOLD and location conflicts Checks whether the pin location supports BUSHOLD. For
example, dedicated clock pins do not support BUSHOLD.

No

WEAK_PULLUP and location conflicts Checks whether the pin location supports WEAK_PULLUP (for
example, dedicated clock pins do not support WEAK_PULLUP).

No

Electromigration check Checks whether combined drive strength of consecutive pads
exceeds a certain limit. For example, the total current drive for
10 consecutive pads on a Stratix® II device cannot exceed 200
mA.

No

PCI_IO clamp diode, location, and I/O
standard conflicts

Checks whether the pin location along with the I/O standard
assigned supports PCI_IO clamp diode.

No

SERDES and I/O pin location compatibility
check

Checks that all pins connected to a SERDES in your design are
assigned to dedicated SERDES pin locations.

Yes

PLL and I/O pin location compatibility check Checks whether pins connected to a PLL are assigned to the
dedicated PLL pin locations.

Yes

Table 9. Signal Switching Noise Rules

Rule Description HDL
Required?

I/O bank cannot have single-ended I/O
when DPA exists

Checks that no single-ended I/O pin exists in the same I/O
bank as a DPA.

No

A PLL I/O bank does not support both a
single-ended I/O and a differential signal
simultaneously

Checks that there are no single-ended I/O pins present in the
PLL I/O Bank when a differential signal exists.

No

Single-ended output is required to be a
certain distance away from a differential
I/O pin

Checks whether single-ended output pins are a certain
distance away from a differential I/O pin.

No

Single-ended output must be a certain
distance away from a VREF pad

Checks whether single-ended output pins are a certain
distance away from a VREF pad.

No

Single-ended input is required to be a
certain distance away from a differential
I/O pin

Checks whether single-ended input pins are a certain distance
away from a differential I/O pin.

No

Too many outputs or bidirectional pins in a
VREFGROUP when a VREF is used

Checks that there are no more than a certain number of
outputs or bidirectional pins in a VREFGROUP when a VREF is
used.

No

Too many outputs in a VREFGROUP Checks whether too many outputs are in a VREFGROUP. No

2.4.2. Checking I/O Pin Assignments in Real-Time

Live I/O check validates I/O assignments against basic I/O buffer rules in real time.
The Pin Planner immediately reports warnings or errors about assignments as you
enter them. The Live I/O Check Status window displays the total number of errors and
warnings. Use this analysis to quickly correct basic errors before proceeding. Run full
I/O assignment analysis when you are ready to validate pin assignments against the
complete set of I/O system rules.

Note: Live I/O check is supported only for Arria II, Cyclone® IV, MAX® II, and Stratix IV
device families.

2. Managing Device I/O Pins

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Live I/O check validates against the following basic I/O buffer rules:

• VCCIO and VREF voltage compatibility rules

• Electromigration (current density) rules

• Simultaneous Switching Output (SSO) rules

• I/O property compatibility rules, such as drive strength compatibility, I/O standard
compatibility, PCI_IO clamp diode compatibility, and I/O direction compatibility

• Illegal location assignments:

— An I/O bank or VREF group with no available pins

— The negative pin of a differential pair if the positive pin of the differential pair
is assigned with a node name with a differential I/O standard

— Pin locations that do not support the I/O standard assigned to the selected
node name

— For HSTL- and SSTL-type I/O standards, VREF groups of a different VREF
voltage than the selected node name.

2.4.3. I/O Assignment Analysis

I/O assignment analysis validates I/O assignments against the complete set of I/O
system and board layout rules. Full I/O assignment analysis validates blocks that
directly feed or are fed by resources such as a PLL, LVDS, or gigabit transceiver
blocks. In addition, the checker validates the legality of proper VREF pin use, pin
locations, and acceptable mixed I/O standards

Run I/O assignment analysis during early pin planning to validate initial reserved pin
assignments before compilation. Once you define design files, run I/O assignment
analysis to perform more thorough legality checks with respect to the synthesized
netlist. Run I/O assignment analysis whenever you modify I/O assignments.

The Fitter assigns pins to accommodate your constraints. For example, if you assign
an edge location to a group of LVDS pins, the Fitter assigns pin locations for each
LVDS pin in the specified edge location and then performs legality checks. To display
the Fitter-placed pins, click Show Fitter Placements in the Pin Planner. To accept
these suggested pin locations, you must back-annotate your pin assignments.

View the I/O Assignment Warnings report to view and resolve all assignment
warnings. For example, a warning that some design pins have undefined drive
strength or slew rate. The Fitter recognizes undefined, single-ended output and
bidirectional pins as non-calibrated OCT. To resolve the warning, assign the Current
Strength, Slew Rate or Slow Slew Rate for the reported pin. Alternatively, can
assign the Termination to the pin. You cannot assign drive strength or slew rate
settings when a pin has an OCT assignment.

2.4.3.1. Early I/O Assignment Analysis Without Design Files

You can perform basic I/O legality checks before defining HDL design files. This
technique produces a preliminary board layout. For example, you can specify a target
device and enter pin assignments that correspond to PCB characteristics. You can
reserve and assign I/O standards to each pin, and then run I/O assignment analysis to
ensure that there are no I/O standard conflicts in each I/O bank.

2. Managing Device I/O Pins

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9. Assigning and Analyzing Pin-Outs without Design Files

Create Pin-Related Assignments
(Stored in the .qsf file)

Start I/O Assignment Analysis

Create a Quartus Prime Project

Pin Assignments Complete

Yes

No

Modify and Correct Illegal
Assignments Found in Report File

Assignments
Correct?

You must reserve all pins you intend to use as I/O pins, so that the Fitter can
determine each pin type. After performing I/O assignment analysis, correct any errors
reported by the Fitter and rerun I/O assignment analysis until all errors are corrected.
A complete I/O assignment analysis requires all design files.

2.4.3.2. I/O Assignment Analysis With Design Files

I/O assignment analysis allows you to perform full I/O legality checks after fully
defining HDL design files. When you run I/O assignment analysis on a complete
design, the tool verifies all I/O pin assignments against all I/O rules. When you run
I/O assignment analysis on a partial design, the tool checks legality only for defined
portions of the design. The following figure shows the work flow for analyzing pin-outs
with design files.

2. Managing Device I/O Pins

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10. I/O Assignment Analysis Flow

Modify and Correct Illegal
Assignments Found in Report File

Create Pin-Related Assignments
(Stored in the .qsf file)

Start I/O Assignment Analysis

Back-Annotate I/O Assignment
Analysis Pin Placements

Perform Analysis & Synthesis
to Create a Mapped Netlist

Open Quartus Prime Project or Design File

Pin-Related Assignments Complete

Yes

NoAssignments
Correct?

Quartus Prime Project & Design Files

.qpf .edf .vqm .v .vhd .bdf .tdf

Even if I/O assignment analysis passes on incomplete design files, you may still
encounter errors during full compilation. For example, you can assign a clock to a user
I/O pin instead of assigning to a dedicated clock pin, or design the clock to drive a PLL
that you have not yet instantiated in the design. This issues occur because I/O
assignment analysis does not account for the logic that the pin drives and does not
verify that only dedicated clock inputs can drive the a PLL clock port.

To obtain better coverage, analyze as much of the design as possible over time,
especially logic that connects to pins. For example, if your design includes PLLs or
LVDS blocks, define these files prior to full analysis. After performing I/O assignment
analysis, correct any errors reported by the Fitter and rerun I/O assignment analysis
until all errors are corrected.

The following figure shows the compilation time benefit of performing I/O assignment
analysis before running a full compilation.

2. Managing Device I/O Pins

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11. I/O Assignment Analysis Reduces Compilation Time

Errors
Reported
and Fixed

I/O
Assignment
Analysis

First Full Compilation

First Full Compilation

Second Full Compilation

Errors Reported and Fixed

Without
Start I/O Assignment Analysis

Command

With
Start I/O Assignment Analysis

Command

Compilation Time

2.4.3.3. Overriding Default I/O Pin Analysis

You can override the default I/O analysis of pins to accommodate I/O rule exceptions,
such as for analyzing VREF or inactive pins.

Each device contains VREF pins, each supporting one or more I/O pins. A VREF pin
and its I/O pins comprise a VREF bank. The VREF pins are typically assigned inputs
with VREF I/O standards, such as HSTL- and SSTL-type I/O standards. Conversely,
VREF outputs do not require the VREF pin. When a voltage-referenced input is present
in a VREF bank, only a certain number of outputs can be present in that VREF bank.
I/O assignment analysis treats bidirectional signals controlled by different output
enables as independent output enables.

To assign the Output Enable Group option to bidirectional signals to analyze the
signals as a single output enable group, follow these steps:

1. To access this assignment in the Pin Planner, right-click the All pins list and click
Customize Columns.

2. Under Available columns, add Output Enable Group to Show these columns
in this order. The column appears in the All Pins list.

3. Enter the same integer value for the Output Enable Group assignment for all
sets of signals that are driving in the same direction.

Related Information

Using the Timing Analyzer
In Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

2. Managing Device I/O Pins

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

33

https://www.intel.com/content/www/us/en/docs/programmable/683068/current/using-the-timing-analyzer.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.4. Understanding I/O Analysis Reports

The detailed I/O assignment analysis reports include the affected pin name and a
problem description. The Fitter section of the Compilation report contains information
generated during I/O assignment analysis, including the following reports:

• I/O Assignment Warnings—lists warnings generated for each pin

• Resource Section—quantifies use of various pin types and I/O banks

• I/O Rules Section—lists summary, details, and matrix information about the I/O
rules tested

The Status column indicates whether rules passed, failed, or were not checked. A
severity rating indicates the rule’s importance for effective analysis. “Inapplicable”
rules do not apply to the target device family.

Figure 12. I/O Rules Matrix

2.5. Verifying I/O Timing

You must verify board-level signal integrity and I/O timing when assigning I/O pins.
High-speed interface operation requires a quality signal and low propagation delay at
the far end of the board route. Click Tools ➤ Timing Analyzer to confirm timing
after making I/O pin assignments.

For example, if you change the slew rates or drive strengths of some I/O pins with
ECOs, you can verify timing without recompiling the design. You must understand I/O
timing and what factors affect I/O timing paths in your design. The accuracy of the
output load specification of the output and bidirectional pins affects the I/O timing
results.

2. Managing Device I/O Pins

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Intel Quartus Prime software supports three different methods of I/O timing
analysis:

Table 10. I/O Timing Analysis Methods

I/O Timing Analysis Description

Advanced I/O timing
analysis

Analyze I/O timing with your board trace model to report accurate, “board-aware” simulation
models. Configures a complete board trace model for each I/O standard or pin. Timing
Analyzer applies simulation results of the I/O buffer, package, and board trace model to
generate accurate I/O delays and system level signal information. Use this information to
improve timing and signal integrity.

I/O timing analysis Analyze I/O timing with default or specified capacitive load without signal integrity analysis.
Timing Analyzer reports tCO to an I/O pin using a default or user-specified value for a
capacitive load.

Full board routing
simulation

Use Intel-provided or Intel Quartus Prime software-generated IBIS or HSPICE I/O models for
simulation in Mentor Graphics HyperLynx* and Synopsys HSPICE.

Note: Advanced I/O timing analysis is supported only for .28nm and larger device families.
For devices that support advanced I/O timing, it is the default method of I/O timing
analysis. For all other devices, you must use a default or user-specified capacitive load
assignment to determine tCO and power measurements.

For more information about advanced I/O timing support, refer to the appropriate
device handbook for your target device. For more information about board-level signal
integrity and tips on how to improve signal integrity in your high-speed designs, refer
to the Altera Signal Integrity Center page of the Altera website.

For information about creating IBIS and HSPICE models with the Intel Quartus Prime
software and integrating those models into HyperLynx and HSPICE simulations, refer
to the Signal Integrity Analysis with Third Party Tools chapter.

Related Information

• Signal Integrity Analysis with Third-Party Tools
In Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

• Literature and Technical Documentation

• Intel Signal & Power Integrity Center

2.5.1. Running Advanced I/O Timing

Advanced I/O timing analysis uses your board trace model and termination network
specification to report accurate output buffer-to-pin timing estimates, FPGA pin and
board trace signal integrity and delay values. Advanced I/O timing runs automatically
for supported devices during compilation.

2.5.1.1. Board Trace Models

The Intel Quartus Prime software provides board trace model templates for various
I/O standards.

The following figure shows the template for a 2.5 V I/O standard. This model consists
of near-end and far-end board component parameters.

Near-end board trace modeling includes the elements which are close to the device.
Far-end modeling includes the elements which are at the receiver end of the link,
closer to the receiving device. Board trace model topology is conceptual and does not

2. Managing Device I/O Pins

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

35

https://www.intel.com/content/www/us/en/docs/programmable/683619/current/signal-integrity-analysis-with-third-94328.html
http://www.altera.com/literature/lit-index.html
https://www.altera.com/support/support-resources/support-centers/signal-power-integrity.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

necessarily match the actual board trace for every component. For example, near-end
model parameters can represent device-end discrete termination and breakout traces.
Far-end modeling can represent the bulk of the board trace to discrete external
memory components, and the far end termination network. You can analyze the same
circuit with near-end modeling of the entire board, including memory component
termination, and far-end modeling of the actual memory component.

Figure 13. 2.5-V I/O Standard Board Trace Model

The following figure shows the template for the LVDS I/O standard. The far-end
capacitance (Cf) represents the external-device or multiple-device capacitive load. If
you have multiple devices on the far-end, you must find the equivalent capacitance at
the far-end, taking into account all receiver capacitances. The far-end capacitance can
be the sum of all the receiver capacitances.

The Intel Quartus Prime software models of transmission lines do not consider
transmission-line resistance (lossless models). You only need to specify distributed
inductance (L) and capacitance (C) values on a per-inch basis, which you can obtain
from the PCB vendor or manufacturer, the CAD Design tool, or a signal integrity tool,
such as the Mentor Graphics HyperLynx software.

2. Managing Device I/O Pins

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14. LVDS Differential Board Trace Model

2.5.1.2. Defining the Board Trace Model

The board trace model describes a board trace and termination network as a set of
capacitive, resistive, and inductive parameters.

Advanced I/O Timing uses the model to simulate the output signal from the output
buffer to the far end of the board trace. You can define the capacitive load, any
termination components, and trace impedances in the board routing for any output pin
or bidirectional pin in output mode. You can configure an overall board trace model for
each I/O standard or for specific pins. Define an overall board trace model for each I/O
standard in your design. Use that model for all pins that use the I/O standard. You can
customize the model for specific pins using the Board Trace Model window in the Pin
Planner.

1. Click Assignments ➤ Device ➤ Device and Pin Options.

2. Click Board Trace Model and define board trace model values for each I/O
standard.

3. Click I/O Timing and define default I/O timing options at board trace near and
far ends.

4. Click Assignments ➤ Pin Planner and assign board trace model values to
individual pins.

Example 12. Specifying Board Trace Model

setting the near end series resistance model of sel_p output pin to 25 ohms
set_instance_assignment -name BOARD_MODEL_NEAR_SERIES_R 25 -to se1_p
Setting the far end capacitance model for sel_p output signal to 6 picofarads
set_instance_assignment -name BOARD_MODEL_FAR_C 6P -to se1_p

2. Managing Device I/O Pins

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.1.3. Modifying the Board Trace Model

To modify the board trace model, click View ➤ Board Trace Model in the Pin Planner.

You can modify any of the board trace model parameters within a graphical
representation of the board trace model.

The Board Trace Model window displays the routing and components for positive and
negative signals in a differential signal pair. Only modify the positive signal of the pair,
as the setting automatically applies to the negative signal. Use standard unit prefixes
such as p, n, and k to represent pico, nano, and kilo, respectively. Use the short or
open value to designate a short or open circuit for a parallel component.

2.5.1.4. Specifying Near-End vs Far-End I/O Timing Analysis

You can select a near-end or far-end point for I/O timing analysis. Near-end timing
analysis extends to the device pin. You can apply the set_output_delay constraint
during near-end analysis to account for the delay across the board.

With far-end I/O timing analysis, the advanced I/O timing analysis extends to the
external device input, at the far-end of the board trace. Whether you choose a near-
end or far-end timing endpoint, the board trace models are taken into account during
timing analysis.

2.5.1.5. Advanced I/O Timing Analysis Reports

The following reports show advanced I/O timing analysis information:

Table 11. Advanced I/O Timing Reports

I/O Timing Report Description

Timing Analyzer Report Reports signal integrity and board delay data.

Board Trace Model Assignments
report

Summarizes the board trace model component settings for each output and
bidirectional signal.

Signal Integrity Metrics report Contains all the signal integrity metrics calculated during advanced I/O timing analysis
based on the board trace model settings for each output or bidirectional pin. Includes
measurements at both the FPGA pin and at the far-end load of board delay, steady
state voltages, and rise and fall times.

Note: By default, the Timing Analyzer generates the Slow-Corner Signal Integrity Metrics
report. To generate a Fast-Corner Signal Integrity Metrics report you must change the
delay model by clicking Tools ➤ Timing Analyzer.

Related Information

Using the Timing Analyzer
In Intel Quartus Prime Standard Edition User Guide: Timing Analyzer

2.5.2. Adjusting I/O Timing and Power with Capacitive Loading

When calculating tCO and power for output and bidirectional pins, the Timing Analyzer
and the Power Analyzer use a bulk capacitive load. You can adjust the value of the
capacitive load per I/O standard to obtain more precise tCO and power measurements,
reflecting the behavior of the output or bidirectional net on your PCB. The Intel
Quartus Prime software ignores capacitive load settings on input pins. You can adjust
the capacitive load settings per I/O standard, in picofarads (pF), for your entire

2. Managing Device I/O Pins

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

38

https://www.intel.com/content/www/us/en/docs/programmable/683068/current/using-the-timing-analyzer.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

design. During compilation, the Compiler measures power and tCO measurements
based on your settings. You can also adjust the capacitive load on an individual pin
with the Output Pin Load logic option.

2.6. Viewing Routing and Timing Delays

Right-click any node and click Locate > Locate in Chip Planner to visualize and
adjust I/O timing delays and routing between user I/O pads and VCC, GND, and VREF
pads. The Chip Planner graphically displays logic placement, Logic Lock (Standard)
regions, relative resource usage, detailed routing information, fan-in and fan-out,
register paths, and high-speed transceiver channels. You can view physical timing
estimates, routing congestion, and clock regions. Use the Chip Planner to change
connections between resources and make post-compilation changes to logic cell and
I/O atom placement. When you select items in the Pin Planner, the corresponding item
is highlighted in Chip Planner.

2.7. Analyzing Simultaneous Switching Noise

Click Processing > Start > Start SSN Analyzer to estimate the voltage noise for
each pin in the design. The simultaneous switching noise (SSN) analysis accounts for
the pin placement, I/O standard, board trace, output enable group, timing constraint,
and PCB characteristics that you specify. The analysis produces a voltage noise
estimate for each pin in the design. View the SSN results in the Pin Planner and adjust
your I/O assignments to optimize signal integrity.

2.8. Scripting API

The Intel Quartus Prime software allows you to access I/O management functions
through Tcl commands, rather than with the GUI. For detailed information about
scripting command options and Tcl API packages, type the following at a system
command prompt to view the Tcl API Help browser:

quartus_sh --qhelp

Related Information

• Tcl Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

• Command Line Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

2.8.1. Generate Mapped Netlist

Enter the following in the Tcl console or in a Tcl script:

execute_module -tool map

The execute_module command is in the flow package.

Type the following at a system command prompt:

quartus_map <project name>

2. Managing Device I/O Pins

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

39

https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.8.2. Reserve Pins

Use the following Tcl command to reserve a pin:

set_instance_assignment -name RESERVE_PIN <value> -to <signal name>

Use one of the following valid reserved pin values:

• "AS BIDIRECTIONAL"

• "AS INPUT TRI STATED"

• "AS OUTPUT DRIVING AN UNSPECIFIED SIGNAL"

• "AS OUTPUT DRIVING GROUND"

• "AS SIGNALPROBE OUTPUT"

Note: You must include the quotation marks when specifying the reserved pin value.

2.8.3. Set Location

Use the following Tcl command to assign a signal to a pin or device location:

set_location_assignment <location> -to <signal name>

Valid locations are pin locations, I/O bank locations, or edge locations. Pin locations
include pin names, such as PIN_A3. I/O bank locations include IOBANK_1 up to
IOBANK_ n, where n is the number of I/O banks in the device.

Use one of the following valid edge location values:

• EDGE_BOTTOM

• EDGE_LEFT

• EDGE_TOP

• EDGE_RIGHT

2.8.4. Exclusive I/O Group

The following Tcl command creates an exclusive I/O group assignment:

set_instance_assignment -name "EXCLUSIVE_IO_GROUP" -to pin

2.8.5. Slew Rate and Current Strength

Use the following Tcl commands to create a slew rate and drive strength assignments:

set_instance_assignment -name CURRENT_STRENGTH_NEW 8MA -to e[0]
set_instance_assignment -name SLEW_RATE 2 -to e[0]

Related Information

Package Information Datasheet for Mature Altera Devices

2. Managing Device I/O Pins

683492 | 2019.01.10

Intel Quartus Prime Standard Edition User Guide: Design Constraints Send Feedback

40

http://www.altera.com/literature/ds/pkgds.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9. Managing Device I/O Pins Revision History

The following table shows the revision history for this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2017.11.06 17.1.0 • Revised topic: I/O Planning Overview.
• Revised topic: Basic I/O Planning Flow with the Pin Planner and

renamed to Basic I/O Planning Flow with the Pin Planner.

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 • Updated Live I/O check device support to include only limited device
families.

2014.08.30 14.0a10.0 • Added link to information about special pin assignment features for
Arria 10 SoC devices.

2014.06.30 14.0.0 • Replaced MegaWizard Plug-In Manager information with IP Catalog.

November 2013 13.1.0 • Reorganization and conversion to DITA.

May 2013 13.0.0 • Added information about overriding I/O placement rules.

November 2012 12.1.0 • Updated Pin Planner description for new task and report windows.

June 2012 12.0.0 • Removed survey link.

November 2011 11.1.0 • Minor updates and corrections.
• Updated the document template.

December 2010 10.0.1 Template update

July 2010 10.0.0 • Reorganized and edited the chapter
• Added links to Help for procedural information previously included in

the chapter
• Added information on rules marked Inapplicable in the I/O Rules Matrix

Report
• Added information on assigning slew rate and drive strength settings to

pins to fix I/O assignment warnings

November 2009 9.1.0 • Reorganized entire chapter to include links to Help for procedural
information previously included in the chapter

• Added documentation on near-end and far-end advanced I/O timing

March 2009 9.0.0 • Updated “Pad View Window” on page 5–20
• Added new figures:
• Figure 5–15
• Figure 5–16
• Added new section “Viewing Simultaneous Switching Noise (SSN)

Results” on page 5–17
• Added new section “Creating Exclusive I/O Group Assignments” on

page 5–18

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

2. Managing Device I/O Pins

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

41

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683492 | 2019.01.10

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics, and Synopsys that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics, and Synopsys. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor Graphics
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

A. Intel Quartus Prime Standard Edition User Guides

683492 | 2019.01.10

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Constraints

43

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Constraints%20(683492%202019.01.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Standard
Edition User Guide
PCB Design Tools

Updated for Intel® Quartus® Prime Design Suite: 18.1

This document is part of a collection - Intel® Quartus® Prime Standard Edition User Guides -
Combined PDF link

Online Version

Send Feedback UG-20186

683619

2018.09.24

https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683619.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations...................................5
1.1. Simultaneous Switching Noise (SSN) Analysis and Optimizations..................................5
1.2. Definitions.. 5
1.3. Understanding SSN..6
1.4. SSN Estimation Tools... 8
1.5. SSN Analysis Overview...9

1.5.1. Performing Early Pin-Out SSN Analysis..10
1.5.2. Performing Final Pin-Out SSN Analysis.. 11

1.6. Design Factors Affecting SSN Results..11
1.7. Optimizing Your Design for SSN Analysis...11

1.7.1. Optimizing Pin Placements for Signal Integrity... 12
1.7.2. Specifying Board Trace Model Settings.. 13
1.7.3. Defining PCB Layers and PCB Layer Thickness..14
1.7.4. Specifying Signal Breakout Layers..16
1.7.5. Creating I/O Assignments... 17
1.7.6. Decreasing Pessimism in SSN Analysis..17
1.7.7. Excluding Pins as Aggressor Signals..18

1.8. Performing SSN Analysis and Viewing Results.. 18
1.8.1. Understanding the SSN Reports... 18
1.8.2. Viewing SSN Analysis Results in the Pin Planner... 19

1.9. Decreasing Processing Time for SSN Analysis.. 20
1.10. Scripting Support...20

1.10.1. Optimizing Pin Placements for Signal Integrity... 21
1.10.2. Defining PCB Layers and PCB Layer Thickness..21
1.10.3. Specifying Signal Breakout Layers.. 22
1.10.4. Decreasing Pessimism in SSN Analysis.. 22
1.10.5. Performing SSN Analysis... 22

1.11. Document Revision History..23

2. Signal Integrity Analysis with Third-Party Tools... 24
2.1. Signal Integrity Analysis with Third-Party Tools.. 24

2.1.1. Signal Integrity Simulations with HSPICE and IBIS Models.............................25
2.2. I/O Model Selection: IBIS or HSPICE.. 26
2.3. FPGA to Board Signal Integrity Analysis Flow... 26

2.3.1. Create I/O and Board Trace Model Assignments... 29
2.3.2. Output File Generation..29
2.3.3. Customize the Output Files..29
2.3.4. Set Up and Run Simulations in Third-Party Tools.. 30
2.3.5. Interpret Simulation Results.. 30

2.4. Simulation with IBIS Models..30
2.4.1. Elements of an IBIS Model.. 31
2.4.2. Creating Accurate IBIS Models...31
2.4.3. Design Simulation Using the Mentor Graphics HyperLynx Software..................33
2.4.4. Configuring LineSim to Use Intel IBIS Models...35
2.4.5. Integrating Intel IBIS Models into LineSim Simulations................................. 37
2.4.6. Running and Interpreting LineSim Simulations... 38

2.5. Simulation with HSPICE Models..40

Contents

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.1. Supported Devices and Signaling... 40
2.5.2. Accessing HSPICE Simulation Kits.. 40
2.5.3. The Double Counting Problem in HSPICE Simulations....................................41
2.5.4. HSPICE Writer Tool Flow... 43
2.5.5. Running an HSPICE Simulation.. 45
2.5.6. Interpreting the Results of an Output Simulation.. 46
2.5.7. Interpreting the Results of an Input Simulation.. 46
2.5.8. Viewing and Interpreting Tabular Simulation Results..................................... 47
2.5.9. Viewing Graphical Simulation Results..47
2.5.10. Making Design Adjustments Based on HSPICE Simulations...........................48
2.5.11. Sample Input for I/O HSPICE Simulation Deck... 50
2.5.12. Sample Output for I/O HSPICE Simulation Deck... 54
2.5.13. Advanced Topics...60

2.6. Document Revision History..61

3. Mentor Graphics PCB Design Tools Support.. 62
3.1. FPGA-to-PCB Design Flow... 63
3.2. Integrating with I/O Designer.. 65

3.2.1. Generating Pin Assignment Files.. 66
3.2.2. I/O Designer Settings...67
3.2.3. Transferring I/O Assignments.. 68
3.2.4. Updating I/O Designer with Intel Quartus Prime Pin Assignments................... 70
3.2.5. Updating Intel Quartus Prime with I/O Designer Pin Assignments................... 71
3.2.6. Generating Schematic Symbols in I/O Designer..71
3.2.7. Exporting Schematic Symbols to DxDesigner... 73

3.3. Integrating with DxDesigner..73
3.3.1. DxDesigner Project Settings.. 73
3.3.2. Creating Schematic Symbols in DxDesigner... 74

3.4. Analyzing FPGA Simultaneous Switching Noise (SSN)..74
3.5. Scripting API... 74
3.6. Document Revision History..75

4. Cadence PCB Design Tools Support...76
4.1. Cadence PCB Design Tools Support...76
4.2. Product Comparison... 77
4.3. FPGA-to-PCB Design Flow... 77

4.3.1. Integrating Intel FPGA Design..79
4.3.2. Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA........... 79

4.4. Setting Up the Intel Quartus Prime Software... 79
4.4.1. Generating a .pin File... 80

4.5. FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software.......... 80
4.5.1. Creating Symbols...81
4.5.2. Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software.... 86

4.6. FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software................ 87
4.6.1. Creating a Cadence Allegro Design Entry CIS Project.................................... 88
4.6.2. Generating a Part...88
4.6.3. Generating Schematic Symbol... 89
4.6.4. Splitting a Part.. 89
4.6.5. Instantiating a Symbol in a Design Entry CIS Schematic................................91
4.6.6. Intel Libraries for the Cadence Allegro Design Entry CIS Software...................91

4.7. Document Revision History..93

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Reviewing Printed Circuit Board Schematics with the Intel Quartus Prime Software.... 94
5.1. Reviewing Intel Quartus Prime Software Settings... 94

5.1.1. Device and Pins Options Dialog Box Settings..95
5.2. Reviewing Device Pin-Out Information in the Fitter Report...96
5.3. Reviewing Compilation Error and Warning Messages... 98
5.4. Using Additional Intel Quartus Prime Software Features.. 98
5.5. Using Additional Intel Quartus Prime Software Tools... 98

5.5.1. Pin Planner..99
5.5.2. SSN Analyzer.. 99

5.6. Document Revision History..99

A. Intel Quartus Prime Standard Edition User Guides..100

Contents

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Simultaneous Switching Noise (SSN) Analysis and
Optimizations

1.1. Simultaneous Switching Noise (SSN) Analysis and
Optimizations

FPGA design has evolved from small programmable circuits to designs that compete
with multimillion-gate ASICs. At the same time, the I/O counts on FPGAs and logic
density requirements of designs have increased exponentially.

The higher-speed interfaces in FPGAs, including high-speed serial interfaces and
memory interfaces, require careful interface design on the PCB. Designers must
address the timing and signal integrity requirements of these interfaces early in the
design cycle. Simultaneous switching noise (SSN) often leads to the degradation of
signal integrity by causing signal distortion, thereby reducing the noise margin of a
system.

Today’s complex FPGA system design is incomplete without addressing the integrity of
signals coming in to and out of the FPGA. Altera recommends that you perform SSN
analysis early in your FPGA design and prior to the layout of your PCB with complete
SSN analysis of your FPGA in the Intel® Quartus® Prime software. This chapter
describes the Intel Quartus Prime SSN Analyzer tool and covers the following topics:

1.2. Definitions

The terminology used in this chapter includes the following terms:

• Aggressor: An output or bidirectional signal that contributes to the noise for a
victim I/O pin

• PDN: Power distribution network

• QH: Quiet high signal level on a pin

• QHN: Quiet high noise on a pin, measured in volts

• QL: Quiet low signal level on a pin

• QLN: Quiet low noise on a pin, measured in volts

• SI: Signal integrity (a superset of SSN, covering all noise sources)

• SSN: Simultaneous switching noise

• SSO: Simultaneous switching output (which are either the output or bidirectional
pins)

• Victim: An input, output, or bidirectional pin that is analyzed during SSN analysis.
During SSN analysis, each pin is analyzed as a victim. If a pin is an output or
bidirectional pin, the same pin acts as an aggressor signal for other pins.

683619 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

1.3. Understanding SSN

SSN is defined as a noise voltage induced onto a single victim I/O pin on a device due
to the switching behavior of other aggressor I/O pins on the device. SSN can be
divided into two types of noise: voltage noise and timing noise.

In a sample system with three pins, two of the pins (A and C) are switching, while one
pin (B) is quiet. If the pins are driven in isolation, the voltage waveforms at the output
of the buffers appear without noise interference, as shown by the solid curves at the
left of the figure. However, when pins A and C are switching simultaneously, the noise
generated by the switching is injected onto other pins. This noise manifests itself as a
voltage noise on pin B and timing noise on pins A and C.

Figure 1. System with Three Pins
In this figure, the dotted curves show the voltage noise on pin B and timing noise on pins A and C.

Voltage noise is measured as the change in voltage of a signal due to SSN. When a
signal is QH, it is measured as the change in voltage toward 0 V. When a signal is QL,
it is measured as the change in voltage toward VCC.

In the Intel Quartus Prime software, only voltage noise is analyzed. Voltage noise can
be caused by SSOs under two worst-case conditions:

• The victim pin is high and the aggressor pins (SSOs) are switching from low to
high

• The victim pin is low and the aggressor pins (SSOs) are switching from high to low

Figure 2. Quiet High Output Noise Estimation on Pin B

Victim pin B

FPGA Package Vias PCB

1
0

1
0

1
0

A

B

C

E

D

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3. Quiet Low Input Noise Estimation for Pin D

SSN can occur in any system, but the induced noise does not always result in failures.
Voltage functional errors are caused by SSN on quiet victim pins only when the
voltage values on the quiet pins change by a large voltage that the logic listening to
that signal reads a change in the logic value. For QH signals, a voltage functional error
occurs when noise events cause the voltage to fall below VIH. Similarly, for QL signals,
a voltage functional error occurs when noise events cause the voltage to rise above
VIL. Because VIH and VIL of the Altera device are different for different I/O standards,
and because signals have different quiet voltage values, the absolute amount of SSN,
measured in volts, cannot be used to determine if a voltage failure occurs. Instead, to
assess the level of impact by SSN in the SSN analysis, the Intel Quartus Prime
software quantifies the SSN in terms of the percentage of signal margin in Intel
devices.

Figure 4. Reporting Noise Margins

The figure shows four noise events, two on QH signals and two on QL signals. The two
noise events on the right-side of the figure consume 50 percent of the signal margin
and do not cause voltage functional errors. However, the two noise events on the left
side of the figure consume 100 percent of the signal margin, which can cause a
voltage functional error.

Noise caused by aggressor signals are synchronously related to the victim pin outside
of the sampling window of a receiver. This noise affects the switching time of a victim
pin, but are not considered an input threshold violation failure.

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. Synchronous Voltage Noise with No Functional Error

Related Information

SSN Analysis Overview on page 9

1.4. SSN Estimation Tools

Addressing SSN early in your FPGA design and PCB layout can help you avoid costly
board respins and lost time, both of which can impact your time-to-market.

Intel provides many tools for SSN analysis and estimation, including the following
tools:

• SSN characterization reports

• An early SSN estimation (ESE) tool

• The SSN Analyzer in the Intel Quartus Prime software

The ESE tool is useful for preliminary SSN analysis of your FPGA design; for more
accurate results, however, you must use the SSN Analyzer in the Intel Quartus Prime
software.

Table 1. Comparison of ESE Tool and SSN Analyzer Tool

ESE Tool SSN Analyzer

Is not integrated with the Intel Quartus Prime software. Integrated with the Intel Quartus Prime software, allowing you
to perform preliminary SSN analysis while making I/O
assignment changes in the Intel Quartus Prime software.

QL and QH levels are computed assuming a worst-case pattern
of I/O placements.

QL and QH levels are computed based on the I/O placements in
your design.

No support for entering board information. Supports board trace models and board layer information,
resulting in a more accurate SSN analysis.

No graphical representation. Integrated with the Intel Quartus Prime Pin Planner, in which
an SSN map shows the QL and QH levels on victim pins.

Good for doing an early SSN estimate. Does not require you to
use the Intel Quartus Prime software.

Requires you to create a Intel Quartus Prime software project
and provide the top-level port information.

Related Information

Altera Signal Integrity Center

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

8

https://www.altera.com/support/support-resources/support-centers/signal-power-integrity.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5. SSN Analysis Overview

You can run the SSN Analyzer at different stages in your design cycle to obtain SSN
results. The accuracy of the results depends on the completeness of your design
information.

Start SSN analysis early in the design cycle to obtain preliminary results and adjust
your I/O assignments. Iterate through the design cycle to finally perform a fully
constrained SSN analysis with complete information about your board.

The early pin-out flow assumes conservative design rules initially, and then lets you
analyze the design and iteratively apply tighter design rules until SSN analysis
indicates your design meets SSN constraints. You must define pass criteria for SSN
analysis as a percentage of signal margin in both the early pin-out flow and the final
pin-out flow. The pass criteria you define is specific to your design requirements. For
example, a pass criterion you might define is a condition that verifies you have
sufficient SSN margins in your design. You may require that the acceptable voltage
noise on a pin must be below 70% of the voltage level for that pin. The pass criteria
for the early-pin out flow may be higher than the final pin-out flow criteria, so that you
do not spend too much time optimizing the on-FPGA portions of your design when the
SSN metrics for the design may improve after the design is fully specified.

Figure 6. Early Flow and Final Pin-Out SSN Analysis

Create Quartus Prime Project
Add # of I/Os & settings

Define avg breakout depth

Constrain signal via
breakout layers

Constrain pin placement

Define pass criteria
Early < 80%; Final < 50% (1)

Adjust I/O settings
(Drive strength, slew rate

Run Quartus Prime &
SSN Analyzer

Run Quartus Prime &
SSN Analyzer

Design PCB & Extract
board parameters

Run Quartus Prime &
SSN Analyzer

Start

Done

Design is unlikely to
pass final SSN Analysis

No

Yes

No

No

Can we further
constrain PCB?

Yes

Yes

No Noise < early pass?

Noise < final pass?

Decrease early pass
criteria

Yes

Timing margin available?

Done

No

Yes
Noise < final pass?

Manual optimization

Early pin-out flow Final pin-out flow

Note:

1. Pass criteria determined by customer requirements.

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.1. Performing Early Pin-Out SSN Analysis

In the early stages of your design cycle, before you create pin location for your
design, use the early pin-out flow to obtain preliminary SSN analysis results.

To obtain useful SSN results, you must define the top-level ports of your design, but
your design files do not have to be complete.

Performing Early Pin-Out SSN Analysis with the ESE Tool

If you know the I/O standards and signaling standards for your design, you can use
the ESE tool to perform an initial SSN evaluation.

1.5.1.1. Performing Early Pin-Out SSN Analysis with the SSN Analyzer

In the early stages of your design cycle, you may not have complete board
information, such as board trace parameters, layer information, and the signal
breakout layers. If you run the SSN Analyzer without this specific information, it uses
default board trace models and board layer information for SSN analysis, and as a
result the SSN Analyzer confidence level is low. If the noise amounts are larger than
the pass criteria for early pin-out SSN analysis, verify whether the SSN noise
violations are true failures or false failures. For example, sometimes the SSN Analyzer
can determine whether pins are switching synchronously and use that information to
filter false positives; however, it may not be able to determine all the synchronous
groups. You can improve the SSN analysis results by adjusting your I/O assignments
and other design settings. After you optimize your design such that it meets the pass
criteria for the early pin-out flow, you can then begin to design your PCB.

If you have complete information for the top-level ports of your design, you can use
the SSN Analyzer to perform an initial SSN evaluation. Use the following steps to
perform early pin-out SSN analysis:

1. Create a project in the Intel Quartus Prime software.

2. Specify your top-level design information either in schematic form or in HDL code.

3. Perform Analysis and Synthesis.

4. Create I/O assignments, such as I/O standard assignments, for the top-level ports
in your design.

Note: Do not create pin location assignments. The Fitter automatically creates
optimized pin location assignments.

5. If you do not have completed design files and timing constraints, run I/O
assignment analysis.

Note: During I/O assignment analysis, the Fitter places all the unplaced pins on
the device, and checks all the I/O placement rules.

6. Run the SSN Analyzer.

Related Information

• Optimizing Your Design for SSN Analysis on page 11

• Managing Intel Quartus Prime Projects
In Intel Quartus Prime Standard Edition Handbook Volume 1

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

10

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#mwh1409958212952
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.2. Performing Final Pin-Out SSN Analysis

You perform final pin-out SSN analysis after you place all the pins in your design, or
the Fitter places them for you, and you have complete information about the board
trace models and PCB layers.

Even if your design achieves sufficient SSN results during early pin-out SSN analysis,
you should run SSN analysis with the complete PCB information to ensure that SSN
does not cause failures in your final design. You must specify the board parameters in
the Intel Quartus Prime software, including the PCB layer thicknesses, the signal
breakout layers, and the board trace models, before you can run SSN analysis on your
final assignments.

If the SSN analysis results meet the pass criteria for final pin-out SSN analysis, SSN
analysis is complete. If the SSN analysis results do not meet the pass criteria, you
must further optimize your design by changing the board and design parameters and
then rerun the SSN Analyzer. If the design still does not meet the pass criteria, reduce
the pass criteria for early pin-out SSN analysis, and restart the process. By reducing
the pass criteria for early pin-out SSN analysis, you place a greater emphasis on
reducing SSN through I/O settings and I/O placement. Changing the drive strength
and slew rate of output and bidirectional pins, as well as adjusting the placement of
different SSOs, can affect SSN results. Adjusting I/O settings and placement allows
the design to meet the pass criteria for final pin-out SSN analysis after you specify the
actual PCB board parameters.

1.6. Design Factors Affecting SSN Results

There are many factors that affect the SSN levels in your design. The two main factors
are the drive strength and slew rate settings of the output and bidirectional pins in
your design.

Related Information

Altera Signal Integrity Center

1.7. Optimizing Your Design for SSN Analysis

The SSN Analyzer gives you flexibility to precisely define your system to obtain
accurate SSN results.

The SSN Analyzer produces a voltage noise estimate for each input, output, and
bidirectional pin in the design. It allows you to estimate the SSN levels, comprised of
QLN and QHN levels, for your FPGA pins. Performing SSN analysis helps you optimize
your design for SSN during compilation.

Because the SSN Analyzer is integrated into the Intel Quartus Prime software, it can
automatically set up a system topology that matches your design. The SSN Analyzer
accounts for different I/O standards and slew rate settings for each buffer in the
design and models different board traces for each signal. Also, it correctly models the
state of the unused pins in the design. The SSN Analyzer leverages any custom board
trace assignments you set up for use by the advanced I/O timing feature.

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

11

https://www.altera.com/support/support-resources/support-centers/signal-power-integrity.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The SSN Analyzer also models the package and vias in the design. Models for the
different packages that Altera devices support are integrated into the Intel Quartus
Prime software. In the Intel Quartus Prime software, you can specify different layers
on which signals break out, each with its own thickness, and then specify which signal
breaks out on which layer.

After constructing the circuit topology, the SSN Analyzer uses a simulation-based
methodology to determine the SSN for each victim pin in the design.

Figure 7. Circuit Topology for SSN Analysis

1.7.1. Optimizing Pin Placements for Signal Integrity

The SSN Optimization logic option tells the Fitter to adjust the pin placement to
reduce the SSN in the design.

The SSN Optimization logic option has three possible values: Off, Normal
compilation, and Extra Effort.

If you use the SSN Optimization logic option, avoid creating location assignments for
your pins. Instead, let the Fitter place the pins during compilation to meet the timing
performance of your design.

To display the Fitter-placed pins use the Show Fitter Placements feature in the Pin
Planner. To accept these suggested pin locations, you must back-annotate your pin
assignments.

Note: Setting the SSN Optimization option to Extra effort may impact your design fMAX.

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8. SSN Analysis Results Before and After Using the SSN Optimization Logic
Option
The image shows the pin placement before and after turning on the SSN Optimization logic option.

Related Information

• Show Commands (View Menu/Task Window) (Pin Planner)
In Intel Quartus Prime Help

• link/zov1529446404644/mwh1410471288350

• link/zov1529446404644/mwh1410471203263

1.7.2. Specifying Board Trace Model Settings

The SSN Analyzer uses circuit models to determine voltage noise during SSN analysis.
The circuit topology is incomplete without board trace information and PCB layer
information.

To accurately compute the SSN in your FPGA device, you must describe the board
trace and PCB layer parameters in your design. If you do not specify some or all the
board trace parameters and PCB layer information, the SSN Analyzer uses default
parameters, which set the SSN confidence level to low.

The SSN Analyzer requires board trace models such as termination resistors, pin loads
(capacitance), and transmission line parameters. You can define the board circuit
models—or board trace models, in the Intel Quartus Prime software.

You can define an overall board trace model for each I/O standard in your design. This
overall model is the default model for all pins that use a particular I/O standard. After
configuring the overall board trace model, you can customize the model for specific
pins.

Intel Quartus Prime software uses the parameters you specify for the board trace
model during advanced I/O timing analysis with the Timing Analyzer.

If you already specified the board trace models as part of your advanced I/O timing
assignments, Intel Quartus Prime software uses the same parameters during SSN
analysis.

All the assignments for board trace models you specify are saved to the .qsf file. You
can also use Tcl commands to create board trace model assignments.

Tcl Commands for Specifying Board Trace Models

set_instance_assignment -name BOARD_MODEL_TLINE_L_PER_LENGTH "3.041E-7" -to e[0]
set_instance_assignment -name BOARD_MODEL_TLINE_LENGTH 0.1391 -to e[0]
set_instance_assignment -name BOARD_MODEL_TLINE_C_PER_LENGTH "1.463E-10" -to e[0]

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

13

http://quartushelp.altera.com/current/index.htm#assign/asd/asd_com_show.htm
https://www.intel.com/content/www/us/en/docs/programmable/683230/current/area-optimization.html
https://www.intel.com/content/www/us/en/docs/programmable/683230/current/timing-closure-and-optimization.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The best way to calculate transmission line parameters is to use a two-dimensional
solver to estimate the inductance per inch and capacitance per inch for the
transmission line. You can obtain the termination resistor topology information from
the PCB schematics. The near-end and far-end pin load (capacitance) values can be
obtained from the PCB schematic and other device data sheets. For example, if you
know that an FPGA pin is driving a DIMM, you can obtain the far-end loading
information in the data sheet for your target device.

Related Information

• link/grc1529967026944/mwh1410471036713

• Board Trace Model
In Intel Quartus Prime Help.

• Literature and Technical Documentation

1.7.3. Defining PCB Layers and PCB Layer Thickness

Every PCB is fabricated using a number of layers. To remove some of the pessimism
from your SSN results, Altera recommends that you create assignments describing
your PCB layers in the Intel Quartus Prime software.

You can specify the number of layers on you PCB, and their thickness. The PCB layer
information is used only during SSN analysis and is not used in other processes run by
the Intel Quartus Prime software. If a custom PCB breakout region is not described
you can select the default thickness, which directs the SSN Analyzer to use a single-
layer PCB breakout region during SSN analysis.

All the assignments you create for the PCB layers are saved to the .qsf. You can also
use Tcl commands to create PCB layer assignments. You can create any number of
PCB layers, however, the layers must be consecutive.

 Tcl Commands for Specifying PCB Layer Assignments

set_global_assignment -name PCB_LAYER_THICKNESS 0.00099822M -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 2
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 3

The cross-section shows the stackup information of a PCB, which tells you the number
of layers used in your PCB. The PCB shown in this example consists of various signal
and circuit layers on which FPGA pins are routed, as well as the power and ground
layers.

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

14

https://www.intel.com/content/www/us/en/docs/programmable/683492/current/managing-device-i-o-pins.html
http://quartushelp.altera.com/current/index.htm#optimize/ssn/ssn_ref_board_trace_model.htm
http://www.altera.com/literature/lit-index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9. Snapshot of Stackup of a PCB Shown in the Allegro Board Design
Environment

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In this example, each of the four signal layers are a different thickness, with the
depths shown in the Thickness (MIL) column. The layer thickness for each signal
layer is computed as follows:

• Signal Layer 1 is the L4-SIGNAL, at thickness (1.9+3.6+1.2+3+1.2+4=) 14.9
mils

• Signal Layer 2 is the L5-SIGNAL, at thickness (0.6+6=) 6.6 mils

• Signal Layer 3 is the L8-SIGNAL, at thickness (0.6+4+1.2+3+1.2+4=) 14 mils

• Signal Layer 4 is the L9-SIGNAL, at thickness (0.6+6=) 6.6 mils

Figure 10. PCB Layers and Thickness Assignments Specified in the Intel Quartus
Prime Software

1.7.4. Specifying Signal Breakout Layers

Each user I/O pin in your FPGA device can break out at different layers on your PCB.
In the Pin Planner, you can specify on which layers the I/O pins in your design break
out.

The breakout layer information is used only during SSN analysis and is not used in
other processes run by the Intel Quartus Prime software. To assign a pin to PCB layer,
follow these steps:

1. On the Assignments menu, click Pin Planner.

2. If necessary, perform Analysis & Elaboration, Analysis & Synthesis, or fully compile
the design to populate the Pin Planner with the node names in the design.

3. Right-click anywhere in the All Pins or Groups list, and then click Customize
Columns.

4. Select the PCB layer column and move it from the Available columns list to the
Show these columns in this order list.

5. Click OK.

6. In the PCB layer column, specify the PCB layer to which you want to connect the
signal.

7. On the File menu, click Save Project to save the changes.

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: When you create PCB breakout layer assignments in the Pin Planner, you
can assign the pin to any layer, even if you did not yet define the PCB layer.

1.7.5. Creating I/O Assignments

I/O assignments are required in FPGA design and are also used during SSN analysis to
estimate voltage noise.

Each input, output, or bidirectional signal in your design is assigned a physical pin
location on the device using pin location assignments. Each signal has a physical I/O
buffer that has a specific I/O standard, pin location, drive strength, and slew rate. The
SSN Analyzer supports most I/O standards in a device family, such as the LVTTL and
LVCMOS I/O standards.

Note: The SSN Analyzer does not support differential I/O standards, such as the LVDS I/O
standard and its variations, because differential I/O standards contribute a small
amount of SSN.

Related Information

• Literature and Technical Documentation
For more information on the Altera website about supported I/O standards.

• I/O Management
For more information about creating and managing I/O assignments, refer to
the Intel Quartus Prime Handbook.

1.7.6. Decreasing Pessimism in SSN Analysis

In the absence of specific timing information, the SSN Analyzer analyzes your design
under worst-case conditions.

Worst-case conditions include all pins acting as aggressor signals on all possible victim
pins and all aggressor pins switching with the worst possible timing relationship. The
results of SSN analysis under worst-case conditions are very pessimistic. You can
improve the results of SSN Analysis by creating group assignments for specific types
of pins. Use the following group assignments to decrease the pessimism in SSN
analysis results:

• Assign pins to an output enable group—All pins in an output enable group must be
either all input pins or all output pins. If all the pins in a group are always either
all inputs or all outputs, it is impossible for an output pin in the group to cause
SSN noise on an input pin in the group. You can assign pins to an output enable
group with the Output Enable Group logic option.

• Assign pins to a synchronous group—I/O pins that are part of a synchronous
group (signals that switch at the same time) may cause SSN, but do not result in
any failures because the noise glitch occurs during the switching period of the
signal. The noise, therefore, does not occur in the sampling window of that signal.
You can assign pins to an output enable group with the Synchronous Group logic
option. For example, in your design you have a bus with 32 pins that all belong to
the same group. In a real operation, the bus switches at the same time, so any
voltage noise induced by a pin on its groupmates does not matter, because it does
not fall in the sampling window. If you do not assign the bus to a synchronous
group, the other 31 pins can act as aggressors for the first pin in that group,
leading to higher QL and QH noise levels during SSN analysis.

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

17

http://www.altera.com/literature/lit-index.html
https://www.intel.com/content/www/us/en/docs/programmable/683492/current/managing-device-i-o-pins.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In some cases, the SSN Analyzer can detect the grouping for bidirectional pins by
looking at the output enable signal of the bidirectional pins. However, Altera
recommends that you explicitly specify the bidirectional groups and output groups in
your design.

1.7.7. Excluding Pins as Aggressor Signals

The SSN Analyzer uses the following conditions to exclude pins as aggressor signals
for a specific victim pin:

• A pin that is a complement of the victim pin. For example, any pin that is assigned
a differential I/O standard cannot be an aggressor pin.

• A programming pin or JTAG pin because these pins are not active in user mode.

• Pins that have the same output enable signal as a bidirectional victim pin that the
SSN Analyzer analyzes as an input pin. Pins with the same output enable signal
also act as input pins and therefore cannot be aggressor pins at the same time.

• Pins in the same synchronous group as a victim output pin.

• A pin assigned the I/O Maximum Toggle Rate logic option with a frequency
setting of zero. The SSN Analyzer does not consider pins with this setting as
aggressor pins.

1.8. Performing SSN Analysis and Viewing Results

You can perform SSN analysis either on your entire design, or you can limit the
analysis to specific I/O banks.

If you know the problem area for SSN is within one I/O bank and you are changing pin
assignments only in that bank, you can run SSN analysis for just that one I/O bank to
reduce analysis time.

Related Information

Literature and Technical Documentation
For more information about I/O bank numbering refer to the appropriate device
handbook available on the Altera website.

1.8.1. Understanding the SSN Reports

When SSN analysis is complete, you can view detailed analysis reports. The detailed
messages in the reports help you understand and resolve SSN problems.

The SSN Analyzer section of the Compilation report contains information generated
during analysis, including the following reports:

Summary Report on page 19

Output Pins Report and Input Pins Report on page 19

Unanalyzed Pins Report on page 19

Confidence Metric Details on page 19

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

18

http://www.altera.com/literature/lit-index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.1.1. Summary Report

The Summary report summarizes the SSN Analyzer status and rates the SSN Analyzer
confidence level as low, medium, or high.

The confidence level depends on the completeness of your board trace model
assignments. The more assignments you complete, the higher the confidence level.
However, the confidence level does not always contribute to the accuracy of the QL
and QH noise levels on a victim pin. The accuracy of QH and QL noise levels depends
the accuracy of your board trace model assignments.

1.8.1.2. Output Pins Report and Input Pins Report

The Output Pins report lists all the output pins and bidirectional pins that the SSN
analyzer considers as outputs. The Input Pins report lists all the input pins and
bidirectional pins that the SSN analyzer considers as inputs. Both reports list:

• Location assignments for the pins.

• QL and QH noise in volts.

• For the I/O standard used for that signal, what percentage the QL and QH margins
are.

The QH and QL noise margins that fall in the critical range (> 90%) are shown in red.
The QH and QL noise margins that fall in the range of 70% to 90% are shown in gray.

1.8.1.3. Unanalyzed Pins Report

The SSN analyzer doesn't analyze all pins. The ignored pins are reported in the
Unanalyzed Pins report:

• Pins assigned the LVDS I/O standard or any LVDS variations, such as the mini-
LVDS I/O standard.

• Pins created in the migration flow that cover power and supply pins in other
packages.

• The negative terminals of pseudo-differential I/O standards; the noise on
differential standards is reported as the differential noise and is reported on the
positive terminal.

1.8.1.4. Confidence Metric Details

The Confidence Metric Details Report lists the values the SSN analyzer uses for
unspecified I/O, board, and PCB assignments.

1.8.2. Viewing SSN Analysis Results in the Pin Planner

After SSN analysis completes, you can analyze the results in the Pin Planner. In the
Pin Planner you can identify the SSN hotspots in your device, as well as the QL and QH
noise levels.

The QL and QH results for each pin are displayed with a different color that represents
whether the pin is below the warning threshold, below the critical threshold, or above
the critical threshold. This color representation is also referred to as the SSN map of
your FPGA device.

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you view the SSN map, you can customize which details to display, including
input pins, output pins, QH signals, QL signals, and noise levels. You can also adjust
the threshold levels for QH and QL noise voltages. Adjusting the threshold levels in the
Pin Planner does not change the threshold levels reported during SSN analysis and
does not change the data in any of the SSN reports.

You can also you change I/O assignments and board trace information and rerun the
SSN Analyzer to view the SSN analysis results based on those modified settings.

Related Information

Show SSN Analyzer Results

1.9. Decreasing Processing Time for SSN Analysis

FPGA designs are getting larger in density, logic, and I/O count. The time it takes to
complete SSN analysis and other Intel Quartus Prime software processes affects your
development time.

Faster processing times can reduce your design cycle time. Use the following
guidelines to reduce processing time:

• Direct the Intel Quartus Prime software to use more than one processor for
parallel executables, including the SSN Analyzer

• Perform SSN analysis after I/O assignment analysis if your design files and
constraints are complete, and you are interested in generating the SSN results
early in the design process and want to adjust I/O placements to see if you can
obtain better results

• Perform SSN analysis after fitting if you want to view preliminary SSN results that
do not take into account complete I/O assignment and I/O timing results

• Perform engineering change orders (ECOs) on your design, rather than
recompiling the entire design, if you want to rerun SSN analysis after changing I/O
assignments

Related Information

• Compilation Process Settings Page
For more information about using parallel processors, refer to Intel Quartus
Prime Help.

• Engineering Change Management with the Chip Planner
For more information about performing ECOs on your design, refer to the Intel
Quartus Prime Handbook.

1.10. Scripting Support

A Tcl script allows you to run procedures and determine settings. You can also run
some of these procedures at a command prompt.

The Intel Quartus Prime software provides several packages to compile your design
and create I/O assignments for analysis and fitting. You can create a custom Tcl script
that maps the design and runs SSN analysis on your design.

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

20

http://quartushelp.altera.com/current/index.htm#assign/asd/asd_com_show_ssn_results.htm
http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_mode.htm
https://www.intel.com/content/www/us/en/docs/programmable/683230/current/engineering-change-orders-with-the-chip-41583.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For detailed information about specific scripting command options and Tcl API
packages, type the following command at a system command prompt to run the Intel
Quartus Prime Command-Line and Tcl API Help browser:

quartus_sh --qhelp

Related Information

• Tcl Scripting

• Command-Line Scripting
For more information about Intel Quartus Prime scripting support, including
examples, refer to the Intel Quartus Prime Handbook.

• API Functions for Tcl
For more information about Intel Quartus Prime scripting support, including
examples, refer to Intel Quartus Prime Help.

1.10.1. Optimizing Pin Placements for Signal Integrity

You can create an assignment that directs the Fitter to optimize pin placements for
signal integrity with a Tcl command.

The following Tcl command directs the Fitter to optimize pin placement for signal
integrity without affecting design fMAX:

set_global_assignment -name OPTIMIZE_SIGNAL_INTEGRITY "Normal Compilation"

Related Information

Optimizing Pin Placements for Signal Integrity on page 12

1.10.2. Defining PCB Layers and PCB Layer Thickness

You can create PCB layer and thickness assignments with a Tcl command.

Tcl Commands for Specifying PCB Layer Assignments

set_global_assignment -name PCB_LAYER_THICKNESS 0.00099822M -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 2
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 3
set_global_assignment -name PCB_LAYER_THICKNESS 0.00055372M -section_id 4
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 5
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 6
set_global_assignment -name PCB_LAYER_THICKNESS 0.00082042M -section_id 7

These Tcl commands specify that there are seven PCB layers in the design, each with
a different thickness. In each assignment, the letter M indicates the unit of
measurement is millimeters. When you specify PCB layer assignments with Tcl
commands, you must list the layers in consecutive order. For example, you would
receive an error during SSN Analysis if your Tcl commands created the following
assignments:

set_global_assignment -name PCB_LAYER_THICKNESS 0.00099822M -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 0.00082042M -section_id 7

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

21

https://www.intel.com/content/www/us/en/docs/programmable/683325/current/tcl-scripting.html
https://www.intel.com/content/www/us/en/docs/programmable/683325/current/command-line-scripting.html
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_list_of_packages.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To create assignments with the unit of measurement in mils, refer to the syntax in the
following Tcl commands.

set_global_assignment -name PCB_LAYER_THICKNESS 14.9MIL -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 6.6MIL -section_id 2
set_global_assignment -name PCB_LAYER_THICKNESS 14MIL -section_id 3
set_global_assignment -name PCB_LAYER_THICKNESS 6.6MIL -section_id 4

Related Information

Defining PCB Layers and PCB Layer Thickness on page 14

1.10.3. Specifying Signal Breakout Layers

You can create signal breakout layer assignments with a Tcl command.:

set_instance_assignment -name PCB_LAYER 10 -to e[2] set_instance_assignment -
name PCB_LAYER 3 -to e[3]

When you create PCB breakout layer assignments with Tcl commands, if you do not
specify a PCB layer, or if you specify a PCB layer that does not exist, the SSN Analyzer
breaks out the signal at the bottommost PCB layer.

Note: If you create a PCB layer breakout assignment to a layer that does not exist, the SSN
Analyzer will generate a warning message.

1.10.4. Decreasing Pessimism in SSN Analysis

You can create output enable group and synchronous group assignments to help
decrease pessimism during SSN Analysis with a Tcl command.

The following Tcl command assigns the bidirectional bus DATAINOUT to an output
enable group:

set_instance_assignment -name OUTPUT_ENABLE_GROUP 1 -to DATAINOUT

The following Tcl command assigns the bus PCI_ADD_io to a synchronous group:

set_instance_assignment -name SYNCHRONOUS_GROUP 1 -to PCI_AD_io

Related Information

Decreasing Pessimism in SSN Analysis on page 17

1.10.5. Performing SSN Analysis

You can perform SSN analysis with a command-line command. Use the quartus_si
package that is provided with the Intel Quartus Prime software.

Type the following command at a system command prompt to start the SSN Analyzer:

quartus_si <project name>

To analyze just one I/O bank, type the following command at a system command
prompt:

quartus_si <project revision> <--bank = bank id>

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, to run analyze the I/O bank 2A type the following command:

quartus_si counter --bank=2A

For more information about the quartus_si package, type quartus_si -h at a
system command prompt.

Related Information

Performing SSN Analysis and Viewing Results on page 18

1.11. Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

December 2014 14.1.0 • Minimal text edits for clarity in the topic about
understanding SSN.

June 2014 14.0.0 Updated format.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update

December 2010 10.0.1 Template update

July 2010 10.0.0 • Reorganized and edited the chapter
• Added links to Intel Quartus Prime Help for procedural

information previously included in the chapter

November 2009 9.1.0 • Added “Figure 6–9 shows the layout cross-section of a
PCB in the Cadence Allegro PCB tool. The cross-section
shows the stackup information of a PCB, which tells you
the number of layers used in your PCB. The PCB shown
in this example consists of various signal and circuit
layers on which FPGA pins are routed, as well as the
power and ground layers.” on page 6–12

• Updated for the Intel Quartus Prime software 9.1
release

March 2009 9.0.0 Initial release

1. Simultaneous Switching Noise (SSN) Analysis and Optimizations

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Signal Integrity Analysis with Third-Party Tools

2.1. Signal Integrity Analysis with Third-Party Tools

With the ever-increasing operating speed of interfaces in traditional FPGA design, the
timing and signal integrity margins between the FPGA and other devices on the board
must be within specification and tolerance before a single PCB is built.

If the board trace is designed poorly or the route is too heavily loaded, noise in the
signal can cause data corruption, while overshoot and undershoot can potentially
damage input buffers over time.

As FPGA devices are used in high-speed applications, signal integrity and timing
margin between the FPGA and other devices on the printed circuit board (PCB) are
important aspects to consider to ensure proper system operation. To avoid time-
consuming redesigns and expensive board respins, the topology and routing of critical
signals must be simulated. The high-speed interfaces available on current FPGA
devices must be modeled accurately and integrated into timing models and board-
level signal integrity simulations. The tools used in the design of an FPGA and its
integration into a PCB must be “board-aware”—able to take into account properties of
the board routing and the connected devices on the board.

The Intel Quartus Prime software provides methodologies, resources, and tools to
ensure good signal integrity and timing margin between Intel FPGA devices and other
components on the board. Three types of analysis are possible with the Intel Quartus
Prime software:

• I/O timing with a default or user-specified capacitive load and no signal integrity
analysis (default)

• The Intel Quartus Prime Enable Advanced I/O Timing option utilizing a user-
defined board trace model to produce enhanced timing reports from accurate
“board-aware” simulation models

• Full board routing simulation in third-party tools using Intel-provided or generated
Input/Output Buffer Information Specification (IBIS) or HSPICE I/O models

I/O timing using a specified capacitive test load requires no special configuration other
than setting the size of the load. I/O timing reports from the Intel Quartus Prime
Timing Analyzer or the Intel Quartus Prime Classic Timing Analyzer are generated
based only on point-to-point delays within the I/O buffer and assume the presence of
the capacitive test load with no other details about the board specified. The default
size of the load is based on the I/O standard selected for the pin. Timing is measured
to the FPGA pin with no signal integrity analysis details.

The Enable Advanced I/O Timing option expands the details in I/O timing reports
by taking board topology and termination components into account. A complete point-
to-point board trace model is defined and accounted for in the timing analysis. This
ability to define a board trace model is an example of how the Intel Quartus Prime
software is “board-aware.”

683619 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

In this case, timing and signal integrity metrics between the I/O buffer and the
defined far end load are analyzed and reported in enhanced reports generated by the
Intel Quartus Prime Timing Analyzer.

The information about signal integrity in this chapter refers to board-level signal
integrity based on I/O buffer configuration and board parameters, not simultaneous
switching noise (SSN), also known as ground bounce or VCC sag. SSN is a product of
multiple output drivers switching at the same time, causing an overall drop in the
voltage of the chip’s power supply. This can cause temporary glitches in the specified
level of ground or VCC for the device.

This chapter is intended for FPGA and board designers and includes details about the
concepts and steps involved in getting designs simulated and how to adjust designs to
improve board-level timing and signal integrity. Also included is information about how
to create accurate models from the Intel Quartus Prime software and how to use those
models in simulation software.

The information in this chapter is meant for those who are familiar with the Intel
Quartus Prime software and basic concepts of signal integrity and the design
techniques and components in good PCB design. Finally, you should know how to set
up simulations and use your selected third-party simulation tool.

Related Information

I/O Management
For information about how to use theEnable Advanced I/O Timing option and
configure board trace models for the I/O standards used in your design.

2.1.1. Signal Integrity Simulations with HSPICE and IBIS Models

The Intel Quartus Prime software can export accurate HSPICE models with the built-in
HSPICE Writer. You can run signal integrity simulations with these complete HSPICE
models in Synopsys* HSPICE. IBIS models of the FPGA I/O buffers are also created
easily with the Intel Quartus Prime IBIS Writer.

You can run signal integrity simulations with these complete HSPICE models in
Synopsys HSPICE.

You can integrate IBIS models into any third-party simulation tool that supports them,
such as the Mentor Graphics* HyperLynx* software. With the ability to create
industry-standard model definition files quickly, you can build accurate simulations
that can provide data to help improve board-level signal integrity.

The I/O’s IBIS and HSPICE model creation available in the Intel Quartus Prime
software can help prevent problems before a costly board respin is required. In
general, creating and running accurate simulations is difficult and time consuming.
The tools in the Intel Quartus Prime software automate the I/O model setup and
creation process by configuring the models specifically for your design. With these
tools, you can set up and run accurate simulations quickly and acquire data that helps
guide your FPGA and board design.

For a more information about SSN and ways to prevent it, refer to AN 315: Guidelines
for Designing High-Speed FPGA PCBs.

For information about basic signal integrity concepts and signal integrity details
pertaining to Intel FPGA devices, visit the Intel Signal & Power Integrity Center.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

25

https://www.intel.com/content/www/us/en/docs/programmable/683143/current/managing-device-i-o-pins.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• AN 315: Guidelines for Designing High-Speed FPGA PCBs

• Intel Signal & Power Integrity Center

2.2. I/O Model Selection: IBIS or HSPICE

The Intel Quartus Prime software can export two different types of I/O models that
are useful for different simulation situations, IBIS models and HSPICE models.

IBIS models define the behavior of input or output buffers through voltage-current (V-
I) and voltage-time (V-t) data tables. HSPICE models, or decks, include complete
physical descriptions of the transistors and parasitic capacitances that make up an I/O
buffer along with all the parameter settings that you require to run a simulation.

The Intel Quartus Prime software generates HSPICE decks, and adds preconfigured
I/O standard, voltage, and pin loading settings for each pin in your design.

The choice of I/O model type is based on many factors.

Table 2. IBIS and HSPICE Model Comparison

Feature IBIS Model HSPICE Model

I/O Buffer
Description

Behavioral—I/O buffers are described by
voltage-current and voltage-time tables in
typical, minimum, and maximum supply
voltage cases.

Physical—I/O buffers and all components in a circuit are
described by their physical properties, such as transistor
characteristics and parasitic capacitances, as well as their
connections to one another.

Model
Customization

Simple and limited—The model completely
describes the I/O buffer and does not usually
have to be customized.

Fully customizable—Unless connected to an arbitrary
board description, the description of the board trace model
must be customized in the model file. All parameters of the
simulation are also adjustable.

Simulation Set Up
and Run Time

Fast—Simulations run quickly after set up
correctly.

Slow—Simulations take time to set up and take longer to
run and complete.

Simulation
Accuracy

Good—For most simulations, accuracy is
sufficient to make useful adjustments to the
FPGA or board design to improve signal
integrity.

Excellent—Simulations are highly accurate, making
HSPICE simulation almost a requirement for any high-speed
design where signal integrity and timing margins are tight.

Third-Party Tool
Support

Excellent—Almost all third-party board
simulation tools support IBIS.

Good—Most third-party tools that support SPICE support
HSPICE. However, Synopsys HSPICE is required for
simulations of Intel’s encrypted HSPICE models.

For more information about IBIS files created by the Intel Quartus Prime IBIS Writer
and IBIS files in general, as well as links to websites with detailed information, refer to
AN 283: Simulating Intel Devices with IBIS Models.

Related Information

AN 283: Simulating Intel Devices with IBIS Models

2.3. FPGA to Board Signal Integrity Analysis Flow

Board signal integrity analysis can take place at any point in the FPGA design process
and is often performed before and after board layout. If it is performed early in the
process as part of a pre-PCB layout analysis, the models used for simulations can be
more generic.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

26

http://www.altera.com/literature/an/an315.pdf
https://www.altera.com/support/support-resources/support-centers/signal-power-integrity.html
http://www.altera.com/literature/an/an283.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

These models can be changed as much as required to see how adjustments improve
timing or signal integrity and help with the design and routing of the PCB. Simulations
and the resulting changes made at this stage allow you to analyze “what if” scenarios
to plan and implement your design better. To assist with early board signal integrity
analysis, you can download generic IBIS model files for each device family and obtain
HSPICE buffer simulation kits from the “Board Level Tools” section of the EDA Tool
Support Resource Center.

Typically, if board signal integrity analysis is performed late in the design, it is used for
a post-layout verification. The inputs and outputs of the FPGA are defined, and
required board routing topologies and constraints are known. Simulations can help you
find problems that might still exist in the FPGA or board design before fabrication and
assembly. In either case, a simple process flow illustrates how to create accurate IBIS
and HSPICE models from a design in the Intel Quartus Prime software and transfer
them to third-party simulation tools.

Your design depends on the type of model, IBIS or HSPICE, that you use for your
simulations. When you understand the steps in the analysis flow, refer to the section
of this chapter that corresponds to the model type you are using.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11. Third-Party Board Signal Integrity Analysis Flow

Make I/O Assignments

Create a Quartus Prime Project

Continue Design with
Existing I/O Assignments

Enable IBIS or HSPICE
File Generation

Customize Files

Configure Board Trace Models
in supported devices

(Optional)

Compile and Generate
Files (EDA Netlist Writer)

IBIS or
HSPICE?

Apply Models to Buffers
in Board Model Simulations

Run Simulations as
Defined in HSPICE Deck

Run Simulation

Results
OK?

No Make Adjustments to
Models or Simulation Parameters

and Simulate Again

Yes

IBIS HSPICE

Changes
to FPGA I/O
required?

Yes

No

Related Information

EDA Tool Support Resource Center
For more information, generic IBIS model files for each device family, and to obtain
HSPICE buffer simulation kits.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

28

https://www.altera.com/support/support-resources/design-software/eda-tool/sof-eda-tool-support.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.1. Create I/O and Board Trace Model Assignments

You can configure a board trace model for output signals or for bidirectional signals in
output mode. You can then automatically transfer its description to HSPICE decks
generated by the HSPICE Writer. This helps improve simulation accuracy.

To configure a board trace model, in the Settings dialog box, in the Timing Analyzer
page, turn on the Enable Advanced I/O Timing option and configure the board
trace model assignment settings for each I/O standard used in your design. You can
add series or parallel termination, specify the transmission line length, and set the
value of the far-end capacitive load. You can configure these parameters either in the
Board Trace Model view of the Pin Planner, or click SettingsDeviceDevice and Pin
Options.

The Intel Quartus Prime software can generate IBIS models and HSPICE decks without
having to configure a board trace model with the Enable Advanced I/O Timing
option. In fact, IBIS models ignore any board trace model settings other than the far-
end capacitive load. If any load value is set other than the default, the delay given by
IBIS models generated by the IBIS Writer cannot be used to account correctly for the
double counting problem. The load value mismatch between the IBIS delay and the
tCO measurement of the Intel Quartus Prime software prevents the delays from being
safely added together. Warning messages displayed when the EDA Netlist Writer runs
indicate when this mismatch occurs.

Related Information

I/O Management
For information about how to use theEnable Advanced I/O Timing option and
configure board trace models for the I/O standards used in your design.

2.3.2. Output File Generation

IBIS and HSPICE model files are not generated by the Intel Quartus Prime software by
default. To generate or update the files automatically during each project compilation,
select the type of file to generate and a location where to save the file in the project
settings.

The IBIS and HSPICE Writers in the Intel Quartus Prime software are run as part of
the EDA Netlist Writer during normal project compilation. If either writer is turned on
in the project settings, IBIS or HSPICE files are created and stored in the specified
location. For IBIS, a single file is generated containing information about all assigned
pins. HSPICE file generation creates separate files for each assigned pin. You can run
the EDA Netlist Writer separately from a full compilation in the Intel Quartus Prime
software or at the command line.

Note: You must fully compile the project or perform I/O Assignment Analysis at least once
for the IBIS and HSPICE Writers to have information about the I/O assignments and
settings in the design.

2.3.3. Customize the Output Files

The files generated by either the IBIS or HSPICE Writer are text files that you can edit
and customize easily for design or experimentation purposes.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

29

https://www.intel.com/content/www/us/en/docs/programmable/683143/current/managing-device-i-o-pins.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

IBIS files downloaded from the Altera website must be customized with the correct
RLC values for the specific device package you have selected for your design. IBIS
files generated by the IBIS Writer do not require this customization because they are
configured automatically with the RLC values for your selected device. HSPICE decks
require modification to include a detailed description of your board. With Enable
Advanced I/O Timing turned on and a board trace model defined in the Intel
Quartus Prime software, generated HSPICE decks automatically include that model’s
parameters. However, Intel recommends that you replace that model with a more
detailed model that describes your board design more accurately. A default simulation
included in the generated HSPICE decks measures delay between the FPGA and the
far-end device. You can make additions or adjustments to the default simulation in the
generated files to change the parameters of the default simulation or to perform
additional measurements.

2.3.4. Set Up and Run Simulations in Third-Party Tools

When you have generated the files, you can use them to perform simulations in your
selected simulation tool.

With IBIS models, you can apply them to input, output, or bidirectional buffer entities
and quickly set up and run simulations. For HSPICE decks, the simulation parameters
are included in the files. Open the files in Synopsys HSPICE and run simulations for
each pin as required.

With HSPICE decks generated from the HSPICE Writer, the double counting problem is
accounted for, which ensures that your simulations are accurate. Simulations that
involve IBIS models created with anything other than the default loading settings in
the Intel Quartus Prime software must take the change in the size of the load between
the IBIS delay and the Intel Quartus Prime tCO measurement into account. Warning
messages during compilation alert you to this change.

2.3.5. Interpret Simulation Results

If you encounter timing or signal integrity issues with your high-speed signals after
running simulations, you can make adjustments to I/O assignment settings in the
Intel Quartus Prime software.

You can adjust drive strength or I/O standard, or make changes to the board routing
or topology. After regenerating models in the Intel Quartus Prime software based on
the changes you have made, rerun the simulations to check whether your changes
corrected the problem.

2.4. Simulation with IBIS Models

IBIS models provide a way to run accurate signal integrity simulations quickly. IBIS
models describe the behavior of I/O buffers with voltage-current and voltage-time
data curves.

Because of their behavioral nature, IBIS models do not have to include any
information about the internal circuit design of the I/O buffer. Most component
manufacturers, including Intel, provide IBIS models for free download and use in
signal integrity analysis simulation tools. You can download generic device family IBIS
models from the Altera website for early design simulation or use the IBIS Writer to
create custom IBIS models for your existing design.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.1. Elements of an IBIS Model

An IBIS model file (.ibs) is a text file that describes the behavior of an I/O buffer
across minimum, typical, and maximum temperature and voltage ranges with a
specified test load.

The tables and values specified in the IBIS file describe five basic elements of the I/O
buffer.

Figure 12. Five Basic Elements of an I/O Buffer in IBIS Models

Rise
Fall L_pkg R_pkg

C_comp C_pkg
1

2

4

3

5

The following elements correspond to each numbered block.

1. Pulldown—A voltage-current table describes the current when the buffer is driven
low based on a pull-down voltage range of –VCC to 2 VCC.

2. Pullup—A voltage-current table describes the current when the buffer is driven
high based on a pull-up voltage range of –VCC to VCC.

3. Ground and Power Clamps—Voltage-current tables describe the current when
clamping diodes for electrostatic discharge (ESD) are present. The ground clamp
voltage range is –VCC to VCC, and the power clamp voltage range is –VCC to
ground.

4. Ramp and Rising/Falling Waveform—A voltage-time (dv/dt) ratio describes
the rise and fall time of the buffer during a logic transition. Optional rising and
falling waveform tables can be added to more accurately describe the
characteristics of the rising and falling transitions.

5. Total Output Capacitance and Package RLC—The total output capacitance
includes the parasitic capacitances of the output pad, clamp diodes (if present),
and input transistors. The package RLC is device package-specific and defines the
resistance, inductance, and capacitance of the bond wire and pin of the I/O.

Related Information

AN 283: Simulating Intel Devices with IBIS Models
For more information about IBIS models and Intel-specific features, including links
to the official IBIS specification.

2.4.2. Creating Accurate IBIS Models

There are two methods to obtain Intel device IBIS files for your board-level signal
integrity simulations. You can download generic IBIS models from the Altera website.
You can also use the IBIS writer in the Intel Quartus Prime software to create design-
specific models.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

31

http://www.altera.com/literature/an/an283.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The IBIS file generated by the Intel Quartus Prime software contains models of both
input and output termination, and is supported for IBIS model versions of 4.2 and
later. Arria® V , Cyclone® V , and Stratix® V device families allow the use of
bidirectional I/O with dynamic on-chip termination (OCT).

Dynamic OCT is used where a signal uses a series on-chip termination during output
operation and a parallel on-chip termination during input operation. Typically this is
used in Altera External Memory Interface IP.

The Intel Quartus Prime IBIS dynamic OCT IBIS model names end in g50c_r50c. For
example : sstl15i_ctnio_g50c_r50c.

In the simulation tool, the IBIS model is attached to a buffer.

• When the buffer is assigned as an output, use the series termination r50c.

• When the buffer is assigned as an input, use the parallel termination g50c.

2.4.2.1. Download IBIS Models

Intel provides IBIS models for almost all FPGA and FPGA configuration devices. You
can use the IBIS models from the website to perform early simulations of the I/O
buffers you expect to use in your design as part of a pre-layout analysis.

Downloaded IBIS models have the RLC package values set to one particular device in
each device family.

The .ibs file can be customized for your device package and can be used for any
simulation. IBIS models downloaded and used for simulations in this manner are
generic. They describe only a certain set of models listed for each device on the Intel
IBIS Models page of the Altera website. To create customized models for your design,
use the IBIS Writer as described in the next section.

To simulate your design with the model accurately, you must adjust the RLC values in
the IBIS model file to match the values for your particular device package by
performing the following steps:

1. Download and expand the ZIP file (.zip) of the IBIS model for the device family
you are using for your design. The .zip file contains the .ibs file along with an
IBIS model user guide and a model data correlation report.

2. Download the Package RLC Values spreadsheet for the same device family.

3. Open the spreadsheet and locate the row that describes the device package used
in your design.

4. From the package’s I/O row, copy the minimum, maximum, and typical values of
resistance, inductance, and capacitance for your device package.

5. Open the .ibs file in a text editor and locate the [Package] section of the file.

6. Overwrite the listed values copied with the values from the spreadsheet and save
the file.

Related Information

Intel IBIS Models
For information about whether models for your selected device are available.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

32

https://www.intel.com/content/www/us/en/support/programmable/support-resources/board-layout/ibs-ibis-index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.2.2. Generate Custom IBIS Models with the IBIS Writer

If you have started your FPGA design and have created custom I/O assignments, you
can use the Intel Quartus Prime IBIS Writer to create custom IBIS models to
accurately reflect your assignments.

Examples of custom assignments include drive strength settings or the enabling of
clamping diodes for ESD protection. IBIS models created with the IBIS Writer take I/O
assignment settings into account.

If the Enable Advanced I/O Timing option is turned off, the generated .ibs files
are based on the load value setting for each I/O standard on the Capacitive Loading
page of the Device and Pin Options dialog box in the Device dialog box. With the
Enable Advanced I/O Timing option turned on, IBIS models use an effective
capacitive load based on settings found in the board trace model on the Board Trace
Model page in the Device and Pin Options dialog box or the Board Trace Model
view in the Pin Planner. The effective capacitive load is based on the sum of the Near
capacitance, Transmission line distributed capacitance, and the Far
capacitance settings in the board trace model. Resistance values and transmission
line inductance values are ignored.

Note: If you made any changes from the default load settings, the delay in the generated
IBIS model cannot safely be added to the Intel Quartus Prime tCO measurement to
account for the double counting problem. This is because the load values between the
two delay measurements do not match. When this happens, the Intel Quartus Prime
software displays warning messages when the EDA Netlist Writer runs to remind you
about the load value mismatch.

Related Information

• Intel IBIS models

• Generating IBIS Output Files with the Intel Quartus Prime Software
In Intel Quartus Prime Help

• AN 283: Simulating Intel Devices with IBIS Models

2.4.3. Design Simulation Using the Mentor Graphics HyperLynx Software

You must integrate IBIS models downloaded from the Altera website or created with
the Intel Quartus Prime IBIS Writer into board design simulations to accurately model
timing and signal integrity.

The HyperLynx software from Mentor Graphics is one of the most popular tools for
design simulation. The HyperLynx software makes it easy to integrate IBIS models
into simulations.

The HyperLynx software is a PCB analysis and simulation tool for high-speed designs,
consisting of two products, LineSim and BoardSim.

LineSim is an early simulation tool. Before any board routing takes place, you use
LineSim to simulate “what if” scenarios that assist in creating routing rules and
defining board parameters.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

33

https://www.altera.com/support/support-resources/download/board-layout-test/ibis/ibs-ibis_index.html
http://quartushelp.altera.com/current/index.htm#eda/boardlevel/ibis/eda_pro_ibis_out.htm
http://www.altera.com/literature/an/an283.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

BoardSim is a post-layout tool that you use to analyze existing board routing. You
select one or more nets from a board layout file and BoardSim simulates those nets in
a manner similar to LineSim. With board and routing parameters, and surrounding
signal routing known, highly accurate simulations of the final fabricated PCB are
possible.

This section focuses on LineSim. Because the process of creating and running
simulations is very similar for both LineSim and BoardSim, the details of IBIS model
use in LineSim applies to simulations in BoardSim.

You configure simulations in LineSim using a schematic GUI to create connections and
topologies between I/O buffers, route trace segments, and termination components.
LineSim provides two methods for creating routing schematics: cell-based and free-
form. Cell-based schematics are based on fixed cells consisting of typical placements
of buffers, trace impedances, and components. Parts of the grid-based cells are filled
with the desired objects to create the topology. A topology in a cell-based schematic is
limited by the available connections within and between the cells.

A more robust and expandable way to create a circuit schematic for simulation is to
use the free-form schematic format in LineSim. The free-form schematic format
makes it easy to place parts into any configuration and edit them as required. This
section describes the use of IBIS models with free-form schematics, but the process is
nearly identical for cell-based schematics.

Figure 13. HyperLynx LineSim Free-Form Schematic Editor

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you use HyperLynx software to perform simulations, you typically perform the
following steps:

1. Create a new LineSim free-form schematic document and set up the board
stackup for your PCB using the Stackup Editor. In this editor, specify board layer
properties including layer thickness, dielectric constant, and trace width.

2. Create a circuit schematic for the net you want to simulate. The schematic
represents all the parts of the routed net including source and destination I/O
buffers, termination components, transmission line segments, and representations
of impedance discontinuities such as vias or connectors.

3. Assign IBIS models to the source and destination I/O buffers to represent their
behavior during operation.

4. Attach probes from the digital oscilloscope that is built in to LineSim to points in
the circuit that you want to monitor during simulation. Typically, at least one probe
is attached to the pin of a destination I/O buffer. For differential signals, you can
attach a differential probe to both the positive and negative pins at the
destination.

5. Configure and run the simulation. You can simulate a rising or falling edge and
test the circuit under different drive strength conditions.

6. Interpret the results and make adjustments. Based on the waveforms captured in
the digital oscilloscope, you can adjust anything in the circuit schematic to correct
any signal integrity issues, such as overshoot or ringing. If necessary, you can
make I/O assignment changes in the Intel Quartus Prime software, regenerate the
IBIS file with the IBIS Writer, and apply the updated IBIS model to the buffers in
your HyperLynx software schematic.

7. Repeat the simulations and circuit adjustments until you are satisfied with the
results.

8. When the operation of the net meets your design requirements, implement
changes to your I/O assignments in the Intel Quartus Prime software and
optionally adjust your board routing constraints, component values, and
placement to match the simulation.

For more information about HyperLynx software, including schematic creation,
simulation setup, model usage, product support, licensing, and training, refer to the
Mentor Graphics webpage.

Related Information

www.mentor.com

2.4.4. Configuring LineSim to Use Intel IBIS Models

You must configure LineSim to find and use the downloaded or generated IBIS models
for your design. To do this, add the location of your .ibs file or files to the LineSim
Model Library search path. Then you apply a selected model to a buffer in your
schematic.

To add the Intel Quartus Prime software’s default IBIS model location, <project
directory>/board/ibis, to the HyperLynx LineSim model library search path,
perform the following steps in LineSim:

1. From the Options menu, click Directories. The Set Directories dialog box
appears. The Model-library file path(s) list displays the order in which LineSim
searches file directories for model files.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

35

http://www.mentor.com/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14. LineSim Set Directories Dialog Box

2. Click Edit. A dialog box appears where you can add directories and adjust the
order in which LineSim searches them.

Figure 15. LineSim Select Directories Dialog Box

3. Click Add

4. Browse to the default IBIS model location, <project directory>/board/ibis.
Click OK.

5. Click Up to move the IBIS model directory to the top of the list. Click Generate
Model Index to update LineSim’s model database with the models found in the
added directory.

6. Click OK. The IBIS model directory for your project is added to the top of the
Model-library file path(s) list.

7. To close the Set Directories dialog box, click OK.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.5. Integrating Intel IBIS Models into LineSim Simulations

When the location for IBIS files has been set, you can assign the downloaded or
generated IBIS models to the buffers in your schematic. To do this, perform the
following steps:

1. Double-click a buffer symbol in your schematic to open the Assign Models dialog
box. You can also click Assign Models from the buffer symbol’s right-click menu.

Figure 16. LineSim Assign Model Dialog Box

2. The pin of the buffer symbol you selected should be highlighted in the Pins list. If
you want to assign a model to a different symbol or pin, select it from the list.

3. Click Select. The Select IC Model dialog box appears.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17. LineSim Select IC Model Dialog Box

4. To filter the list of available libraries to display only IBIS models, select .IBS.
Scroll through the Libraries list, and click the name of the library for your design.
By default, this is <project name>.ibs.

5. The device for your design should be selected as the only item in the Devices list.
If not, select your device from the list.

6. From the Signal list, select the name of the signal you want to simulate. You can
also choose to select by device pin number.

7. Click OK. The Assign Models dialog box displays the selected .ibs file and signal.

8. If applicable to the signal you chose, adjust the buffer settings as required for the
simulation.

9. Select and configure other buffer pins from the Pins list in the same manner.

10. Click OK when all I/O models are assigned.

2.4.6. Running and Interpreting LineSim Simulations

You can run any simulation and make adjustments to the I/O assignments or
simulation parameters as required.

For example, if you see too much overshoot in the simulated signal at the destination
buffer after running a simulation, you can adjust the drive strength I/O assignment
setting to a lower value. Regenerate the .ibs file, and run the simulation again to
verify whether the change fixes the problem.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Example of Overshoot in HyperLynx with IBIS Models

If you see a discontinuity or other anomalies at the destination, such as slow rise and
fall times, adjust the termination scheme or termination component values. After
making these changes, rerun the simulation to check whether your adjustments
solved the problem. In this case, it is not necessary to regenerate the .ibs file.

Figure 19. Example of Signal Integrity Anomaly in HyperLynx with IBIS Models

For more information about board-level signal integrity, and to learn about ways to
improve it with simple changes to your design, visit the Intel FPGA Signal & Power
Integrity Support Center.

Related Information

Intel Signal & Power Integrity Center

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

39

https://www.altera.com/support/support-resources/support-centers/signal-power-integrity.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5. Simulation with HSPICE Models

HSPICE decks are used to perform highly accurate simulations by describing the
physical properties of all aspects of a circuit precisely. HSPICE decks describe I/O
buffers, board components, and all the connections between them, as well as defining
the parameters of the simulation to be run.

By their nature, HSPICE decks are highly customizable and require a detailed
description of the circuit under simulation. For devices that support advanced I/O
timing, when Enable Advanced I/O Timing is turned on, the HSPICE decks
generated by the Intel Quartus Prime HSPICE Writer automatically include board
components and topology defined in the Board Trace Model. Configure the board
components and topology in the Pin Planner or in the Board Trace Model tab of the
Device and Pin Options dialog box. All HSPICE decks generated by the Intel Quartus
Prime software include compensation for the double count problem. You can simulate
with the default simulation parameters built in to the generated HSPICE decks or
make adjustments to customize your simulation.

Related Information

The Double Counting Problem in HSPICE Simulations on page 41

2.5.1. Supported Devices and Signaling

The HSPICE Writer in the Intel Quartus Prime software supports Arria , Cyclone, and
Stratix devices for the creation of a board trace model in the Intel Quartus Prime
software for automatic inclusion in an HSPICE deck.

The HSPICE files include the board trace description you create in the Board Trace
Model view in the Pin Planner or the Board Trace Model tab in the Device and Pin
Options dialog box.

Note: Note that for Intel Arria 10 devices, you may need to download the Encrypted HSPICE
model from the Altera website.

Related Information

• I/O Management
For information about how to use theEnable Advanced I/O Timing option
and configure board trace models for the I/O standards used in your design.

• SPICE Models for Intel Devices
For more information about the Encrypted HSPICE model.

2.5.2. Accessing HSPICE Simulation Kits

You can access the available HSPICE models with the Intel Quartus Prime software’s
HSPICE Writer tool and also at the Spice Models for Intel Devices web page.

The Intel Quartus Prime software HSPICE Writer tool removes many common sources
of user error from the I/O simulation process. The HSPICE Writer tool automatically
creates preconfigured I/O simulation spice decks that only require the addition of a
user board model. All the difficult tasks required to configure the I/O modes and
interpret the timing results are handled automatically by the HSPICE Writer tool.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

40

https://www.intel.com/content/www/us/en/docs/programmable/683143/current/managing-device-i-o-pins.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/board-layout/hspice.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Spice Models for Intel Devices
For more information about downloadable HSPICE models.

2.5.3. The Double Counting Problem in HSPICE Simulations

Simulating I/Os using accurate models is extremely helpful for finding and fixing FPGA
I/O timing and board signal integrity issues before any boards are built. However, the
usefulness of such simulations is directly related to the accuracy of the models used
and whether the simulations are set up and performed correctly.

To ensure accuracy in models and simulations created for FPGA output signals you
must consider the timing hand-off between tCO timing in the Intel Quartus Prime
software and simulation-based board delay. If this hand-off is not handled correctly,
the calculated delay could either count some of the delay twice or even miss counting
some of the delay entirely.

2.5.3.1. Defining the Double Counting Problem

The double counting problem is inherent to the difference between the method to
analyze output timing in the Intel Quartus Prime software versus the method HSPICE
models use. The timing analyzer tools in the Intel Quartus Prime software measure
delay timing for an output signal from the core logic of the FPGA design through the
output buffer, ending at the FPGA pin with a default capacitive load or a specified
value for the I/O standard you selected. This measurement is the tCO timing variable.

Figure 20. Double Counting Problem
FPGA Core

Logic
FPGA Output

Buffer
FPGA Pin

HSPICE Reported Delay

Quartus Prime tCO

HSPICE tPD with
User Board Trace Model

Overlap (Double Counting)

Termination Network/
Trace Model

Signal
Destination

HSPICE models for board simulation measure tPD (propagation delay) from an
arbitrary reference point in the output buffer, through the device pin, out along the
board routing, and ending at the signal destination.
If you add these two delays, the delay between the output buffer and the device pin
appears twice in the calculation. A model or simulation that does not account for this
double count creates overly pessimistic simulation results, because the double-
counted delay can limit I/O performance artificially.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

41

http://www.altera.com/support/software/download/hspice/hsp-index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

One approach to fix the problem is subtracting the overlap between tCO and tPD to
account for the double count. However, this adjustment is not accurate, because each
measurement considers a different load.

Note: Input signals do not exhibit this problem, because the HSPICE models for inputs stop
at the FPGA pin instead of at the input buffer. In this case, adding the delays together
produces an accurate measurement of delay timing.

2.5.3.2. The Solution to Double Counting

To adjust the measurements to account for the double-counting, the delay between
the arbitrary point in the output buffer selected by the HSPICE model and the FPGA
pin must be subtracted from either tCO or tPD before adding the results together. The
subtracted delay must also be based on a common load between the two
measurements. This is done by repeating the HSPICE model measurement, but with
the same load used by the Intel Quartus Prime software for the tCO measurement.

Figure 21. Common Test Loads Used for Output Timing
FPGA Core

Logic
FPGA Output

Buffer
FPGA Pin Quartus Prime

Test Load

HSPICE Netlist with
Quartus Prime Test Load

HSPICE tPD with User
Specified Board Trace Model

Quartus Prime tCO

HSPICE Netlist with
User Board Trace Model

Overlap (HSPICE Delay
with Test Load)

Total Delay

HSPICE tPD Adjusted by tTESTLOAD

Termination Network/
Trace Model

Signal
Destination

With tTESTLOAD known, the total delay is calculated for the output signal from the FPGA
logic to the signal destination on the board, accounting for the double count.

tdelay = tCO+(tPD-tTESTLOAD)

The preconfigured simulation files generated by the HSPICE Writer in the Intel Quartus
Prime software are designed to account for the double-counting problem based on this
calculation automatically.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.4. HSPICE Writer Tool Flow

This section includes information to help you get started using the Intel Quartus Prime
software HSPICE Writer tool. The information in this section assumes you have a basic
knowledge of the standard Intel Quartus Prime software design flow, such as project
and assignment creation, compilation, and timing analysis.

2.5.4.1. Applying I/O Assignments

The first step in the HSPICE Writer tool flow is to configure the I/O standards and
modes for each of the pins in your design properly. In the Intel Quartus Prime
software, these settings are represented by assignments that map I/O settings, such
as pin selection, and I/O standard and drive strength, to corresponding signals in your
design.

The Intel Quartus Prime software provides multiple methods for creating these
assignments:

• Using the Pin Planner

• Using the assignment editor

• Manually editing the .qsf file

• By making assignments in a scripted Intel Quartus Prime flow using Tcl

2.5.4.2. Enabling HSPICE Writer

You must enable the HSPICE Writer in the Settings dialog box of the Intel Quartus
Prime software to generate the HSPICE decks from the Intel Quartus Prime software.

Figure 22. EDA Tool Settings: Board Level Options Dialog Box

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.4.3. Enabling HSPICE Writer Using Assignments

You can also use HSPICE Writer in conjunction with a scripted Tcl flow. To enable
HSPICE Writer during a full compile, include the following lines in your Tcl script.

Enable HSPICE Writer

set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL \
"HSPICE (Signal Integrity)"
set_global_assignment -name EDA_OUTPUT_DATA_FORMAT HSPICE \
-section_id eda_board_design_signal_integrity
set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR <output_directory> \
-section_id eda_board_design_signal_integrity

As with command-line invocation, specifying the output directory is optional. If not
specified, the output directory defaults to board/hspice.

2.5.4.4. Naming Conventions for HSPICE Files

HSPICE Writer automatically generates simulation files and names them using the
following naming convention: <device>_<pin #>_<pin_name>_<in/out>.sp.

For bidirectional pins, two spice decks are produced; one with the I/O buffer
configured as an input, and the other with the I/O buffer configured as an output.

The Intel Quartus Prime software supports alphanumeric pin names that contain the
underscore (_) and dash (-) characters. Any illegal characters used in file names are
converted automatically to underscores.

Related Information

• Sample Output for I/O HSPICE Simulation Deck on page 54

• Sample Input for I/O HSPICE Simulation Deck on page 50

2.5.4.5. Invoking HSPICE Writer

After HSPICE Writer is enabled, the HSPICE simulation files are generated
automatically each time the project is completely compiled. The Intel Quartus Prime
software also provides an option to generate a new set of simulation files without
having to recompile manually. In the Processing menu, click Start EDA Netlist
Writer to generate new simulation files automatically.

Note: You must perform both Analysis & Synthesis and Fitting on a design before invoking
the HSPICE Writer tool.

2.5.4.6. Invoking HSPICE Writer from the Command Line

If you use a script-based flow to compile your project, you can create HSPICE model
files by including the following commands in your Tcl script (.tcl file).

Create HSPICE Model Files

set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL \
"HSPICE (Signal Integrity)"
set_global_assignment -name EDA_OUTPUT_DATA_FORMAT HSPICE \
-section_ideda_board_design_signal_integrity
set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR <output_directory> \
-section_id eda_board_design_signal_integrity

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The <output_directory> option specifies the location where HSPICE model files are
saved. By default, the <project directory>/board/hspice directory is used.

Invoke HSPICE Writer

To invoke the HSPICE Writer tool through the command line, type:

quartus_eda.exe <project_name> --board_signal_integrity=on --format=HSPICE \
--output_directory=<output_directory>

<output_directory> specifies the location where the tool writes the generated spice
decks, relative to the design directory. This is an optional parameter and defaults to
board/hspice.

2.5.4.7. Customizing Automatically Generated HSPICE Decks

HSPICE models generated by the HSPICE Writer can be used for simulation as
generated.

A default board description is included, and a default simulation is set up to measure
rise and fall delays for both input and output simulations, which compensates for the
double counting problem. However, Intel recommends that you customize the board
description to more accurately represent your routing and termination scheme.

The sample board trace loading in the generated HSPICE model files must be replaced
by your actual trace model before you can run a correct simulation. To do this, open
the generated HSPICE model files for all pins you want to simulate and locate the
following section.

Sample Board Trace Section

* I/O Board Trace and Termination Description
* - Replace this with your board trace and termination description

You must replace the example load with a load that matches the design of your PCB
board. This includes a trace model, termination resistors, and, for output simulations,
a receiver model. The spice circuit node that represents the pin of the FPGA package is
called pin. The node that represents the far pin of the external device is called load-
in (for output SPICE decks) and source-in (for input SPICE decks).

For an input simulation, you must also modify the stimulus portion of the spice file.
The section of the file that must be modified is indicated in the following comment
block.

 Sample Source Stimulus Section

* Sample source stimulus placeholder
* - Replace this with your I/O driver model

Replace the sample stimulus model with a model for the device that drives the FPGA.

2.5.5. Running an HSPICE Simulation

Because simulation parameters are configured directly in the HSPICE model files,
running a simulation requires only that you open an HSPICE file in the HSPICE user
interface and start the simulation.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 23. HSPICE User Interface Window

Click Open and browse to the location of the HSPICE model files generated by the
Intel Quartus Prime HSPICE Writer. The default location for HSPICE model files is
<project directory>/board/hspice. Select the .sp file generated by the HSPICE
Writer for the signal you want to simulate. Click OK.

To run the simulation, click Simulate. The status of the simulation is displayed in the
window and saved in an .lis file with the same name as the .sp file when the
simulation is complete. Check the .lis file if an error occurs during the simulation
requiring a change in the .sp file to fix.

2.5.6. Interpreting the Results of an Output Simulation

By default, the automatically generated output simulation spice decks are set up to
measure three delays for both rising and falling transitions. Two of the measurements,
tpd_rise and tpd_fall, measure the double-counting corrected delay from the
FPGA pin to the load pin. To determine the complete clock-edge to load-pin delay, add
these numbers to the Intel Quartus Prime software reported default loading tCO delay.

The remaining four measurements, tpd_uncomp_rise, tpd_uncomp_fall,
t_dblcnt_rise, and t_dblcnt_fall, are required for the double-counting
compensation process and are not required for further timing usage.

Related Information

Simulation Analysis on page 54

2.5.7. Interpreting the Results of an Input Simulation

By default, the automatically generated input simulation SPICE decks are set up to
measure delays from the source’s driver pin to the FPGA’s input pin for both rising and
falling transitions.

The propagation delay is reported by HSPICE measure statements as tpd_rise and
tpd_fall. To determine the complete source driver pin-to-FPGA register delay, add
these numbers to the Intel Quartus Prime software reported TH and TSU input timing
numbers.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.8. Viewing and Interpreting Tabular Simulation Results

The .lis file stores the collected simulation data in tabular form. The default
simulation configured by the HSPICE Writer produces delay measurements for rising
and falling transitions on both input and output simulations.

These measurements are found in the .lis file and named tpd_rise and
tpd_fall. For output simulations, these values are already adjusted for the double
count. To determine the complete delay from the FPGA logic to the load pin, add either
of these measurements to the Intel Quartus Prime tCO delay. For input simulations,
add either of these measurements to the Intel Quartus Prime tSU and tH delay values
to calculate the complete delay from the far end stimulus to the FPGA logic. Other
values found in the .lis file, such as tpd_uncomp_rise, tpd_uncomp_fall,
t_dblcnt_rise, and t_dblcnt_fall, are parts of the double count compensation
calculation. These values are not necessary for further analysis.

2.5.9. Viewing Graphical Simulation Results

You can view the results of the simulation quickly as a graphical waveform display
using the AvanWaves viewer included with HSPICE. With the default simulation
configured by the HSPICE Writer, you can view the simulated waveforms at both the
source and destination in input and output simulations.

To see the waveforms for the simulation, in the HSPICE user interface window, click
AvanWaves. The AvanWaves viewer opens and displays the Results Browser.

Figure 24. HSPICE AvanWaves Results Browser

The Results Browser lets you select which waveform to view quickly in the main
viewing window. If multiple simulations are run on the same signal, the list at the top
of the Results Browser displays the results of each simulation. Click the simulation

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

description to select which simulation to view. By default, the descriptions are derived
from the first line of the HSPICE file, so the description might appear as a line of
asterisks.

Select the type of waveform to view, by performing the following steps:

1. To see the source and destination waveforms with the default simulation, from the
Types list, select Voltages.

2. On the Curves list, double-click the waveform you want to view. The waveform
appears in the main viewing window.

You can zoom in and out and adjust the view as desired.

Figure 25. AvanWaves Waveform Viewer

2.5.10. Making Design Adjustments Based on HSPICE Simulations

Based on the results of your simulations, you can make adjustments to the I/O
assignments or simulation parameters if required. For example, after you run a
simulation and see overshoot or ringing in the simulated signal at the destination
buffer, you can adjust the drive strength I/O assignment setting to a lower value.
Regenerate the HSPICE deck, and run the simulation again to verify that the change
fixed the problem.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 26. Example of Overshoot in the AvanWaves Waveform Viewer

If there is a discontinuity or any other anomalies at the destination, adjust the board
description in the Intel Quartus Prime Board Trace Model, or in the generated HSPICE
model files to change the termination scheme or adjust termination component
values. After making these changes, regenerate the HSPICE files if necessary, and
rerun the simulation to verify whether your adjustments solved the problem.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 27. Example of Signal Integrity Anomaly in the AvanWaves Waveform Viewer

For more information about board-level signal integrity and to learn about ways to
improve it with simple changes to your FPGA design, visit the Intel Signal & Power
Integrity Center

Related Information

Intel Signal & Power Integrity Center

2.5.11. Sample Input for I/O HSPICE Simulation Deck

The following sections examine a typical HSPICE simulation spice deck for an I/O of
type input. Each section presents the simulation file one block at a time.

2.5.11.1. Header Comment

The first block of an input simulation spice deck is the header comment. The purpose
of this block is to provide an easily readable summary of how the simulation file has
been automatically configured by the Intel Quartus Prime software.

This block has two main components: The first component summarizes the I/O
configuration relevant information such as device, speed grade, and so on. The second
component specifies the exact test condition that the Intel Quartus Prime software
assumes for the given I/O standard.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

50

https://www.altera.com/support/support-resources/support-centers/signal-power-integrity.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 Sample Header Comment Block

* Intel Quartus Prime HSPICE Writer I/O Simulation Deck*

* This spice simulation deck was automatically generated by
* Quartus for the following IO settings:
*
* Device: EP2S60F1020C3
* Speed Grade: C3
* Pin: AA4 (out96)
* Bank: IO Bank 6 (Row I/O)
* I/O Standard: LVTTL, 12mA
* OCT: Off
*
* Intel Quartus Prime’s default I/O timing delays assume the following slow
* corner simulation conditions.
*
* Specified Test Conditions For Intel Quartus Prime Tco
* Temperature: 85C (Slowest Temperature Corner)
* Transistor Model: TT (Typical Transistor Corner)
* Vccn: 3.135V (Vccn_min = Nominal - 5%)
* Vccpd: 2.97V (Vccpd_min = Nominal - 10%)
* Load: No Load
* Vtt: 1.5675V (Voltage reference is Vccn/2)
*
* Note: The I/O transistors are specified to operate at least as
* fast as the TT transistor corner, actual production
* devices can be as fast as the FF corner. Any simulations
* for hold times should be conducted using the fast process
* corner with the following simulation conditions.
* Temperature: 0C (Fastest Commercial Temperature Corner **)
* Transistor Model: FF (Fastest Transistor Corner)
* Vccn: 1.98V (Vccn_hold = Nominal + 10%)
* Vccpd: 3.63V (Vccpd_hold = Nominal + 10%)
* Vtt: 0.95V (Vtt_hold = Vccn/2 - 40mV)
* Vcc: 1.25V (Vcc_hold = Maximum Recommended)
* Package Model: Short-circuit from pad to pin (no parasitics)
*
* Warnings:

2.5.11.2. Simulation Conditions

The simulation conditions block loads the appropriate process corner models for the
transistors. This condition is automatically set up for the slow timing corner and is
modified only if other simulation corners are desired.

Simulation Conditions Block

* Process Settings

.options brief

.inc ‘sii_tt.inc’ * TT process corner

2.5.11.3. Simulation Options

The simulation options block configures the simulation temperature and configures
HSPICE with typical simulation options.

 Simulation Options Block

* Simulation Options

.options brief=0

.options badchr co=132 scale=1e-6 acct ingold=2 nomod dv=1.0

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

+ dcstep=1 absv=1e-3 absi=1e-8 probe csdf=2 accurate=1
+ converge=1
.temp 85

Note: For a detailed description of these options, consult your HSPICE manual.

2.5.11.4. Constant Definition

The constant definition block of the simulation file instantiates the voltage sources that
controls the configuration modes of the I/O buffer.

Constant Definition Block

* Constant Definition

voeb oeb 0 vc * Set to 0 to enable buffer output
vopdrain opdrain 0 0 * Set to vc to enable open drain
vrambh rambh 0 0 * Set to vc to enable bus hold
vrpullup rpullup 0 0 * Set to vc to enable weak pullup
vpcdp5 rpcdp5 0 rp5 * Set the IO standard
vpcdp4 rpcdp4 0 rp4
vpcdp3 rpcdp3 0 rp3
vpcdp2 rpcdp2 0 rp2
vpcdp1 rpcdp1 0 rp1
vpcdp0 rpcdp0 0 rp0
vpcdn4 rpcdn4 0 rn4
vpcdn3 rpcdn3 0 rn3
vpcdn2 rpcdn2 0 rn2
vpcdn1 rpcdn1 0 rn1
vpcdn0 rpcdn0 0 rn0
vdin din 0 0

Where:

• Voltage source voeb controls the output enable of the buffer and is set to disabled
for inputs.

• vopdrain controls the open drain mode for the I/O.

• vrambh controls the bus hold circuitry in the I/O.

• vrpullup controls the weak pullup.

• The next 11 voltages sources control the I/O standard of the buffer and are
configured through a later library call.

• vdin is not used on input pins because it is the data pin for the output buffer.

2.5.11.5. Buffer Netlist

The buffer netlist block of the simulation spice deck loads all the load models required
for the corresponding input pin.

 Buffer Netlist Block

* IO Buffer Netlist

.include ‘vio_buffer.inc’

2.5.11.6. Drive Strength

The drive strength block of the simulation SPICE deck loads the configuration bits
necessary to configure the I/O into the proper I/O standard and drive strengths.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Although these settings are not relevant to an input buffer, they are provided to allow
the SPICE deck to be modifiable to support bidirectional simulations.

 Drive Strength Block

* Drive Strength Settings

.lib ‘drive_select_hio.lib’ 3p3ttl_12ma

2.5.11.7. I/O Buffer Instantiation

The I/O buffer instantiation block of the simulation SPICE deck instantiates the
necessary power supplies and I/O model components that are necessary to simulate
the given I/O.

 I/O Buffer Instantiation

I/O Buffer Instantiation

* Supply Voltages Settings
.param vcn=3.135
.param vpd=2.97
.param vc=1.15

* Instantiate Power Supplies|
vvcc vcc 0 vc * FPGA core voltage
vvss vss 0 0 * FPGA core ground
vvccn vccn 0 vcn * IO supply voltage
vvssn vssn 0 0 * IO ground
vvccpd vccpd 0 vpd * Pre-drive supply voltage

* Instantiate I/O Buffer
xvio_buf din oeb opdrain die rambh
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp5 rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup vccn vccpd vcpad0 vio_buf

* Internal Loading on Pad
* - No loading on this pad due to differential buffer/support
* circuitry

* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

2.5.11.8. Board Trace and Termination

The board trace and termination block of the simulation SPICE deck is provided only
as an example. Replace this block with your own board trace and termination models.

Board Trace and Termination Block

* I/O Board Trace and Termination Description
* - Replace this with your board trace and termination description

wtline pin vssn load vssn N=1 L=1 RLGCMODEL=tlinemodel
.MODEL tlinemodel W MODELTYPE=RLGC N=1 Lo=7.13n Co=2.85p
Rterm2 load vssn 1x

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.11.9. Stimulus Model

The stimulus model block of the simulation spice deck is provided only as a place
holder example. Replace this block with your own stimulus model. Options for this
include an IBIS or HSPICE model, among others.

Stimulus Model Block

* Sample source stimulus placeholder
* - Replace this with your I/O driver model

Vsource source 0 pulse(0 vcn 0s 0.4ns 0.4ns 8.5ns 17.4ns)

2.5.11.10. Simulation Analysis

The simulation analysis block of the simulation file is configured to measure the
propagation delay from the source to the FPGA pin. Both the source and end point of
the delay are referenced against the 50% VCCN crossing point of the waveform.

Simulation Analysis Block

* Simulation Analysis Setup

* Print out the voltage waveform at both the source and the pin
.print tran v(source) v(pin)
.tran 0.020ns 17ns

* Measure the propagation delay from the source pin to the pin
* referenced against the 50% voltage threshold crossing point

.measure TRAN tpd_rise TRIG v(source) val=’vcn*0.5’ rise=1
+ TARG v(pin) val =’vcn*0.5’ rise=1
.measure TRAN tpd_fall TRIG v(source) val=’vcn*0.5’ fall=1
+ TARG v(pin) val =’vcn*0.5’ fall=1

2.5.12. Sample Output for I/O HSPICE Simulation Deck

A typical HSPICE simulation SPICE deck for an I/O-type output has several sections.
Each section presents the simulation file one block at a time.

2.5.12.1. Header Comment

The first block of an output simulation SPICE deck is the header comment. The
purpose of this block is to provide a readable summary of how the simulation file has
been automatically configured by the Intel Quartus Prime software.

This block has two main components:

• The first component summarizes the I/O configuration relevant information such
as device, speed grade, and so on.

• The second component specifies the exact test condition that the Intel Quartus
Prime software assumes when generating tCO delay numbers. This information is
used as part of the double-counting correction circuitry contained in the simulation
file.

The SPICE decks are preconfigured to calculate the slow process corner delay but can
also be used to simulate the fast process corner as well. The fast corner conditions are
listed in the header under the notes section.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The final section of the header comment lists any warning messages that you must
consider when you use the SPICE decks.

 Header Comment Block

* Intel Quartus Prime HSPICE Writer I/O Simulation Deck
*
* This spice simulation deck was automatically generated by
* Intel Quartus Prime for the following IO settings:
*
* Device: EP2S60F1020C3
* Speed Grade: C3
* Pin: AA4 (out96)
* Bank: IO Bank 6 (Row I/O)
* I/O Standard: LVTTL, 12mA
* OCT: Off
*
* Quartus’ default I/O timing delays assume the following slow
* corner simulation conditions.
* Specified Test Conditions For Intel Quartus Prime Tco
* Temperature: 85C (Slowest Temperature Corner)
* Transistor Model: TT (Typical Transistor Corner)
* Vccn: 3.135V (Vccn_min = Nominal - 5%)
* Vccpd: 2.97V (Vccpd_min = Nominal - 10%)
* Load: No Load
* Vtt: 1.5675V (Voltage reference is Vccn/2)
* For C3 devices, the TT transistor corner provides an
* approximation for worst case timing. However, for functionality
* simulations, it is recommended that the SS corner be simulated
* as well.
*
* Note: The I/O transistors are specified to operate at least as
* fast as the TT transistor corner, actual production
* devices can be as fast as the FF corner. Any simulations
* for hold times should be conducted using the fast process
* corner with the following simulation conditions.
* Temperature: 0C (Fastest Commercial Temperature Corner **)
* Transistor Model: FF (Fastest Transistor Corner)
* Vccn: 1.98V (Vccn_hold = Nominal + 10%)
* Vccpd: 3.63V (Vccpd_hold = Nominal + 10%)
* Vtt: 0.95V (Vtt_hold = Vccn/2 - 40mV)
* Vcc: 1.25V (Vcc_hold = Maximum Recommended)
* Package Model: Short-circuit from pad to pin
* Warnings:

2.5.12.2. Simulation Conditions

The simulation conditions block loads the appropriate process corner models for the
transistors. This condition is automatically set up for the slow timing corner and must
be modified only if other simulation corners are desired.

Simulation Conditions Block

* Process Settings

.options brief

.inc ‘sii_tt.inc’ * typical-typical process corner

Note: Two separate corners cannot be simulated at the same time. Instead, simulate the
base case using the Quartus corner as one simulation and then perform a second
simulation using the desired customer corner. The results of the two simulations can
be manually added together.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.12.3. Simulation Options

The simulation options block configures the simulation temperature and configures
HSPICE with typical simulation options.

Simulation Options Block

* Simulation Options
.options brief=0
.options badchr co=132 scale=1e-6 acct ingold=2 nomod dv=1.0
+ dcstep=1 absv=1e-3 absi=1e-8 probe csdf=2 accurate=1
+ converge=1
.temp 85

Note: For a detailed description of these options, consult your HSPICE manual.

2.5.12.4. Constant Definition

The constant definition block of the output simulation SPICE deck instantiates the
voltage sources that controls the configuration modes of the I/O buffer.

Constant Definition Block

* Constant Definition

voeb oeb 0 0 * Set to 0 to enable buffer output
vopdrain opdrain 0 0 * Set to vc to enable open drain
vrambh rambh 0 0 * Set to vc to enable bus hold
vrpullup rpullup 0 0 * Set to vc to enable weak pullup
vpci rpci 0 0 * Set to vc to enable pci mode
vpcdp4 rpcdp4 0 rp4 * These control bits set the IO standard
vpcdp3 rpcdp3 0 rp3
vpcdp2 rpcdp2 0 rp2
vpcdp1 rpcdp1 0 rp1
vpcdp0 rpcdp0 0 rp0
vpcdn4 rpcdn4 0 rn4
vpcdn3 rpcdn3 0 rn3
vpcdn2 rpcdn2 0 rn2
vpcdn1 rpcdn1 0 rn1
vpcdn0 rpcdn0 0 rn0
vdin din 0 pulse(0 vc 0s 0.2ns 0.2ns 8.5ns 17.4ns)

Where:

• Voltage source voeb controls the output enable of the buffer.

• vopdrain controls the open drain mode for the I/O.

• vrambh controls the bus hold circuitry in the I/O.

• vrpullup controls the weak pullup.

• vpci controls the PCI clamp.

• The next ten voltage sources control the I/O standard of the buffer and are
configured through a later library call.

• vdin is connected to the data input of the I/O buffer.

• The edge rate of the input stimulus is automatically set to the correct value by the
Intel Quartus Prime software.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.12.5. I/O Buffer Netlist

The I/O buffer netlist block loads all of the models required for the corresponding pin.
These include a model for the I/O output buffer, as well as any loads that might be
present on the pin.

 I/O Buffer Netlist Block

*IO Buffer Netlist

.include ‘hio_buffer.inc’

.include ‘lvds_input_load.inc’

.include ‘lvds_oct_load.inc’

2.5.12.6. Drive Strength

The drive strength block of the simulation spice deck loads the configuration bits for
configuring the I/O to the proper I/O standard and drive strength. These options are
set by the HSPICE Writer tool and are not changed for expected use.

Drive Strength Block

* Drive Strength Settings

.lib ‘drive_select_hio.lib’ 3p3ttl_12ma

2.5.12.7. Slew Rate and Delay Chain

Stratix and Cyclone devices have sections for configuring the slew rate and delay
chain settings.

 Slew Rate and Delay Chain Settings

* Programmable Output Delay Control Settings

.lib ‘lib/output_delay_control.lib’ no_delay

* Programmable Slew Rate Control Settings

.lib ‘lib/slew_rate_control.lib’ slow_slow

2.5.12.8. I/O Buffer Instantiation

The I/O buffer instantiation block of the output simulation spice deck instantiates the
necessary power supplies and I/O model components that are necessary to simulate
the given I/O.

 I/O Buffer Instantiation Block

* I/O Buffer Instantiation

* Supply Voltages Settings
.param vcn=3.135
.param vpd=2.97
.param vc=1.15

* Instantiate Power Supplies
vvcc vcc 0 vc * FPGA core voltage
vvss vss 0 0 * FPGA core ground
vvccn vccn 0 vcn * IO supply voltage
vvssn vssn 0 0 * IO ground
vvccpd vccpd 0 vpd * Pre-drive supply voltage

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

* Instantiate I/O Buffer
xhio_buf din oeb opdrain die rambh
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup vccn vccpd vcpad0 hio_buf

* Internal Loading on Pad
* - This pad has an LVDS input buffer connected to it, along
* with differential OCT circuitry. Both are disabled but
* introduce loading on the pad that is modeled below.
xlvds_input_load die vss vccn lvds_input_load
xlvds_oct_load die vss vccpd vccn vcpad0 vccn lvds_oct_load

* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

2.5.12.9. Board and Trace Termination

The board trace and termination block of the simulation SPICE deck is provided only
as an example. Replace this block with your specific board loading models.

Board Trace and Termination Block

* I/O Board Trace And Termination Description
* - Replace this with your board trace and termination description
wtline pin vssn load vssn N=1 L=1 RLGCMODEL=tlinemodel
.MODEL tlinemodel W MODELTYPE=RLGC N=1 Lo=7.13n Co=2.85p
Rterm2 load vssn 1x

2.5.12.10. Double-Counting Compensation Circuitry

The double-counting compensation circuitry block of the simulation SPICE deck
instantiates a second I/O buffer that is used to measure double-counting. The buffer is
configured identically to the user I/O buffer but is connected to the Intel Quartus
Prime software test load. The simulated delay of this second buffer can be interpreted
as the amount of double-counting between the Intel Quartus Prime software and
HSPICE Writer simulated results.

As the amount of double-counting is constant for a given I/O standard on a given pin,
consider separating the double-counting circuitry from the simulation file. In doing so,
you can perform any number of I/O simulations while referencing the delay only once.

 (Part of)Double-Counting Compensation Circuitry Block

* Double Counting Compensation Circuitry
*
* The following circuit is designed to calculate the amount of
* double counting between Intel Quartus Prime and the HSPICE models. If
* you have not changed the default simulation temperature or
* transistor corner this spice deck automatically compensates the double
counting.
* In the event you wish to
* simulate an IO at a different temperature or transistor corner
* you need to remove this section of code and manually
* account for double counting. A description of Intel’s
* recommended procedure for this process can be found in the
* Intel Quartus Prime HSPICE Writer AppNote.

* Supply Voltages Settings
.param vcn_tl=3.135
.param vpd_tl=2.97

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

* Test Load Constant Definition
vopdrain_tl opdrain_tl 0 0
vrambh_tl rambh_tl 0 0
vrpullup_tl rpullup_tl 0 0

* Instantiate Power Supplies
vvccn_tl vccn_tl 0 vcn_tl
vvssn_tl vssn_tl 0 0
vvccpd_tl vccpd_tl 0 vpd_tl

* Instantiate I/O Buffer
xhio_testload din oeb opdrain_tl die_tl rambh_tl
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup_tl vccn_tl vccpd_tl vcpad0_tl hio_buf

* Internal Loading on Pad
xlvds_input_testload die_tl vss vccn_tl lvds_input_load
xlvds_oct_testload die_tl vss vccpd_tl vccn_tl vcpad0_tl vccn_tl
lvds_oct_load
* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg
* Default Intel Test Load
* - 3.3V LVTTL default test condition is an open load

Related Information

The Double Counting Problem in HSPICE Simulations on page 41

2.5.12.11. Simulation Analysis

The simulation analysis block is set up to measure double-counting corrected delays.
This is accomplished by measuring the uncompensated delay of the I/O buffer when
connected to the user load, and when subtracting the simulated amount of double-
counting from the test load I/O buffer.

Simulation Analysis Block

* Simulation Analysis Setup

*Print out the voltage waveform at both the pin and far end load
.print tran v(pin) v(load)
.tran 0.020ns 17ns

* Measure the propagation delay to the load pin. This value
* includes some double counting with Intel Quartus Prime’s Tco
.measure TRAN tpd_uncomp_rise TRIG v(din) val=’vc*0.5’ rise=1+ TARG v(load)
val=’vcn*0.5’ rise=1
.measure TRAN tpd_uncomp_fall TRIG v(din) val=’vc*0.5’ fall=1
 + TARG v(load) val=’vcn*0.5’ fall=1

* The test load buffer can calculate the amount of double counting
.measure TRAN t_dblcnt_rise TRIG v(din) val=’vc*0.5’ rise=1
+ TARG v(pin_tl) val=’vcn_tl*0.5’ rise=1
.measure TRAN t_dblcnt_fall TRIG v(din) val=’vc*0.5’ fall=1
+ TARG v(pin_tl) val=’vcn_tl*0.5’ fall=1

* Calculate the true propagation delay by subtraction
.measure TRAN tpd_rise PARAM=’tpd_uncomp_rise-t_dblcnt_rise’
.measure TRAN tpd_fall PARAM=’tpd_uncomp_fall-t_dblcnt_fall’

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.13. Advanced Topics

The information in this section describes some of the more advanced topics and
methods employed when setting up and running HSPICE simulation files.

2.5.13.1. PVT Simulations

The automatically generated HSPICE simulation files are set up to simulate the slow
process corner using low voltage, high temperature, and slow transistors. To ensure a
fully robust link, Intel recommends that you run simulations over all process corners.

To perform process, voltage, and temperature (PVT) simulations, manually modify the
spice decks in a two step process:

1. Remove the double-counting compensation circuitry from the simulation file. This
is required as the amount of double-counting is dependant upon how the Intel
Quartus Prime software calculates delays and is not based on which PVT corner is
being simulated. By default, the Intel Quartus Prime software provides timing
numbers using the slow process corner.

2. Select the proper corner for the PVT simulation by setting the correct HSPICE
temperature, changing the supply voltage sources, and loading the correct
transistor models.

A more detailed description of HSPICE process corners can be found in the family-
specific HSPICE model documentation.

Related Information

Accessing HSPICE Simulation Kits on page 40

2.5.13.2. Hold Time Analysis

Intel recommends performing worst-case hold time analysis using the fast corner
models, which use fast transistors, high voltage, and low temperature. This involves
modifying the SPICE decks to select the correct temperature option, change the
supply voltage sources, and load the correct fast transistor models. The values of
these parameters are located in the header comment section of the corresponding
simulation deck files.

For a truly worst-case analysis, combine the HSPICE Writer hold time analysis results
with the Intel Quartus Prime software fast timing model. This requires that you change
the double-counting compensation circuitry in the simulations files to also simulate the
fast process corners, as this is what the Intel Quartus Prime software uses for the fast
timing model.

Note: This method of hold time analysis is recommended only for globally synchronous
buses. Do not apply this method of hold-time analysis to source synchronous buses.
This is because the source synchronous clocking scheme is designed to cancel out
some of the PVT timing effects. If this is not taken into account, the timing results are
not accurate. Proper source synchronous timing analysis is beyond the scope of this
document.

2.5.13.3. I/O Voltage Variations

Use each of the FPGA family datasheets to verify the recommended operating
conditions for supply voltages. For current FPGA families, the maximum recommended
voltage corresponds to the fast corner, while the minimum recommended voltage

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

corresponds to the slow corner. These voltage recommendations are specified at the
power pins of the FPGA and are not necessarily the same voltage that are seen by the
I/O buffers due to package IR drops.

The automatically generated HSPICE simulation files model this IR effect
pessimistically by including a 50-mV IR drop on the VCCPD supply when a high drive
strength standard is being used.

2.5.13.4. Correlation Report

Correlation reports for the HSPICE I/O models are located in the family-specific
HSPICE I/O buffer simulation kits.

Related Information

Accessing HSPICE Simulation Kits on page 40

2.6. Document Revision History

Table 3. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Reorganized chapter introduction.

2016.10.31 16.1.0 • Corrected statement about timing simulation and double counting.

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 Updated format.

December 2010 10.0.1 Template update.

July 2010 10.0.0 Updated device support.

November 2009 9.1.0 No change to content.

March 2009 9.0.0 • Was volume 3, chapter 12 in the 8.1.0 release.
• No change to content.

November 2008 8.1.0 • Changed to 8-1/2 x 11 page size.
• Added information for Stratix III devices.
• Input signals for Cyclone III devices are supported.

May 2008 8.0.0 • Updated “Introduction” on page 12–1.
• Updated Figure 12–1.
• Updated Figure 12–3.
• Updated Figure 12–13.
• Updated “Output File Generation” on page 12–6.
• Updated “Simulation with HSPICE Models” on page 12–17.
• Updated “Invoking HSPICE Writer from the Command Line” on page 12–22.
• Added “Sample Input for I/O HSPICE Simulation Deck” on page 12–29.
• Added “Sample Output for I/O HSPICE Simulation Deck” on page 12–33.
• Updated “Correlation Report” on page 12–41.
• Added hyperlinks to referenced documents and websites throughout the chapter.
• Made minor editorial updates.

2. Signal Integrity Analysis with Third-Party Tools

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Mentor Graphics PCB Design Tools Support
You can integrate the Mentor Graphics ® I/O Designer or DxDesigner PCB design tools
into the Intel Quartus Prime design flow. This combination provides a complete FPGA-
to-board design workflow.

With today’s large, high-pin-count and high-speed FPGA devices, good and correct
PCB design practices are essential to ensure correct system operation. The PCB design
takes place concurrently with the design and programming of the FPGA. The FPGA or
ASIC designer initially creates signal and pin assignments, and the board designer
must correctly transfer these assignments to the symbols in their system circuit
schematics and board layout. As the board design progresses, Intel recommends
reassigning pins to optimize the PCB layout. Ensure that you inform the FPGA designer
of the pin reassignments so that the new assignments are included in an updated
placement and routing of the design.

The Mentor Graphics I/O Designer software allows you to take advantage of the full
FPGA symbol design, creation, editing, and back-annotation flow supported by the
Mentor Graphics tools.

This chapter covers the following topics:

• Mentor Graphics and Intel software integration flow

• Generating supporting files

• Adding Intel Quartus Prime I/O assignments to I/O Designer

• Updating assignment changes between the I/O Designer the Intel Quartus Prime
software

• Generating I/O Designer symbols

• Creating DxDesigner symbols from the Intel Quartus Prime output files

This chapter is intended for board design and layout engineers who want to start the
FPGA board integration while the FPGA is still in the design phase. Alternatively, the
board designer can plan the FPGA pin-out and routing requirements in the Mentor
Graphics tools and pass the information back to the Intel Quartus Prime software for
placement and routing. Part librarians can also benefit from this chapter by learning
how to use output from the Intel Quartus Prime software to create new library parts
and symbols.

The procedures in this chapter require the following software:

• The Intel Quartus Prime software version 5.1 or later

• DxDesigner software version 2004 or later

• Mentor Graphics I/O Designer software (optional)

Note: To obtain and license the Mentor Graphics tools and for product information, support,
and training, refer to the Mentor Graphics website.

683619 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

3.1. FPGA-to-PCB Design Flow

You can create a design flow integrating an Intel FPGA design from the Intel Quartus
Prime software, and a circuit schematic in the DxDesigner software.

3. Mentor Graphics PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 28. Design Flow with and Without the I/O Designer Software

No

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create/Update I/O
 Designer Database

Generate Symbol

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
FPGA Xchange File (.fx)

Compile and Run
EDA Netlist Writer

Start FPGA Design Start PCB Design

End

Quartus Prime Software

Using I/O
Designer?

Import Pin
Assignments

DxDesigner

Instantiate Symbol
in Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

Board Layout Tool

Back-Annotate
Changes

.fx

.pin

Yes

(1)

Layout & Route
FPGA

Changes?

Yes

No

Note: The Intel Quartus Prime software generates the .fx in the output directory you specify
in the Board-Level page of the Settings dialog box. However, the Intel Quartus
Prime software and the I/O Designer software can import pin assignments from an .fx
located in any directory. Use a backup .fx to prevent overwriting existing assignments
or importing invalid assignments.

3. Mentor Graphics PCB Design Tools Support

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To integrate the I/O Designer into your design flow, follow these steps:

1. In the Intel Quartus Prime software, click Assignments ➤ Settings ➤ EDA Tool
Settings ➤ Board-Level to specify settings for .fx symbol file generation.

2. Compile your design to generate the .fx and Pin-Out File (.pin) in the Intel
Quartus Prime project directory.

3. Create a board design with the DxDesigner software and the I/O Designer
software by performing the following steps:

a. Create a new I/O Designer database based on the .fx and the .pin files.

b. In the I/O Designer software, make adjustments to signal and pin
assignments.

c. Regenerate the .fx in the I/O Designer software to export the I/O Designer
software changes to the Intel Quartus Prime software.

d. Generate a single or fractured symbol for use in the DxDesigner software.

e. Add the symbol to the sym directory of a DxDesigner project, or specify a new
DxDesigner project with the new symbol.

f. Instantiate the symbol in your DxDesigner schematic and export the design to
the board layout tool.

g. Back-annotate pin changes created in the board layout tool to the DxDesigner
software and back to the I/O Designer software and the Intel Quartus Prime
software.

4. Create a board design with the DxDesigner software without the I/O Designer
software by performing the following steps:

a. Create a new DxBoardLink symbol with the Symbol wizard and reference
the .pin from the Intel Quartus Prime software in an existing DxDesigner
project.

b. Instantiate the symbol in your DxDesigner schematic and export the design to
a board layout tool.

Note: You can update these symbols with design changes with or without the I/O Designer
software. If you use the Mentor Graphics I/O Designer software and you change
symbols with the DxDesigner software, you must reimport the symbols into I/O
Designer to avoid overwriting your symbol changes.

3.2. Integrating with I/O Designer

You can integrate the Mentor Graphics I/O Designer software into the Intel Quartus
Prime design flow. Pin and signal assignment changes can be made anywhere in the
design flow with either the Intel Quartus Prime Pin Planner or the I/O Designer
software. The I/O Designer software facilitates moving these changes, as well as
synthesis, placement, and routing changes, between the Intel Quartus Prime software,
an external synthesis tool (if used), and a schematic capture tool such as the
DxDesigner software.

This section describes how to use the I/O Designer software to transfer pin and signal
assignment information to and from the Intel Quartus Prime software with an .fx, and
how to create symbols for the DxDesigner software.

3. Mentor Graphics PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29. I/O Designer Design Flow

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
 .fpc

Generate Symbol

DxDesigner

Instantiate Symbol
in Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

.fx

.pin

(2)

(2)

End

Board Layout Tool

Back-Annotate
Changes

Layout and Route
FPGA

Changes?

Yes

No

Note: (2) DxDesigner software-specific steps in the design flow are not part of the I/O
Designer flow.

3.2.1. Generating Pin Assignment Files

You transfer I/O pin assignments from the Intel Quartus Prime software to the Mentor
Graphics PCB tools by generating optional .pin and .fx files during Intel Quartus Prime
compilation. These files contain pin assignment information for use in other tools.

3. Mentor Graphics PCB Design Tools Support

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Click Assignments ➤ Settings ➤ Board-Level to specify settings for optional PCB
tool file generation. Click Processing ➤ Start Compilation to compile the design to
generate the file(s) in the project directory.

The Intel Quartus Prime-generated .pin contains the I/O pin name, number, location,
direction, and I/O standard for all used and unused pins in the design. Click
Assignments ➤ Pin Planner to modify I/O pin assignments. You cannot import pin
assignment changes from a Mentor Graphics .pin into the Intel Quartus Prime
software.

The .fx is an input or output of either the Intel Quartus Prime or I/O Designer
software. You can generate an .fx in the Intel Quartus Prime software for symbol
generation in the Mentor Graphics I/O Designer software. an Intel Quartus Prime .fx
contains the pin name, number, location, direction, I/O standard, drive strength,
termination, slew rate, IOB delay, and differential pins. An I/O Designer .fx
additionally includes information about unused pins and pin set groups.

The I/O Designer software can also read from or update an Intel Quartus Prime
Settings File (.qsf). You can use the .qsf in the same way as use of the .fx, but pin
swap group information does not transfer between I/O Designer and the Intel Quartus
Prime software. Use the .fx rather than the .qsf for transferring I/O assignment
information.

Figure 30. Generating .pin and .fx files

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
.fx

Compile and Run
EDA Netlist Writer

Start FPGA Design
Quartus Prime Software

Import Pin
Assignments

.fx

.pin

3.2.2. I/O Designer Settings

You can directly export I/O Designer symbols to the DxDesigner software. To set
options for integrating I/O Designer with Dx Designer, follow these steps:

3. Mentor Graphics PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Start the I/O Designer software.

2. Click Tools ➤ Prefences.

3. Click Paths, and then double-click the DxDesigner executable file path field to
select the location of the DxDesigner application.

4. Click Apply.

5. Click Symbol Editor, and then click Export. In the Export type menu, under
General, select DxDesigner/PADS-Designer.

6. Click Apply, and then click OK.

7. Click File ➤ Properties.

8. Click the PCB Flow tab, and then click Path to a DxDesigner project
directory.

9. Click OK.
If you do not have a new DxDesigner project in the Database wizard and a
DxDesigner project, you must create a new database with the DxDesigner
software, and then specify the project location in I/O Designer.

3.2.3. Transferring I/O Assignments

You can transfer Intel Quartus Prime signal and pin assignments contained in .pin
and .fx files into an I/O Designer database. Use the I/O Designer Database Wizard to
create a new database incorporating the .fx and .pin files. You can also create a new,
empty database and manually add the assignment information. If there is no available
signal or pin assignment information, you can create an empty database containing
only a selection of the target device. This technique is useful if you know the signals in
your design and the pins you want to assign. You can subsequently transfer this
information to the Intel Quartus Prime software for placement and routing.

You may create a very simple I/O Designer database that includes only the .pin or .fx
file information. However, when using only a .pin, you cannot import I/O assignment
changes from I/O Designer back into the Intel Quartus Prime software without also
generating an .fx. If your I/O Designer database includes only .fx file information, the
database may not contain all the available I/O assignment information. The Intel
Quartus Prime .fx file only lists assigned pins. The .pin lists all assigned and
unassigned device pins. Use both the .pin and the .fx to produce the most complete
set of I/O Designer database information.

To create a new I/O Designer database using the Database wizard, follow these steps;

1. Start the I/O Designer software. The Welcome to I/O Designer dialog box
appears. Select Wizard to create new database and click OK.
If the Welcome to I/O Designer dialog box does not appear, you can access the
wizard through the menu. To access the wizard, click File ➤ Database Wizard.

2. Click Next. The Define HDL source file page appears
If no HDL files are available, or if the .fx contains your signal and pin
assignments, you can skip Step 3 and proceed to Step 4.

3. If your design includes a Verilog HDL or VHDL file, you can add a top-level Verilog
HDL or VHDL file in the I/O Designer software. Adding a file allows you to create
functional blocks or get signal names from your design. You must create all
physical pin assignments in I/O Designer if you are not using an .fx or a .pin.
Click Next. The Database Name page appears.

3. Mentor Graphics PCB Design Tools Support

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. In the Database Name page, type your database file name. Click Next. The
Database Location window appears.

5. Add a path to the new or an existing database in the Location field, or browse to
a database location. Click Next. The FPGA flow page appears.

6. In the Vendor menu, click Altera.

7. In the Tool/Library menu, click Intel Quartus Prime <version> to select your
version of the Intel Quartus Prime software.

Note: The Intel Quartus Prime software version listed may not match your actual
software version. If your version is not listed, select the latest version. If
your target device is not available, the device may not yet be supported by
the I/O Designer software.

8. Select the appropriate device family, device, package, and speed (if applicable),
from the corresponding menus. Click Next. The Place and route page appears.

9. In the FPGAX file name field, type or browse to the backup copy of the .fx
generated by the Intel Quartus Prime software.

10. In the Pin report file name field, type or browse to the .pin generated by the
Intel Quartus Prime software. Click Next.
You can also select a .qsf for update. The I/O Designer software can update the
pin assignment information in the .qsf without affecting any other information in
the file.

Note: You can import a .pin without importing an .fx. The I/O Designer software
does not generate a .pin. To transfer assignment information to the Intel
Quartus Prime software, select an additional file and file type. Intel
recommends selecting an .fx in addition to a .pin for transferring all the
assignment information in the .fx and .pin files. In some versions of the I/O
Designer software, the standard file picker may incorrectly look for a .pin
instead of an .fx. In this case, select All Files (*.*) from the Save as type
list and select the file from the list.

11. On the Synthesis page, specify an external synthesis tool and a synthesis
constraints file for use with the tool. If you do not use an external synthesis tool,
click Next.

12. On the PCB Flow page, you can select an existing schematic project or create a
new project as a symbol information destination.

• To select an existing project, select Choose existing project and click Browse
after the Project Path field. The Select project dialog box appears. Select the
project.

• To create a new project, in the Select project dialog box, select Create new
empty project. Type the project file name in the Name field and browse to the
location where you want to save the file. Click OK.

13. If you have not specified a design tool to which you can send symbol information
in the I/O Designer software, click Advanced in the PCB Flow page and select
your design tool. If you select the DxDesigner software, you have the option to
specify a Hierarchical Occurrence Attributes (.oat) file to import into the I/O
Designer software. Click Next and then click Finish to create the
database.Updating

3. Mentor Graphics PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.4. Updating I/O Designer with Intel Quartus Prime Pin Assignments

As you fine tune your design in the Intel Quartus Prime software, changes to design
logic and pin assignments are likely. You must transfer any pin assignment changes
made during design iterations for correct analysis in your circuit schematic and board
layout tools. You transfer Intel Quartus Prime pin assignment changes to I/O Designer
by updating the .fx and the .pin files in the Intel Quartus Prime software. When you
update the .fx or the .pin, the I/O Designer database imports the changes
automatically when configured according to the following instructions.

Figure 31. Updating Intel Quartus Prime Pin Assignments in I/O Designer

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
 .fpc

Generate Symbol

.fx

.pin

To update the .fx in your selected output directory and the .pin in your project
directory after making changes to the design, perform the following tasks:

1. In the I/O Designer software, click File ➤ Properties.

2. Under FPGA Xchange, specify the .fx file name and location.

3. Under Place and Route, specify the .pin file name and location.
After you have set up these file locations, the I/O Designer software monitors
these files for changes. If the specified .fx or .pin is modified during design
processing, three indicators flash red in the lower right corner of the I/O Designer
GUI. You can click the indicators to open the I/O Designer Update Wizard
dialog box. The I/O Designer Update Wizard dialog box lists the updated files
in the database.

4. Make logic or pin assignment changes in your design.

5. Click Processing ➤ Start ➤ Start I/O Assignment Analysis to validate your
latest assignment changes.

6. To preserve your changes an update the corresponding the .fx and .pin files, click
Processing ➤ Start ➤ Start EDA Netlist Writer or Processing ➤ Start
Compilation.

Note: Your I/O Designer database should us a backup copy of the .fx generated
by the Intel Quartus Prime software. Otherwise, updating the file in the Intel
Quartus Prime software overwrites any changes made to the file by the I/O
Designer software. If there are I/O Designer assignments in the .fx that you
want to preserve, create a backup copy of the file before updating it in the
Intel Quartus Prime software, and verify that your I/O Designer database
points to the backup copy.

3. Mentor Graphics PCB Design Tools Support

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.5. Updating Intel Quartus Prime with I/O Designer Pin Assignments

As you fine tune your board design in I/O Designer, changes to signal routing and
layout are likely. You must import any routing and layout changes into the Intel
Quartus Prime software for accurate place and route to match the new pin-out. The
I/O Designer tool supports this flow.

Figure 32. Importing I/O Designer Pin Assignments

(2)

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
 .fpc

Generate Symbol

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
.fx

Compile and Run
EDA Netlist Writer

Start FPGA Design
Quartus Prime Software

Import Pin
Assignments

.fx

(1) (1)

To import I/O Designer pin assignments, follow these steps:

1. Make pin assignment changes directly in the I/O Designer software, or the
software can automatically update changes made in a board layout tool that are
back-annotated to a schematic entry program such as the DxDesigner software.

2. To update the .fx with the changes, click Generate ➤ FPGA Xchange File.

3. Open your Intel Quartus Prime project.

4. Click Assignments ➤ Import Assignments.

5. (Optional) To preserve original assignments before import, turn on Copy existing
assignments into <project name>.qsf.bak before importing before importing
the .fx.

6. Select the .fx and click Open.

7. Click OK.

3.2.6. Generating Schematic Symbols in I/O Designer

Circuit board schematic creation is one of the first tasks required in the design of a
new PCB. You can use the I/O Designer software to generate schematic symbols for
your Intel Quartus Prime FPGA design for use in the DXDesigner schematic entry
tools. The I/O Designer software can generate symbols for use in various Mentor

3. Mentor Graphics PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Graphics schematic entry tools, and can import changes back-annotated by board
layout tools to update the database and update the Intel Quartus Prime software with
the .fx

Most FPGA devices contain hundreds of pins, requiring large schematic symbols that
may not fit on a single schematic page. Symbol designs in the I/O Designer software
can be split or fractured into various functional blocks, allowing multiple part fractures
on the same schematic page or across multiple pages. In the DxDesigner software,
these part fractures join together with the use of the HETERO attribute.

You can use the I/O Designer Symbol wizard to quickly create symbols that you can
subsequently refine. Alternatively, you can import symbols from another DXDesigner
project, and then assign an FPGA to the symbol. To import symbols in the I/O
Designer software, File ➤ Import Symbol.

I/O Designer symbols are either functional, physical (PCB), or both. Signals imported
into the database, usually from Verilog HDL or VHDL files, are the basis of a functional
symbol. No physical device pins must be associated with the signals to generate a
functional symbol. This section focuses on board-level PCB symbols with signals
directly mapped to physical device pins through assignments in either the Intel
Quartus Prime Pin Planner or in the I/O Designer database.

3.2.6.1. Generating Schematic Symbols

To create a symbol based on a selected Intel FPGA device, follow these steps:

1. Start the I/O Designer software.

2. Click Symbol ➤ Symbol Wizard.

3. In the Symbol name field, type the symbol name. The DEVICE and PKG_TYPE
fields display the device and package information.

Note: If DEVICE and PKG_TYPE are blank or incorrect, close the Symbol wizard
and specify the correct device information (File ➤ Properties ➤ FPGA
Flow).

4. Under Symbol type, click PCB. Under Use signals, click All, then click Next.

5. Select fracturing options for your symbol. If you are using the Symbol wizard to
edit a previously created fractured symbol, you must turn on Reuse existing
fractures to preserve your current fractures. Select other options on this page as
appropriate for your symbol. Click Next.

6. Select additional fracturing options for your symbol. Click Next.

7. Select the options for the appearance of the symbols. Click Next.

8. Define the information you want to label for the entire symbol and for individual
pins. Click Next.

9. Add any additional signals and pins to the symbol. Click Finish.
You can view your symbol and any fractures you created with the Symbol Editor.
You can edit parts of the symbol, delete fractures, or rerun the Symbol wizard.
When you modify pin assignments in I/O Designer database, I/O Designer
symbols automatically reflect these changes. Modify assignments in the I/O
Designer software by supplying and updated .fx from the Intel Quartus Prime
software, or by back-annotating changes in your board layout tool.

3. Mentor Graphics PCB Design Tools Support

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.7. Exporting Schematic Symbols to DxDesigner

You can export your I/O Designer schematic symbols for to DxDesigner for further
design entry work. To generate all fractures of a symbol, click Generate ➤ All
Symbols. To generate only the currently displayed symbol, click Generate ➤
Current Symbol Only. The DxDesigner project /sym directory preserves each
symbol in the database as a separate file. You can instantiate the symbols in your
DxDesigner schematics.

3.3. Integrating with DxDesigner

You can integrate the Mentor Graphics DxDesigner schematic capture tool into the
Intel Quartus Prime design flow. Use DxDesigner to create flat circuit schematics or to
create hierarchical schematics that facilitate design reuse and a team-based design for
all PCB types. Use DxDesigner in conjunction with I/O Designer software for a
complete FPGA I/O and PCB design flow.

If you use DxDesigner without the I/O Designer software, the design flow is one-way,
using only the .pin generated by the Intel Quartus Prime software. You can only make
signal and pin assignment changes in the Intel Quartus Prime software. You cannot
back-annotate changes made in a board layout tool or in a DxDesigner symbol to the
Intel Quartus Prime software.

Figure 33. DxDesigner-only Flow (without I/O Designer)

DxDesigner

Instantiate in
Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

.pin

3.3.1. DxDesigner Project Settings

DxDesigner new projects automatically create FPGA symbols by default. However, if
you are using the I/O Designer with DxDesigner, you must enable DxBoardLink Flow
options for integration with the I/O Designer software. To enable the DxBoardLink flow
design configuration when creating a new DxDesigner project, follow these steps:

1. Start the DxDesigner software.

2. Click File ➤ New, and then click the Project tab.

3. Click More. Turn on DxBoardLink. To enable the DxBoardLink Flow design
configuration for an existing project, click Design Configurations in the Design
Configuration toolbar and turn on DxBoardLink.

3. Mentor Graphics PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.3.2. Creating Schematic Symbols in DxDesigner

You can create schematic symbols in the DxDesigner software manually or with the
Symbol wizard. The DxDesigner Symbol wizard is similar to the I/O Designer Symbol
wizard, but with fewer fracturing options. The DxDesigner Symbol wizard creates,
fractures, and edits FPGA symbols based on the specified Intel device. To create a
symbol with the Symbol wizard, follow these steps;

1. Start the DxDesigner software.

2. Click Symbol Wizard in the toolbar.

3. Type the new symbol name in the name field and click OK.

4. Specify creation of a new symbol or modification of an existing symbol. To modify
an existing symbol, specify the library path or alias, and select the existing
symbol. To create a new symbol, select DxBoardLink for the symbol source. The
DxDesigner block type defaults to Module because the FPGA design does not have
an underlying DxDesigner schematic. Choose whether or not to fracture the
symbol. Click Next.

5. Type a name for the symbol, an overall part name for all the symbol fractures, and
a library name for the new library created for this symbol. By default, the part and
library names are the same as the symbol name. Click Next.

6. Specify the appearance of the generated symbol and how itthe grid you have set
in your DxDesigner project schematic. After making your selections. Click Next.

7. In the FPGA vendor list, select Intel Quartus. In the Pin-Out file to import
field, select the .pin from your Intel Quartus Prime project directory. You can also
specify Fracturing Scheme, Bus pin, and Power pin options. Click Next.

8. Select to create or modify symbol attributes for use in the DxDesigner software.
Click Next.

9. On the Pin Settings page, make any final adjustments to pin and label location
and information. Each tabbed spreadsheet represents a fracture of your symbol.
Click Save Symbol.
After creating the symbol, you can examine and place any fracture of the symbol
in your schematic. You can locate separate files of all the fractures you created in
the library you specified or created in the /sym directory in your DxDesigner
project. You can add the symbols to your schematics or you can manually edit the
symbols or with the Symbol wizard.

3.4. Analyzing FPGA Simultaneous Switching Noise (SSN)

With the Intel Quartus Prime software, you can extract pin assignment data and
perform SSN analysis of your design. Perform SSN analysis early in the board layout
stage as part of your overall pin planning process. Use the Intel Quartus Prime SSN
Analyzer to optimize the pin assignments for better SSN performance.

3.5. Scripting API

The I/O Designer software includes a command line Tcl interpreter. All commands
input through the I/O Designer GUI translate into Tcl commands run by the tool. You
can run individual Tcl commands or scripts in the I/O Designer Console window, rather
than using the GUI.

You can use the following Tcl commands to control I/O Designer.

3. Mentor Graphics PCB Design Tools Support

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• set_fpga_xchange_file <file name>—specifies the .fx from which the I/O
Designer software updates assignments.

• update_from_fpga_xchange_file—updates the I/O Designer database with
assignment updates from the currently specified .fx.

• generate_fpga_xchange_file—updates the .fx with I/O Designer software
changes for transfer back into the Intel Quartus Prime software.

• set_pin_report_file -quartus_pin <file name>—imports assignment data
from an Intel Quartus Prime software .pin file.

• symbolwizard—runs the I/O Designer Symbol wizard.

• set_dx_designer_project -path <path>

3.6. Document Revision History

Table 4. Document Revision History

Date Version Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus
Prime.

2014.06.30 14.0.0 • Replaced MegaWizard Plug-In Manager information
with IP Catalog.

• Added standard information about upgrading IP
cores.

• Added standard installation and licensing
information.

• Removed outdated device support level information.
IP core device support is now available in IP Catalog
and parameter editor.

June 2012 12.0.0 • Removed survey link.

December 2010 10.1.0 • Changed to new document template.

3. Mentor Graphics PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Cadence PCB Design Tools Support

4.1. Cadence PCB Design Tools Support

The Intel Quartus Prime software interacts with the following software to provide a
complete FPGA-to-board integration design workflow: the Cadence Allegro Design
Entry HDL software and the Cadence Allegro Design Entry CIS (Component
Information System) software (also known as OrCAD Capture CIS). The information is
useful for board design and layout engineers who want to begin the FPGA board
integration process while the FPGA is still in the design phase. Part librarians can also
benefit by learning the method to use output from the Intel Quartus Prime software to
create new library parts and symbols.

With today’s large, high-pin-count and high-speed FPGA devices, good PCB design
practices are important to ensure the correct operation of your system. The PCB
design takes place concurrently with the design and programming of the FPGA. An
FPGA or ASIC designer initially creates the signal and pin assignments and the board
designer must transfer these assignments to the symbols used in their system circuit
schematics and board layout correctly. As the board design progresses, you must
perform pin reassignments to optimize the layout. You must communicate pin
reassignments to the FPGA designer to ensure the new assignments are processed
through the FPGA with updated placement and routing.

You require the following software:

• The Intel Quartus Prime software version 5.1 or later

• The Cadence Allegro Design Entry HDL software or the Cadence Allegro Design
Entry CIS software version 15.2 or later

• The OrCAD Capture software with the optional CIS option version 10.3 or later
(optional)

Note: These programs are very similar because the Cadence Allegro Design Entry CIS
software is based on the OrCAD Capture software. Any procedural information can
also apply to the OrCAD Capture software unless otherwise noted.

Related Information

• www.cadence.com
For more information about obtaining and licensing the Cadence tools and for
product information, support, and training

• www.orcad.com
For more information about the OrCAD Capture software and the CIS option

• www.ema-eda.com
For more information about Cadence and OrCAD support and training.

683619 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://www.cadence.com/us/pages/default.aspx
http://www.orcad.com
http://www.ema-eda.com
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

4.2. Product Comparison

Table 5. Cadence and OrCAD Product Comparison

Description Cadence Allegro
Design Entry HDL

Cadence Allegro
Design Entry CIS

OrCAD Capture CIS

Former Name Concept HDL Expert Capture CIS Studio —

History More commonly known by its
former name, Cadence
renamed all board design tools
in 2004 under the Allegro
name.

Based directly on OrCAD
Capture CIS, the Cadence
Allegro Design Entry CIS
software is still developed by
OrCAD but sold and
marketed by Cadence. EMA
provides support and
training.

The basis for Design Entry CIS
is still developed by OrCAD for
continued use by existing
OrCAD customers. EMA
provides support and training
for all OrCAD products.

Vendor Design Flow Cadence Allegro 600 series,
formerly known as the Expert
Series, for high-end, high-
speed design.

Cadence Allegro 200 series,
formerly known as the
Studio Series, for small- to
medium-level design.

—

Related Information

• www.cadence.com

• www.ema-eda.com

4.3. FPGA-to-PCB Design Flow

You can create a design flow integrating an Intel FPGA design from the Intel Quartus
Prime software through a circuit schematic in the Cadence Allegro Design Entry HDL
software or the Cadence Allegro Design Entry CIS software.

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

77

http://www.cadence.com
http://www.ema-eda.com
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 34. Design Flow with the Cadence Allegro Design Entry HDL Software

Project Manager

Create or Open a Project

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Part Developer

Start FPGA Design Start PCB Design
(Allegro Design Entry HDL)

End

Quartus Prime Software

.pin

Impor t or Update Pin
Assignments

Create or Update FPGA Symbol

Edit or F racture Symbol

Design Entry HDL

Instantiate Symbol in Schematic

F orward to Board Layout Tool

Board Layout Tool

Layout and Route FPGA

Figure 35. Design Flow with the Cadence Allegro Design Entry CIS Software

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Design Entry CISQuartus Prime Software

End

.pin

Instantiate Symbol in Schematic

Create or Open Project

Board Layout Tool

Layout and Route FPGA

Start FPGA Design Start PCB Design
(Allegro Design Entry CIS

Generate or Update Schematic

Edit or Fracture Symbol

Forward to Board Developement Tool

To create FPGA symbols using the Cadence Allegro PCB Librarian Part Developer tool,
you must obtain the Cadence PCB Librarian Expert license. You can update symbols
with changes made to the FPGA design using any of these tools.

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.3.1. Integrating Intel FPGA Design

To integrate an Intel FPGA design starting in the Intel Quartus Prime software through
to a circuit schematic in the Cadence Allegro Design Entry HDL software or the
Cadence Allegro Design Entry CIS software, follow these steps:

1. In the Intel Quartus Prime software, compile your design to generate a Pin-Out
File (.pin) to transfer the assignments to the Cadence software.

2. If you are using the Cadence Allegro Design Entry HDL software for your
schematic design, follow these steps:

a. Open an existing project or create a new project in the Cadence Allegro
Project Manager tool.

b. Construct a new symbol or update an existing symbol using the Cadence
Allegro PCB Librarian Part Developer tool.

c. With the Cadence Allegro PCB Librarian Part Developer tool, edit your symbol
or fracture it into smaller parts (optional).

d. Instantiate the symbol in your Cadence Allegro Design Entry HDL software
schematic and transfer the design to your board layout tool.

or

If you are using the Cadence Allegro Design Entry CIS software for your
schematic design, follow these steps:

e. Generate a new part in a new or existing Cadence Allegro Design Entry CIS
project, referencing the .pin output file from the Intel Quartus Prime software.
You can also update an existing symbol with a new .pin.

f. Split the symbol into smaller parts as necessary.

g. Instantiate the symbol in your Cadence Allegro Design Entry CIS schematic
and transfer the design to your board layout tool.

4.3.2. Performing Simultaneous Switching Noise (SSN) Analysis of Your
FPGA

With the Intel Quartus Prime software, you can extract pin assignment data and
perform SSN analysis of your FPGA design for designs targeting the Stratix III device
family.

You can analyze SSN in your device early in the board layout stage as part of your
overall pin planning process; however, you do not have to perform SSN analysis to
generate pin assignment data from the Intel Quartus Prime software. You can use the
SSN Analyzer tool to optimize the pin assignments for better SSN performance of your
device.

4.4. Setting Up the Intel Quartus Prime Software

You can transfer pin and signal assignments from the Intel Quartus Prime software to
the Cadence design tools by generating the Intel Quartus Prime project .pin.
The .pin is an output file generated by the Intel Quartus Prime Fitter containing pin
assignment information. You can use the Intel Quartus Prime Pin Planner to set and

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

change the assignments in the .pin and then transfer the assignments to the
Cadence design tools. You cannot, however, import pin assignment changes from the
Cadence design tools into the Intel Quartus Prime software with the .pin.

The .pin lists all used and unused pins on your selected Intel device. The .pin also
provides the following basic information fields for each assigned pin on the device:

• Pin signal name and usage

• Pin number

• Signal direction

• I/O standard

• Voltage

• I/O bank

• User or Fitter-assigned

Related Information

I/O Management
For information about how to use theEnable Advanced I/O Timing option and
configure board trace models for the I/O standards used in your design.

4.4.1. Generating a .pin File

To generate a .pin, follow these steps:

1. Compile your design.

2. Locate the .pin in your Intel Quartus Prime project directory with the name
<project name>.pin.

Related Information

I/O Management
For information about how to use theEnable Advanced I/O Timing option and
configure board trace models for the I/O standards used in your design.

4.5. FPGA-to-Board Integration with the Cadence Allegro Design
Entry HDL Software

The Cadence Allegro Design Entry HDL software is a schematic capture tool and is part
of the Cadence 600 series design flow. Use the Cadence Allegro Design Entry HDL
software to create flat circuit schematics for all types of PCB design. The Cadence
Allegro Design Entry HDL software can also create hierarchical schematics to facilitate
design reuse and team-based design. With the Cadence Allegro Design Entry HDL
software, the design flow from FPGA-to-board is one-way, using only the .pin
generated by the Intel Quartus Prime software. You can only make signal and pin
assignment changes in the Intel Quartus Prime software and these changes reflect as
updated symbols in a Cadence Allegro Design Entry HDL project.

For more information about the design flow with the Cadence Allegro Design Entry
HDL software, refer to Design Flow with the Cadence Allegro Design Entry HDL
Software.

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

80

https://www.intel.com/content/www/us/en/docs/programmable/683143/current/managing-device-i-o-pins.html
https://www.intel.com/content/www/us/en/docs/programmable/683143/current/managing-device-i-o-pins.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Routing or pin assignment changes made in a board layout tool or a Cadence Allegro
Design Entry HDL software symbol cannot be back-annotated to the Intel Quartus
Prime software.

Related Information

www.cadence.com
Provides information about the Cadence Allegro Design Entry HDL software and the
Cadence Allegro PCB Librarian Part Developer tool, including licensing, support,
usage, training, and product updates.

4.5.1. Creating Symbols

In addition to circuit simulation, circuit board schematic creation is one of the first
tasks required when designing a new PCB. Schematics must understand how the PCB
works, and to generate a netlist for a board layout tool for board design and routing.
The Cadence Allegro PCB Librarian Part Developer tool allows you to create schematic
symbols based on FPGA designs exported from the Intel Quartus Prime software.

You can create symbols for the Cadence Allegro Design Entry HDL project with the
Cadence Allegro PCB Librarian Part Developer tool, which is available in the Cadence
Allegro Project Manager tool. Intel recommends using the Cadence Allegro PCB
Librarian Part Developer tool to import FPGA designs into the Cadence Allegro Design
Entry HDL software.

You must obtain a PCB Librarian Expert license from Cadence to run the Cadence
Allegro PCB Librarian Part Developer tool. The Cadence Allegro PCB Librarian Part
Developer tool provides a GUI with many options for creating, editing, fracturing, and
updating symbols. If you do not use the Cadence Allegro PCB Librarian Part Developer
tool, you must create and edit symbols manually in the Symbol Schematic View in the
Cadence Allegro Design Entry HDL software.

Note: If you do not have a PCB Librarian Expert license, you can automatically create FPGA
symbols using the programmable IC (PIC) design flow found in the Cadence Allegro
Project Manager tool.

Before creating a symbol from an FPGA design, you must open a Cadence Allegro
Design Entry HDL project with the Cadence Allegro Project Manager tool. If you do not
have an existing Cadence Allegro Design Entry HDL project, you can create one with
the Cadence Allegro Design Entry HDL software. The Cadence Allegro Design Entry
HDL project directory with the name <project name>.cpm contains your Cadence
Allegro Design Entry HDL projects.

While the Cadence Allegro PCB Librarian Part Developer tool refers to symbol fractures
as slots, the other tools use different names to refer to symbol fractures.

Table 6. Symbol Fracture Naming Conventions

Cadence Allegro PCB
Librarian

Part Developer Tool

Cadence Allegro
Design Entry HDL

Software

Cadence Allegro
Design Entry
CIS Software

During symbol generation Slots — Sections

During symbol schematic instantiation — Versions Parts

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

81

http://www.cadence.com/us/pages/default.aspx
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

www.cadence.com
Provides information about using the PIC design flow.

4.5.1.1. Cadence Allegro PCB Librarian Part Developer Tool

You can create, fracture, and edit schematic symbols for your designs using the
Cadence Allegro PCB Librarian Part Developer tool. Symbols designed in the Cadence
Allegro PCB Librarian Part Developer tool can be split or fractured into several
functional blocks called slots, allowing multiple smaller part fractures to exist on the
same schematic page or across multiple pages.

4.5.1.1.1. Cadence Allegro PCB Librarian Part Developer Tool in the Design Flow

.pin
Import or Update Pin

Assignments

Create or Update FPGA
Symbol

Edit or Fracture Symbol

Part Developer

Instantiate Symbol
in Schematic

Forward to Board
Layout Tool

Layout and Route FPGA

Design Entry HDL

Board Layout Tool

End

These steps are not
part of the FPGA symbol
creation or update process.

To run the Cadence Allegro PCB Librarian Part Developer tool, you must open a
Cadence Allegro Design Entry HDL project in the Cadence Allegro Project Manager
tool. To open the Cadence Allegro PCB Librarian Part Developer tool, on the Flows
menu, click Library Management, and then click Part Developer.

Related Information

FPGA-to-PCB Design Flow on page 77

4.5.1.1.2. Import and Export Wizard

After starting the Cadence Allegro PCB Librarian Part Developer tool, use the Import
and Exportwizard to import your pin assignments from the Intel Quartus Prime
software.

Note: Intel recommends using your PCB Librarian Expert license file. To point to your PCB
Librarian Expert license file, on the File menu, click Change Product and then select
the correct product license.

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

82

http://www.cadence.com/us/pages/default.aspx
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To access the Import and Export wizard, follow these steps:

1. On the File menu, click Import and Export.

2. Select Import ECO-FPGA, and then click Next.

3. In the Select Source page of the Import and Export wizard, specify the
following settings:

a. In the Vendor list, select Altera.

b. In the PnR Tool list, select quartusII.

c. In the PR File box, browse to select the .pin in your Intel Quartus Prime
project directory.

d. Click Simulation Options to select simulation input files.

e. Click Next.

4. In the Select Destination dialog box, specify the following settings:

a. Under Select Component, click Generate Custom Component to create a
new component in a library,

or

Click Use standard component to base your symbol on an existing
component.

Note: Intel recommends creating a new component if you previously created a
generic component for an FPGA device. Generic components can cause
some problems with your design. When you create a new component,
you can place your pin and signal assignments from the Intel Quartus
Prime software on this component and reuse the component as a base
when you have a new FPGA design.

b. In the Library list, select an existing library. You can select from the cells in
the selected library. Each cell represents all the symbol versions and part
fractures for a particular part. In the Cell list, select the existing cell to use as
a base for your part.

c. In the Destination Library list, select a destination library for the
component. Click Next.

d. Review and edit the assignments you import into the Cadence Allegro PCB
Librarian Part Developer tool based on the data in the .pin and then click
Finish. The location of each pin is not included in the Preview of Import
Data page of the Import and Export wizard, but input pins are on the left
side of the created symbol, output pins on the right, power pins on the top,
and ground pins on the bottom.

4.5.1.1.3. Editing and Fracturing Symbol

After creating your new symbol in the Cadence Allegro PCB Librarian Part Developer
tool, you can edit the symbol graphics, fracture the symbol into multiple slots, and
add or change package or symbol properties.

The Part Developer Symbol Editor contains many graphical tools to edit the graphics of
a particular symbol. To edit the symbol graphics, select the symbol in the cell
hierarchy. The Symbol Pins tab appears. You can edit the preview graphic of the
symbol in the Symbol Pins tab.

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Fracturing a Cadence Allegro PCB Librarian Part Developer package into separate
symbol slots is useful for FPGA designs. A single symbol for most FPGA packages
might be too large for a single schematic page. Splitting the part into separate slots
allows you to organize parts of the symbol by function, creating cleaner circuit
schematics. For example, you can create one slot for an I/O symbol, a second slot for
a JTAG symbol, and a third slot for a power/ground symbol.

Figure 36. Splitting a Symbol into Multiple Slots

newt

reset

d[7..0] yn_out[7..0]

Slot 1

filtref

filtref

filtref

Slot 2 Slot 3

clk

clkx2

yvalid

follow

VC
CIN

T

VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

VC
CIO

1

VC
CIO

2

VC
CIO

3

VC
CIO

4

- This diagram represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings. Symbols created for other
devices or other configuration modes may have diff erent sets of configuration pins, but can be fractured in a similar manner.
- The power/ground slot shows only a representation of power and ground pins because the device contains a large number of power
and ground
pins.

To fracture a part into separate slots, or to modify the slot locations of pins on parts
fractured in the Cadence Allegro PCB Librarian Part Developer tool, follow these steps:

1. Start the Cadence Allegro Design Project Manager.

2. On the Flows menu, click Library Management.

3. Click Part Developer.

4. Click the name of the package you want to change in the cell hierarchy.

5. Click Functions/Slots. If you are not creating new slots but want to change the
slot location of some pins, proceed to Step 6. If you are creating new slots, click
Add. A dialog box appears, allowing you to add extra symbol slots. Set the
number of extra slots you want to add to the existing symbol, not the total
number of desired slots for the part. Click OK.

6. Click Distribute Pins. Specify the slot location for each pin. Use the checkboxes
in each column to move pins from one slot to another. Click OK.

7. After distributing the pins, click the Package Pin tab and click Generate
Symbol(s).

8. Select whether to create a new symbol or modify an existing symbol in each slot.
Click OK.

The newly generated or modified slot symbols appear as separate symbols in the
cell hierarchy. Each of these symbols can be edited individually.

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Caution: The Cadence Allegro PCB Librarian Part Developer tool allows you to
remap pin assignments in the Package Pin tab of the main Cadence
Allegro PCB Librarian Part Developer window. If signals remap to
different pins in the Cadence Allegro PCB Librarian Part Developer tool,
the changes reflect only in regenerated symbols for use in your
schematics. You cannot transfer pin assignment changes to the Intel
Quartus Prime software from the Cadence Allegro PCB Librarian Part
Developer tool, which creates a potential mismatch of the schematic
symbols and assignments in the FPGA design. If pin assignment changes
are necessary, make the changes in the Intel Quartus Prime Pin Planner
instead of the Cadence Allegro PCB Librarian Part Developer tool, and
update the symbol as described in the following sections.

For more information about creating, editing, and organizing component
symbols with the Cadence Allegro PCB Librarian Part Developer tool,
refer to the Part Developer Help.

4.5.1.1.4. Updating FPGA Symbols

As the design process continues, you must make logic changes in the Intel Quartus
Prime software, placing signals on different pins after recompiling the design, or use
the Intel Quartus Prime Pin Planner to make changes manually. The board designer
can request such changes to improve the board routing and layout. To ensure signals
connect to the correct pins on the FPGA, you must carry forward these types of
changes to the circuit schematic and board layout tools. Updating the .pin in the
Intel Quartus Prime software facilitates this flow.

Figure 37. Updating the FPGA Symbol in the Design Flow
Part Developer

End

.pin Import or Update Pin
Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Symbol in Schematic

Forward to Board Layout Tool

Board Layout Tool

Layout & Route FPGA

(2)
Grayed out steps are not part
of the FPGA symbol update
process.

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To update the symbol using the Cadence Allegro PCB Librarian Part Developer tool
after updating the .pin, follow these steps:

1. On the File menu, click Import and Export. The Import and Export wizard
appears.

2. In the list of actions to perform, select Import ECO - FPGA. Click Next. The
Select Source dialog box appears.

3. Select the updated source of the FPGA assignment information. In the Vendor
list, select Altera. In the PnR Tool list, select quartusII. In the PR File field,
click browse to specify the updated .pin in your Intel Quartus Prime project
directory. Click Next. The Select Destination window appears.

4. Select the source component and a destination cell for the updated symbol. To
create a new component based on the updated pin assignment data, select
Generate Custom Component. Selecting Generate Custom Component
replaces the cell listed under the Specify Library and Cell name header with a
new, nonfractured cell. You can preserve these edits by selecting Use standard
component and select the existing library and cell. Select the destination
library for the component and click Next. The Preview of Import Data dialog
box appears.

5. Make any additional changes to your symbol. Click Next. A list of ECO messages
appears summarizing the changes made to the cell. To accept the changes and
update the cell, click Finish.

6. The main Cadence Allegro PCB Librarian Part Developer window appears. You can
edit, fracture, and generate the updated symbols as usual from the main Cadence
Allegro PCB Librarian Part Developer window.

Note: If the Cadence Allegro PCB Librarian Part Developer tool is not set up to point to your
PCB Librarian Expert license file, an error message appears in red at the bottom of the
message text window of the Part Developer when you select the Import and Export
command. To point to your PCB Librarian Expert license, on the File menu, click
Change Product, and select the correct product license.

Related Information

FPGA-to-PCB Design Flow on page 77

4.5.2. Instantiating the Symbol in the Cadence Allegro Design Entry HDL
Software

To instantiate the symbol in your Cadence Allegro Design Entry HDL schematic after
saving the new symbol in the Cadence Allegro PCB Librarian Part Developer tool,
follow these steps:

1. In the Cadence Allegro Project Manager tool, switch to the board design flow.

2. On the Flows menu, click Board Design.

3. To start the Cadence Allegro Design Entry HDL software, click Design Entry.

4. To add the newly created symbol to your schematic, on the Component menu,
click Add. The Add Component dialog box appears.

5. Select the new symbol library location, and select the name of the cell you created
from the list of cells.

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The symbol attaches to your cursor for placement in the schematic. To fracture the
symbol into slots, right-click the symbol and choose Version to select one of the
slots for placement in the schematic.

Related Information

www.cadence.com
Provides more information about the Cadence Allegro Design Entry HDL software,
including licensing, support, usage, training, and product updates.

4.6. FPGA-to-Board Integration with Cadence Allegro Design Entry
CIS Software

The Cadence Allegro Design Entry CIS software is a schematic capture tool (part of
the Cadence 200 series design flow based on OrCAD Capture CIS). Use the Cadence
Allegro Design Entry CIS software to create flat circuit schematics for all types of PCB
design. You can also create hierarchical schematics to facilitate design reuse and
team-based design using the Cadence Allegro Design Entry CIS software. With the
Cadence Allegro Design Entry CIS software, the design flow from FPGA-to-board is
unidirectional using only the .pin generated by the Intel Quartus Prime software. You
can only make signal and pin assignment changes in the Intel Quartus Prime software.
These changes reflect as updated symbols in a Cadence Allegro Design Entry CIS
schematic project.

Figure 38. Design Flow with the Cadence Allegro Design Entry CIS Software

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Design Entry CISQuartus Prime Software

End

.pin

Instantiate Symbol in Schematic

Create or Open Project

Board Layout Tool

Layout and Route FPGA

Start FPGA Design Start PCB Design
(Allegro Design Entry CIS

Generate or Update Schematic

Edit or Fracture Symbol

Forward to Board Developement Tool

Note: Routing or pin assignment changes made in a board layout tool or a Cadence Allegro
Design Entry CIS symbol cannot be back-annotated to the Intel Quartus Prime
software.

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

87

http://www.cadence.com
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• www.cadence.com
For more information about the Cadence Allegro Design Entry CIS software,
including licensing, support, usage, training, and product updates.

• www.ema-eda.com
For more information about the Cadence Allegro Design Entry CIS software,
including licensing, support, usage, training, and product updates.

4.6.1. Creating a Cadence Allegro Design Entry CIS Project

The Cadence Allegro Design Entry CIS software has built-in support for creating
schematic symbols using pin assignment information imported from the Intel Quartus
Prime software.

To create a new project in the Cadence Allegro Design Entry CIS software, follow these
steps:

1. On the File menu, point to New and click Project. The New Project wizard starts.

When you create a new project, you can select the PC Board wizard, the
Programmable Logic wizard, or a blank schematic.

2. Select the PC Board wizard to create a project where you can select which part
libraries to use, or select a blank schematic.

The Programmable Logic wizard only builds an FPGA logic design in the Cadence
Allegro Design Entry CIS software.

Your new project is in the specified location and consists of the following files:

• OrCAD Capture Project File (.opj)

• Schematic Design File (.dsn)

4.6.2. Generating a Part

After you create a new project or open an existing project in the Cadence Allegro
Design Entry CIS software, you can generate a new schematic symbol based on your
Intel Quartus Prime FPGA design. You can also update an existing symbol. The
Cadence Allegro Design Entry CIS software stores component symbols in OrCAD
Library File (.olb). When you place a symbol in a library attached to a project, it is
immediately available for instantiation in the project schematic.

You can add symbols to an existing library or you can create a new library specifically
for the symbols generated from your FPGA designs. To create a new library, follow
these steps:

1. On the File menu, point to New and click Library in the Cadence Allegro Design
Entry CIS software to create a default library named library1.olb. This library
appears in the Library folder in the Project Manager window of the Cadence
Allegro Design Entry CIS software.

2. To specify a desired name and location for the library, right-click the new library
and select Save As. Saving the new library creates the library file.

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

88

http://www.cadence.com/us/pages/default.aspx
http://www.ema-eda.com/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.6.3. Generating Schematic Symbol

You can now create a new symbol to represent your FPGA design in your schematic.

To generate a schematic symbol, follow these steps:

1. Start the Cadence Allegro Design Entry CIS software.

2. On the Tools menu, click Generate Part. The Generate Part dialog box appears.

3. To specify the .pin from your Intel Quartus Prime design, in the Netlist/source
file type field, click Browse.

4. In the Netlist/source file type list, select Altera Pin File

5. Type the new part name.

6. Specify the Destination part library for the symbol. Failing to select an existing
library for the part creates a new library with a default name that matches the
name of your Cadence Allegro Design Entry CIS project.

7. To create a new symbol for this design, select Create new part. If you updated
your .pin in the Intel Quartus Prime software and want to transfer any assignment
changes to an existing symbol, select Update pins on existing part in library.

8. Select any other desired options and set Implementation type to <none>. The
symbol is for a primitive library part based only on the .pin and does not require
special implementation. Click OK.

9. Review the Undo warning and click Yes to complete the symbol generation.

You can locate the generated symbol in the selected library or in a new library
found in the Outputs folder of the design in the Project Manager window. Double-
click the name of the new symbol to see its graphical representation and edit it
manually using the tools available in the Cadence Allegro Design Entry CIS
software.

Note: For more information about creating and editing symbols in the Cadence
Allegro Design Entry CIS software, refer to the Help in the software.

4.6.4. Splitting a Part

After saving a new symbol in a project library, you can fracture the symbol into
multiple parts called sections. Fracturing a part into separate sections is useful for
FPGA designs. A single symbol for most FPGA packages might be too large for a single
schematic page. Splitting the part into separate sections allows you to organize parts
of the symbol by function, creating cleaner circuit schematics. For example, you can
create one slot for an I/O symbol, a second slot for a JTAG symbol, and a third slot for
a power/ground symbol.

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 39. Splitting a Symbol into Multiple Sections

newt

reset

d[7..0] yn_out[7..0]

Section 1

filtref

filtref

filtref

Section 2 Section 3

clk

clkx2

yvalid

follow

VC
CIN

T

VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

VC
CIO

1

VC
CIO

2

VC
CIO

3

VC
CIO

4

- This diagram represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings. Symbols created for
other devices or other configuration modes might have diff erent sets of configuration pins, but can be fractured in a similar manner.
- The power/ground section shows only a representation of power and ground pins because the device contains a high number of
power and ground
pins.

Note: Although symbol generation in the Design Entry CIS software refers to symbol
fractures as sections, other tools use different names to refer to symbol fractures.

To split a part into sections, select the part in its library in the Project Manager window
of the Cadence Allegro Design Entry CIS software. On the Tools menu, click Split Part
or right-click the part and choose Split Part. The Split Part Section Input
Spreadsheet appears.

Figure 40. Split Part Section Input Spreadsheet

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Each row in the spreadsheet represents a pin in the symbol. The Section column
indicates the section of the symbol to which each pin is assigned. You can locate all
pins in a new symbol in section 1. You can change the values in the Section column
to assign pins to various sections of the symbol. You can also specify the side of a
section on the location of the pin by changing the values in the Location column.
When you are ready, click Split. A new symbol appears in the same library as the
original with the name <original part name>_Split1.

View and edit each section individually. To view the new sections of the part, double-
click the part. The Part Symbol Editor window appears and the first section of the part
displays for editing. On the View menu, click Package to view thumbnails of all the
part sections. To edit the section of the symbol, double-click the thumbnail.

For more information about splitting parts into sections and editing symbol sections in
the Cadence Allegro Design Entry CIS software, refer to the Help in the software.

4.6.5. Instantiating a Symbol in a Design Entry CIS Schematic

After saving a new symbol in a library in your Cadence Allegro Design Entry CIS
project, you can instantiate the new symbol on a page in your schematic. Open a
schematic page in the Project Manager window of the Cadence Allegro Design Entry
CIS software. To add the new symbol to your schematic on the schematic page, on the
Place menu, click Part. The Place Part dialog box appears.

Figure 41. Place Part Dialog Box

Select the new symbol library location and the newly created part name. If you select
a part that is split into sections, you can select the section to place from the Part
menu. Click OK. The symbol attaches to your cursor for placement in the schematic.
To place the symbol, click the schematic page.

For more information about using the Cadence Allegro Design Entry CIS software,
refer to the Help in the software.

4.6.6. Intel Libraries for the Cadence Allegro Design Entry CIS Software

Intel provides downloadable .olb for many of its device packages. You can add these
libraries to your Cadence Allegro Design Entry CIS project and update the symbols
with the pin assignments contained in the .pin generated by the Intel Quartus Prime
software. You can use the downloaded library symbols as a base for creating custom

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

schematic symbols with your pin assignments that you can edit or fracture. This
method increases productivity by reducing the amount of time it takes to create and
edit a new symbol.

4.6.6.1. Using the Intel-provided Libraries with your Cadence Allegro Design
Entry CIS Project

To use the Intel-provided libraries with your Cadence Allegro Design Entry CIS project,
follow these steps:

1. Download the library of your target device from the Download Center page found
through the Support page on the Altera website.

2. Create a copy of the appropriate .olb to maintain the original symbols. Place the
copy in a convenient location, such as your Cadence Allegro Design Entry CIS
project directory.

3. In the Project Manager window of the Cadence Allegro Design Entry CIS software,
click once on the Library folder to select it. On the Edit menu, click Project or
right-click the Library folder and choose Add File to select the copy of the
downloaded .olb and add it to your project. You can locate the new library in the
list of part libraries for your project.

4. On the Tools menu, click Generate Part. The Generate Part dialog box appears.

5. In the Netlist/source file field, click Browse to specify the .pin in your Intel
Quartus Prime design.

6. From the Netlist/source file type list, select Altera Pin File.

7. For Part name, type the name of the target device the same as it appears in the
downloaded library file. For example, if you are using a device from the
CYCLONE06.OLB library, type the part name to match one of the devices in this
library such as ep1c6f256. You can rename the symbol in the Project Manager
window after updating the part.

8. Set the Destination part library to the copy of the downloaded library you
added to the project.

9. Select Update pins on existing part in library. Click OK.

10. Click Yes.

The symbol is updated with your pin assignments. Double-click the symbol in the
Project Manager window to view and edit the symbol. On the View menu, click
Package if you want to view and edit other sections of the symbol. If the symbol
in the downloaded library is fractured into sections, you can edit each section but
you cannot further fracture the part. You can generate a new part without using
the downloaded part library if you require additional sections.

For more information about creating, editing, and fracturing symbols in the
Cadence Allegro Design Entry CIS software, refer to the Help in the software.

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.7. Document Revision History

Table 7. Document Revision History

Date Intel Quartus
Prime

Version

Changes

2018.09.24 18.1.0 • Document title renamed
• Other minor edits

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 Converted to DITA format.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Template update.

July 2010 10.0.0 • General style editing.
• Removed Referenced Document Section.
• Added a link to Help in “Performing Simultaneous Switching Noise (SSN) Analysis of

Your FPGA” on page 9–5.

November 2009 9.1.0 • Added “Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA” on
page 9–5.

• General style editing.
• Edited Figure 9–4 on page 9–10 and Figure 9–8 on page 9–16.

March 2009 9.0.0 • Chapter 9 was previously Chapter 7 in the 8.1 software release.
• No change to content.

November 2008 8.1.0 Changed to 8-1/2 x 11 page size.

May 2008 8.0.0 Updated references.

4. Cadence PCB Design Tools Support

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Reviewing Printed Circuit Board Schematics with the
Intel Quartus Prime Software

Intel FPGAs and CPLDs offer a multitude of configurable options to allow you to
implement a custom application-specific circuit on your PCB.

Your Intel Quartus Prime project provides important information specific to your
programmable logic design, which you can use in conjunction with the device
literature available on Altera's website to ensure that you implement the correct
board-level connections in your schematic.

Refer to the Settings dialog box options, the Fitter report, and Messages window
when creating and reviewing your PCB schematic. The Intel Quartus Prime software
also provides the Pin Planner to assist you during your PCB schematic review process.

Related Information

Schematic Review Worksheets

5.1. Reviewing Intel Quartus Prime Software Settings

Review these settings in the Intel Quartus Prime software to help you review your PCB
schematic.

The Device dialog box in the Intel Quartus Prime software allows you to specify
device-specific assignments and settings. You can use the Device dialog box to
specify general project-wide options, including specific device and pin options, which
help you to implement correct board-level connections in your PCB schematic.

The Device dialog box provides project-specific device information, including the
target device and any migration devices you specify. Using migration devices can
impact the number of available user I/O pins and internal resources, as well as require
connection of some user I/O pins to power/ground pins to support migration.

If you want to use vertical migration, which allows you to use different devices with
the same package, you can specify your list of migration devices in the Migration
Devices dialog box. The Fitter places the pins in your design based on your targeted
migration devices, and allows you to use only I/O pins that are common to all the
migration devices.

If a migration device has pins that are power or ground, but the pins are also user I/O
pins on a different device in the migration path, the Fitter ensures that these pins are
not used as user I/O pins. You must ensure that these pins are connected to the
appropriate plane on the PCB.

If you are migrating from a smaller device with NC (no-connect) pins to a larger
device with power or ground pins in the same package, you can safely connect the NC
pins to power or ground pins to facilitate successful migration.

683619 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/support/support-resources/download/board-layout-test/schematic-review-ws.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Related Information

Migration Devices Dialog Box
In Intel Quartus Prime Help

5.1.1. Device and Pins Options Dialog Box Settings

You can set device and pin options and verify important design-specific data in the
Device and Pin Options dialog box, including options found on the General,
Configuration, Unused Pin, Dual-Purpose Pins, and Voltage pages.

5.1.1.1. Configuration Settings

The Configuration page of the Device and Pin Options dialog box specifies the
configuration scheme and configuration device for the target device. Use the
Configuration page settings to verify the configuration scheme with the MSEL pin
settings used on your PCB schematic and the I/O voltage of the configuration scheme.

Your specific configuration settings may impact the availability of some dual-purpose
I/O pins in user mode.

Related Information

Dual-Purpose Pins Settings on page 95

5.1.1.2. Unused Pin Settings

The Unused Pin page specifies the behavior of all unused pins in your design. Use the
Unused Pin page to ensure that unused pin settings are compatible with your PCB.

For example, if you reserve all unused pins as outputs driving ground, you must
ensure that you do not connect unused I/O pins to VCC pins on your PCB. Connecting
unused I/O pins to VCC pins may result in contention that could lead to higher than
expected current draw and possible device overstress.

The Reserve all unused pins list shows available unused pin state options for the
target device. The default state for each pin is the recommended setting for each
device family.

When you reserve a pin as output driving ground, the Fitter connects a ground signal
to the output pin internally. You should connect the output pin to the ground plane on
your PCB, although you are not required to do so. Connecting the output driving
ground to the ground plane is known as creating a virtual ground pin, which helps to
minimize simultaneous switching noise (SSN) and ground bounce effects.

5.1.1.3. Dual-Purpose Pins Settings

The Dual-Purpose Pins page specifies how configuration pins should be used after
device configuration completes. You can set the function of the dual-purpose pins by
selecting a value for a specific pin in the Dual-purpose pins list. Pin functions should
match your PCB schematic. The available options on the Dual-Purpose Pins page
may differ depending on the selected configuration mode.

5. Reviewing Printed Circuit Board Schematics with the Intel Quartus Prime Software

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

95

http://quartushelp.altera.com/current/index.htm#comp/migrate/comp_db_migration.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.1.4. Voltage Settings

The Voltage page specifies the default VCCIO I/O bank voltage and the default I/O
bank voltage for the pins on the target device. VCCIO I/O bank voltage settings made
in the Voltage page are overridden by I/O standard assignments made on I/O pins in
their respective banks.

Ensure that the settings in the Voltage page match the settings in your PCB
schematic, especially if the target device includes transceivers.

The Voltage page settings requirements differ depending on the settings of the
transceiver instances in the design. Refer to the Fitter report for the required settings,
and verify that the voltage settings are correctly set up for your PCB schematic.

After verifying your settings in the Device and Settings dialog boxes, you can verify
your device pin-out with the Fitter report.

Related Information

Reviewing Device Pin-Out Information in the Fitter Report on page 96

5.1.1.5. Error Detection CRC Settings

The Error Detection CRC page specifies error detection cyclic redundancy check
(CRC) use for the target device. When Enable error detection CRC is turned on, the
device checks the validity of the programming data in the devices. Any changes made
in the data while the device is in operation generates an error.

Turning on the Enable open drain on CRC error pin option allows the CRC ERROR
pin to be set as an open-drain pin in some devices, which decouples the voltage level
of the CRC ERROR pin from VCCIO voltage. You must connect a pull-up resistor to the
CRC ERROR pin on your PCB if you turn on this option.

In addition to settings in the Device dialog box, you should verify settings in the
Voltage page of the Settings dialog box.

Related Information

Device and Pin Options Dialog Box
In Intel Quartus Prime Help

5.2. Reviewing Device Pin-Out Information in the Fitter Report

After you compile your design, you can use the reports in the Resource section of the
Fitter report to check your device pin-out in detail.

The Input Pins, Output Pins, and Bidirectional Pins reports identify all the user I/O pins
in your design and the features enabled for each I/O pin. For example, you can find
use of weak internal pull-ups, PCI clamp diodes, and on-chip termination (OCT) pin
assignments in these sections of the Fitter report. You can check the pin assignments
reported in the Input Pins, Output Pins, and Bidirectional Pins reports against your
PCB schematic to determine whether your PCB requires external components.

These reports also identify whether you made pin assignments or if the Fitter
automatically placed the pins. If the Fitter changed your pin assignments, you should
make these changes user assignments because the location of pin assignments made
by the Fitter may change with subsequent compilations.

5. Reviewing Printed Circuit Board Schematics with the Intel Quartus Prime Software

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

96

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_db_device_pin_options.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 42. Resource Section Report
Open the Compilation Report tab with Ctrl+R, then click Fitter ➤ Plan StageInput Pins (or Output Pins
or Bidir Pins). The following figure shows the pins the Fitter chose for the OCT external calibration resistor
connections (RUP/RDN) and the name of the associated termination block in the Input Pins report. You should
make these types of assignments user assignments.

The I/O Bank Usage report provides a high-level overview of the VCCIO and VREF
requirements for your design, based on your I/O assignments. Verify that the
requirements in this report match the settings in your PCB schematic. All unused I/O
banks, and all banks with I/O pins with undefined I/O standards, default the VCCIO
voltage to the voltage defined in the Voltage page of the Device and Pin Options
dialog box.

The All Package Pins report lists all the pins on your device, including unused pins,
dedicated pins and power/ground pins. You can use this report to verify pin
characteristics, such as the location, name, usage, direction, I/O standard and voltage
for each pin with the pin information in your PCB schematic. In particular, you should
verify the recommended voltage levels at which you connect unused dedicated inputs
and I/O and power pins, especially if you selected a migration device. Use the All
Package Pins report to verify that you connected all the device voltage rails to the
voltages reported.

Errors commonly reported include connecting the incorrect voltage to the predriver
supply (VCCPD) pin in a specific bank, or leaving dedicated clock input pins floating.
Unused input pins that should be connected to ground are designated as GND+ in the
Pin Name/Usage column in the All Package Pins report.

You can also use the All Package Pins report to check transceiver-specific pin
connections and verify that they match the PCB schematic. Unused transceiver pins
have the following requirements, based on the pin designation in the Fitter report:

• GXB_GND—Unused GXB receiver or dedicated reference clock pin. This pin must
be connected to GXB_GND through a 10k Ohm resistor.

• GXB_NC—Unused GXB transmitter or dedicated clock output pin. This pin must be
disconnected.

5. Reviewing Printed Circuit Board Schematics with the Intel Quartus Prime Software

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

97

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Some transceiver power supply rails have dual voltage capabilities, such as VCCA_L/R
and VCCH_L/R, that depend on the settings you created for the ALTGX parameter
editor. Because these user-defined settings overwrite the default settings, you should
use the All Package Pins report to verify that these power pins on the device symbol in
the PCB schematics are connected to the voltage required by the transceiver. An
incorrect connection may cause the transceiver to function not as expected.

If your design includes a memory interface, the DQS Summary report provides an
overview of each DQ pin group. You can use this report to quickly confirm that the
correct DQ/DQS pins are grouped together.

Finally, the Fitter Device Options report summarizes some of the settings made in the
Device and Pin Options dialog box. Verify that these settings match your PCB
schematics.

5.3. Reviewing Compilation Error and Warning Messages

If your project does not compile without error or warning messages, you should
resolve the issues identified by the Compiler before signing off on your pin-out or PCB
schematic. Error messages often indicate illegal or unsupported use of the device
resources and IP.

Additionally, you should cross-reference fitting and timing analysis warnings with the
design implementation. Timing may be constrained due to nonideal pin placement.
You should investigate if you can reassign pins to different locations to prevent fitting
and timing analysis warnings. Ensure that you review each warning and consider its
potential impact on the design.

5.4. Using Additional Intel Quartus Prime Software Features

You can generate IBIS files, which contain models specific to your design and selected
I/O standards and options, with the Intel Quartus Prime software.

Because board-level simulation is important to verify, you should check for potential
signal integrity issues. You can turn on the Board-Level Signal Integrity feature in
the EDA Tool Settings page of the Settings dialog box.

Additionally, using advanced I/O timing allows you to enter physical PCB information
to accurately model the load seen by an output pin. This feature facilitates accurate
I/O timing analysis.

Related Information

• Signal Integrity Analysis with Third-Party Tools on page 24

• Managing Device I/O Pins

5.5. Using Additional Intel Quartus Prime Software Tools

Use the Pin Planner to assist you with reviewing your PCB schematics.

You can also use the SSN Analyzer to assist you with reviewing your PCB schematics.

5. Reviewing Printed Circuit Board Schematics with the Intel Quartus Prime Software

683619 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: PCB Design Tools Send Feedback

98

https://www.intel.com/content/www/us/en/docs/programmable/683143/current/managing-device-i-o-pins.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.1. Pin Planner

The Intel Quartus Prime Pin Planner helps you visualize, plan, and assign device I/O
pins in a graphical view of the target device package. You can quickly locate various
I/O pins and assign them design elements or other properties to ensure compatibility
with your PCB layout.

You can use the Pin Planner to verify the location of clock inputs, and whether they
have been placed on dedicated clock input pins, which is recommended when your
design uses PLLs.

You can also use the Pin Planner to verify the placement of dedicated SERDES pins.
SERDES receiver inputs can be placed only on DIFFIO_RX pins, while SERDES
transmitter outputs can be placed only on DIFFIO_TX pins.

The Pin Planner gives a visual indication of signal-to-signal proximity in the Pad View
window, and also provides information about differential pin pair placement, such as
the placement of pseudo-differential signals.

Related Information

Managing Device I/O Pins

5.5.2. SSN Analyzer

The SSN Analyzer supports pin planning by estimating the voltage noise caused by the
simultaneous switching of output pins on the device. Because of the importance of the
potential SSN performance for a specific I/O placement, you can use the SSN Analyzer
to analyze the effects of aggressor I/O signals on a victim I/O pin.

5.6. Document Revision History

Table 8. Document Revision History

Date Version Changes

2018.09.24 18.1.0 • First release as part of the stand-alone Intel Quartus Prime Standard EditionUser Guide

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 Template update.

November 2012 12.1.0 Minor update of Pin Planner description for task and report windows.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template. No change to content.

July 2010 10.0.0 Initial release.

5. Reviewing Printed Circuit Board Schematics with the Intel Quartus Prime Software

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

99

https://www.intel.com/content/www/us/en/docs/programmable/683143/current/managing-device-i-o-pins.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683619 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics, and Synopsys that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics, and Synopsys. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor Graphics
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

A. Intel Quartus Prime Standard Edition User Guides

683619 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: PCB Design Tools

101

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20PCB%20Design%20Tools%20(683619%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel® Quartus® Prime Standard
Edition User Guide
Scripting

Updated for Intel® Quartus® Prime Design Suite: 18.1

This document is part of a collection - Intel® Quartus® Prime Standard Edition User Guides -
Combined PDF link

Online Version

Send Feedback UG-20187

683325

2018.09.24

https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/programmable/technical-pdfs/qps-ugs.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683325.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Command Line Scripting... 4
1.1. Benefits of Command-Line Executables...4
1.2. Introductory Example...4
1.3. Command-Line Scripting Help... 5
1.4. Project Settings with Command-Line Options...6

1.4.1. Option Precedence...6
1.5. Compilation with quartus_sh --flow..8
1.6. Text-Based Report Files.. 9
1.7. Using Command-Line Executables in Scripts.. 10
1.8. Common Scripting Examples.. 11

1.8.1. Create a Project and Apply Constraints... 11
1.8.2. Check Design File Syntax.. 12
1.8.3. Create a Project and Synthesize a Netlist Using Netlist Optimizations.............. 12
1.8.4. Archive and Restore Projects... 13
1.8.5. Perform I/O Assignment Analysis... 13
1.8.6. Update Memory Contents Without Recompiling.. 13
1.8.7. Create a Compressed Configuration File.. 14
1.8.8. Fit a Design as Quickly as Possible... 14
1.8.9. Fit a Design Using Multiple Seeds... 14

1.9. The QFlow Script... 15
1.10. Document Revision History..16

2. Tcl Scripting..18
2.1. Tool Command Language.. 18
2.2. Intel Quartus Prime Tcl Packages... 19

2.2.1. Loading Packages...20
2.3. Intel Quartus Prime Tcl API Help.. 20

2.3.1. Command-Line Options...22
2.3.2. The Intel Quartus Prime Tcl Console Window..23

2.4. End-to-End Design Flows.. 24
2.5. Creating Projects and Making Assignments..24
2.6. Compiling Designs... 25

2.6.1. The flow Package... 25
2.6.2. Compile All Revisions..25

2.7. Reporting..26
2.7.1. Saving Report Data in csv Format.. 26

2.8. Timing Analysis... 27
2.9. Automating Script Execution..27

2.9.1. Execution Example...28
2.9.2. Controlling Processing.. 29
2.9.3. Displaying Messages...29

2.10. Other Scripting Features... 29
2.10.1. Natural Bus Naming..30
2.10.2. Short Option Names... 30
2.10.3. Collection Commands... 30
2.10.4. The post_message Command.. 31
2.10.5. Accessing Command-Line Arguments..32

Contents

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.6. The quartus() Array..33
2.11. The Intel Quartus Prime Tcl Shell in Interactive Mode Example................................. 33
2.12. The tclsh Shell...35
2.13. Tcl Scripting Basics...35

2.13.1. Hello World Example...35
2.13.2. Variables...35
2.13.3. Substitutions... 35
2.13.4. Arithmetic... 36
2.13.5. Lists... 37
2.13.6. Arrays.. 37
2.13.7. Control Structures..38
2.13.8. Procedures..38
2.13.9. File I/O...39
2.13.10. Syntax and Comments.. 40
2.13.11. External References.. 40

2.14. Tcl Scripting Revision History... 41

A. Intel Quartus Prime Standard Edition User Guides..42

Contents

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Command Line Scripting
FPGA design software that easily integrates into your design flow saves time and
improves productivity. The Intel® Quartus® Prime software provides you with a
command-line executable for each step of the FPGA design flow to make the design
process customizable and flexible.

The command-line executables are completely interchangeable with the Intel Quartus
Prime GUI, allowing you to use the exact combination of tools that best suits your
needs.

1.1. Benefits of Command-Line Executables

Intel Quartus Prime command-line executables give you precise control over each step
of the design flow, reduce memory requirements, and improve performance.

You can group Intel Quartus Prime executable files into a script, batch file, or a
makefile to automate design flows. These scripting capabilities facilitate the
integration of Intel Quartus Prime software and other EDA synthesis, simulation, and
verification software. Automatic design flows can perform on multiple computers
simultaneously and easily archive and restore projects.

Command-line executables add flexibility without sacrificing the ease-of-use of the
Intel Quartus Prime GUI. You can use the Intel Quartus Prime GUI and command-line
executables at different stages in the design flow. For example, you might use the
Intel Quartus Prime GUI to edit the floorplan for the design, use the command-line
executables to perform place-and-route, and return to the Intel Quartus Prime GUI to
perform debugging.

Command-line executables reduce the amount of memory required during each step
in the design flow. Since each executable targets only one step in the design flow, the
executables themselves are relatively compact, both in file size and the amount of
memory used during processing. This memory usage reduction improves performance,
and is particularly beneficial in design environments where heavy usage of computing
resources results in reduced memory availability.

Related Information

About Command-Line Executables
in Intel Quartus Prime Help

1.2. Introductory Example

Create a new Intel Quartus Prime project, fit the design, and generate programming
files with this example included with the Intel Quartus Prime software.

If installed, the tutorial design is located in the <Intel Quartus Prime directory>/
qdesigns/fir_filter directory.

683325 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://quartushelp.altera.com/current/index.htm#reference/scripting/tcl_view_com_line_executables.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

1. Ensure that <Intel Quartus Prime directory>/quartus/bin directory is in your
PATH environment variable.

2. Copy the tutorial directory in a local folder.

3. In a console, type the four commands in the new project directory:

quartus_map filtref --source=filtref.bdf --family="Cyclone V"
quartus_fit filtref --part=EP3C10F256C8 --pack_register=minimize_area
quartus_asm filtref
quartus_sta filtref

a. With the first instruction you create a new Intel Quartus Prime project named
filtref, set the top-level file as filtref.bdf, set Cyclone® V as the target
device family, and perform logic synthesis and technology mapping on the
design files.

b. The second command performs place and route by fitting the filtref project
into the specified device, and directs the Fitter to pack sequential and
combinational functions into single logic cells to reduce device resource usage.

c. The third command creates a device programming image for the filtref
project.

d. The last line performs basic timing analysis on the filtref project using the
Intel Quartus Prime Timing Analyzer, reporting worst-case setup slack, worst-
case hold slack, and other measurements.

4. Create a batch file or script file with the commands, like the UNIX shell script
below:

#!/bin/sh
PROJECT=filtref
TOP_LEVEL_FILE=filtref.bdf
FAMILY="Cyclone V"
PART=EP3C10F256C8
PACKING_OPTION=minimize_area
quartus_map $PROJECT --source=$TOP_LEVEL_FILE --family=$FAMILY
quartus_fit $PROJECT --part=$PART --pack_register=$PACKING_OPTION
quartus_asm $PROJECT
quartus_sta $PROJECT

5. Execute the script and compile your project.

Related Information

Intel Quartus Prime Scripting Reference Manual

1.3. Command-Line Scripting Help

Help for command-line executables is available through different methods. You can
access help built into the executables with command-line options. You can use the
Intel Quartus Prime Command-Line and Tcl API Help browser for an easy graphical
view of the help information.

To use the Intel Quartus Prime Command-Line and Tcl API Help browser, type the
following command:

quartus_sh --qhelp

This command starts the Intel Quartus Prime Command-Line and Tcl API Help browser,
a viewer for information about the Intel Quartus Prime Command-Line executables
and Tcl API.

1. Command Line Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

5

https://www.intel.com/programmable/technical-pdfs/654662.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the -h option with any of the Intel Quartus Prime Command-Line executables to
get a description and list of supported options. Use the --help=<option name>
option for detailed information about each option.

Figure 1. Intel Quartus Prime Command-Line and Tcl API Help Browser

1.4. Project Settings with Command-Line Options

The Intel Quartus Prime software command-line executables accept arguments to set
project variables and access common settings.

To make assignments to an individual entity you can use the Intel Quartus Prime Tcl
scripting API. On existing projects, you can also open the project in the Intel Quartus
Prime GUI, change the assignment, and close the project. The changed assignment is
updated in the .qsf. Any command-line executables that are run after this update
use the updated assignment.

Related Information

• Tcl Scripting on page 18

• Intel Quartus Prime Settings File (.qsf) Definition
in Intel Quartus Prime Help

• Intel Quartus Prime Standard Edition Settings File Reference Manual

1.4.1. Option Precedence

Project assignments follow a set of precedence rules. Assignments for a project can
exist in three places:

• Intel Quartus Prime Settings File (.qsf)

• The compiler database

• Command-line options

1. Command Line Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

6

http://quartushelp.altera.com/current/index.htm#reference/glossary/def_qsf.htm
https://www.intel.com/content/www/us/en/docs/programmable/683084.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The .qsf file contains all the project-wide and entity-level assignments and settings
for the current revision for the project. The compiler database contains the result of
the last compilation in the /db directory, and reflects the assignments at the moment
when the project was compiled. Updated assignments first appear in the compiler
database and later in the .qsf file.

Command-line options override any conflicting assignments in the .qsf file or the
compiler database files. To specify whether the .qsf or compiler database files take
precedence for any assignments not specified in the command-line, use the option --
read_settings_files.

Table 1. Precedence for Reading Assignments

Option Specified Precedence for Reading Assignments

--read_settings_files = on

(Default)
1. Command-line options
2. The .qsf for the project
3. Project database (db directory, if it exists)
4. Intel Quartus Prime software defaults

--read_settings_files = off 1. Command-line options
2. Project database (db directory, if it exists)
3. Intel Quartus Prime software defaults

The --write_settings_files command-line option lists the locations to which
assignments are written..

Table 2. Location for Writing Assignments

Option Specified Location for Writing Assignments

--write_settings_files = on (Default) .qsf file and compiler database

--write_settings_files = off Compiler database

Any assignment not specified as a command-line option or found in the .qsf file or
compiler database file is set to its default value.

The example assumes that a project named fir_filter exists, and that the analysis and
synthesis step has been performed.

quartus_fit fir_filter --pack_register=off
quartus_sta fir_filter
mv fir_filter_sta.rpt fir_filter_1_sta.rpt
quartus_fit fir_filter --pack_register=minimize_area --
write_settings_files=off
quartus_sta fir_filter
mv fir_filter_sta.rpt fir_filter_2_sta.rpt

The first command, quartus_fit fir_filter --pack_register=off, runs the
quartus_fit executable with no aggressive attempts to reduce device resource
usage.

The second command, quartus_sta fir_filter, performs basic timing analysis
for the results of the previous fit.

The third command uses the UNIX mv command to copy the report file output from
quartus_sta to a file with a new name, so that the results are not overwritten by
subsequent timing analysis.

1. Command Line Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The fourth command runs quartus_fit a second time, and directs it to attempt to
pack logic into registers to reduce device resource usage. With the --
write_settings_files=off option, the command-line executable does not update
the .qsf to reflect the changed register packing setting. Instead, only the compiler
database files reflect the changed setting. If the --write_settings_files=off
option is not specified, the command-line executable updates the .qsf to reflect the
register packing setting.

The fifth command reruns timing analysis, and the sixth command renames the report
file, so that it is not overwritten by subsequent timing analysis.

Use the options --read_settings_files=off and --
write_settings_files=off (where appropriate) to optimize the way that the Intel
Quartus Prime software reads and updates settings files.

In this example, the quartus_asm executable does not read or write settings files:

quartus_map filtref --source=filtref --part=EP3C10F256C8
quartus_fit filtref --pack_register=off --read_settings_files=off
quartus_asm filtref --read_settings_files=off --write_settings_files=off

1.5. Compilation with quartus_sh --flow

The figure shows a typical Intel Quartus Prime FPGA design flow using command-line
executables.

1. Command Line Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Typical Design Flow

Quartus Shell
quartus_sh

Analysis & Synthesis

Fitter
quartus_fit

Assembler
quartus_asm

EDA Netlist Writer
quartus_eda

Programmer
quartus_pgm

Programming File
Converter

quartus_cpf

SignalTap II Logic
Analyzer

quartus_stp

Power
Analyzer

quartus_pow

Compiler Database
quartus_cdb

Output files for EDA tools,
including Verilog Output
Files (.vo), VDHL Output
Files (.vho), VQM Files
and Standard Delay
Format Output Files (.sdo)

Verilog Design Files (.v), VDHL Design Files (.vhd),
Verilog Quartus Mapping Files (.vqm),
Text Design Files (.tdf), Block Design Files (.bdf),
and EDIF Netlist Files (.edf) Files

Timing Analyzer
quartus_sta

Design Assistant
quartus_drc

quartus_map

Use the quartus_sh executable with the --flow option to perform a complete
compilation flow with a single command. The --flow option supports the smart
recompile feature and efficiently sets command-line arguments for each executable in
the flow.

The following example runs compilation, timing analysis, and programming file
generation with a single command:

quartus_sh --flow compile filtref

Tip: For information about specialized flows, type quartus_sh --help=flow at a
command prompt.

1.6. Text-Based Report Files

Each command-line executable creates a text report file when it is run. These files
report success or failure, and contain information about the processing performed by
the executable.

1. Command Line Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Report file names contain the revision name and the short-form name of the
executable that generated the report file, in the format
<revision>.<executable>.rpt. For example, using the quartus_fit executable
to place and route a project with the revision name design_top generates a report
file named design_top.fit.rpt. Similarly, using the quartus_sta executable to
perform timing analysis on a project with the revision name fir_filter generates a
report file named fir_filter.sta.rpt.

As an alternative to parsing text-based report files, you can use
the ::quartus::report Tcl package.

Related Information

• Text-Format Report File (.rpt) Definition
in Intel Quartus Prime Help

• ::quartus::report
in Intel Quartus Prime Help

1.7. Using Command-Line Executables in Scripts

You can use command-line executables in scripts that control other software, in
addition to Intel Quartus Prime software. For example, if your design flow uses third-
party synthesis or simulation software, and you can run this other software at the
command prompt, you can group those commands with Intel Quartus Prime
executables in a single script.

To set up a new project and apply individual constraints, such as pin location
assignments and timing requirements, you must use a Tcl script or the Intel Quartus
Prime GUI.

Command-line executables are very useful for working with existing projects, for
making common global settings, and for performing common operations. For more
flexibility in a flow, use a Tcl script. Additionally, Tcl scripts simplify passing data
between different stages of the design flow.

For example, you can create a UNIX shell script to run a third-party synthesis
software, place-and-route the design in the Intel Quartus Prime software, and
generate output netlists for other simulation software.

This script shows a script that synthesizes a design with the Synopsys* Synplify
software, simulates the design using the Mentor Graphics* ModelSim® software, and
then compiles the design targeting a Cyclone V device.

#!/bin/sh
Run synthesis first.
This example assumes you use Synplify software
synplify -batch synthesize.tcl
If your Quartus Prime project exists already, you can just
recompile the design.
You can also use the script described in a later example to
create a new project from scratch
quartus_sh --flow compile myproject
Use the quartus_sta executable to do fast and slow-model
timing analysis
quartus_sta myproject --model=slow
quartus_sta myproject --model=fast
Use the quartus_eda executable to write out a gate-level
Verilog simulation netlist for ModelSim
quartus_eda my_project --simulation --tool=modelsim --format=verilog

1. Command Line Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

10

http://quartushelp.altera.com/current/index.htm#reference/glossary/def_rpt.htm
http://quartushelp.altera.com/16.0/index.htm#tafs/tafs/tcl_pkg_report_ver_2.1.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Perform the simulation with the ModelSim software
vlib cycloneV_ver
vlog -work cycloneV_ver /opt/quartusii/eda/sim_lib/cycloneV_atoms.v
vlib work
vlog -work work my_project.vo
vsim -L cycloneV_ver -t 1ps work.my_project

1.8. Common Scripting Examples

You can create scripts including command line executable to control common Intel
Quartus Prime processes.

1.8.1. Create a Project and Apply Constraints

The command-line executables include options for common global project settings and
commands. You can use a Tcl script to apply constraints such as pin locations and
timing assignments. You can write a Tcl constraint file, or generate one for an existing
project by clicking Project ➤ Generate Tcl File for Project.

The example creates a project with a Tcl script and applies project constraints using
the tutorial design files in the <Intel Quartus Prime installation directory>/
qdesigns/fir_filter/ directory.

project_new filtref -overwrite
Assign family, device, and top-level file
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C12F256C6
set_global_assignment -name BDF_FILE filtref.bdf
Assign pins
set_location_assignment -to clk Pin_28
set_location_assignment -to clkx2 Pin_29
set_location_assignment -to d[0] Pin_139
set_location_assignment -to d[1] Pin_140
#
project_close

Save the script in a file called setup_proj.tcl and type the commands illustrated in
the example at a command prompt to create the design, apply constraints, compile
the design, and perform fast-corner and slow-corner timing analysis. Timing analysis
results are saved in two files, filtref_sta_1.rpt and filtref_sta_2.rpt.

quartus_sh -t setup_proj.tcl
quartus_map filtref
quartus_fit filtref
quartus_asm filtref
quartus_sta filtref --model=fast --export_settings=off
mv filtref_sta.rpt filtref_sta_1.rpt
quartus_sta filtref --export_settings=off
mv filtref_sta.rpt filtref_sta_2.rpt

Type the following commands to create the design, apply constraints, and compile the
design, without performing timing analysis:

quartus_sh -t setup_proj.tcl
quartus_sh --flow compile filtref

The quartus_sh --flow compile command performs a full compilation, and is
equivalent to clicking the Start Compilation button in the toolbar.

1. Command Line Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.2. Check Design File Syntax

The UNIX shell script example below assumes the Intel Quartus Prime software
fir_filter tutorial project exists in the current directory. You can find the fir_filter
project in the <Intel Quartus Prime directory>/qdesigns/fir_filter directory
unless the Intel Quartus Prime software tutorial files are not installed.

The script checks the exit code of the quartus_map executable to determine whether
there is an error during the syntax check. Files with syntax errors are added to the
FILES_WITH_ERRORS variable, and when all files are checked, the script prints a
message indicating syntax errors.

When options are not specified, the executable uses the project database values. If
not specified in the project database, the executable uses the Intel Quartus Prime
software default values. For example, the fir_filter project is set to target the Cyclone
device family, so it is not necessary to specify the --family option.

#!/bin/sh
FILES_WITH_ERRORS=""
Iterate over each file with a .bdf or .v extension
for filename in `ls *.bdf *.v`
do
Perform a syntax check on the specified file
 quartus_map fir_filter --analyze_file=$filename
 # If the exit code is non-zero, the file has a syntax error
 if [$? -ne 0]
 then
 FILES_WITH_ERRORS="$FILES_WITH_ERRORS $filename"
 fi
done
if [-z "$FILES_WITH_ERRORS"]
then
 echo "All files passed the syntax check"
 exit 0
else
 echo "There were syntax errors in the following file(s)"
 echo $FILES_WITH_ERRORS
 exit 1
fi

1.8.3. Create a Project and Synthesize a Netlist Using Netlist
Optimizations

This example creates a new Intel Quartus Prime project with a file top.edf as the
top-level entity. The --enable_register_retiming=on and --
enable_wysiwyg_resynthesis=on options cause quartus_map to optimize the
design using gate-level register retiming and technology remapping.

The --part option causes quartus_map to target a device. To create the project and
synthesize it using the netlist optimizations described above, type the command
shown in this example at a command prompt.

quartus_map top --source=top.edf --enable_register_retiming=on
 --enable_wysiwyg_resynthesis=on --part=EP3C10F256C8

1. Command Line Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8.4. Archive and Restore Projects

You can archive or restore an Intel Quartus Prime Archive File (.qar) with a single
command. This makes it easy to take snapshots of projects when you use batch files
or shell scripts for compilation and project management.

Use the --archive or --restore options for quartus_sh as appropriate. Type the
command shown in the example at a command prompt to archive your project.

quartus_sh --archive <project name>

The archive file is automatically named <project name>.qar. If you want to use a
different name, type the command with the -output option as shown in example the
example.

quartus_sh --archive <project name> -output <filename>

To restore a project archive, type the command shown in the example at a command
prompt.

quartus_sh --restore <archive name>

The command restores the project archive to the current directory and overwrites
existing files.

Related Information

Managing Intel Quartus Prime Projects

1.8.5. Perform I/O Assignment Analysis

You can perform I/O assignment analysis with a single command. I/O assignment
analysis checks pin assignments to ensure they do not violate board layout guidelines.
I/O assignment analysis does not require a complete place and route, so it can quickly
verify that your pin assignments are correct.

quartus_fit --check_ios <project name> --rev=<revision name>

1.8.6. Update Memory Contents Without Recompiling

You can use two commands to update the contents of memory blocks in your design
without recompiling. Use the quartus_cdb executable with the --update_mif
option to update memory contents from .mif or .hexout files. Then, rerun the
assembler with the quartus_asm executable to regenerate the .sof, .pof, and any
other programming files.

quartus_cdb --update_mif <project name> [--rev=<revision name>]
quartus_asm <project name> [--rev=<revision name>]

The example shows the commands for a DOS batch file for this example. With a DOS
batch file, you can specify the project name and the revision name once for both
commands. To create the DOS batch file, paste the following lines into a file called
update_memory.bat.

quartus_cdb --update_mif %1 --rev=%2
quartus_asm %1 --rev=%2

1. Command Line Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

13

https://www.intel.com/content/www/us/en/docs/programmable/683475/current/managing-projects.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To run the batch file, type the following command at a command prompt:

update_memory.bat <project name> <revision name>

1.8.7. Create a Compressed Configuration File

You can create a compressed configuration file in two ways. The first way is to run
quartus_cpf with an option file that turns on compression.

To create an option file that turns on compression, type the following command at a
command prompt:

quartus_cpf -w <filename>.opt

This interactive command guides you through some questions, then creates an option
file based on your answers. Use --option to cause quartus_cpf to use the option
file. For example, the following command creates a compressed .pof that targets an
EPCS64 device:

quartus_cpf --convert --option=<filename>.opt --device=EPCS64 <file>.sof
<file>.pof

Alternatively, you can use the Convert Programming Files utility in the Intel Quartus
Prime software GUI to create a Conversion Setup File (.cof). Configure any options
you want, including compression, then save the conversion setup. Use the following
command to run the conversion setup you specified.

quartus_cpf --convert <file>.cof

1.8.8. Fit a Design as Quickly as Possible

This example assumes that a project called top exists in the current directory, and
that the name of the top-level entity is top. The --effort=fast option causes the
quartus_fit to use the fast fit algorithm to increase compilation speed, possibly at
the expense of reduced fMAX performance. The --one_fit_attempt=on option
restricts the Fitter to only one fitting attempt for the design.

To attempt to fit the project called top as quickly as possible, type the command
shown at a command prompt.

quartus_fit top --effort=fast --one_fit_attempt=on

1.8.9. Fit a Design Using Multiple Seeds

This shell script example assumes that the Intel Quartus Prime software tutorial
project called fir_filter exists in the current directory (defined in the file
fir_filter.qpf). If the tutorial files are installed on your system, this project exists
in the <Intel Quartus Prime directory>/qdesigns<quartus_version_number> /
fir_filter directory.

Because the top-level entity in the project does not have the same name as the
project, you must specify the revision name for the top-level entity with the --rev
option. The --seed option specifies the seeds to use for fitting.

1. Command Line Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A seed is a parameter that affects the random initial placement of the Intel Quartus
Prime Fitter. Varying the seed can result in better performance for some designs.

After each fitting attempt, the script creates new directories for the results of each
fitting attempt and copies the complete project to the new directory so that the results
are available for viewing and debugging after the script has completed.

#!/bin/sh
ERROR_SEEDS=""
quartus_map fir_filter --rev=filtref
Iterate over a number of seeds
for seed in 1 2 3 4 5
do
echo "Starting fit with seed=$seed"
Perform a fitting attempt with the specified seed
quartus_fit fir_filter --seed=$seed --rev=filtref
If the exit-code is non-zero, the fitting attempt was
successful, so copy the project to a new directory
if [$? -eq 0]
then
 mkdir ../fir_filter-seed_$seed
 mkdir ../fir_filter-seed_$seed/db
 cp * ../fir_filter-seed_$seed
 cp db/* ../fir_filter-seed_$seed/db
else
 ERROR_SEEDS="$ERROR_SEEDS $seed"
fi
done
if [-z "$ERROR_SEEDS"]
then
echo "Seed sweeping was successful"
exit 0
else
echo "There were errors with the following seed(s)"
echo $ERROR_SEEDS
exit 1
fi

Tip: Use Design Space Explorer II (DSE) included with the Intel Quartus Prime software
script (by typing quartus_dse at a command prompt) to improve design
performance by performing automated seed sweeping.

1.9. The QFlow Script

A Tcl/Tk-based graphical interface called QFlow is included with the command-line
executables. You can use the QFlow interface to open projects, launch some of the
command-line executables, view report files, and make some global project
assignments.

1. Command Line Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The QFlow interface can run the following command-line executables:

• quartus_map (Analysis and Synthesis)

• quartus_fit (Fitter)

• quartus_sta (Timing Analyzer)

• quartus_asm (Assembler)

• quartus_eda (EDA Netlist Writer)

To view floorplans or perform other GUI-intensive tasks, launch the Intel Quartus
Prime software.

Start QFlow by typing the following command at a command prompt:

quartus_sh -g

Tip: The QFlow script is located in the <Intel Quartus Prime directory>/
common/tcl/apps/qflow/ directory.

1.10. Document Revision History

Table 3. Document Revision History

Date Version Changes

2017.05.08 17.0.0 • Reorganized content on topics: Benefits of Command-Line
Executables and Project Settings with Command-Line Options.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2015.05.04 15.0.0 Remove descriptions of makefile support that was removed from
software in 14.0.

December 2014 14.1.0 Updated DSE II commands.

June 2014 14.0.0 Updated formatting.

November 2013 13.1.0 Removed information about -silnet qmegawiz command

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Corrected quartus_qpf example usage.
Updated examples.

December 2010 10.1.0 Template update.
Added section on using a script to regenerate megafunction
variations.
Removed references to the Classic Timing Analyzer (quartus_tan).
Removed Qflow illustration.

July 2010 10.0.0 Updated script examples to use quartus_sta instead of
quartus_tan, and other minor updates throughout document.

November 2009 9.1.0 Updated Table 2–1 to add quartus_jli and quartus_jbcc executables
and descriptions, and other minor updates throughout document.

March 2009 9.0.0 No change to content.

November 2008 8.1.0 Added the following sections:

continued...

1. Command Line Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

• “The MegaWizard Plug-In Manager” on page 2–11
“Command-Line Support” on page 2–12
“Module and Wizard Names” on page 2–13
“Ports and Parameters” on page 2–14
“Invalid Configurations” on page 2–15
“Strategies to Determine Port and Parameter Values” on page
2–15
“Optional Files” on page 2–15
“Parameter File” on page 2–16
“Working Directory” on page 2–17
“Variation File Name” on page 2–17

• “Create a Compressed Configuration File” on page 2–21
• Updated “Option Precedence” on page 2–5 to clarify how to

control precedence
• Corrected Example 2–5 on page 2–8
• Changed Example 2–1, Example 2–2, Example 2–4, and

Example 2–7 to use the EP1C12F256C6 device
• Minor editorial updates
• Updated entire chapter using 8½” × 11” chapter template

May 2008 8.0.0 • Updated “Referenced Documents” on page 2–20.
• Updated references in document.

1. Command Line Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Tcl Scripting
You can use Tcl scripts to control the Intel Quartus Prime software and to perform a
wide range of functions, such as compiling a design or scripting common tasks.

For example, use Tcl scripts to perform the following tasks:

• Manage an Intel Quartus Prime project

• Make assignments

• Define design constraints

• Make device assignments

• Compile your design

• Perform timing analysis

• Access reports

Tcl scripts also facilitate project or assignment migration. For example, when designing
in different projects with the same prototype or development board, you can write a
script to automate reassignment of pin locations in each new project. The Intel
Quartus Prime software can also generate a Tcl script based on all the current
assignments in the project, which aids in switching assignments to another project.

The Intel Quartus Prime software Tcl commands follow the EDA industry Tcl application
programming interface (API) standards for command-line options. This simplifies
learning and using Tcl commands. If you encounter an error with a command
argument, the Tcl interpreter includes help information showing correct usage.

This chapter includes sample Tcl scripts for automating tasks in the Intel Quartus
Prime software. You can modify these example scripts for use with your own designs.
You can find more Tcl scripts in the Design Examples section of the Support area on
the Altera website.

Related Information

Tcl Design Examples

2.1. Tool Command Language

Tcl (pronounced “tickle”) stands for Tool Command Language, and is the industry-
standard scripting language. Tcl supports control structures, variables, network socket
access, and APIs.

With Tcl, you can work seamlessly across most development platforms. Synopsys,
Mentor Graphics, and Intel software products support the Tcl language.

683325 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/support/support-resources/design-examples/design-software/tcl.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

By combining Tcl commands and Intel Quartus Prime API functions, you can create
your own procedures and automate your design flow. Run Intel Quartus Prime
software in batch mode, or execute individual Tcl commands interactively in the Intel
Quartus Prime Tcl shell.

Intel Quartus Prime software supports Tcl/Tk version 8.5, supplied by the Tcl
DeveloperXchange.

2.2. Intel Quartus Prime Tcl Packages

The Intel Quartus Prime software groups Tcl commands into packages by function.

Table 4. Intel Quartus Prime Tcl Packages

Package Name Package Description

backannotate Back annotate assignments

chip_planner Identify and modify resource usage and routing with the Chip Editor

database_manager Manage version-compatible database files

device Get device and family information from the device database

external_memif_toolkit Interact with external memory interfaces and debug components

fif Contains the set of Tcl functions for using the Fault Injection File (FIF) Driver

flow Compile a project, run command-line executables, and other common flows

incremental compilation Manipulate design partitions and Logic Lock (Standard) regions, and settings related to incremental
compilation

insystem_memory_edit Read and edit memory contents in Intel devices

insystem_source_probe Interact with the In-System Sources and Probes tool in an Intel device

iptclgen Generate memory IP

jtag Control the JTAG chain

logic_analyzer_interface Query and modify the Logic Analyzer Interface output pin state

misc Perform miscellaneous tasks such as enabling natural bus naming, package loading, and message
posting

partial_reconfiguration Contain the set of Tcl functions for performing partial reconfiguration

project Create and manage projects and revisions, make any project assignments including timing
assignments

report Get information from report tables, create custom reports

rtl Traverse and query the RTL netlist of your design

sdc Specify constraints and exceptions to the Timing Analyzer

sdc_ext Intel-specific SDC commands

simulator Configure and perform simulations

sta Contain the set of Tcl functions for obtaining advanced information from the Timing Analyzer

stp Run the Signal Tap Logic Analyzer

synthesis_report Contain the set of Tcl functions for the Dynamic Synthesis Report tool

tdc Obtain information from the Timing Analyzer

2. Tcl Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To keep memory requirements as low as possible, only the minimum number of
packages load automatically with each Intel Quartus Prime executable. To run
commands from other packages, load those packages beforehand.

Run your scripts with executables that include the packages you use in the scripts. For
example, to use commands in the sdc_ext package, you must use the quartus_sta
executable because quartus_sta is the only executable with support for the
sdc_ext package.

The following command prints lists of the packages loaded or available to load for an
executable, to the console:

<executable name> --tcl_eval help

For example, type the following command to list the packages loaded or available to
load by the quartus_fit executable:

quartus_fit --tcl_eval help

2.2.1. Loading Packages

To load an Intel Quartus Prime Tcl package, use the load_package command as
follows:

load_package [-version <version number>] <package name>

This command is similar to package require, but it allows to alternate between
different versions of an Intel Quartus Prime Tcl package.

Related Information

Command Line Scripting on page 4

2.3. Intel Quartus Prime Tcl API Help

Intel Quartus Prime Tcl help allows easy access to information about the Intel Quartus
Prime Tcl commands.

• This command opens the Intel Quartus Prime Command-Line and Tcl API help
browser, which documents all commands and options in the Intel Quartus Prime
Tcl API. At a system command prompt, access the Intel Quartus Prime Tcl API Help
by typing:

quartus_sh --qhelp

• The Tcl API Help can be accessed from the Tcl console as well. At a Tcl prompt,
type

help

to access the help information. The output is:

tcl> help

Available Intel Quartus Prime Tcl Packages:

Loaded Not Loaded
------------------ ----------------------------------

2. Tcl Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

::quartus::device ::quartus::external_memif_toolkit
::quartus::misc ::quartus::iptclgen
::quartus::project ::quartus::design
 ::quartus::rtm
 ::quartus::partial_reconfiguration
 ::quartus::report
 ::quartus::names
 ::quartus::incremental_compilation
 ::quartus::flow

* Type "help -tcl"
to get an overview on Intel Quartus Prime Tcl usages.

* Type "help <package name>"
 to view a list of Tcl commands available for
 the specified Intel Quartus Prime Tcl package.

The Tcl console provides help options that display specific information:

Table 5. Help Options Available in the Intel Quartus Prime Tcl Environment

Help Command Description

help Displays complete list of available Intel Quartus Prime Tcl
packages.

help -tcl Explains how to load Tcl packages and access command-line
help.

help -pkg <package_name -[-version <version number>] Displays help commands of the Intel Quartus Prime package
that you specify, including the list of available Tcl
commands.
• If you do not specify -version, the Intel Quartus Prime

software loads the latest version of the package.
• If the package is not loaded, the Intel Quartus Prime

software displays the help for the latest version of the
package.

Examples:

help -pkg ::quartus::project

help -pkg project

help -pkg project -version 1.0

<command_name> -h

or

<command_name> -help

Displays the short help of a Intel Quartus Prime Tcl
command in a loaded package. Examples:

project_open -h

project_open -help

package require ::quartus::<package name>[<version>] Loads a specific version of an Intel Quartus Prime Tcl
package. If you do not specify -version, the Intel Quartus
Prime software loads the latest version of the package.
Example:

package require ::quartus::project 1.0

This command is similar to the load_package command

load_package <package name> [-version <version number>] Allows you to alternate between different versions of the
same package.
Example:

load_package ::quartus::project -version 1.0

continued...

2. Tcl Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Help Command Description

help -cmd <command_name>
 -[-version <version>]

or

<command_name> -long_help

Displays the complete help text for an Intel Quartus Prime
Tcl command. If you do not specify -version, the Intel
Quartus Prime software loads the latest version of the
package.
Examples:

project_open -long_help

help -cmd project_open

help -cmd project_open -version 1.0

help -examples Displays examples of Intel Quartus Prime Tcl usage.

help -quartus To view help on the predefined global Tcl array that contains
project information and information about the Intel Quartus
Prime executable that is currently running.

quartus_sh --qhelp Launches the Tk viewer for Intel Quartus Prime command-
line help and display help for the command-line executables
and Tcl API packages.

help -timequestinfo To view help on the predefined global

"TimeQuestInfo"

Tcl array that contains delay model information and speed
grade information of a Timing Analyzer design that is
currently running.

The Tcl API help is also available in Intel Quartus Prime online help. Search for the
command or package name to find details about that command or package.

2.3.1. Command-Line Options

You can use any of the following command line options with executables that support
Tcl:

Table 6. Command-Line Options Supporting Tcl Scripting

Command-Line Option Description

--script=<script file> [<script args>] Run the specified Tcl script with optional arguments.

-t <script file> [<script args>] Run the specified Tcl script with optional arguments. The -t option is the
short form of the --script option.

--shell Open the executable in the interactive Tcl shell mode.

-s Open the executable in the interactive Tcl shell mode. The -s option is the
short form of the --shell option.

--tcl_eval <tcl command> Evaluate the remaining command-line arguments as Tcl commands. For
example, the following command displays help for the project package:
quartus_sh --tcl_eval help -pkg project

2. Tcl Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.1.1. Run a Tcl Script

Running an executable with the -t option runs the specified Tcl script. You can also
specify arguments to the script. Access the arguments through the argv variable, or
use a package such as cmdline, which supports arguments of the following form:

-<argument name> <argument value>

The cmdline package is included in the <Intel Quartus Prime directory>/
common/tcl/packages directory.

For example, to run a script called myscript.tcl with one argument, Stratix®,
type the following command at a system command prompt:

quartus_sh -t myscript.tcl Stratix

2.3.1.2. Interactive Shell Mode

Running an executable with the -s option starts an interactive Tcl shell. For example,
to open the Intel Quartus Prime Timing Analyzer executable in interactive shell mode,
type:

quartus_sta -s

Commands you type in the Tcl shell are interpreted when you press Enter. To run a Tcl
script in the interactive shell type:

source <script name>

If a command is not recognized by the shell, it is assumed to be external and
executed with the exec command.

2.3.1.3. Evaluate as Tcl

Running an executable with the --tcl_eval option causes the executable to
immediately evaluate the remaining command-line arguments as Tcl commands. This
can be useful if you want to run simple Tcl commands from other scripting languages.

For example, the following command runs the Tcl command that prints out the
commands available in the project package.

quartus_sh --tcl_eval help -pkg project

2.3.2. The Intel Quartus Prime Tcl Console Window

To run Tcl commands directly in the Intel Quartus Prime Tcl Console window, click
View ➤ Utility Windows. By default, the Tcl Console window is docked in the
bottom-right corner of the Intel Quartus Prime GUI. All Tcl commands typed in the Tcl
Console are interpreted by the Intel Quartus Prime Tcl shell.

Note: Some shell commands such as cd, ls, and others can be run in the Tcl Console
window, with the Tcl exec command. However, for best results, run shell commands
and Intel Quartus Prime executables from a system command prompt outside of the
Intel Quartus Prime software GUI.

2. Tcl Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl messages appear in the System tab (Messages window). Errors and messages
written to stdout and stderr also are shown in the Intel Quartus Prime Tcl Console
window.

2.4. End-to-End Design Flows

You can use Tcl scripts to control all aspects of the design flow, including controlling
other software, when the other software also includes a scripting interface.

Typically, EDA tools include their own script interpreters that extend core language
functionality with tool-specific commands. For example, the Intel Quartus Prime Tcl
interpreter supports all core Tcl commands, and adds numerous commands specific to
the Intel Quartus Prime software. You can include commands in one Tcl script to run
another script, which allows you to combine or chain together scripts to control
different tools. Because scripts for different tools must be executed with different Tcl
interpreters, it is difficult to pass information between the scripts unless one script
writes information into a file and another script reads it.

Within the Intel Quartus Prime software, you can perform many different operations in
a design flow (such as synthesis, fitting, and timing analysis) from a single script,
making it easy to maintain global state information and pass data between the
operations. However, there are some limitations on the operations you can perform in
a single script due to the various packages supported by each executable.

There are no limitations on running flows from any executable. Flows include
operations found in

Processing ➤ Start in the Intel Quartus Prime GUI, and are also documented as
options for the execute_flow Tcl command. If you can make settings in the Intel
Quartus Prime software and run a flow to get your desired result, you can make the
same settings and run the same flow in a Tcl script.

2.5. Creating Projects and Making Assignments

You can create a script that makes all the assignments for an existing project, and
then use the script at any time to restore your project settings to a known state.

Click Project ➤ Generate Tcl File for Project to automatically generate a .tcl file
containing your assignments. You can source this file to recreate your project, and you
can add other commands to this file, such as commands for compiling the design. This
file is a good starting point to learn about project management and assignment
commands.
To commit the assignments you create or modify to the .qsf file, you use the
export_assignments or project_close commands. However, when you run the
execute_flow command, Intel Quartus Prime software automatically commits the
assignment changes to the .qsf file. To prevent this behavior, specify the -
dont_export_assignments logic option.

2. Tcl Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 1. Create and Compile a Project

The following example creates a project, makes assignments, and compiles the
design. The example uses the fir_filter tutorial design files in the qdesigns
installation directory. Run this script in the fir_filter directory, with the
quartus_sh executable.

load_package flow
Create the project and overwrite any settings
files that exist
project_new fir_filter -revision filtref -overwrite
Set the device, the name of the top-level BDF,
and the name of the top-level entity
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C6F256C6
set_global_assignment -name BDF_FILE filtref.bdf
set_global_assignment -name TOP_LEVEL_ENTITY filtref
Add other pin assignments here
set_location_assignment -to clk Pin_G1
compile the project
execute_flow -compile
project_close

Related Information

• Intel Quartus Prime Standard Edition Settings File Reference Manual

• Interactive Shell Mode on page 23

2.6. Compiling Designs

You can run the Intel Quartus Prime command-line executables from Tcl scripts. Use
the included flow package to run various Intel Quartus Prime compilation flows, or
run each executable directly.

2.6.1. The flow Package

The flow package includes two commands for running Intel Quartus Prime command-
line executables, either individually or together in standard compilation sequence.

• The execute_module command allows you to run an individual Intel Quartus
Prime command-line executable.

• The execute_flow command allows you to run some or all the executables in
commonly-used combinations.

Use the flow package instead of system calls to run Intel Quartus Prime executables
from scripts or from the Intel Quartus Prime Tcl Console.

2.6.2. Compile All Revisions

You can use a simple Tcl script to compile all revisions in your project. Save the
following script in a file called compile_revisions.tcl and type the following to
run it:

quartus_sh -t compile_revisions.tcl <project name>

2. Tcl Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

25

https://www.intel.com/content/www/us/en/docs/programmable/683084.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Compile All Revisions

load_package flow
project_open [lindex $quartus(args) 0]
set original_revision [get_current_revision]
foreach revision [get_project_revisions] {
 set_current_revision $revision
 execute flow -compile
}
set_current_revision $original_revision
project_close

2.7. Reporting

You can extract information from the Compilation Report to evaluate results. The Intel
Quartus Prime Tcl API provides easy access to report data so you do not have to write
scripts to parse the text report files.

If you know the exact report cell or cells you want to access, use the
get_report_panel_data command and specify the row and column names (or x
and y coordinates) and the name of the appropriate report panel. You can often
search for data in a report panel. To do this, use a loop that reads the report one row
at a time with the get_report_panel_row command.

Column headings in report panels are in row 0. If you use a loop that reads the report
one row at a time, start with row 1 to skip column headings. The
get_number_of_rows command returns the number of rows in the report panel,
including the column heading row. Since the number of rows includes the column
heading row, continue your loop if the loop index is less than the number of rows.

Report panels are hierarchically arranged and each level of hierarchy is denoted by the
string “||“ in the panel name. For example, the name of the Fitter Settings report
panel is Fitter||Fitter Settings because it is in the Fitter folder. Panels at
the highest hierarchy level do not use the “||” string. For example, the Flow Settings
report panel is named Flow Settings.

The following Tcl code prints a list of all report panel names in your project. You can
run this code with any executable that includes support for the report package.

Print All Report Panel Names

load_package report
project_open myproject
load_report
set panel_names [get_report_panel_names]
foreach panel_name $panel_names {
post_message "$panel_name"
}

2.7.1. Saving Report Data in csv Format

You can create a Comma Separated Value (.csv) file from any Intel Quartus Prime
report to open with a spreadsheet editor.

The following Tcl code shows a simple way to create a .csv file with data from the
Fitter panel in a report.

2. Tcl Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Create .csv Files from Reports

load_package report
project_open my-project
load_report
This is the name of the report panel to save as a CSV file
set panel_name "Fitter||Fitter Settings"
set csv_file "output.csv"
set fh [open $csv_file w]
set num_rows [get_number_of_rows -name $panel_name]
Go through all the rows in the report file, including the
row with headings, and write out the comma-separated data
for { set i 0 } { $i < $num_rows } { incr i } {
 set row_data [get_report_panel_row -name $panel_name \
 -row $i]
 puts $fh [join $row_data ","]
}
close $fh
unload_report

You can modify the script to use command-line arguments to pass in the name of the
project, report panel, and output file to use. You can run this script example with any
executable that supports the report package.

2.8. Timing Analysis

The Intel Quartus Prime Timing Analyzer includes support for industry-standard SDC
commands in the sdc package.

The Intel Quartus Prime software includes comprehensive Tcl APIs and SDC extensions
for the Timing Analyzer in the sta, and sdc_ext packages. The Intel Quartus Prime
software also includes a tdc package that obtains information from the Timing
Analyzer.

Related Information

Intel Quartus Prime Standard Edition Settings File Reference Manual

2.9. Automating Script Execution

You can configure scripts to run automatically at various points during compilation.
Use this capability to automatically run scripts that perform custom reporting, make
specific assignments, and perform many other tasks.

The following three global assignments control when a script is run automatically:

• PRE_FLOW_SCRIPT_FILE —before a flow starts

• POST_MODULE_SCRIPT_FILE —after a module finishes

• POST_FLOW_SCRIPT_FILE —after a flow finishes

A module is another term for an Intel Quartus Prime executable that performs one
step in a flow. For example, two modules are Analysis and Synthesis (quartus_map),
and timing analysis (quartus_sta).

2. Tcl Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

27

https://www.intel.com/content/www/us/en/docs/programmable/683084.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A flow is a series of modules that the Intel Quartus Prime software runs with
predefined options. For example, compiling a design is a flow that typically consists of
the following steps (performed by the indicated module):

1. Analysis and Synthesis (quartus_map)

2. Fitter (quartus_fit)

3. Assembler (quartus_asm)

4. Timing Analyzer (quartus_sta)

Other flows are described in the help for the execute_flow Tcl command. In
addition, many commands in the Processing menu of the Intel Quartus Prime GUI
correspond to this design flow.

To make an assignment automatically run a script, add an assignment with the
following form to the .qsf for your project:

set_global_assignment -name <assignment name> <executable>:<script name>

The Intel Quartus Prime software runs the scripts.

<executable> -t <script name> <flow or module name> <project name> <revision
name>

The first argument passed in the argv variable (or quartus(args) variable) is the
name of the flow or module being executed, depending on the assignment you use.
The second argument is the name of the project and the third argument is the name
of the revision.

The last process, current project, and current revision are passed to the script by the
Intel Quartus Prime software and can be accessed by the following commands:

set process [lindex $quartus(args) 0]
set project [lindex $quartus(args) 1]
set revision [lindex $quartus(args) 2]

project_open $project -revision $revision

When you use the POST_MODULE_SCRIPT_FILE assignment, the specified script is
automatically run after every executable in a flow. You can use a string comparison
with the module name (the first argument passed in to the script) to isolate script
processing to certain modules.

2.9.1. Execution Example

To illustrate how automatic script execution works in a complete flow, assume you
have a project called top with a current revision called rev_1, and you have the
following assignments in the .qsf for your project.

set_global_assignment -name PRE_FLOW_SCRIPT_FILE quartus_sh:first.tcl
set_global_assignment -name POST_MODULE_SCRIPT_FILE quartus_sh:next.tcl
set_global_assignment -name POST_FLOW_SCRIPT_FILE quartus_sh:last.tcl

When you compile your project, the PRE_FLOW_SCRIPT_FILE assignment causes the
following command to be run before compilation begins:

quartus_sh -t first.tcl compile top rev_1

2. Tcl Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Next, the Intel Quartus Prime software starts compilation with analysis and synthesis,
performed by the quartus_map executable. After the Analysis and Synthesis finishes,
the POST_MODULE_SCRIPT_FILE assignment causes the following command to run:

quartus_sh -t next.tcl quartus_map top rev_1

Then, the Intel Quartus Prime software continues compilation with the Fitter,
performed by the quartus_fit executable. After the Fitter finishes, the
POST_MODULE_SCRIPT_FILE assignment runs the following command:

quartus_sh -t next.tcl quartus_fit top rev_1

Corresponding commands are run after the other stages of the compilation. When the
compilation is over, the POST_FLOW_SCRIPT_FILE assignment runs the following
command:

quartus_sh -t last.tcl compile top rev_1

2.9.2. Controlling Processing

The POST_MODULE_SCRIPT_FILE assignment causes a script to run after every
module. Because the same script is run after every module, you might have to include
some conditional statements that restrict processing in your script to certain modules.

For example, if you want a script to run only after timing analysis, use a conditional
test like the following example. It checks the flow or module name passed as the first
argument to the script and executes code when the module is quartus_sta.

Restrict Processing to a Single Module

set module [lindex $quartus(args) 0]
if [string match "quartus_sta" $module] {
 # Include commands here that are run
 # after timing analysis
 # Use the post-message command to display
 # messages
 post_message "Running after timing analysis"
}

2.9.3. Displaying Messages

Because of the way the Intel Quartus Prime software runs the scripts automatically,
you must use the post_message command to display messages, instead of the puts
command. This requirement applies only to scripts that are run by the three
assignments listed in “Automating Script Execution”.

Related Information

• The post_message Command on page 31

• Automating Script Execution on page 27

2.10. Other Scripting Features

The Intel Quartus Prime Tcl API includes other general-purpose commands and
features described in this section.

2. Tcl Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.1. Natural Bus Naming

The Intel Quartus Prime software supports natural bus naming. Natural bus naming
allows you to use square brackets to specify bus indexes in HDL, without including
escape characters to prevent Tcl from interpreting the square brackets as containing
commands. For example, one signal in a bus named address can be identified as
address[0] instead of address\[0\]. You can take advantage of natural bus
naming when making assignments.

set_location_assignment -to address[10] Pin_M20

The Intel Quartus Prime software defaults to natural bus naming. You can turn off
natural bus naming with the disable_natural_bus_naming command. For more
information about natural bus naming, type the following at an Intel Quartus Prime Tcl
prompt:

enable_natural_bus_naming -h

2.10.2. Short Option Names

You can use short versions of command options, if they are unambiguous. For
example, the project_open command supports two options: -current_revision
and -revision.

You can use any of the following abbreviations of the -revision option:

• -r

• -re

• -rev

• -revi

• -revis

• -revisio

You can use an extremely short option such as -r because in the case of the
project_open command no other option starts with the letter r. However, the
report_timing command includes the options -recovery and -removal. You
cannot use -r or -re to shorten either of those options, because the abbreviation is
not unique.

2.10.3. Collection Commands

Some Intel Quartus Prime Tcl functions return very large sets of data that are
inefficient as Tcl lists. These data structures are referred to as collections. The Intel
Quartus Prime Tcl API uses a collection ID to access the collection.

There are two Intel Quartus Prime Tcl commands for working with collections,
foreach_in_collection and get_collection_size. Use the set command to
assign a collection ID to a variable.

2. Tcl Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10.3.1. The foreach_in_collection Command

The foreach_in_collection command is similar to the foreach Tcl command.
Use it to iterate through all elements in a collection. The following example prints all
instance assignments in an open project.

foreach_in_collection Example

set all_instance_assignments [get_all_instance_assignments -name *]
foreach_in_collection asgn $all_instance_assignments {
 # Information about each assignment is
 # returned in a list. For information
 # about the list elements, refer to Help
 # for the get-all-instance-assignments command.
 set to [lindex $asgn 2]
 set name [lindex $asgn 3]
 set value [lindex $asgn 4]
 puts "Assignment to $to: $name = $value"
}

Related Information

foreach_in_collection (::quartus::misc)
In Intel Quartus Prime Help

2.10.3.2. The get_collection_size Command

Use the get_collection_size command to get the number of elements in a
collection. The following example prints the number of global assignments in an open
project.

get_collection_size Example

set all_global_assignments [get_all_global_assignments -name *]
set num_global_assignments [get_collection_size $all_global_assignments]
puts "There are $num_global_assignments global assignments in your project"

2.10.4. The post_message Command

To print messages that are formatted like Intel Quartus Prime software messages, use
the post_message command. Messages printed by the post_message command
appear in the System tab of the Messages window in the Intel Quartus Prime GUI,
and are written to standard output when scripts are run. Arguments for the
post_message command include an optional message type and a required message
string.

The message type can be one of the following:

• info (default)

• extra_info

• warning

• critical_warning

• error

If you do not specify a type, Intel Quartus Prime software defaults to info.

2. Tcl Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

31

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_misc_ver_1.0_cmd_foreach_in_collection.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

With the Intel Quartus Prime software in Windows, you can color code messages
displayed at the system command prompt with the post_message command. Add
the following line to your quartus2.ini file:

DISPLAY_COMMAND_LINE_MESSAGES_IN_COLOR = on

The following example shows how to use the post_message command.

post_message -type warning "Design has gated clocks"

2.10.5. Accessing Command-Line Arguments

The global variable quartus(args) is a list of the arguments typed on the
command-line following the name of the Tcl script.

Example 2. Simple Command-Line Argument Access

The following Tcl example prints all the arguments in the quartus(args) variable:

set i 0
foreach arg $quartus(args) {
 puts "The value at index $i is $arg"
 incr i
}

Example 3. Passing Command-Line Arguments to Scripts

If you copy the script in the previous example to a file named print_args.tcl, it
displays the following output when you type the following at a command prompt.

quartus_sh -t print_args.tcl my_project 100MHz
The value at index 0 is my_project
The value at index 1 is 100MHz

2.10.5.1. The cmdline Package

You can use the cmdline package included with the Intel Quartus Prime software for
more robust and self-documenting command-line argument passing. The cmdline
package supports command-line arguments with the form -<option><value>.

cmdline Package

package require cmdline
variable ::argv0 $::quartus(args)
set options {
 { "project.arg" "" "Project name" }
 { "frequency.arg" "" "Frequency" }
}
set usage "You need to specify options and values"
array set optshash [::cmdline::getoptions ::argv $options $usage]
puts "The project name is $optshash(project)"
puts "The frequency is $optshash(frequency)"

If you save those commands in a Tcl script called print_cmd_args.tcl you see the
following output when you type the following command at a command prompt.

2. Tcl Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Passing Command-Line Arguments for Scripts

quartus_sh -t print_cmd_args.tcl -project my_project -frequency 100MHz
The project name is my_project
The frequency is 100MHz

Virtually all Intel Quartus Prime Tcl scripts must open a project. You can open a
project, and you can optionally specify a revision name with code like the following
example. The example checks whether the specified project exists. If it does, the
example opens the current revision, or the revision you specify.

Full-Featured Method to Open Projects

package require cmdline
variable ::argv0 $::quartus(args)
set options { \
{ "project.arg" "" "Project Name" } \
{ "revision.arg" "" "Revision Name" } \
}
array set optshash [::cmdline::getoptions ::argv0 $options]
Ensure the project exists before trying to open it
if {[project_exists $optshash(project)]} {
 if {[string equal "" $optshash(revision)]} {
 # There is no revision name specified, so default
 # to the current revision
 project_open $optshash(project) -current_revision
 } else {
 # There is a revision name specified, so open the
 # project with that revision
 project_open $optshash(project) -revision \
 $optshash(revision)
 }
} else {
 puts "Project $optshash(project) does not exist"
 exit 1
}
The rest of your script goes here

If you do not require this flexibility or error checking, you can use just the
project_open command.

Simple Method to Open Projects

set proj_name [lindex $argv 0]
project_open $proj_name

2.10.6. The quartus() Array

The global quartus() Tcl array includes other information about your project and the
current Intel Quartus Prime executable that might be useful to your scripts. The
scripts in the preceding examples parsed command line arguments found in
quartus(args). For information on the other elements of the quartus() array,
type the following command at a Tcl prompt:

help -quartus

2.11. The Intel Quartus Prime Tcl Shell in Interactive Mode Example

This section presents how to make project assignments and then compile the finite
impulse response (FIR) filter tutorial project with the quartus_sh interactive shell.

2. Tcl Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This example assumes you already have the fir_filter tutorial design files in a
project directory.

1. To run the interactive Tcl shell, type the following at the system command prompt:

quartus_sh -s

2. Create a new project called fir_filter, with a revision called filtref by
typing:

project_new -revision filtref fir_filter

Note: • If the project file and project name are the same, the Intel Quartus
Prime software gives the revision the same name as the project.

• If a .qpf file for this project already exists, the Intel Quartus Prime
software will display an error stating that the project already exists.

Because the revision named filtref matches the top-level file, all design files
are automatically picked up from the hierarchy tree.

3. Set a global assignment for the device:

set_global_assignment -name family <device family name>

To learn more about assignment names that you can use with the -name option,
refer to Intel Quartus Prime Help.

Note: For assignment values that contain spaces, enclose the value in quotation
marks.

4. To compile a design, use the ::quartus::flow package, which properly exports
the new project assignments and compiles the design with the proper sequence of
the command-line executables. First, load the package:

load_package flow

It returns:

1.1

5. To perform a full compilation of the FIR filter design, use the execute_flow
command with the -compile option:

execute_flow -compile

This command compiles the FIR filter tutorial project, exporting the project
assignments and running quartus_map, quartus_fit, quartus_asm, and
quartus_sta. This sequence of events is the same as selecting Processing ➤
Start Compilation in the Intel Quartus Prime GUI.

6. When you are finished with a project, close it with the project_close
command.

7. To exit the interactive Tcl shell, type exit at a Tcl prompt.

2. Tcl Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.12. The tclsh Shell

On the UNIX and Linux operating systems, the tclsh shell included with the Intel
Quartus Prime software is initialized with a minimal PATH environment variable. As a
result, system commands might not be available within the tclsh shell because certain
directories are not in the PATH environment variable.

To include other directories in the path searched by the tclsh shell, set the
QUARTUS_INIT_PATH environment variable before running the tclsh shell. Directories
in the QUARTUS_INIT_PATH environment variable are searched by the tclsh shell
when you execute a system command.

2.13. Tcl Scripting Basics

The core Tcl commands support variables, control structures, and procedures.
Additionally, there are commands for accessing the file system and network sockets,
and running other programs. You can create platform-independent graphical interfaces
with the Tk widget set.

Tcl commands are executed immediately as they are typed in an interactive Tcl shell.
You can also create scripts (including the examples in this chapter) in files and run
them with the Intel Quartus Prime executables or with the tclsh shell.

2.13.1. Hello World Example

The following shows the basic “Hello world” example in Tcl:

puts "Hello world"

Use double quotation marks to group the words hello and world as one argument.
Double quotation marks allow substitutions to occur in the group. Substitutions can be
simple variable substitutions, or the result of running a nested command. Use curly
braces {} for grouping when you want to prevent substitutions.

2.13.2. Variables

Assign a value to a variable with the set command. You do not have to declare a
variable before using it. Tcl variable names are case-sensitive.

set a 1

To access the contents of a variable, use a dollar sign (“$”) before the variable name.
The following example prints "Hello world" in a different way.

set a Hello
set b world
puts "$a $b"

2.13.3. Substitutions

Tcl performs three types of substitution:

2. Tcl Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Variable value substitution

• Nested command substitution

• Backslash substitution

2.13.3.1. Variable Value Substitution

Variable value substitution, refers to accessing the value stored in a variable with a
dollar sign (“$”) before the variable name.

2.13.3.2. Nested Command Substitution

Nested command substitution refers to how the Tcl interpreter evaluates Tcl code in
square brackets. The Tcl interpreter evaluates nested commands, starting with the
innermost nested command, and commands nested at the same level from left to
right. Each nested command result is substituted in the outer command.

set a [string length foo]

2.13.3.3. Backslash Substitution

Backslash substitution allows you to quote reserved characters in Tcl, such as dollar
signs (“$”) and braces (“[]”). You can also specify other special ASCII characters
like tabs and new lines with backslash substitutions. A backslash before a character
tells the TCL interpreter to treat the next character as a literal if the character is not
the last character on the line.

puts "This is a \$ special character"

puts "This is a\
$ special character and line continuation"

puts "This is backslash \is ignored"

puts "This is backslash\
 continued on next line"

2.13.4. Arithmetic

Use the expr command to perform arithmetic calculations. Use curly braces (“{ }”)
to group the arguments of this command for greater efficiency and numeric precision.

set a 5
set b [expr { $a + sqrt(2) }]

The Intel Quartus Prime software supports all standard Tcl boolean and arithmetic
operators, such as && (AND), || (OR), ! (NOT), and comparison operators such as <
(less than), > (greater than), and == (equal to).

2. Tcl Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.13.5. Lists

A Tcl list is a series of values. Supported list operations include creating lists,
appending lists, extracting list elements, computing the length of a list, sorting a list,
and more.

set a { 1 2 3 }

You can use the lindex command to extract information at a specific index in a list.
Indexes are zero-based. You can use the index end to specify the last element in the
list, or the index end-<n> to count from the end of the list. For example, to print the
second element (at index 1) in the list stored in a use the following code.

puts [lindex $a 1]

The llength command returns the length of a list.

puts [llength $a]

The lappend command appends elements to a list. If a list does not already exist, the
list you specify is created. The list variable name is not specified with a dollar sign
(“$”).

lappend a 4 5 6

2.13.6. Arrays

Arrays are similar to lists except that they use a string-based index. Tcl arrays are
implemented as hash tables. You can create arrays by setting each element
individually or with the array set command.

To set an element with an index of Mon to a value of Monday in an array called days,
use the following command:

set days(Mon) Monday

The array set command requires a list of index/value pairs. This example sets the
array called days:

array set days { Sun Sunday Mon Monday Tue Tuesday \
 Wed Wednesday Thu Thursday Fri Friday Sat Saturday }

set day_abbreviation Mon
puts $days($day_abbreviation)

Use the array names command to get a list of all the indexes in a particular array.
The index values are not returned in any specified order. The following example is one
way to iterate over all the values in an array.

foreach day [array names days] {
 puts "The abbreviation $day corresponds to the day\
name $days($day)"
}

Arrays are a very flexible way of storing information in a Tcl script and are a good way
to build complex data structures.

2. Tcl Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.13.7. Control Structures

Tcl supports common control structures, including if-then-else conditions and for,
foreach, and while loops. The position of the curly braces as shown in the following
examples ensures the control structure commands are executed efficiently and
correctly. The following example prints whether the value of variable a positive,
negative, or zero.

 If-Then-Else Structure

if { $a > 0 } {
 puts "The value is positive"
} elseif { $a < 0 } {
 puts "The value is negative"
} else {
 puts "The value is zero"
}

The following example uses a for loop to print each element in a list.

For Loop

set a { 1 2 3 }
for { set i 0 } { $i < [llength $a] } { incr i } {
 puts "The list element at index $i is [lindex $a $i]"
}

The following example uses a foreach loop to print each element in a list.

 foreach Loop

set a { 1 2 3 }
foreach element $a {
 puts "The list element is $element"
}

The following example uses a while loop to print each element in a list.

while Loop

set a { 1 2 3 }
set i 0
while { $i < [llength $a] } {
 puts "The list element at index $i is [lindex $a $i]"
 incr i
}

You do not have to use the expr command in boolean expressions in control structure
commands because they invoke the expr command automatically.

2.13.8. Procedures

Use the proc command to define a Tcl procedure (known as a subroutine or function
in other scripting and programming languages). The scope of variables in a procedure
is local to the procedure. If the procedure returns a value, use the return command
to return the value from the procedure. The following example defines a procedure
that multiplies two numbers and returns the result.

2. Tcl Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 Simple Procedure

proc multiply { x y } {
 set product [expr { $x * $y }]
 return $product
}

The following example shows how to use the multiply procedure in your code. You
must define a procedure before your script calls it.

 Using a Procedure

proc multiply { x y } {
 set product [expr { $x * $y }]
 return $product
}
set a 1
set b 2
puts [multiply $a $b]

Define procedures near the beginning of a script. If you want to access global
variables in a procedure, use the global command in each procedure that uses a
global variable.

 Accessing Global Variables

proc print_global_list_element { i } {
 global my_data
 puts "The list element at index $i is [lindex $my_data $i]"
}
set my_data { 1 2 3}
print_global_list_element 0

2.13.9. File I/O

Tcl includes commands to read from and write to files. You must open a file before you
can read from or write to it, and close it when the read and write operations are done.

To open a file, use the open command; to close a file, use the close command.
When you open a file, specify its name and the mode in which to open it. If you do not
specify a mode, Tcl defaults to read mode. To write to a file, specify w for write mode.

Open a File for Writing

set output [open myfile.txt w]

Tcl supports other modes, including appending to existing files and reading from and
writing to the same file.

The open command returns a file handle to use for read or write access. You can use
the puts command to write to a file by specifying a file handle.

Write to a File

set output [open myfile.txt w]
puts $output "This text is written to the file."
close $output

2. Tcl Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can read a file one line at a time with the gets command. The following example
uses the gets command to read each line of the file and then prints it out with its line
number.

Read from a File

set input [open myfile.txt]
set line_num 1
while { [gets $input line] >= 0 } {
 # Process the line of text here
 puts "$line_num: $line"
 incr line_num
}
close $input

2.13.10. Syntax and Comments

Arguments to Tcl commands are separated by white space, and Tcl commands are
terminated by a newline character or a semicolon. You must use backslashes when a
Tcl command extends more than one line. The backslash (\) must be the last
character in the line to designate line extension. If the backslash is followed by any
other character including a space, that character is treated as a literal.

Tcl uses the hash or pound character (#) to begin comments. The # character must
begin a comment. If you prefer to include comments on the same line as a command,
be sure to terminate the command with a semicolon before the # character. The
following example is a valid line of code that includes a set command and a
comment.

set a 1;# Initializes a

Without the semicolon, the command is invalid because the set command does not
terminate until the new line after the comment.

The Tcl interpreter counts curly braces inside comments, which can lead to errors that
are difficult to track down. The following example causes an error because of
unbalanced curly braces.

if { $x > 0 } {
if { $y > 0 } {
 # code here
}

2.13.11. External References

For more information about Tcl, refer to the following sources:

• Brent B. Welch and Ken Jones, and Jeffery Hobbs, Practical Programming in Tcl
and Tk (Upper Saddle River: Prentice Hall, 2003)

• John Ousterhout and Ken Jones, Tcl and the Tk Toolkit (Boston: Addison-Wesley
Professional, 2009)

• Mark Harrison and Michael McLennan, Effective Tcl/Tk Programming: Writing
Better Programs in Tcl and Tk (Boston: Addison-Wesley Professional, 1997)

2. Tcl Scripting

683325 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Scripting Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

www.tcl.tk
Tcl Developer Xchange

2.14. Tcl Scripting Revision History

Table 7. Document Revision History

Date Version Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.
• Updated the list of Tcl packages in the Intel Quartus Prime Tcl Packages section.
• Updated the Intel Quartus Prime Tcl API Help section:

— Updated the Tcl Help Output

June 2014 14.0.0 Updated the format.

June 2012 12.0.0 • Removed survey link.

November 2011 11.0.1 • Template update
• Updated supported version of Tcl in the section “Tool Command Language.”
• Minor editorial changes

May 2011 11.0.0 Minor updates throughout document.

December 2010 10.1.0 Template update
Updated to remove tcl packages used by the Classic Timing Analyzer

July 2010 10.0.0 Minor updates throughout document.

November 2009 9.1.0 • Removed LogicLock example.
• Added the incremental_compilation, insystem_source_probe, and rtl packages to Table 3-1

and Table 3-2.
• Added quartus_map to table 3-2.

March 2009 9.0.0 • Removed the “EDA Tool Assignments” section
• Added the section “Compile All Revisions” on page 3–9
• Added the section “Using the tclsh Shell” on page 3–20

November 2008 8.1.0 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0.0 Updated references.

2. Tcl Scripting

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

41

https://www.tcl.tk
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

683325 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/documentation/yoq1529444104707.html
https://www.altera.com/documentation/jrw1529444674987.html
https://www.altera.com/documentation/ntt1529445293791.html
https://www.altera.com/documentation/pts1529446039343.html
https://www.altera.com/documentation/zov1529446404644.html
https://www.altera.com/documentation/qnz1529450399707.html
https://www.altera.com/documentation/wck1529450731513.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics, and Synopsys that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics, and Synopsys. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor Graphics
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.

A. Intel Quartus Prime Standard Edition User Guides

683325 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Scripting

43

https://www.altera.com/documentation/gtt1529956823942.html
https://www.altera.com/documentation/gjg1529964577982.html
https://www.altera.com/documentation/kxi1529965561204.html
https://www.altera.com/documentation/ony1529966370740.html
https://www.altera.com/documentation/xhv1529966780595.html
https://www.altera.com/documentation/grc1529967026944.html
https://www.altera.com/documentation/wfp1529967260660.html
https://www.altera.com/documentation/jeb1529967983176.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Scripting%20(683325%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Intel Quartus Prime Standard Edition User Guide: Getting Started
	Contents
	1. Introduction to Intel® Quartus® Prime Standard Edition
	1.1. Selecting an Intel Quartus Prime Software Edition
	1.2. Introduction to Intel Quartus Prime Standard Edition Revision History

	2. Managing Intel Quartus Prime Projects
	2.1. Viewing Basic Project Information
	2.1.1. Viewing Project Reports
	2.1.2. Viewing Project Messages
	2.1.2.1. Suppressing Message Display

	2.1.3. Automated Problem Reports

	2.2. Intel Quartus Prime Project Contents
	2.2.1. Project File Best Practices

	2.3. Managing Project Settings
	2.3.1. Specifying the Target Device or Board
	2.3.2. Optimizing Project Settings
	2.3.2.1. Optimize Settings with Design Space Explorer II
	2.3.2.2. Optimize Settings with Project Revisions
	2.3.2.3. Back-Annotating Compiler Assignments

	2.4. Managing Logic Design Files
	2.4.1. Including Design Libraries
	2.4.2. Creating a Project Copy

	2.5. Managing Timing Constraints
	2.6. Integrating Other EDA Tools
	2.7. Exporting Compilation Results
	2.7.1. Exporting a Version-Compatible Compilation Database
	2.7.2. Importing a Version-Compatible Compilation Database
	2.7.3. Exporting a Design Partition
	2.7.4. Clearing Compilation Results

	2.8. Migrating Projects Across Operating Systems
	2.8.1. Migrating Design Files and Libraries
	2.8.1.1. Use Relative Paths

	2.8.2. Design Library Migration Guidelines

	2.9. Archiving Projects
	2.9.1. Manually Adding Files To Archives
	2.9.2. Archiving Compilation Results
	2.9.3. Archiving Projects for Service Requests
	2.9.4. Using External Revision Control
	2.9.4.1. Files to Include In External Revision Control

	2.10. Command-Line Interface
	2.10.1. Project Revision Commands
	2.10.2. Project Archive Commands
	2.10.3. Project Database Commands
	2.10.3.1. Import and Export Version-Compatible Databases from a Flow Package
	2.10.3.2. quartus_cdb and quartus_sh Executables to Manage Version-Compatible Databases

	2.10.4. Project Library Commands
	2.10.4.1. Specify Project Libraries With SEARCH_PATH Assignment
	2.10.4.2. Report Specified Project Libraries Commands
	2.10.4.3. Generate Version-Compatible Database After Compilation

	2.11. Managing Projects Revision History

	3. Design Planning
	3.1. Design Planning
	3.2. Create a Design Specification and Test Plan
	3.3. Plan for the Target Device
	3.3.1. Device Migration Planning

	3.4. Plan for Intellectual Property Cores
	3.5. Plan for Standard Interfaces
	3.6. Plan for Device Programming
	3.7. Plan for Device Power Consumption
	3.8. Plan for Interface I/O Pins
	3.8.1. Simultaneous Switching Noise Analysis

	3.9. Plan for other EDA Tools
	3.9.1. Third-Party Synthesis Tools
	3.9.2. Third-Party Simulation Tools

	3.10. Plan for On-Chip Debugging Tools
	3.11. Plan HDL Coding Styles
	3.11.1. Design Recommendations
	3.11.2. Recommended HDL Coding Styles
	3.11.3. Managing Metastability

	3.12. Plan for Hierarchical and Team-Based Designs
	3.12.1. Flat Compilation without Design Partitions
	3.12.2. Incremental Compilation with Design Partitions
	3.12.3. Planning Design Partitions and Floorplan Location Assignments

	3.13. Design Planning Revision History

	4. Introduction to Intel FPGA IP Cores
	4.1. IP Catalog and Parameter Editor
	4.1.1. The Parameter Editor

	4.2. Installing and Licensing Intel FPGA IP Cores
	4.2.1. Intel FPGA IP Evaluation Mode
	4.2.1.1. Intel FPGA IP Versioning
	4.2.1.2. Checking the IP License Status

	4.3. IP General Settings
	4.4. Adding Your Own IP to IP Catalog
	4.5. Best Practices for Intel FPGA IP
	4.6. Generating IP Cores (Intel Quartus Prime Standard Edition)
	4.6.1. IP Core Generation Output (Intel Quartus Prime Standard Edition)

	4.7. Modifying an IP Variation
	4.8. Upgrading IP Cores
	4.8.1. Upgrading IP Cores at Command-Line
	4.8.2. Migrating IP Cores to a Different Device
	4.8.3. Troubleshooting IP or Platform Designer System Upgrade

	4.9. Simulating Intel FPGA IP Cores
	4.9.1. Generating IP Simulation Files
	4.9.2. Using NativeLink Simulation (Intel Quartus Prime Standard Edition)
	4.9.2.1. Setting Up NativeLink Simulation (Intel Quartus Prime Standard Edition)
	4.9.2.2. Generating IP Functional Simulation Models (Intel Quartus Prime Standard Edition)

	4.10. Synthesizing IP Cores in Other EDA Tools
	4.11. Instantiating IP Cores in HDL
	4.11.1. Example Top-Level Verilog HDL Module
	4.11.2. Example Top-Level VHDL Module

	4.12. Introduction to Intel FPGA IP Cores Revision History

	5. Migrating to Intel Quartus Prime Pro Edition
	5.1. Keep Pro Edition Project Files Separate
	5.2. Upgrade Project Assignments and Constraints
	5.2.1. Modify Entity Name Assignments
	5.2.2. Resolve Timing Constraint Entity Names
	5.2.3. Verify Generated Node Name Assignments
	5.2.4. Replace Logic Lock (Standard) Regions
	5.2.4.1. Logic Lock Region Assignment Examples

	5.2.5. Modify Signal Tap Logic Analyzer Files
	5.2.6. Remove References to .qip Files
	5.2.7. Remove Unsupported Feature Assignments

	5.3. Upgrade IP Cores and Platform Designer (Standard) Systems
	5.4. Upgrade Non-Compliant Design RTL
	5.4.1. Verify Verilog Compilation Unit
	5.4.1.1. Verilog HDL Configuration Instantiation

	5.4.2. Update Entity Auto-Discovery
	5.4.3. Ensure Distinct VHDL Namespace for Each Library
	5.4.4. Remove Unsupported Parameter Passing
	5.4.5. Remove Unsized Constant from WYSIWYG Instantiation
	5.4.6. Remove Non-Standard Pragmas
	5.4.7. Declare Objects Before Initial Values
	5.4.8. Confine SystemVerilog Features to SystemVerilog Files
	5.4.9. Avoid Assignment Mixing in Always Blocks
	5.4.10. Avoid Unconnected, Non-Existent Ports
	5.4.11. Avoid Illegal Parameter Ranges
	5.4.12. Update Verilog HDL and VHDL Type Mapping

	5.5. Migrating to Intel Quartus Prime Pro Edition Revision History

	A. Intel Quartus Prime Pro Edition User Guide: Getting Started Documentation Archive
	B. Intel Quartus Prime Standard Edition User Guides

	Intel Quartus Prime Standard Edition User Guide: Platform Designer
	Contents
	1. Creating a System with Platform Designer
	1.1. Platform Designer Interface Support
	1.2. Platform Designer System Design Flow
	1.3. Starting or Opening a Project in Platform Designer
	1.4. Viewing a Platform Designer System
	1.4.1. Viewing the System Hierarchy
	1.4.2. Filtering the System View
	1.4.3. Viewing Clock and Reset Domains
	1.4.3.1. Viewing Clock Domains in a System
	1.4.3.2. Viewing Reset Domains in a System

	1.4.4. Viewing Avalon Memory-Mapped Domains in a System
	1.4.5. Viewing the System Schematic
	1.4.6. Viewing System Assignments and Connections
	1.4.7. Customizing the Platform Designer Layout

	1.5. Adding IP Components to a System
	1.5.1. Modifying IP Parameters
	1.5.1.1. Viewing Component or Parameter Details
	1.5.1.2. Viewing a Component's Block Symbol

	1.5.2. Applying Preset Parameters for Specific Applications
	1.5.2.1. Creating IP Custom Preset Parameters Settings

	1.5.3. Adding Third-Party IP Components
	1.5.3.1. IP Search Path Recursive Search
	1.5.3.1.1. IP Search Path Precedence
	1.5.3.1.2. IP Component Description Files

	1.5.3.2. Defining the IP Search Path with Index Files

	1.5.4. Creating or Opening an IP Core Variant

	1.6. Connecting System Components
	1.6.1. Platform Designer 64-Bit Addressing Support
	1.6.1.1. Support for Avalon-MM Non-Power of Two Data Widths

	1.6.2. Connecting Masters and Slaves
	1.6.3. Changing a Conduit to a Reset
	1.6.4. Wire-Level Connectivity
	1.6.4.1. Editing Wire-Level Expressions
	1.6.4.2. Wire-Level Expression Syntax
	1.6.4.3. Adding or Removing Ports from Wire-Level Endpoint Interfaces
	1.6.4.4. Scripting Wire-Level Expressions

	1.6.5. Previewing the System Interconnect

	1.7. Specifying Interconnect Requirements
	1.7.1. Interconnect Requirements

	1.8. Defining Instance Parameters
	1.8.1. Creating an Instance Parameter Script in Platform Designer
	1.8.2. Platform Designer Instance Parameter Script Tcl Commands
	1.8.2.1. get_instance_parameter_value
	1.8.2.2. get_instance_parameters
	1.8.2.3. get_parameter_value
	1.8.2.4. get_parameters
	1.8.2.5. send_message
	1.8.2.6. set_instance_parameter_value
	1.8.2.7. set_module_property

	1.9. Implementing Performance Monitoring
	1.10. Configuring Platform Designer System Security
	1.10.1. System Security Options
	1.10.2. Specifying a Default Slave
	1.10.3. Accessing Undefined Memory Regions

	1.11. Upgrading Outdated IP Components
	1.11.1. Troubleshooting IP or Platform Designer System Upgrade

	1.12. Synchronizing System Component Information
	1.13. Generating a Platform Designer System
	1.13.1. Generation Dialog Box Options
	1.13.2. Specifying the Generation ID
	1.13.3. Files Generated for IP Cores and Platform Designer Systems
	1.13.4. Generating System Testbench Files
	1.13.4.1. Platform Designer Testbench Simulation Output Directories
	1.13.4.2. Platform Designer Testbench Files

	1.13.5. Generating Example Designs for IP Components
	1.13.6. Generating the HPS IP Component System View Description File
	1.13.7. Generating Header Files for Master Components

	1.14. Simulating a Platform Designer System
	1.14.1. Adding Assertion Monitors for Simulation
	1.14.2. Simulating Software Running on a Nios II Processor

	1.15. Integrating a Platform Designer System with the Intel Quartus Prime Software
	1.15.1. Integrate a Platform Designer System and the Intel Quartus Prime Software With the .qsys File
	1.15.2. Integrate a Platform Designer System and the Intel Quartus Prime Software With the .qip File

	1.16. Managing Hierarchical Platform Designer Systems
	1.16.1. Adding a Subsystem to a Platform Designer System
	1.16.2. Viewing and Traversing Subsystem Contents
	1.16.3. Editing a Subsystem
	1.16.4. Changing a Component's Hierarchy Level
	1.16.5. Saving a Subsystem
	1.16.6. Exporting a System as an IP Component
	1.16.7. Hierarchical System Using Instance Parameters Example
	1.16.7.1. Create the Memory System
	1.16.7.2. Add Platform Designer Instance Parameters
	1.16.7.3. Create a Platform Designer Instantiating Memory System
	1.16.7.4. Apply Instance Parameters at a Higher-Level Platform Designer System and Pass the Parameters to the Instantiated Lower-Level System

	1.17. Creating a System with Platform Designer Revision History

	2. Optimizing Platform Designer System Performance
	2.1. Designing with Avalon and AXI Interfaces
	2.1.1. Designing Streaming Components
	2.1.2. Designing Memory-Mapped Components

	2.2. Using Hierarchy in Systems
	2.3. Using Concurrency in Memory-Mapped Systems
	2.3.1. Implementing Concurrency With Multiple Masters
	2.3.2. Implementing Concurrency With Multiple Slaves
	2.3.3. Implementing Concurrency with DMA Engines

	2.4. Inserting Pipeline Stages to Increase System Frequency
	2.5. Using Bridges
	2.5.1. Using Bridges to Increase System Frequency
	2.5.1.1. Inserting Pipeline Bridges
	2.5.1.1.1. Implementing Command Pipelining (Master-to-Slave)
	2.5.1.1.2. Implementing Response Pipelining (Slave-to-Master)

	2.5.1.2. Using Clock Crossing Bridges

	2.5.2. Using Bridges to Minimize Design Logic
	2.5.2.1. Avoiding Speed Optimizations That Increase Logic
	2.5.2.2. Limiting Concurrency

	2.5.3. Using Bridges to Minimize Adapter Logic
	2.5.3.1. Determining Effective Placement of Bridges
	2.5.3.2. Changing the Response Buffer Depth

	2.5.4. Considering the Effects of Using Bridges
	2.5.4.1. Increased Latency
	2.5.4.1.1. Acceptable Latency Increase
	2.5.4.1.2. Unacceptable Latency Increase

	2.5.4.2. Limited Concurrency
	2.5.4.3. Address Space Translation
	2.5.4.4. Address Coherency

	2.6. Increasing Transfer Throughput
	2.6.1. Using Pipelined Transfers
	2.6.1.1. Using the Maximum Pending Reads Parameter

	2.6.2. Arbitration Shares and Bursts
	2.6.2.1. Differences Between Arbitration Shares and Bursts
	2.6.2.2. Choosing Avalon-MM Interface Types
	2.6.2.2.1. Simple Avalon-MM Interfaces
	2.6.2.2.2. Pipelined Avalon-MM Interfaces
	2.6.2.2.3. Burst Avalon-MM Interfaces

	2.6.2.3. Avalon-MM Burst Master Example

	2.7. Reducing Logic Utilization
	2.7.1. Minimizing Interconnect Logic to Reduce Logic Unitization
	2.7.1.1. Creating Dedicated Master and Slave Connections to Minimize Interconnect Logic
	2.7.1.2. Removing Unnecessary Connections to Minimize Interconnect Logic
	2.7.1.3. Simplifying Address Decode Logic

	2.7.2. Minimizing Arbitration Logic by Consolidating Multiple Interfaces
	2.7.2.1. Logic Consolidation Trade-Offs
	2.7.2.2. Consolidating Interfaces

	2.7.3. Reducing Logic Utilization With Multiple Clock Domains
	2.7.4. Duration of Transfers Crossing Clock Domains

	2.8. Reducing Power Consumption
	2.8.1. Reducing Power Consumption With Multiple Clock Domains
	2.8.2. Reducing Power Consumption by Minimizing Toggle Rates
	2.8.3. Reducing Power Consumption by Disabling Logic

	2.9. Reset Polarity and Synchronization in Platform Designer
	2.10. Optimizing Platform Designer System Performance Design Examples
	2.10.1. Avalon Pipelined Read Master Example
	2.10.1.1. Avalon Pipelined Read Master Example Design Requirements
	2.10.1.2. Expected Throughput Improvement

	2.10.2. Multiplexer Examples

	2.11. Optimizing Platform Designer System Performance Revision History

	3. Platform Designer Interconnect
	3.1. Memory-Mapped Interfaces
	3.1.1. Platform Designer Packet Format
	3.1.1.1. Fields in the Platform Designer Packet Format
	3.1.1.2. Transaction Types for Memory-Mapped Interfaces
	3.1.1.3. Platform Designer Transformations

	3.1.2. Interconnect Domains
	3.1.2.1. Using One Domain with Width Adaptation
	3.1.2.2. Using Two Separate Domains

	3.1.3. Master Network Interfaces
	3.1.3.1. Avalon-MM Master Agent
	3.1.3.2. Avalon-MM Master Translator
	3.1.3.3. AXI Master Agent
	3.1.3.4. AXI Translator
	3.1.3.5. APB Master Agent
	3.1.3.6. APB Slave Agent
	3.1.3.7. APB Translator
	3.1.3.8. AHB Slave Agent
	3.1.3.9. Memory-Mapped Router
	3.1.3.10. Memory-Mapped Traffic Limiter

	3.1.4. Slave Network Interfaces
	3.1.4.1. Avalon-MM Slave Translator
	3.1.4.2. AXI Translator
	3.1.4.3. Wait State Insertion
	3.1.4.4. Avalon-MM Slave Agent
	3.1.4.5. AXI Slave Agent

	3.1.5. Arbitration
	3.1.5.1. Round-Robin Arbitration
	3.1.5.1.1. Fairness-Based Shares
	3.1.5.1.2. Round-Robin Scheduling

	3.1.5.2. Fixed Priority Arbitration
	3.1.5.2.1. Designate a Platform Designer Slave to Use Fixed Priority Arbitration
	3.1.5.2.2. Fixed Priority Arbitration with AXI Masters and Avalon-MM Slaves

	3.1.6. Memory-Mapped Arbiter
	3.1.7. Datapath Multiplexing Logic
	3.1.8. Width Adaptation
	3.1.8.1. Memory-Mapped Width Adapter
	3.1.8.1.1. AXI Wide-to-Narrow Adaptation
	3.1.8.1.2. AXI Narrow-to-Wide Adaptation

	3.1.9. Burst Adapter
	3.1.9.1. Burst Adapter Implementation Options
	3.1.9.2. Burst Adaptation: AXI to Avalon
	3.1.9.3. Burst Adaptation: Avalon to AXI

	3.1.10. Waitrequest Allowance Adapter
	3.1.11. Read and Write Responses
	3.1.12. Platform Designer Address Decoding

	3.2. Avalon Streaming Interfaces
	3.2.1. Avalon-ST Adapters
	3.2.1.1. Avalon-ST Adapter
	3.2.1.1.1. Avalon-ST Adapter Parameters Common to Source and Sink Interfaces
	3.2.1.1.2. Avalon-ST Adapter Upstream Source Interface Parameters
	3.2.1.1.3. Avalon-ST Adapter Downstream Sink Interface Parameters

	3.2.1.2. Channel Adapter
	3.2.1.2.1. Avalon-ST Channel Adapter Input Interface Parameters
	3.2.1.2.2. Avalon-ST Channel Adapter Output Interface Parameters
	3.2.1.2.3. Avalon-ST Channel Adapter Common to Input and Output Interface Parameters

	3.2.1.3. Data Format Adapter
	3.2.1.3.1. Avalon-ST Data Format Adapter Input Interface Parameters
	3.2.1.3.2. Avalon-ST Data Format Adapter Output Interface Parameters
	3.2.1.3.3. Avalon-ST Data Format Adapter Common to Input and Output Interface Parameters

	3.2.1.4. Error Adapter
	3.2.1.4.1. Avalon-ST Error Adapter Input Interface Parameters
	3.2.1.4.2. Avalon-ST Error Adapter Output Interface Parameters
	3.2.1.4.3. Avalon-ST Error Adapter Common to Input and Output Interface Parameters

	3.2.1.5. Timing Adapter
	3.2.1.5.1. Avalon-ST Timing Adapter Input Interface Parameters
	3.2.1.5.2. Avalon-ST Timing Adapter Output Interface Parameters
	3.2.1.5.3. Avalon-ST Timing Adapter Common to Input and Output Interface Parameters

	3.3. Interrupt Interfaces
	3.3.1. Individual Requests IRQ Scheme
	3.3.2. Assigning IRQs in Platform Designer
	3.3.2.1. IRQ Bridge
	3.3.2.2. IRQ Mapper
	3.3.2.3. IRQ Clock Crosser

	3.4. Clock Interfaces
	3.4.1. (High Speed Serial Interface) HSSI Clock Interfaces
	3.4.1.1. HSSI Serial Clock Interface
	3.4.1.1.1. HSSI Serial Clock Source
	3.4.1.1.2. HSSI Serial Clock Sink
	3.4.1.1.3. HSSI Serial Clock Connection
	3.4.1.1.4. HSSI Serial Clock Example

	3.4.1.2. HSSI Bonded Clock Interface
	3.4.1.2.1. HSSI Bonded Clock Source
	3.4.1.2.2. HSSI Bonded Clock Sink
	3.4.1.2.3. HSSI Bonded Clock Connection
	3.4.1.2.4. HSSI Bonded Clock Example

	3.5. Reset Interfaces
	3.5.1. Single Global Reset Signal Implemented by Platform Designer
	3.5.2. Reset Controller
	3.5.3. Reset Bridge
	3.5.4. Reset Sequencer
	3.5.4.1. Reset Sequencer Parameters
	3.5.4.2. Reset Sequencer Timing Diagrams
	3.5.4.3. Reset Sequencer CSR Registers
	3.5.4.3.1. Reset Sequencer Status Register
	3.5.4.3.2. Reset Sequencer Interrupt Enable Register
	3.5.4.3.3. Reset Sequencer Control Register
	3.5.4.3.4. Reset Sequencer Software Sequenced Reset Assert Control Register
	3.5.4.3.5. Reset Sequencer Software Sequenced Reset Deassert Control Register
	3.5.4.3.6. Reset Sequencer Software Direct Controlled Resets
	3.5.4.3.7. Reset Sequencer Software Reset Masking

	3.5.4.4. Reset Sequencer Software Flows
	3.5.4.4.1. Reset Sequencer (Software-Triggered) Flow
	3.5.4.4.2. Reset Assert Flow
	3.5.4.4.3. Reset Deassert Flow
	3.5.4.4.4. Reset Assert (Software Sequenced) Flow
	3.5.4.4.5. Reset Deassert (Software Sequenced) Flow

	3.6. Conduits
	3.7. Interconnect Pipelining
	3.7.1. Manually Control Pipelining in the Platform Designer Interconnect

	3.8. Error Correction Coding (ECC) in Platform Designer Interconnect
	3.9. AMBA 3 AXI Protocol Specification Support (version 1.0)
	3.9.1. Channels
	3.9.1.1. Read and Write Address Channels
	3.9.1.2. Write Data, Write Response, and Read Data Channels
	3.9.1.3. Low Power Channel

	3.9.2. Cache Support
	3.9.2.1. Bufferable
	3.9.2.2. Cacheable (Modifiable)

	3.9.3. Security Support
	3.9.4. Atomic Accesses
	3.9.5. Response Signaling
	3.9.6. Ordering Model
	3.9.6.1. AXI and Avalon Ordering

	3.9.7. Data Buses
	3.9.8. Unaligned Address Commands
	3.9.9. Avalon and AXI Transaction Support
	3.9.9.1. Transaction Cannot Cross 4KB Boundaries
	3.9.9.2. Handling Read Side Effects

	3.10. AMBA 3 APB Protocol Specification Support (version 1.0)
	3.10.1. Bridges
	3.10.2. Burst Adaptation
	3.10.3. Width Adaptation
	3.10.4. Error Response

	3.11. AMBA 4 AXI Memory-Mapped Interface Support (version 2.0)
	3.11.1. Burst Support
	3.11.2. QoS
	3.11.3. Regions
	3.11.4. Write Response Dependency
	3.11.5. AWCACHE and ARCACHE
	3.11.6. Width Adaptation and Data Packing in Platform Designer
	3.11.7. Ordering Model
	3.11.8. Read and Write Allocate
	3.11.9. Locked Transactions
	3.11.10. Memory Types
	3.11.11. Mismatched Attributes
	3.11.12. Signals

	3.12. AMBA 4 AXI Streaming Interface Support (version 1.0)
	3.12.1. Connection Points
	3.12.1.1. AMBA 4 AXI Streaming Connection Point Parameters
	3.12.1.2. AMBA 4 AXI Streaming Connection Point Signals

	3.12.2. Adaptation

	3.13. AMBA 4 AXI-Lite Protocol Specification Support (version 2.0)
	3.13.1. AMBA 4 AXI-Lite Signals
	3.13.2. AMBA 4 AXI-Lite Bus Width
	3.13.3. AMBA 4 AXI-Lite Outstanding Transactions
	3.13.4. AMBA 4 AXI-Lite IDs
	3.13.5. Connections Between AMBA 3 AXI,AMBA 4 AXI and AMBA 4 AXI-Lite
	3.13.5.1. AMBA 4 AXI-Lite Slave Requirements
	3.13.5.2. AMBA 4 AXI-Lite Data Packing

	3.13.6. AMBA 4 AXI-Lite Response Merging

	3.14. Port Roles (Interface Signal Types)
	3.14.1. AXI Master Interface Signal Types
	3.14.2. AXI Slave Interface Signal Types
	3.14.3. AMBA 4 AXI Master Interface Signal Types
	3.14.4. AMBA 4 AXI Slave Interface Signal Types
	3.14.5. AMBA 4 AXI-Stream Master and Slave Interface Signal Types
	3.14.6. ACE-Lite Interface Signal Roles
	3.14.7. APB Interface Signal Types
	3.14.8. Avalon Memory-Mapped Interface Signal Roles
	3.14.9. Avalon Streaming Interface Signal Roles
	3.14.10. Avalon Clock Source Signal Roles
	3.14.11. Avalon Clock Sink Signal Roles
	3.14.12. Avalon Conduit Signal Roles
	3.14.13. Avalon Tristate Conduit Signal Roles
	3.14.14. Avalon Tri-State Slave Interface Signal Types
	3.14.15. Avalon Interrupt Sender Signal Roles
	3.14.16. Avalon Interrupt Receiver Signal Roles

	3.15. Platform Designer Interconnect Revision History

	4. Platform Designer System Design Components
	4.1. Bridges
	4.1.1. Clock Bridge
	4.1.2. Avalon-MM Clock Crossing Bridge
	4.1.2.1. Avalon-MM Clock Crossing Bridge Example
	4.1.2.2. Avalon-MM Clock Crossing Bridge Parameters

	4.1.3. Avalon-MM Pipeline Bridge
	4.1.4. Avalon-MM Unaligned Burst Expansion Bridge
	4.1.4.1. Using the Avalon-MM Unaligned Burst Expansion Bridge
	4.1.4.2. Avalon-MM Unaligned Burst Expansion Bridge Parameters
	4.1.4.3. Avalon-MM Unaligned Burst Expansion Bridge Example

	4.1.5. Bridges Between Avalon and AXI Interfaces
	4.1.6. AXI Bridge
	4.1.6.1. AXI Bridge Signal Types
	4.1.6.2. AXI Bridge Parameters
	4.1.6.3. AXI Bridge Slave and Master Interface Parameters

	4.1.7. AXI Timeout Bridge
	4.1.7.1. AXI Timeout Bridge Stages
	4.1.7.2. AXI Timeout Bridge Parameters

	4.1.8. Address Span Extender
	4.1.8.1. CTRL Register Layout
	4.1.8.2. Address Span Extender Parameters
	4.1.8.3. Calculating the Address Span Extender Slave Address
	4.1.8.4. Using the Address Span Extender
	4.1.8.5. Alternate Options for the Address Span Extender
	4.1.8.6. Nios II Support

	4.2. Error Response Slave
	4.2.1. Error Response Slave Parameters
	4.2.2. Error Response Slave CSR Registers
	4.2.2.1. Error Response Slave Access Violation Service
	4.2.2.2. CSR Interrupt Status Registers
	4.2.2.3. CSR Read Access Violation Log Registers
	4.2.2.4. CSR Write Access Violation Log Registers

	4.2.3. Designating a Default Slave

	4.3. Tri-State Components
	4.3.1. Generic Tri-State Controller
	4.3.2. Tri‑State Conduit Pin Sharer
	4.3.3. Tri‑State Conduit Bridge

	4.4. Test Pattern Generator and Checker Cores
	4.4.1. Test Pattern Generator
	4.4.1.1. Test Pattern Generator Command Interface
	4.4.1.2. Test Pattern Generator Control and Status Interface
	4.4.1.3. Test Pattern Generator Output Interface
	4.4.1.4. Test Pattern Generator Functional Parameter

	4.4.2. Test Pattern Checker
	4.4.2.1. Test Pattern Checker Input Interface
	4.4.2.2. Test Pattern Checker Control and Status Interface
	4.4.2.3. Test Pattern Checker Functional Parameter
	4.4.2.4. Test Pattern Checker Input Parameters

	4.4.3. Software Programming Model for the Test Pattern Generator and Checker Cores
	4.4.3.1. HAL System Library Support
	4.4.3.2. Test Pattern Generator and Test Pattern Checker Core Files
	4.4.3.3. Register Maps for the Test Pattern Generator and Test Pattern Checker Cores
	4.4.3.3.1. Test Pattern Generator Control and Status Registers
	4.4.3.3.2. Test Pattern Generator Command Registers
	4.4.3.3.3. Test Pattern Checker Control and Status Registers

	4.4.4. Test Pattern Generator API
	4.4.4.1. data_source_reset()
	4.4.4.2. data_source_init()
	4.4.4.3. data_source_get_id()
	4.4.4.4. data_source_get_supports_packets()
	4.4.4.5. data_source_get_num_channels()
	4.4.4.6. data_source_get_symbols_per_cycle()
	4.4.4.7. data_source_get_enable()
	4.4.4.8. data_source_set_enable()
	4.4.4.9. data_source_get_throttle()
	4.4.4.10. data_source_set_throttle()
	4.4.4.11. data_source_is_busy()
	4.4.4.12. data_source_fill_level()
	4.4.4.13. data_source_send_data()

	4.4.5. Test Pattern Checker API
	4.4.5.1. data_sink_reset()
	4.4.5.2. data_sink_init()
	4.4.5.3. data_sink_get_id()
	4.4.5.4. data_sink_get_supports_packets()
	4.4.5.5. data_sink_get_num_channels()
	4.4.5.6. data_sink_get_symbols_per_cycle()
	4.4.5.7. data_sink_get_enable()
	4.4.5.8. data_sink_set enable()
	4.4.5.9. data_sink_get_throttle()
	4.4.5.10. data_sink_set_throttle()
	4.4.5.11. data_sink_get_packet_count()
	4.4.5.12. data_sink_get_error_count()
	4.4.5.13. data_sink_get_symbol_count()
	4.4.5.14. data_sink_get_exception()
	4.4.5.15. data_sink_exception_is_exception()
	4.4.5.16. data_sink_exception_has_data_error()
	4.4.5.17. data_sink_exception_has_missing_sop()
	4.4.5.18. data_sink_exception_has_missing_eop()
	4.4.5.19. data_sink_exception_signalled_error()
	4.4.5.20. data_sink_exception_channel()

	4.5. Avalon-ST Splitter Core
	4.5.1. Splitter Core Backpressure
	4.5.2. Splitter Core Interfaces
	4.5.3. Splitter Core Parameters

	4.6. Avalon-ST Delay Core
	4.6.1. Delay Core Reset Signal
	4.6.2. Delay Core Interfaces
	4.6.3. Delay Core Parameters

	4.7. Avalon-ST Round Robin Scheduler
	4.7.1. Almost-Full Status Interface (Round Robin Scheduler)
	4.7.2. Request Interface (Round Robin Scheduler)
	4.7.3. Round Robin Scheduler Operation
	4.7.4. Round Robin Scheduler Parameters

	4.8. Avalon Packets to Transactions Converter
	4.8.1. Packets to Transactions Converter Interfaces
	4.8.2. Packets to Transactions Converter Operation
	4.8.2.1. Packets to Transactions Converter Data Packet Formats
	4.8.2.2. Packets to Transactions Converter Supported Transactions
	4.8.2.3. Packets to Transactions Converter Malformed Packets

	4.9. Avalon-ST Streaming Pipeline Stage
	4.10. Streaming Channel Multiplexer and Demultiplexer Cores
	4.10.1. Software Programming Model For the Multiplexer and Demultiplexer Components
	4.10.2. Avalon-ST Multiplexer
	4.10.2.1. Multiplexer Input Interfaces
	4.10.2.2. Multiplexer Output Interface
	4.10.2.3. Multiplexer Parameters

	4.10.3. Avalon-ST Demultiplexer
	4.10.3.1. Demultiplexer Input Interface
	4.10.3.2. Demultiplexer Output Interface
	4.10.3.3. Demultiplexer Parameters

	4.11. Single-Clock and Dual-Clock FIFO Cores
	4.11.1. Interfaces Implemented in FIFO Cores
	4.11.1.1. Avalon-ST Data Interface
	4.11.1.2. Avalon-MM Control and Status Register Interface
	4.11.1.3. Avalon-ST Status Interface

	4.11.2. FIFO Operating Modes
	4.11.3. Fill Level of the FIFO Buffer
	4.11.4. Almost-Full and Almost-Empty Thresholds to Prevent Overflow and Underflow
	4.11.5. Single-Clock and Dual-Clock FIFO Core Parameters
	4.11.6. Avalon-ST Single-Clock FIFO Registers

	4.12. Platform Designer System Design Components Revision History

	5. Creating Platform Designer Components
	5.1. Platform Designer Components
	5.1.1. Platform Designer Interface Support
	5.1.2. Component Structure
	5.1.3. Component File Organization
	5.1.4. Component Versions
	5.1.4.1. Upgrade IP Components to the Latest Version

	5.2. Design Phases of an IP Component
	5.3. Create IP Components in the Platform Designer Component Editor
	5.3.1. Save an IP Component and Create the _hw.tcl File
	5.3.2. Edit an IP Component with the Platform Designer Component Editor

	5.4. Specify IP Component Type Information
	5.5. Create an HDL File in the Platform Designer Component Editor
	5.6. Create an HDL File Using a Template in the Platform Designer Component Editor
	5.7. Specify Synthesis and Simulation Files in the Platform Designer Component Editor
	5.7.1. Specify HDL Files for Synthesis in the Platform Designer Component Editor
	5.7.2. Analyze Synthesis Files in the Platform Designer Component Editor
	5.7.3. Name HDL Signals for Automatic Interface and Type Recognition in the Platform Designer Component Editor
	5.7.4. Specify Files for Simulation in the Component Editor
	5.7.5. Include an Internal Register Map Description in the .svd for Slave Interfaces Connected to an HPS Component

	5.8. Add Signals and Interfaces in the Platform Designer Component Editor
	5.9. Specify Parameters in the Platform Designer Component Editor
	5.9.1. Valid Ranges for Parameters in the _hw.tcl File
	5.9.2. Types of Platform Designer Parameters
	5.9.2.1. Platform Designer User Parameters
	5.9.2.2. Platform Designer System Information Parameters
	5.9.2.3. Platform Designer Derived Parameters
	5.9.2.3.1. Parameterized Parameter Widths

	5.9.3. Declare Parameters with Custom _hw.tcl Commands
	5.9.4. Validate Parameter Values with a Validation Callback

	5.10. Declaring SystemVerilog Interfaces in _hw.tcl
	5.11. User Alterable HDL Parameters in _hw.tcl
	5.12. Scripting Wire-Level Expressions
	5.13. Control Interfaces Dynamically with an Elaboration Callback
	5.14. Control File Generation Dynamically with Parameters and a Fileset Callback
	5.15. Create a Composed Component or Subsystem
	5.16. Create an IP Component with Platform Designer a System View Different from the Generated Synthesis Output Files
	5.17. Add Component Instances to a Static or Generated Component
	5.17.1. Static Components
	5.17.2. Generated Components
	5.17.3. Design Guidelines for Adding Component Instances

	5.18. Creating Platform Designer Components Revision History

	6. Platform Designer Command-Line Utilities
	6.1. Run the Platform Designer Editor with qsys-edit
	6.2. Scripting IP Core Generation
	6.2.1. qsys-generate Command-Line Options

	6.3. Display Available IP Components with ip-catalog
	6.4. Create an .ipx File with ip-make-ipx
	6.5. Generate Simulation Scripts
	6.6. Generate a Platform Designer System with qsys-script
	6.7. Platform Designer Scripting Command Reference
	6.7.1. System
	6.7.1.1. create_system
	6.7.1.2. export_hw_tcl
	6.7.1.3. get_device_families
	6.7.1.4. get_devices
	6.7.1.5. get_module_properties
	6.7.1.6. get_module_property
	6.7.1.7. get_project_properties
	6.7.1.8. get_project_property
	6.7.1.9. load_system
	6.7.1.10. save_system
	6.7.1.11. set_module_property
	6.7.1.12. set_project_property

	6.7.2. Subsystems
	6.7.2.1. get_composed_connections
	6.7.2.2. get_composed_connection_parameter_value
	6.7.2.3. get_composed_connection_parameters
	6.7.2.4. get_composed_instance_assignment
	6.7.2.5. get_composed_instance_assignments
	6.7.2.6. get_composed_instance_parameter_value
	6.7.2.7. get_composed_instance_parameters
	6.7.2.8. get_composed_instances

	6.7.3. Instances
	6.7.3.1. add_instance
	6.7.3.2. apply_instance_preset
	6.7.3.3. create_ip
	6.7.3.4. add_component
	6.7.3.5. duplicate_instance
	6.7.3.6. enable_instance_parameter_update_callback
	6.7.3.7. get_instance_assignment
	6.7.3.8. get_instance_assignments
	6.7.3.9. get_instance_documentation_links
	6.7.3.10. get_instance_interface_assignment
	6.7.3.11. get_instance_interface_assignments
	6.7.3.12. get_instance_interface_parameter_property
	6.7.3.13. get_instance_interface_parameter_value
	6.7.3.14. get_instance_interface_parameters
	6.7.3.15. get_instance_interface_port_property
	6.7.3.16. get_instance_interface_ports
	6.7.3.17. get_instance_interface_properties
	6.7.3.18. get_instance_interface_property
	6.7.3.19. get_instance_interfaces
	6.7.3.20. get_instance_parameter_property
	6.7.3.21. get_instance_parameter_value
	6.7.3.22. get_instance_parameter_values
	6.7.3.23. get_instance_parameters
	6.7.3.24. get_instance_port_property
	6.7.3.25. get_instance_properties
	6.7.3.26. get_instance_property
	6.7.3.27. get_instances
	6.7.3.28. is_instance_parameter_update_callback_enabled
	6.7.3.29. remove_instance
	6.7.3.30. set_instance_parameter_value
	6.7.3.31. set_instance_parameter_values
	6.7.3.32. set_instance_property

	6.7.4. Connections
	6.7.4.1. add_connection
	6.7.4.2. auto_connect
	6.7.4.3. get_connection_parameter_property
	6.7.4.4. get_connection_parameter_value
	6.7.4.5. get_connection_parameters
	6.7.4.6. get_connection_properties
	6.7.4.7. get_connection_property
	6.7.4.8. get_connections
	6.7.4.9. remove_connection
	6.7.4.10. remove_dangling_connections
	6.7.4.11. set_connection_parameter_value

	6.7.5. Top-level Exports
	6.7.5.1. add_interface
	6.7.5.2. get_exported_interface_sysinfo_parameter_value
	6.7.5.3. get_exported_interface_sysinfo_parameters
	6.7.5.4. get_interface_port_property
	6.7.5.5. get_interface_ports
	6.7.5.6. get_interface_properties
	6.7.5.7. get_interface_property
	6.7.5.8. get_interfaces
	6.7.5.9. get_port_properties
	6.7.5.10. remove_interface
	6.7.5.11. set_interface_port_property
	6.7.5.12. set_interface_property

	6.7.6. Validation
	6.7.6.1. set_validation_property
	6.7.6.2. validate_connection
	6.7.6.3. validate_instance
	6.7.6.4. validate_instance_interface
	6.7.6.5. validate_system

	6.7.7. Miscellaneous
	6.7.7.1. auto_assign_base_addresses
	6.7.7.2. auto_assign_irqs
	6.7.7.3. auto_assign_system_base_addresses
	6.7.7.4. get_interconnect_requirement
	6.7.7.5. get_interconnect_requirements
	6.7.7.6. get_parameter_properties
	6.7.7.7. lock_avalon_base_address
	6.7.7.8. send_message
	6.7.7.9. set_interconnect_requirement
	6.7.7.10. set_use_testbench_naming_pattern
	6.7.7.11. unlock_avalon_base_address
	6.7.7.12. get_testbench_dutname
	6.7.7.13. get_use_testbench_naming_pattern

	6.7.8. Wire-Level Connection Commands
	6.7.8.1. set_wirelevel_expression
	6.7.8.2. get_wirelevel_expressions
	6.7.8.3. remove_wirelevel_expressions

	6.8. Platform Designer Scripting Property Reference
	6.8.1. Connection Properties
	6.8.2. Design Environment Type Properties
	6.8.3. Direction Properties
	6.8.4. Element Properties
	6.8.5. Instance Properties
	6.8.6. Interface Properties
	6.8.7. Message Levels Properties
	6.8.8. Module Properties
	6.8.9. Parameter Properties
	6.8.10. Parameter Status Properties
	6.8.11. Parameter Type Properties
	6.8.12. Port Properties
	6.8.13. Project Properties
	6.8.14. System Info Type Properties
	6.8.15. Units Properties
	6.8.16. Validation Properties
	6.8.17. Interface Direction
	6.8.18. File Set Kind
	6.8.19. Access Type
	6.8.20. Instantiation HDL File Properties
	6.8.21. Instantiation Interface Duplicate Type
	6.8.22. Instantiation Interface Properties
	6.8.23. Instantiation Properties
	6.8.25. VHDL Type

	6.9. Platform Designer Command-Line Interface Revision History

	7. Component Interface Tcl Reference
	7.1. Platform Designer _hw.tcl Command Reference
	7.1.1. Interfaces and Ports
	7.1.1.1. add_interface
	7.1.1.2. add_interface_port
	7.1.1.3. get_interfaces
	7.1.1.4. get_interface_assignment
	7.1.1.5. get_interface_assignments
	7.1.1.6. get_interface_ports
	7.1.1.7. get_interface_properties
	7.1.1.8. get_interface_property
	7.1.1.9. get_port_properties
	7.1.1.10. get_port_property
	7.1.1.11. set_interface_assignment
	7.1.1.12. set_interface_property
	7.1.1.13. set_port_property
	7.1.1.14. set_interface_upgrade_map

	7.1.2. Parameters
	7.1.2.1. add_parameter
	7.1.2.2. get_parameters
	7.1.2.3. get_parameter_properties
	7.1.2.4. get_parameter_property
	7.1.2.5. get_parameter_value
	7.1.2.6. get_string
	7.1.2.7. load_strings
	7.1.2.8. set_parameter_property
	7.1.2.9. set_parameter_value
	7.1.2.10. decode_address_map

	7.1.3. Display Items
	7.1.3.1. add_display_item
	7.1.3.2. get_display_items
	7.1.3.3. get_display_item_properties
	7.1.3.4. get_display_item_property
	7.1.3.5. set_display_item_property

	7.1.4. Module Definition
	7.1.4.1. add_documentation_link
	7.1.4.2. get_module_assignment
	7.1.4.3. get_module_assignments
	7.1.4.4. get_module_ports
	7.1.4.5. get_module_properties
	7.1.4.6. get_module_property
	7.1.4.7. send_message
	7.1.4.8. set_module_assignment
	7.1.4.9. set_module_property
	7.1.4.10. add_hdl_instance
	7.1.4.11. package

	7.1.5. Composition
	7.1.5.1. add_instance
	7.1.5.2. add_connection
	7.1.5.3. get_connections
	7.1.5.4. get_connection_parameters
	7.1.5.5. get_connection_parameter_value
	7.1.5.6. get_instances
	7.1.5.7. get_instance_interfaces
	7.1.5.8. get_instance_interface_ports
	7.1.5.9. get_instance_interface_properties
	7.1.5.10. get_instance_property
	7.1.5.11. set_instance_property
	7.1.5.12. get_instance_properties
	7.1.5.13. get_instance_interface_property
	7.1.5.14. get_instance_parameters
	7.1.5.15. get_instance_parameter_property
	7.1.5.16. get_instance_parameter_value
	7.1.5.17. get_instance_port_property
	7.1.5.18. set_connection_parameter_value
	7.1.5.19. set_instance_parameter_value

	7.1.6. Fileset Generation
	7.1.6.1. add_fileset
	7.1.6.2. add_fileset_file
	7.1.6.3. set_fileset_property
	7.1.6.4. get_fileset_file_attribute
	7.1.6.5. set_fileset_file_attribute
	7.1.6.6. get_fileset_properties
	7.1.6.7. get_fileset_property
	7.1.6.8. get_fileset_sim_properties
	7.1.6.9. set_fileset_sim_properties
	7.1.6.10. create_temp_file

	7.1.7. Miscellaneous
	7.1.7.1. check_device_family_equivalence
	7.1.7.2. get_device_family_displayname
	7.1.7.3. get_qip_strings
	7.1.7.4. set_qip_strings
	7.1.7.5. set_interconnect_requirement

	7.1.8. SystemVerilog Interface Commands
	7.1.8.1. add_sv_interface
	7.1.8.2. get_sv_interfaces
	7.1.8.3. get_sv_interface_property
	7.1.8.4. get_sv_interface_properties
	7.1.8.5. set_sv_interface_property

	7.1.9. Wire-Level Expression Commands
	7.1.9.1. set_wirelevel_expression
	7.1.9.2. get_wirelevel_expressions
	7.1.9.3. remove_wirelevel_expressions

	7.2. Platform Designer _hw.tcl Property Reference
	7.2.1. Script Language Properties
	7.2.2. Interface Properties
	7.2.3. SystemVerilog Interface Properties
	7.2.4. Instance Properties
	7.2.5. Parameter Properties
	7.2.6. Parameter Type Properties
	7.2.7. Parameter Status Properties
	7.2.8. Port Properties
	7.2.9. Direction Properties
	7.2.10. Display Item Properties
	7.2.11. Display Item Kind Properties
	7.2.12. Display Hint Properties
	7.2.13. Module Properties
	7.2.14. Fileset Properties
	7.2.15. Fileset Kind Properties
	7.2.16. Callback Properties
	7.2.17. File Attribute Properties
	7.2.18. File Kind Properties
	7.2.19. File Source Properties
	7.2.20. Simulator Properties
	7.2.21. Port VHDL Type Properties
	7.2.22. System Info Type Properties
	7.2.23. Design Environment Type Properties
	7.2.24. Units Properties
	7.2.25. Operating System Properties
	7.2.26. Quartus.ini Type Properties

	7.3. Component Interface Tcl Reference Revision History

	A. Intel Quartus Prime Standard Edition User Guides

	Intel Quartus Prime Standard Edition User Guide: Design Recommendations
	Contents
	1. Recommended Design Practices
	1.1. Following Synchronous FPGA Design Practices
	1.1.1. Implementing Synchronous Designs
	1.1.2. Asynchronous Design Hazards

	1.2. HDL Design Guidelines
	1.2.1. Optimizing Combinational Logic
	1.2.1.1. Avoid Combinational Loops
	1.2.1.2. Avoid Unintended Latch Inference
	1.2.1.3. Avoid Delay Chains in Clock Paths
	1.2.1.4. Use Synchronous Pulse Generators

	1.2.2. Optimizing Clocking Schemes
	1.2.2.1. Register Combinational Logic Outputs
	1.2.2.2. Avoid Asynchronous Clock Division
	1.2.2.3. Avoid Ripple Counters
	1.2.2.4. Use Multiplexed Clocks
	1.2.2.5. Use Gated Clocks
	1.2.2.5.1. Recommended Clock-Gating Methods

	1.2.2.6. Use Synchronous Clock Enables

	1.2.3. Optimizing Physical Implementation and Timing Closure
	1.2.3.1. Planning Physical Implementation
	1.2.3.2. Planning FPGA Resources
	1.2.3.3. Optimizing for Timing Closure
	1.2.3.4. Optimizing Critical Timing Paths

	1.2.4. Optimizing Power Consumption
	1.2.5. Managing Design Metastability

	1.3. Checking Design Violations
	1.3.1. Validating Against Design Rules
	1.3.2. Creating Custom Design Rules
	1.3.2.1. Custom Design Rule Examples

	1.4. Use Clock and Register-Control Architectural Features
	1.4.1. Use Global Reset Resources
	1.4.1.1. Use Synchronous Resets
	1.4.1.2. Using Asynchronous Resets
	1.4.1.3. Use Synchronized Asynchronous Reset

	1.4.2. Use Global Clock Network Resources
	1.4.3. Use Clock Region Assignments to Optimize Clock Constraints
	1.4.3.1. Clock Region Assignments in Intel Arria 10 and Older Device Families

	1.4.4. Avoid Asynchronous Register Control Signals

	1.5. Implementing Embedded RAM
	1.6. Recommended Design Practices Revision History

	2. Recommended HDL Coding Styles
	2.1. Using Provided HDL Templates
	2.1.1. Inserting HDL Code from a Provided Template

	2.2. Instantiating IP Cores in HDL
	2.3. Inferring Multipliers and DSP Functions
	2.3.1. Inferring Multipliers
	2.3.2. Inferring Multiply-Accumulator and Multiply-Adder Functions

	2.4. Inferring Memory Functions from HDL Code
	2.4.1. Inferring RAM functions from HDL Code
	2.4.1.1. Use Synchronous Memory Blocks
	2.4.1.2. Avoid Unsupported Reset and Control Conditions
	2.4.1.3. Check Read-During-Write Behavior
	2.4.1.4. Controlling RAM Inference and Implementation
	2.4.1.5. Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior
	2.4.1.6. Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
	2.4.1.7. Simple Dual-Port, Dual-Clock Synchronous RAM
	2.4.1.8. True Dual-Port Synchronous RAM
	2.4.1.9. Mixed-Width Dual-Port RAM
	2.4.1.10. RAM with Byte-Enable Signals
	2.4.1.11. Specifying Initial Memory Contents at Power-Up

	2.4.2. Inferring ROM Functions from HDL Code
	2.4.3. Inferring Shift Registers in HDL Code
	2.4.3.1. Simple Shift Register
	2.4.3.2. Shift Register with Evenly Spaced Taps

	2.5. Register and Latch Coding Guidelines
	2.5.1. Register Power-Up Values
	2.5.1.1. Specifying a Power-Up Value

	2.5.2. Secondary Register Control Signals Such as Clear and Clock Enable
	2.5.3. Latches
	2.5.3.1. Avoid Unintentional Latch Generation
	2.5.3.2. Inferring Latches Correctly

	2.6. General Coding Guidelines
	2.6.1. Tri-State Signals
	2.6.2. Clock Multiplexing
	2.6.3. Adder Trees
	2.6.3.1. Architectures with 4-Input LUTs in Logic Elements
	2.6.3.2. Architectures with 6-Input LUTs in Adaptive Logic Modules

	2.6.4. State Machine HDL Guidelines
	2.6.4.1. Verilog HDL State Machines
	2.6.4.1.1. Verilog-2001 State Machine Coding Example
	2.6.4.1.2. SystemVerilog State Machine Coding Example

	2.6.4.2. VHDL State Machines
	2.6.4.2.1. VHDL State Machine Coding Example

	2.6.5. Multiplexer HDL Guidelines
	2.6.5.1. Intel Quartus Prime Software Option for Multiplexer Restructuring
	2.6.5.2. Multiplexer Types
	2.6.5.2.1. Binary Multiplexers
	2.6.5.2.2. Selector Multiplexers
	2.6.5.2.3. Priority Multiplexers

	2.6.5.3. Implicit Defaults in IF Statements
	2.6.5.4. default or OTHERS CASE Assignment

	2.6.6. Cyclic Redundancy Check Functions
	2.6.6.1. If Performance is Important, Optimize for Speed
	2.6.6.2. Use Separate CRC Blocks Instead of Cascaded Stages
	2.6.6.3. Use Separate CRC Blocks Instead of Allowing Blocks to Merge
	2.6.6.4. Take Advantage of Latency if Available
	2.6.6.5. Save Power by Disabling CRC Blocks When Not in Use
	2.6.6.6. Initialize the Device with the Synchronous Load (sload) Signal

	2.6.7. Comparator HDL Guidelines
	2.6.8. Counter HDL Guidelines

	2.7. Designing with Low-Level Primitives
	2.8. Recommended HDL Coding Styles Revision History

	3. Managing Metastability with the Intel Quartus Prime Software
	3.1. Metastability Analysis in the Intel Quartus Prime Software
	3.1.1. Synchronization Register Chains
	3.1.2. Identify Synchronizers for Metastability Analysis
	3.1.3. How Timing Constraints Affect Synchronizer Identification and Metastability Analysis

	3.2. Metastability and MTBF Reporting
	3.2.1. Metastability Reports
	3.2.1.1. MTBF Summary Report
	3.2.1.1.1. Typical and Worst-Case MTBF of Design
	3.2.1.1.2. Synchronizer Chains
	3.2.1.1.3. Increasing Available Settling Time

	3.2.1.2. Synchronizer Summary Report
	3.2.1.3. Synchronizer Chain Statistics Report in the Timing Analyzer

	3.2.2. Synchronizer Data Toggle Rate in MTBF Calculation

	3.3. MTBF Optimization
	3.3.1. Synchronization Register Chain Length

	3.4. Reducing Metastability Effects
	3.4.1. Apply Complete System-Centric Timing Constraints for the Timing Analyzer
	3.4.2. Force the Identification of Synchronization Registers
	3.4.3. Set the Synchronizer Data Toggle Rate
	3.4.4. Optimize Metastability During Fitting
	3.4.5. Increase the Length of Synchronizers to Protect and Optimize
	3.4.6. Set Fitter Effort to Standard Fit instead of Auto Fit
	3.4.7. Increase the Number of Stages Used in Synchronizers
	3.4.8. Select a Faster Speed Grade Device

	3.5. Scripting Support
	3.5.1. Identifying Synchronizers for Metastability Analysis
	3.5.2. Synchronizer Data Toggle Rate in MTBF Calculation
	3.5.3. report_metastability and Tcl Command
	3.5.4. MTBF Optimization
	3.5.5. Synchronization Register Chain Length

	3.6. Managing Metastability
	3.7. Managing Metastability with the Intel Quartus Prime Software Revision History

	A. Intel Quartus Prime Standard Edition User Guides

	Quartus Prime Standard Edition User Guide: Design Compilation
	Contents
	1. Quartus® Prime Incremental Compilation for Hierarchical and Team-Based Design
	1.1. About Quartus® Prime Incremental Compilation
	1.2. Deciding Whether to Use an Incremental Compilation Flow
	1.2.1. Flat Compilation Flow with No Design Partitions
	1.2.1.1. Incremental Capabilities Available When A Design Has No Partitions
	1.2.1.1.1. With Smart Compilation
	1.2.1.1.2. With Rapid Recompile
	1.2.1.1.3. With Signal Tap Logic Analyzer

	1.2.2. Incremental Compilation Flow With Design Partitions
	1.2.2.1. Impact of Using Incremental Compilation with Design Partitions
	1.2.2.2. Quartus Prime Design Stages for Incremental Compilation
	1.2.2.2.1. Analysis and Synthesis Stage
	1.2.2.2.2. Partition Merge Stage
	1.2.2.2.3. Fitter Stage
	1.2.2.2.4. How to Compare Incremental Compilation Results with Flat Design Results

	1.2.3. Team-Based Design Flows and IP Delivery
	1.2.3.1. With a Single Quartus Prime Project
	1.2.3.2. With Multiple Quartus Prime Projects
	1.2.3.2.1. Additional Planning Needed

	1.2.3.3. Collaboration on a Team-Based Design

	1.3. Incremental Compilation Summary
	1.3.1. Incremental Compilation Single Quartus Prime Project Flow
	1.3.2. Steps for Incremental Compilation
	1.3.2.1. Preparing a Design for Incremental Compilation
	1.3.2.2. Compiling a Design Using Incremental Compilation

	1.3.3. Creating Design Partitions
	1.3.3.1. Creating Design Partitions in the Project Navigator
	1.3.3.2. Creating Design Partitions in the Design Partitions Window
	1.3.3.3. Creating Design Partitions With the Design Partition Planner
	1.3.3.4. Creating Design Partitions With Tcl Scripting
	1.3.3.5. Automatically-Generated Partitions

	1.4. Common Design Scenarios Using Incremental Compilation
	1.4.1. Reducing Compilation Time When Changing Source Files for One Partition
	1.4.2. Optimizing a Timing-Critical Partition
	1.4.3. Adding Design Logic Incrementally or Working With an Incomplete Design
	1.4.4. Debugging Incrementally With the Signal Tap Logic Analyzer
	1.4.5. Functional Safety IP Implementation
	1.4.5.1. Software Tool Impact on Safety
	1.4.5.2. Functional Safety Separation Flow
	1.4.5.2.1. Design Creation Flow
	1.4.5.2.2. Design Modification Flow

	1.4.5.3. How to Turn On the Functional Safety Separation Flow
	1.4.5.4. Preservation of Device Resources
	1.4.5.5. Preservation of Placement in the Device with LogicLock
	1.4.5.6. Assigning I/O Pins
	1.4.5.7. General Guidelines for Implementation
	1.4.5.8. Reports for Safety IP
	1.4.5.8.1. Fitter Report

	1.4.5.9. SIP Partial Bitstream Generation
	1.4.5.10. Exporting and Importing Your Safety IP
	1.4.5.11. POF Comparison Tool for Verification

	1.5. Deciding Which Design Blocks Should Be Design Partitions
	1.5.1. Impact of Design Partitions on Design Optimization
	1.5.1.1. Turning On Supported Cross-boundary Optimizations

	1.5.2. Design Partition Assignments Compared to Physical Placement Assignments
	1.5.3. Using Partitions With Third-Party Synthesis Tools
	1.5.3.1. Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus
	1.5.3.2. Other Synthesis Tools

	1.5.4. Assessing Partition Quality
	1.5.4.1. Partition Statistics Reports
	1.5.4.2. Partition Timing Reports
	1.5.4.3. Incremental Compilation Advisor

	1.6. Specifying the Level of Results Preservation for Subsequent Compilations
	1.6.1. Netlist Type for Design Partitions
	1.6.2. Fitter Preservation Level for Design Partitions
	1.6.3. Where Are the Netlist Databases Saved?
	1.6.4. Deleting Netlists
	1.6.5. What Changes Initiate the Automatic Resynthesis of a Partition?
	1.6.5.1. Resynthesis Due to Source Code Changes
	1.6.5.2. Forcing Use of the Compilation Netlist When a Partition has Changed

	1.7. Exporting Design Partitions from Separate Quartus Prime Projects
	1.7.1. Preparing the Top-Level Design
	1.7.1.1. Empty Partitions

	1.7.2. Project Management— Making the Top-Level Design Available to Other Designers
	1.7.2.1. Distributing the Top-Level Quartus Prime Project
	1.7.2.2. Generating Design Partition Scripts

	1.7.3. Exporting Partitions
	1.7.4. Viewing the Contents of a Quartus Prime Exported Partition File (.qxp)
	1.7.5. Integrating Partitions into the Top-Level Design
	1.7.5.1. Integrating Assignments from the .qxp
	1.7.5.1.1. Design Partition Assignments Within the Exported Partition
	1.7.5.1.2. Synopsys Design Constraint Files for the Quartus Prime Timing Analyzer
	1.7.5.1.3. Global Assignments
	1.7.5.1.4. LogicLock Region Assignments

	1.7.5.2. Integrating Encrypted IP Cores from .qxp Files
	1.7.5.3. Advanced Importing Options
	1.7.5.3.1. Importing LogicLock Assignments
	1.7.5.3.2. Advanced Import Settings

	1.8. Team-Based Design Optimization and Third-Party IP Delivery Scenarios
	1.8.1. Using an Exported Partition to Send to a Design Without Including Source Files
	1.8.2. Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse
	Incorporate IP Core

	1.8.3. Designing in a Team-Based Environment
	Exporting Your Partition
	Integrating Your Partitions

	1.8.4. Enabling Designers on a Team to Optimize Independently
	1.8.4.1. Preparing Your Top-level Design
	1.8.4.2. Exporting Your Design
	Exporting Without Makefiles

	1.8.4.3. Importing Your Design
	Importing Without Makefiles

	1.8.4.4. Resolving Assignment Conflicts During Integration
	1.8.4.5. Importing a Partition to be Instantiated Multiple Times

	1.8.5. Performing Design Iterations With Lower-Level Partitions
	1.8.5.1. Providing the Complete Top-Level Project Framework
	1.8.5.2. Providing Information About the Top-Level Framework

	1.9. Creating a Design Floorplan With LogicLock Regions
	1.9.1. Creating and Manipulating LogicLock Regions
	1.9.2. Changing Partition Placement with LogicLock Changes

	1.10. Incremental Compilation Restrictions
	1.10.1. When Timing Performance May Not Be Preserved Exactly
	1.10.2. When Placement and Routing May Not Be Preserved Exactly
	1.10.3. Using Incremental Compilation With Quartus Prime Archive Files
	1.10.4. Formal Verification Support
	1.10.5. Signal Probe Pins and Engineering Change Orders
	1.10.6. Signal Tap Logic Analyzer in Exported Partitions
	1.10.7. External Logic Analyzer Interface in Exported Partitions
	1.10.8. Assignments Made in HDL Source Code in Exported Partitions
	1.10.9. Design Partition Script Limitations
	1.10.9.1. Warnings About Extra Clocks Due to Design Partition Scripts
	1.10.9.2. Synopsys Design Constraint Files for the Timing Analyzer in Design Partition Scripts
	1.10.9.3. Wildcard Support in Design Partition Scripts
	1.10.9.4. Derived Clocks and PLLs in Design Partition Scripts
	1.10.9.5. Pin Assignments for GXB and LVDS Blocks in Design Partition Scripts
	1.10.9.6. Virtual Pin Timing Assignments in Design Partition Scripts
	1.10.9.7. Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition Scripts

	1.10.10. Restrictions on IP Core Partitions
	1.10.11. Restrictions on Arria® 10 Transceiver
	1.10.12. Register Packing and Partition Boundaries
	1.10.13. I/O Register Packing

	1.11. Scripting Support
	1.11.1. Tcl Scripting and Command-Line Examples
	1.11.1.1. Creating Design Partitions
	1.11.1.2. Enabling or Disabling Design Partition Assignments During Compilation
	1.11.1.3. Setting the Netlist Type
	1.11.1.4. Setting the Fitter Preservation Level for a Post-fit or Imported Netlist
	1.11.1.5. Preserving High-Speed Optimization
	1.11.1.6. Specifying the Software Should Use the Specified Netlist and Ignore Source File Changes
	1.11.1.7. Reducing Opening a Project, Creating Design Partitions, andPerforming an Initial Compilation
	1.11.1.8. Optimizing the Placement for a Timing-Critical Partition
	1.11.1.9. Generating Design Partition Scripts
	1.11.1.10. Exporting a Partition
	1.11.1.11. Importing a Partition into the Top-Level Design
	1.11.1.12. Makefiles

	1.12. Document Revision History

	2. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
	2.1. About Incremental Compilation and Floorplan Assignments
	2.2. Incremental Compilation Overview
	2.2.1. Recommendations for the Netlist Type

	2.3. Design Flows Using Incremental Compilation
	2.3.1. Using Standard Flow
	2.3.2. Using Team-Based Flow
	2.3.2.1. Using Third-Party IP Delivery Flow

	2.3.3. Combining Design Flows
	2.3.4. Project Management in Team-Based Design Flows
	2.3.4.1. Using a Source Control System
	2.3.4.2. Using a Copy of the Top-Level Project
	2.3.4.3. Using a Separate Project
	2.3.4.4. Using Scripts
	2.3.4.5. Using Constraints

	2.4. Why Plan Partitions and Floorplan Assignments?
	2.4.1. Partition Boundaries and Optimization
	2.4.1.1. Merging Partitions
	2.4.1.2. Resource Utilization
	2.4.1.3. Turning On Supported Cross-Boundary Optimizations

	2.5. Guidelines for Incremental Compilation
	2.5.1. General Partitioning Guidelines
	2.5.1.1. Plan Design Hierarchy and Design Files
	2.5.1.2. Using Partitions with Third-Party Synthesis Tools
	2.5.1.3. Partition Design by Functionality and Block Size
	2.5.1.4. Partition Design by Clock Domain and Timing Criticality
	2.5.1.5. Consider What Is Changing

	2.5.2. Design Partition Guidelines
	2.5.2.1. Register Partition Inputs and Outputs
	2.5.2.2. Minimize Cross-Partition-Boundary I/O
	2.5.2.3. Examine the Need for Logic Optimization Across Partitions
	2.5.2.3.1. Keep Logic in the Same Partition for Optimization and Merging
	Example—Combinational Logic Path
	Example—Fitter Merging

	2.5.2.3.2. Merging PLLs and Transceivers (GXB)

	2.5.2.4. Keep Constants in the Same Partition as Logic
	2.5.2.4.1. Example—Constants in Merged Partitions

	2.5.2.5. Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together
	2.5.2.5.1. Example—Single Signal Driving More Than One Port

	2.5.2.6. Invert Clocks in Destination Partitions
	2.5.2.6.1. Example—Clock Signal Inversion

	2.5.2.7. Connect I/O Pin Directly to I/O Register for Packing Across Partition Boundaries
	2.5.2.7.1. Example 1—Output Register in Partition Feeding Multiple Output Pins
	2.5.2.7.2. Example 2—Input Register in Partition Fed by an Inverted Input Pin or Output Register in Partition Feeding an Inverted Output Pin

	2.5.2.8. Do Not Use Internal Tri-States
	2.5.2.9. Include All Tri-State and Enable Logic in the Same Partition
	2.5.2.10. Summary of Guidelines Related to Logic Optimization Across Partitions

	2.5.3. Consider a Cascaded Reset Structure
	2.5.4. Design Partition Guidelines for Third-Party IP Delivery
	2.5.4.1. Allocate Logic Resources
	2.5.4.2. Allocate Global Routing Signals and Clock Networks if Required
	2.5.4.3. Assign Virtual Pins
	2.5.4.4. Perform Timing Budgeting if Required
	2.5.4.5. Drive Clocks Directly
	2.5.4.6. Recreate PLLs for Lower-Level Partitions if Required

	2.6. Checking Partition Quality
	2.6.1. Incremental Compilation Advisor
	2.6.2. Design Partition Planner
	2.6.3. Viewing Design Partition Planner and Floorplan Side-by-Side
	2.6.4. Partition Statistics Report
	2.6.5. Report Partition Timing in the Timing Analyzer
	2.6.6. Check if Partition Assignments Impact the Quality of Results

	2.7. Including SDC Constraints from Lower-Level Partitions for Third-Party IP Delivery
	2.7.1. Creating an .sdc File with Project-Wide Constraints
	2.7.1.1. Example Step 1—Project Lead Produces .sdc with Project-Wide Constraints for Lower-Level Partitions

	2.7.2. Creating an .sdc with Partition-Specific Constraints
	2.7.2.1. Example Step 2—Partition Designer Creates .sdc with Partition-Specific Constraints

	2.7.3. Consolidating the .sdc in the Top-Level Design
	2.7.3.1. Example Step 3—Project Lead Performs Final Timing Analysis and Sign-off

	2.8. Introduction to Design Floorplans
	2.8.1. The Difference between Logical Partitions and Physical Regions
	2.8.2. Why Create a Floorplan?
	2.8.3. When to Create a Floorplan
	2.8.3.1. Early Floorplan
	2.8.3.2. Late Floorplan

	2.9. Design Floorplan Placement Guidelines
	2.9.1. Flow for Creating a Floorplan
	2.9.2. Assigning Partitions to LogicLock Regions
	2.9.3. How to Size and Place Regions
	2.9.4. Modifying Region Size and Origin
	2.9.5. I/O Connections
	2.9.6. LogicLock Resource Exclusions
	2.9.6.1. Creating Floorplan Location Assignments With Tcl Commands—Excluding or Filtering Certain Device Elements (Such as RAM or DSP Blocks)

	2.9.7. Creating Non-Rectangular Regions

	2.10. Checking Floorplan Quality
	2.10.1. Incremental Compilation Advisor
	2.10.2. LogicLock Region Resource Estimates
	2.10.3. LogicLock Region Properties Statistics Report
	2.10.4. Locate the Quartus Prime Timing Analyzer Path in the Chip Planner
	2.10.5. Inter-Region Connection Bundles
	2.10.6. Routing Utilization
	2.10.7. Ensure Floorplan Assignments Do Not Significantly Impact Quality of Results

	2.11. Recommended Design Flows and Application Examples
	2.11.1. Create a Floorplan for Major Design Blocks
	2.11.2. Create a Floorplan Assignment for One Design Block with Difficult Timing
	2.11.3. Create a Floorplan as the Project Lead in a Team-Based Flow

	2.12. Document Revision History

	3. Quartus Prime Integrated Synthesis
	3.1. Design Flow
	3.1.1. Quartus Prime Integrated Synthesis Design and Compilation Flow
	3.1.1.1. Factors Affecting Compilation Results

	3.2. Language Support
	3.2.1. Verilog and SystemVerilog Synthesis Support
	3.2.1.1. Verilog HDL Configuration
	3.2.1.1.1. Configuration Syntax
	3.2.1.1.2. Hierarchical Design Configurations
	3.2.1.1.3. Suffix :config

	3.2.1.2. SystemVerilog Support
	3.2.1.3. Initial Constructs and Memory System Tasks
	3.2.1.4. Verilog HDL Macros
	3.2.1.4.1. Setting a Verilog HDL Macro Default Value in the Quartus Prime Software
	3.2.1.4.2. Setting a Verilog HDL Macro Default Value on the Command Line

	3.2.2. VHDL Synthesis Support
	3.2.2.1. Quartus Prime Support for VHDL 2008
	3.2.2.2. VHDL Standard Libraries and Packages
	3.2.2.3. VHDL wait Constructs

	3.2.3. AHDL Support
	3.2.4. Schematic Design Entry Support
	3.2.5. State Machine Editor
	3.2.6. Design Libraries
	3.2.6.1. Specifying a Destination Library Name in the Settings Dialog Box
	3.2.6.2. Specifying a Destination Library Name in the Quartus Prime Settings File or with Tcl
	3.2.6.3. Specifying a Destination Library Name in a VHDL File
	3.2.6.4. Mapping a VHDL Instance to an Entity in a Specific Library
	3.2.6.4.1. Direct Entity Instantiation
	3.2.6.4.2. Component Instantiation—Explicit Binding Instantiation
	3.2.6.4.3. Component Instantiation—Default Binding

	3.2.7. Using Parameters/Generics
	3.2.7.1. Setting Default Parameter Values and BDF Instance Parameter Values
	3.2.7.2. Passing Parameters Between Two Design Languages

	3.3. Incremental Compilation
	3.3.1. Partitions for Preserving Hierarchical Boundaries
	3.3.2. Parallel Synthesis
	3.3.3. Quartus Prime Exported Partition File as Source

	3.4. Quartus Prime Synthesis Options
	3.4.1. Setting Synthesis Options
	3.4.1.1. Quartus Prime Logic Options
	3.4.1.2. Synthesis Attributes
	3.4.1.2.1. Synthesis Attributes in Verilog-1995
	3.4.1.2.2. Synthesis Attributes in Verilog-2001
	3.4.1.2.3. Synthesis Attributes in VHDL

	3.4.1.3. Synthesis Directives

	3.4.2. Optimization Technique
	3.4.3. Auto Gated Clock Conversion
	3.4.4. Enabling Timing-Driven Synthesis
	3.4.5. SDC Constraint Protection
	3.4.6. PowerPlay Power Optimization
	3.4.7. Limiting Resource Usage in Partitions
	3.4.7.1. Creating LogicLock Regions
	3.4.7.2. Using Assignments to Limit the Number of RAM and DSP Blocks

	3.4.8. Restructure Multiplexers
	3.4.9. Synthesis Effort
	3.4.10. Fitter Intial Placement Seed
	3.4.11. State Machine Processing
	3.4.11.1. Manually Specifying State Assignments Using the syn_encoding Attribute
	3.4.11.2. Manually Specifying Enumerated Types Using the enum_encoding Attribute

	3.4.12. Safe State Machine
	3.4.13. Power-Up Level
	3.4.13.1. Inferred Power-Up Levels

	3.4.14. Power-Up Don’t Care
	3.4.15. Remove Duplicate Registers
	3.4.16. Preserve Registers
	3.4.17. Disable Register Merging/Don’t Merge Register
	3.4.18. Noprune Synthesis Attribute/Preserve Fan-out Free Register Node
	3.4.19. Keep Combinational Node/Implement as Output of Logic Cell
	3.4.20. Disabling Synthesis Netlist Optimizations with dont_retime Attribute
	3.4.21. Disabling Synthesis Netlist Optimizations with dont_replicate Attribute
	3.4.22. Maximum Fan-Out
	3.4.23. Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable

	3.5. Inferring Multiplier, DSP, and Memory Functions from HDL Code
	3.5.1. Multiply-Accumulators and Multiply-Adders
	3.5.2. Shift Registers
	3.5.3. RAM and ROM
	3.5.4. Resource Aware RAM, ROM, and Shift-Register Inference
	3.5.5. Auto RAM to Logic Cell Conversion
	3.5.6. RAM Style and ROM Style—for Inferred Memory
	3.5.7. RAM Style Attribute—For Shift Registers Inference
	3.5.8. Disabling Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute
	3.5.9. RAM Initialization File—for Inferred Memory
	3.5.10. Multiplier Style—for Inferred Multipliers
	3.5.11. Full Case Attribute
	3.5.12. Parallel Case
	3.5.13. Translate Off and On / Synthesis Off and On
	3.5.14. Ignore translate_off and synthesis_off Directives
	3.5.15. Read Comments as HDL
	3.5.16. Use I/O Flipflops
	3.5.17. Specifying Pin Locations with chip_pin
	3.5.18. Using altera_attribute to Set Quartus Prime Logic Options

	3.6. Analyzing Synthesis Results
	3.6.1. Analysis & Synthesis Section of the Compilation Report
	3.6.2. Project Navigator
	3.6.2.1. Upgrade IP Components Dialog Box

	3.7. Analyzing and Controlling Synthesis Messages
	3.7.1. Quartus Prime Messages
	3.7.2. VHDL and Verilog HDL Messages
	3.7.2.1. Setting the HDL Message Level
	3.7.2.2. Enabling or Disabling Specific HDL Messages by Module/Entity

	3.8. Node-Naming Conventions in Quartus Prime Integrated Synthesis
	3.8.1. Hierarchical Node-Naming Conventions
	3.8.2. Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)
	3.8.3. Register Changes During Synthesis
	3.8.3.1. Synthesis and Fitting Optimizations
	3.8.3.2. State Machines
	3.8.3.3. Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions
	3.8.3.4. Packed Input and Output Registers of RAM and DSP Blocks

	3.8.4. Preserving Register Names
	3.8.5. Node-Naming Conventions for Combinational Logic Cells
	3.8.6. Preserving Combinational Logic Names

	3.9. Scripting Support
	3.9.1. Adding an HDL File to a Project and Setting the HDL Version
	3.9.2. Assigning a Pin
	3.9.3. Creating Design Partitions for Incremental Compilation

	3.10. Document Revision History

	4. Reducing Compilation Time
	4.1. Strategies to Reduce the Overall Compilation Time
	4.1.1. Running Rapid Recompile
	4.1.2. Enabling Multi-Processor Compilation
	4.1.2.1. Processor Base Clock Frequency
	4.1.2.2. Random Access Memory (RAM)
	4.1.2.3. Storage

	4.1.3. Using Incremental Compilation
	4.1.4. Using Block-Based Compilation

	4.2. Reducing Synthesis Time and Synthesis Netlist Optimization Time
	4.2.1. Settings to Reduce Synthesis Time and Synthesis Netlist Optimization Time
	4.2.2. Use Appropriate Coding Style to Reduce Synthesis Time

	4.3. Reducing Placement Time
	4.3.1. Fitter Effort Setting
	4.3.2. Placement Effort Multiplier Settings
	4.3.3. Physical Synthesis Effort Settings
	4.3.4. Preserving Placement with Incremental Compilation

	4.4. Reducing Routing Time
	4.4.1. Identifying Routing Congestion with the Chip Planner
	4.4.1.1. Areas with Routing Congestion
	4.4.1.2. Congestion due to HDL Coding style
	4.4.1.3. Preserving Routing with Incremental Compilation

	4.5. Reducing Static Timing Analysis Time
	4.6. Setting Process Priority
	4.7. Reducing Compilation Time Revision History

	A. Quartus Prime Standard Edition User Guides

	Intel Quartus Prime Standard Edition User Guide: Design Optimization
	Contents
	1. Design Optimization Overview
	1.1. Device Considerations
	1.1.1. Device Migration Considerations

	1.2. Required Settings for Initial Compilation
	1.2.1. Guidelines for I/O Assignments
	1.2.2. Guidelines for Time Constraints
	1.2.3. Partitions and Floorplan Assignments for Incremental Compilation

	1.3. Trade-Offs and Limitations
	1.3.1. Preserving Results and Enabling Teamwork
	1.3.2. Reducing Area
	1.3.3. Reducing Critical Path Delay
	1.3.4. Reducing Power Consumption
	1.3.5. Reducing Runtime

	1.4. Intel Quartus Prime Software Tools for Design Optimization
	1.4.1. Design Visualization Tools
	1.4.2. Advisors
	1.4.3. Design Exploration

	1.5. Design Space Explorer II
	1.5.1. How DSE II Works
	1.5.1.1. Use of Computing Resources
	1.5.1.2. Optimization Parameters
	1.5.1.3. Result Management

	1.5.2. Performing a Design Exploration with the DSE II Utility

	1.6. Design Optimization Overview Revision History

	2. Optimizing the Design Netlist
	2.1. When to Use the Netlist Viewers: Analyzing Design Problems
	2.2. Intel Quartus Prime Design Flow with the Netlist Viewers
	2.3. RTL Viewer Overview
	2.3.1. Maximizing Readability in RTL Viewer
	2.3.2. Running the RTL Viewer

	2.4. State Machine Viewer Overview
	2.5. Technology Map Viewer Overview
	2.6. Netlist Viewer User Interface
	2.6.1. Netlist Navigator Pane
	2.6.2. Properties Pane
	2.6.3. Netlist Viewers Find Pane

	2.7. Schematic View
	2.7.1. Display Schematics in Multiple Tabbed View
	2.7.2. Schematic Symbols
	2.7.3. Select Items in the Schematic View
	2.7.4. Shortcut Menu Commands in the Schematic View
	2.7.5. Filtering in the Schematic View
	2.7.6. View Contents of Nodes in the Schematic View
	2.7.7. Moving Nodes in the Schematic View
	2.7.8. View LUT Representations in the Technology Map Viewer
	2.7.9. Zoom Controls
	2.7.10. Navigating with the Bird's Eye View
	2.7.11. Partition the Schematic into Pages
	2.7.12. Follow Nets Across Schematic Pages

	2.8. State Machine Viewer
	2.8.1. State Diagram View
	2.8.2. State Transition Table
	2.8.3. State Encoding Table
	2.8.3.1. Select Items in the State Machine Viewer

	2.8.4. Switch Between State Machines

	2.9. Cross-Probing to a Source Design File and Other Intel Quartus Prime Windows
	2.10. Cross-Probing to the Netlist Viewers from Other Intel Quartus Prime Windows
	2.11. Viewing a Timing Path
	2.12. Optimizing the Design Netlist Revision History

	3. Timing Closure and Optimization
	3.1. Optimize Multi Corner Timing
	3.2. Critical Paths
	3.2.1. Viewing Critical Paths

	3.3. Design Evaluation for Timing Closure
	3.3.1. Review Compilation Results
	3.3.1.1. Review Messages
	3.3.1.2. Evaluate Physical Synthesis Results
	3.3.1.3. Evaluate Fitter Netlist Optimizations
	3.3.1.4. Evaluate Optimization Results
	3.3.1.5. Evaluate Resource Usage
	3.3.1.5.1. Global and Non-Global Usage
	3.3.1.5.2. Routing Usage
	3.3.1.5.3. Wires Added for Hold

	3.3.1.6. Evaluate Other Reports and Adjust Settings Accordingly
	3.3.1.6.1. Difficulty Packing Design
	3.3.1.6.2. Review Ignored Assignments
	3.3.1.6.3. Review Non-Default Settings
	3.3.1.6.4. Review Floorplan
	3.3.1.6.5. Evaluate Placement and Routing
	3.3.1.6.6. Adjust Placement Effort
	3.3.1.6.7. Adjust Fitter Effort
	3.3.1.6.8. Review Timing Constraints

	3.3.1.7. Evaluate Clustering Difficulty

	3.3.2. Review Details of Timing Paths
	3.3.2.1. Show Timing Path Routing
	3.3.2.2. Global Network Buffers
	3.3.2.2.1. Source Location
	3.3.2.2.2. Insertion Delay
	3.3.2.2.3. Fan-Out
	3.3.2.2.4. Global Networks

	3.3.2.3. Resets and Global Networks
	3.3.2.4. Suspicious Setup
	3.3.2.5. Logic Depth
	3.3.2.6. Auto Shift Register Replacement
	3.3.2.7. Clocking Architecture
	3.3.2.8. Timing Closure Recommendations

	3.3.3. Adjusting and Recompiling
	3.3.3.1. Using Partitions to Achieve Timing Closure

	3.4. Design Analysis
	3.4.1. Ignored Timing Constraints
	3.4.2. I/O Timing
	3.4.3. Register-to-Register Timing Analysis
	3.4.3.1. Displaying Path Reports with the Timing Analyzer
	3.4.3.2. Tips for Analyzing Failing Paths
	3.4.3.3. Tips for Analyzing Failing Clock Paths that Cross Clock Domains
	3.4.3.4. Tips for Analyzing Paths from/to the Source and Destination of Critical Path
	3.4.3.5. Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles
	3.4.3.6. Global Routing Resources

	3.5. Timing Optimization
	3.5.1. Displaying Timing Closure Recommendations for Failing Paths
	3.5.2. Timing Optimization Advisor
	3.5.3. Optional Fitter Settings
	3.5.3.1. Optimize Hold Timing
	3.5.3.2. Fitter Aggressive Routability Optimization

	3.5.4. I/O Timing Optimization Techniques
	3.5.4.1. Optimize IOC Register Placement for Timing Logic Option
	3.5.4.2. Fast Input, Output, and Output Enable Registers
	3.5.4.3. Programmable Delays
	3.5.4.4. Use PLLs to Shift Clock Edges
	3.5.4.5. Use Fast Regional Clock Networks and Regional Clocks Networks
	3.5.4.6. Spine Clock Limitations
	3.5.4.7. Change How Hold Times are Optimized for Devices

	3.5.5. Register-to-Register Timing Optimization Techniques
	3.5.5.1. Optimize Source Code
	3.5.5.2. Improving Register-to-Register Timing
	3.5.5.3. Physical Synthesis Optimizations
	3.5.5.4. Turn Off Extra-Effort Power Optimization Settings
	3.5.5.5. Optimize Synthesis for Speed, Not Area
	3.5.5.6. Flatten the Hierarchy During Synthesis
	3.5.5.7. Set the Synthesis Effort to High
	3.5.5.8. Change State Machine Encoding
	3.5.5.9. Duplicate Logic for Fan-Out Control
	3.5.5.10. Prevent Shift Register Inference
	3.5.5.11. Use Other Synthesis Options Available in Your Synthesis Tool
	3.5.5.12. Fitter Seed
	3.5.5.13. Set Maximum Router Timing Optimization Level

	3.5.6. Logic Lock (Standard) Assignments
	3.5.6.1. Hierarchy Assignments

	3.5.7. Location Assignments
	3.5.8. Metastability Analysis and Optimization Techniques

	3.6. Periphery to Core Register Placement and Routing Optimization
	3.6.1. Setting Periphery to Core Optimizations in the Advanced Fitter Setting Dialog Box
	3.6.2. Setting Periphery to Core Optimizations in the Assignment Editor
	3.6.3. Viewing Periphery to Core Optimizations in the Fitter Report

	3.7. Scripting Support
	3.7.1. Initial Compilation Settings
	3.7.2. I/O Timing Optimization Techniques
	3.7.3. Register-to-Register Timing Optimization Techniques

	3.8. Timing Closure and Optimization Revision History

	4. Area Optimization
	4.1. Resource Utilization Information
	4.1.1. Flow Summary Report
	4.1.2. Fitter Reports
	4.1.3. Analysis and Synthesis Reports
	4.1.4. Compilation Messages

	4.2. Optimizing Resource Utilization
	4.2.1. Using the Resource Optimization Advisor
	4.2.2. Resource Utilization Issues Overview
	4.2.3. I/O Pin Utilization or Placement
	4.2.3.1. Guideline: Use I/O Assignment Analysis
	4.2.3.2. Guideline: Modify Pin Assignments or Choose a Larger Package

	4.2.4. Logic Utilization or Placement
	4.2.4.1. Guideline: Optimize Source Code
	4.2.4.2. Guideline: Optimize Synthesis for Area, Not Speed
	4.2.4.3. Guideline: Restructure Multiplexers
	4.2.4.4. Guideline: Perform WYSIWYG Primitive Resynthesis with Balanced or Area Setting
	4.2.4.5. Guideline: Use Register Packing
	4.2.4.6. Guideline: Remove Fitter Constraints
	4.2.4.7. Guideline: Flatten the Hierarchy During Synthesis
	4.2.4.8. Guideline: Re-target Memory Blocks
	4.2.4.9. Guideline: Use Physical Synthesis Options to Reduce Area
	4.2.4.10. Guideline: Retarget or Balance DSP Blocks
	4.2.4.11. Guideline: Use a Larger Device

	4.2.5. Routing
	4.2.5.1. Guideline: Set Auto Packed Registers to Sparse or Sparse Auto
	4.2.5.2. Guideline: Set Fitter Aggressive Routability Optimizations to Always
	4.2.5.3. Guideline: Increase Router Effort Multiplier
	4.2.5.4. Guideline: Remove Fitter Constraints
	4.2.5.5. Guideline: Optimize Synthesis for Area, Not Speed
	4.2.5.6. Guideline: Optimize Source Code
	4.2.5.7. Guideline: Use a Larger Device

	4.3. Scripting Support
	4.3.1. Initial Compilation Settings
	4.3.2. Resource Utilization Optimization Techniques

	4.4. Area Optimization Revision History

	5. Analyzing and Optimizing the Design Floorplan
	5.1. Design Floorplan Analysis in the Chip Planner
	5.1.1. Starting the Chip Planner
	5.1.2. Chip Planner GUI Components
	5.1.2.1. Chip Planner Toolbar
	5.1.2.2. Layers Settings and Editing Modes
	5.1.2.3. Locate History Window
	5.1.2.4. Chip Planner Floorplan Views

	5.1.3. Viewing Architecture-Specific Design Information
	5.1.4. Viewing Available Clock Networks in the Device
	5.1.5. Viewing Routing Congestion
	5.1.6. Viewing I/O Banks
	5.1.7. Viewing High-Speed Serial Interfaces (HSSI)
	5.1.8. Viewing the Source and Destination of Placed Nodes
	5.1.9. Viewing Fan-In and Fan-Out Connections of Placed Resources
	5.1.10. Generating Immediate Fan-In and Fan-Out Connections
	5.1.11. Exploring Paths in the Chip Planner
	5.1.11.1. Analyzing Connections for a Path
	5.1.11.2. Locate Path from the Timing Analysis Report to the Chip Planner
	5.1.11.3. Show Delays
	5.1.11.4. Viewing Routing Resources

	5.1.12. Viewing Assignments in the Chip Planner
	5.1.13. Viewing High-Speed and Low-Power Tiles in the Chip Planner
	5.1.14. Viewing Design Partition Placement

	5.2. Logic Lock (Standard) Regions
	5.2.1. Attributes of a Logic Lock (Standard) Region
	5.2.2. Creating Logic Lock (Standard) Regions
	5.2.2.1. Creating Logic Lock (Standard) Regions with the Chip Planner
	5.2.2.2. Creating Logic Lock (Standard) Regions with the Project Navigator
	5.2.2.3. Creating Logic Lock (Standard) Regions with the Logic Lock (Standard) Regions Window
	5.2.2.4. Defining Routing Regions
	5.2.2.5. Noncontiguous Logic Lock (Standard) Regions
	5.2.2.6. Considerations on Using Auto Sized Regions

	5.2.3. Customizing the Shape of Logic Lock Regions
	5.2.3.1. Merging Logic Lock (Standard) Regions
	5.2.3.2. Noncontiguous Logic Lock (Standard) Regions

	5.2.4. Placing Logic Lock (Standard) Regions
	5.2.5. Placing Device Resources into Logic Lock (Standard) Regions
	5.2.5.1. Empty Logic Lock Regions
	5.2.5.2. Pin Assignment
	5.2.5.3. Reserved Logic Lock (Standard) Regions
	5.2.5.4. Excluded Resources
	5.2.5.5. Logic Lock (Standard) Assignment Precedence
	5.2.5.6. Virtual Pins

	5.2.6. Hierarchical (Parent and Child) Logic Lock (Standard) Regions
	5.2.7. Additional Intel Quartus Prime Logic Lock (Standard) Design Features
	5.2.7.1. Analysis and Synthesis Resource Utilization by Entity
	5.2.7.2. Intel Quartus Prime Revisions Feature

	5.2.8. Logic Lock (Standard) Regions Window

	5.3. Using Logic Lock (Standard) Regions in the Chip Planner
	5.3.1. Viewing Connections Between Logic Lock (Standard) Regions in the Chip Planner
	5.3.2. Using Logic Lock (Standard) Regions with the Design Partition Planner

	5.4. Scripting Support
	5.4.1. Initializing and Uninitializing a Logic Lock (Standard) Region
	5.4.2. Creating or Modifying Logic Lock (Standard) Regions
	5.4.3. Obtaining Logic Lock (Standard) Region Properties
	5.4.4. Assigning Logic Lock (Standard) Region Content
	5.4.5. Save a Node-Level Netlist for the Entire Design into a Persistent Source File
	5.4.6. Setting Logic Lock (Standard) Assignment Priority
	5.4.7. Assigning Virtual Pins with a Tcl command

	5.5. Analyzing and Optimizing the Design Floorplan Revision History

	6. Netlist Optimizations and Physical Synthesis
	6.1. Physical Synthesis Optimizations
	6.1.1. Enabling Physical Synthesis Optimization
	6.1.2. Physical Synthesis Options
	6.1.3. Perform Register Retiming for Performance
	6.1.4. Preventing Register Movement During Retiming

	6.2. Applying Netlist Optimizations
	6.2.1. WYSIWYG Primitive Resynthesis
	6.2.2. Saving a Node-Level Netlist

	6.3. Viewing Synthesis and Netlist Optimization Reports
	6.4. Scripting Support
	6.4.1. Synthesis Netlist Optimizations
	6.4.2. Physical Synthesis Optimizations
	6.4.3. Back-Annotating Assignments

	6.5. Netlist Optimizations and Physical Synthesis Revision History

	7. Engineering Change Orders with the Chip Planner
	7.1. Engineering Change Orders
	7.1.1. Performance Preservation
	7.1.2. Compilation Time
	7.1.3. Verification
	7.1.4. Change Modification Record

	7.2. ECO Design Flow
	7.3. The Chip Planner Overview
	7.3.1. Opening the Chip Planner
	7.3.2. The Chip Planner Tasks and Layers

	7.4. Performing ECOs with the Chip Planner (Floorplan View)
	7.4.1. Creating, Deleting, and Moving Atoms
	7.4.2. Check and Save Netlist Changes

	7.5. Performing ECOs in the Resource Property Editor
	7.5.1. Logic Elements
	7.5.1.1. Logic Element Properties
	7.5.1.2. Modes of Operation
	7.5.1.3. Sum and Carry Equations
	7.5.1.4. sload and sclr Signals
	7.5.1.5. Register Cascade Mode
	7.5.1.6. Cell Delay Table
	7.5.1.7. Logic Element Connections
	7.5.1.8. Deleting a Logic Element

	7.5.2. Adaptive Logic Modules
	7.5.2.1. Adaptive Logic Module Schematic
	7.5.2.2. Adaptive Logic Module Properties
	7.5.2.3. Adaptive Logic Module Connections

	7.5.3. FPGA I/O Elements
	7.5.3.1. Stratix V I/O Elements
	7.5.3.2. Stratix IV I/O Elements
	7.5.3.3. Arria V I/O Elements
	7.5.3.4. Cyclone V I/O Elements
	7.5.3.5. MAX V I/O Elements

	7.5.4. FPGA RAM Blocks
	7.5.5. FPGA DSP Blocks

	7.6. Change Manager
	7.6.1. Complex Changes in the Change Manager
	7.6.2. Managing Signal Probe Signals
	7.6.3. Exporting Changes

	7.7. Scripting Support
	7.8. Common ECO Applications
	7.8.1. Adjust the Drive Strength of an I/O with the Chip Planner
	7.8.2. Modify the PLL Properties With the Chip Planner
	7.8.3. PLL Properties
	7.8.3.1. Adjusting the Duty Cycle
	7.8.3.2. Adjusting the Phase Shift
	7.8.3.3. Adjusting the Output Clock Frequency
	7.8.3.4. Adjusting the Spread Spectrum

	7.8.4. Modify the Connectivity between Resource Atoms

	7.9. Post ECO Steps
	7.10. Engineering Change Orders with the Chip Planner Revision History

	A. Intel Quartus Prime Standard Edition User Guides

	Intel Quartus Prime Standard Edition User Guide: Programmer
	Contents
	1. Programming Intel FPGA Devices
	1.1. Programming Flow
	1.1.1. Stand-Alone Intel Quartus Prime Programmer
	1.1.2. Optional Programming or Configuration Files
	1.1.3. Secondary Programming Files

	1.2. Intel Quartus Prime Programmer Window
	1.2.1. Editing the Details of an Unknown Device
	1.2.2. Setting Up the Hardware
	1.2.3. Setting the JTAG Hardware
	1.2.3.1. Running JTAG Daemon with Linux

	1.2.4. Using the JTAG Chain Debugger Tool

	1.3. Programming and Configuration Modes
	1.4. Design Security Keys
	1.5. Verifying if Programming Files Correspond to a Compilation of the Same Source Files
	1.5.1. Obtaining Project Hash for Arria V, Stratix V, Cyclone V and Intel MAX 10 Devices
	1.5.2. Obtaining Project Hash for Intel Arria 10 Devices

	1.6. Convert Programming Files Dialog Box
	1.6.1. Debugging Your Configuration
	1.6.2. Converting Programming Files for Partial Reconfiguration
	1.6.2.1. Generating .pmsf using a .msf and a .sof
	1.6.2.2. Generating a .rbf for Partial Reconfiguration from a .pmsf file
	1.6.2.3. Enable Decompression During Partial Reconfiguration Option

	1.7. Flash Loaders
	1.8. JTAG Debug Mode for Partial Reconfiguration
	1.8.1. Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode

	1.9. Scripting Support
	1.9.1. The jtagconfig Debugging Tool
	1.9.2. Generating a Partial-Mask SRAM Object File using a Mask Settings File and a SRAM Object File
	1.9.3. Generating Raw Binary File for Partial Reconfiguration using a .pmsf

	1.10. Programming Intel FPGA Devices Revision History

	A. Intel Quartus Prime Standard Edition User Guides

	Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
	Contents
	1. Design Planning for Partial Reconfiguration
	1.1. Terminology
	1.1.1. Determining Resources for Partial Reconfiguration

	1.2. An Example of a Partial Reconfiguration Design
	1.3. Partial Reconfiguration Modes
	1.3.1. SCRUB Mode
	1.3.2. AND/OR Mode
	1.3.3. Programming File Sizes for a Partial Reconfiguration Project

	1.4. Partial Reconfiguration Design Flow
	1.4.1. Design Partitions for Partial Reconfiguration
	1.4.2. Incremental Compilation Partitions for Partial Reconfiguration
	1.4.3. Partial Reconfiguration Controller Instantiation in the Design
	1.4.3.1. Component Declaration of the PR Control Block and CRC Block in VHDL
	1.4.3.2. Instantiating the PR Control Block and CRC Block in VHDL
	1.4.3.3. Instantiating the PR Control Block and CRC Block in Verilog HDL

	1.4.4. Wrapper Logic for PR Regions

	1.5. Freeze Logic for PR Regions
	1.5.1. Clocks and Other Global Signals for a PR Design
	1.5.2. Floorplan Assignments for PR Designs

	1.6. Implementation Details for Partial Reconfiguration
	1.6.1. Interface with the PR Control Block through a PR Host
	1.6.2. Partial Reconfiguration Pins
	1.6.3. PR Control Signals Interface
	1.6.4. Reconfiguring a PR Region
	1.6.5. Partial Reconfiguration Cycle Waveform

	1.7. Example of a Partial Reconfiguration Design with an External Host
	1.7.1. Example of Using an External Host with Multiple Devices

	1.8. Example Partial Reconfiguration with an Internal Host
	1.9. Partial Reconfiguration Project Management
	1.9.1. Create Reconfigurable Revisions
	1.9.2. Compiling Reconfigurable Revisions
	1.9.3. Timing Closure for a Partial Reconfiguration Project
	1.9.4. PR Bitstream Compression and Encryption (Intel Arria® 10 Designs)

	1.10. Programming Files for a Partial Reconfiguration Project
	1.10.1. Generating Required Programming Files
	1.10.2. Generate PR Programming Files with the Convert Programming Files Dialog Box
	1.10.2.1. Generating a .pmsf File from a .msf and .sof Input File
	1.10.2.2. Generating a .rbf File from a .pmsf Input File
	1.10.2.3. Create a Merged .msf File from Multiple .msf Files
	1.10.2.4. Generating a Merged .pmsf File from Multiple .pmsf Files
	1.10.2.5. Enable Partial Reconfiguration Bitstream Decompression when Configuring Base Design SOF file in JTAG mode
	1.10.2.6. Enable Bitstream Decryption Option

	1.11. On-Chip Debug for PR Designs
	1.12. Partial Reconfiguration Known Limitations
	1.12.1. Memory Blocks Initialization Requirement for PR Designs
	1.12.2. M20K RAM Blocks in PR Designs
	1.12.2.1. Limitations When Using Stratix V Production Devices

	1.12.3. MLAB Blocks in PR designs
	1.12.4. Implementing Memories with Initialized Content
	1.12.5. Initializing M20K Blocks with a Double PR Cycle

	1.13. Document Revision History

	A. Intel Quartus Prime Standard Edition User Guides

	Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
	Contents
	1. Intel FPGA Simulation Basics
	1.1. Intel FPGA Simulation Essential Elements
	1.2. Overview of Simulation Tool Flow
	1.2.1. Compilation Stage
	1.2.2. Elaboration Stage
	1.2.3. Simulation Stage

	1.3. Simulation Tool Flow
	1.3.1. Specifying Logical Libraries
	1.3.1.1. Why Do We Need Logical Library Names?

	1.3.2. Compiling Files Into Library Directories
	1.3.2.1. Inputs to Compilation Commands
	1.3.2.2. Order of Files for Compilation Commands
	1.3.2.3. Compilation Command Line Options
	1.3.2.4. Module Definitions in Library Directories

	1.3.3. The Intel Quartus Prime Simulation Library
	1.3.3.1. The Intel Quartus Prime Simulation Library Compiler
	1.3.3.2. Running the Simulation Library Compiler in a Terminal
	1.3.3.3. Running the Simulation Library Compiler in the GUI
	1.3.3.4. Finding Logical Library Names in Simulation Library Compiler Output

	1.3.4. Understanding Elaboration
	1.3.4.1. Elaboration Binding Phase
	1.3.4.2. Elaboration Checks
	1.3.4.3. Elaboration Options

	1.3.5. Commands To Configure and Run Simulation
	1.3.6. Intel FPGA Simulation Generic Workflow

	1.4. Supported Simulation Types
	1.5. Supported Simulation Flows
	1.6. Supported Hardware Description Languages
	1.7. Supported Simulators
	1.8. Using NativeLink Simulation (Intel Quartus Prime Standard Edition)
	1.8.1. Setting Up NativeLink Simulation (Intel Quartus Prime Standard Edition)
	1.8.2. Running RTL Simulation (NativeLink Flow)
	1.8.3. Running Gate-Level Simulation (NativeLink Flow)

	1.9. Intel FPGA Simulation Basics Revision History

	2. Siemens EDA QuestaSim Simulator Support
	2.1. Quick Start Example (QuestaSim with Verilog)
	2.2. QuestaSim Simulator Guidelines
	2.2.1. Passing Parameter Information from Verilog HDL to VHDL
	2.2.2. Viewing Simulation Messages
	2.2.3. Generating Signal Activity Data for Power Analysis
	2.2.3.1. Generating Standard Delay Output for Power Analysis

	2.2.4. Viewing Simulation Waveforms

	2.3. QuestaSim Simulation Setup Script Example
	2.4. Sourcing QuestaSim Simulator Setup Scripts
	2.5. Unsupported Features
	2.6. Siemens EDA QuestaSim Simulator Support Revision History

	3. Synopsys VCS and VCS MX Support
	3.1. Quick Start Example (VCS with Verilog)
	3.2. VCS and VCS MX Guidelines
	3.2.1. Simulating Transport Delays
	3.2.2. Disabling Timing Violation on Registers
	3.2.3. Generating Power Analysis Files

	3.3. VCS Simulation Setup Script Example
	3.4. Sourcing Synopsys VCS MX Simulator Setup Scripts
	3.5. Sourcing Synopsys VCS Simulator Setup Scripts
	3.6. Synopsys VCS and VCS MX Support Revision History

	4. Cadence Xcelium Parallel Simulator Support
	4.1. Generating Simulator Setup Script Templates
	4.2. Sourcing Cadence Xcelium Simulator Setup Scripts
	4.3. Cadence Xcelium Parallel Simulator Support Revision History

	5. Aldec Active-HDL and Riviera-PRO Support
	5.1. Quick Start Example (Active-HDL VHDL)
	5.2. Aldec Active-HDL and Riviera-PRO Guidelines
	5.2.1. Compiling SystemVerilog Files
	5.2.2. Disabling Timing Violation on Registers

	5.3. Using Simulation Setup Scripts
	5.4. Sourcing Aldec ActiveHDL* or Riviera Pro* Simulator Setup Scripts
	5.5. Aldec Active-HDL and Riviera-PRO * Support Revision History

	A. Intel Quartus Prime Standard Edition User Guides

	Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
	Contents
	1. Synopsys Synplify* Support
	1.1. About Synplify Support
	1.2. Design Flow
	1.3. Hardware Description Language Support
	1.4. Intel Device Family Support
	1.5. Tool Setup
	1.5.1. Specifying the Intel Quartus Prime Software Version
	1.5.2. Exporting Designs to the Intel Quartus Prime Software Using NativeLink Integration
	1.5.2.1. Running the Intel Quartus Prime Software from within the Synplify Software
	1.5.2.2. Using the Intel Quartus Prime Software to Run the Synplify Software

	1.6. Synplify Software Generated Files
	1.7. Design Constraints Support
	1.7.1. Running the Intel Quartus Prime Software Manually With the Synplify-Generated Tcl Script
	1.7.2. Passing Timing Analyzer SDC Timing Constraints to the Intel Quartus Prime Software
	1.7.2.1. Individual Clocks and Frequencies
	1.7.2.2. Input and Output Delay
	1.7.2.3. Multicycle Path
	1.7.2.4. False Path

	1.8. Simulation and Formal Verification
	1.9. Synplify Optimization Strategies
	1.9.1. Using Synplify Premier to Optimize Your Design
	1.9.2. Using Implementations in Synplify Pro or Premier
	1.9.3. Timing-Driven Synthesis Settings
	1.9.3.1. Clock Frequencies
	1.9.3.2. Multiple Clock Domains
	1.9.3.3. Input and Output Delays
	1.9.3.4. Multicycle Paths
	1.9.3.5. False Paths

	1.9.4. FSM Compiler
	1.9.4.1. FSM Explorer in Synplify Pro and Premier

	1.9.5. Optimization Attributes and Options
	1.9.5.1. Retiming in Synplify Pro and Premier
	1.9.5.2. Maximum Fan-Out
	1.9.5.3. Preserving Nets
	1.9.5.4. Register Packing
	1.9.5.5. Resource Sharing
	1.9.5.6. Preserving Hierarchy
	1.9.5.7. Register Input and Output Delays
	1.9.5.8. syn_direct_enable
	1.9.5.9. I/O Standard

	1.9.6. Intel-Specific Attributes
	1.9.6.1. altera_chip_pin_lc
	1.9.6.2. altera_io_powerup
	1.9.6.3. altera_io_opendrain

	1.10. Guidelines for Intel FPGA IP Cores and Architecture-Specific Features
	1.10.1. Instantiating Intel FPGA IP Cores with the IP Catalog
	1.10.1.1. Instantiating Intel FPGA IP Cores with IP Catalog Generated Verilog HDL Files
	1.10.1.2. Instantiating Intel FPGA IP Cores with IP Catalog Generated VHDL Files
	1.10.1.3. Changing Synplify’s Default Behavior for Instantiated Intel FPGA IP Cores
	1.10.1.4. Instantiating Intellectual Property with the IP Catalog and Parameter Editor
	1.10.1.5. Instantiating Black Box IP Cores with Generated Verilog HDL Files
	1.10.1.6. Instantiating Black Box IP Cores with Generated VHDL Files
	1.10.1.7. Other Synplify Software Attributes for Creating Black Boxes

	1.10.2. Including Files for Intel Quartus Prime Placement and Routing Only
	1.10.3. Inferring Intel FPGA IP Cores from HDL Code
	1.10.3.1. Inferring Multipliers
	1.10.3.1.1. Resource Balancing
	1.10.3.1.2. Controlling the DSP Block Inference
	1.10.3.1.3. Signal Level Attribute

	1.10.3.2. Inferring RAM
	1.10.3.3. RAM Initialization
	1.10.3.4. Inferring ROM
	1.10.3.5. Inferring Shift Registers

	1.11. Incremental Compilation and Block-Based Design
	1.11.1. Design Flow for Incremental Compilation
	1.11.2. Creating a Design with Separate Netlist Files for Incremental Compilation
	1.11.3. Using MultiPoint Synthesis with Incremental Compilation
	1.11.3.1. Set Compile Points and Create Constraint Files
	1.11.3.1.1. Defining Compile Points With .tcl or .sdc Files

	1.11.3.2. Additional Considerations for Compile Points
	1.11.3.3. Creating a Intel Quartus Prime Project for Compile Points and Multiple .vqm Files
	1.11.3.3.1. Creating a Single Intel Quartus Prime Project for a Standard Incremental Compilation Flow
	1.11.3.3.2. Creating Multiple Intel Quartus Prime Projects for a Bottom-Up Incremental Compilation Flow

	1.11.4. Creating Multiple .vqm Files for a Incremental Compilation Flow With Separate Synplify Projects
	1.11.4.1. Manually Creating Multiple .vqm Files With Black Boxes
	1.11.4.1.1. Creating Multiple .vqm Files for this Design
	1.11.4.1.2. Creating Black Boxes in Verilog HDL
	1.11.4.1.3. Creating Black Boxes in VHDL

	1.11.4.2. Creating a Intel Quartus Prime Project for Multiple .vqm Files
	1.11.4.2.1. Creating a Single Intel Quartus Prime Project for a Standard Incremental Compilation Flow
	1.11.4.2.2. Creating Multiple Intel Quartus Prime Projects for a Bottom-Up Incremental Compilation Flow

	1.11.5. Performing Incremental Compilation in the Intel Quartus Prime Software

	1.12. Synopsys Synplify* Support Revision History

	2. Mentor Graphics Precision* Synthesis Support
	2.1. About Precision RTL Synthesis Support
	2.2. Design Flow
	2.2.1. Timing Optimization

	2.3. Intel Device Family Support
	2.4. Precision Synthesis Generated Files
	2.5. Creating and Compiling a Project in the Precision Synthesis Software
	2.6. Mapping the Precision Synthesis Design
	2.6.1. Setting Timing Constraints
	2.6.2. Setting Mapping Constraints
	2.6.3. Assigning Pin Numbers and I/O Settings
	2.6.4. Assigning I/O Registers
	2.6.5. Disabling I/O Pad Insertion
	2.6.5.1. Preventing the Precision Synthesis Software from Adding I/O Pads
	2.6.5.2. Preventing the Precision Synthesis Software from Adding an I/O Pad on an Individual Pin

	2.6.6. Controlling Fan-Out on Data Nets

	2.7. Synthesizing the Design and Evaluating the Results
	2.7.1. Obtaining Accurate Logic Utilization and Timing Analysis Reports

	2.8. Exporting Designs to the Intel Quartus Prime Software Using NativeLink Integration
	2.8.1. Running the Intel Quartus Prime Software from within the Precision Synthesis Software
	2.8.2. Running the Intel Quartus Prime Software Manually Using the Precision Synthesis‑Generated Tcl Script
	2.8.3. Using the Intel Quartus Prime Software to Run the Precision Synthesis Software
	2.8.4. Passing Constraints to the Intel Quartus Prime Software
	2.8.4.1. create_clock
	2.8.4.2. set_input_delay
	2.8.4.3. set_output_delay
	2.8.4.4. set_max_delay and set_min_delay
	2.8.4.5. set_false_path
	2.8.4.6. set_multicycle_path

	2.9. Guidelines for Intel FPGA IP Cores and Architecture-Specific Features
	2.9.1. Instantiating IP Cores With IP Catalog-Generated Verilog HDL Files
	2.9.2. Instantiating IP Cores With IP Catalog-Generated VHDL Files
	2.9.3. Instantiating Intellectual Property With the IP Catalog and Parameter Editor
	2.9.4. Instantiating Black Box IP Functions With Generated Verilog HDL Files
	2.9.5. Instantiating Black Box IP Functions With Generated VHDL Files
	2.9.6. Inferring Intel FPGA IP Cores from HDL Code
	2.9.6.1. Multipliers
	2.9.6.1.1. Controlling DSP Block Inference for Multipliers

	2.9.6.2. Setting the Use Dedicated Multiplier Option
	2.9.6.3. Setting the dedicated_mult Attribute
	2.9.6.4. Multiplier-Accumulators and Multiplier-Adders
	2.9.6.5. Controlling DSP Block Inference
	2.9.6.6. RAM and ROM

	2.10. Incremental Compilation and Block-Based Design
	2.10.1. Creating a Design with Precision RTL Plus Incremental Synthesis
	2.10.1.1. Creating Partitions with the incr_partition Attribute

	2.10.2. Creating Multiple Mapped Netlist Files With Separate Precision Projects or Implementations
	2.10.3. Creating Black Boxes to Create Netlists
	2.10.3.1. Creating Black Boxes in Verilog HDL
	2.10.3.2. Creating Black Boxes in VHDL

	2.10.4. Creating Intel Quartus Prime Projects for Multiple Netlist Files
	2.10.4.1. Creating a Single Intel Quartus Prime Project for a Standard Incremental Compilation Flow
	2.10.4.2. Creating Multiple Intel Quartus Prime Projects for a Bottom-Up Flow

	2.10.5. Hierarchy and Design Considerations

	2.11. Mentor Graphics Precision* Synthesis Support Revision History

	A. Intel Quartus Prime Standard Edition User Guides

	Intel Quartus Prime Standard Edition User Guide: Debug Tools
	Contents
	1. System Debugging Tools Overview
	1.1. System Debugging Tools Portfolio
	1.1.1. System Debugging Tools Comparison
	1.1.2. Suggested Tools for Common Debugging Requirements
	1.1.3. Debugging Ecosystem

	1.2. Tools for Monitoring RTL Nodes
	1.2.1. Resource Usage
	1.2.1.1. Overhead Logic
	1.2.1.1.1. For Signal Tap Logic Analyzer
	1.2.1.1.2. For Signal Probe
	1.2.1.1.3. For Logic Analyzer Interface

	1.2.1.2. Resource Estimation

	1.2.2. Pin Usage
	1.2.2.1. For Signal Tap Logic Analyzer
	1.2.2.2. For Signal Probe
	1.2.2.3. For Logic Analyzer Interface

	1.2.3. Usability Enhancements
	1.2.3.1. Incremental Compilation
	1.2.3.2. Incremental Routing
	1.2.3.3. Automation Via Scripting
	1.2.3.4. Remote Debugging

	1.3. Stimulus-Capable Tools
	1.3.1. In-System Sources and Probes
	1.3.1.1. Push Button Functionality

	1.3.2. In-System Memory Content Editor
	1.3.2.1. Generate Test Vectors

	1.3.3. System Console
	1.3.3.1. Test Signal Integrity
	1.3.3.2. Board Bring-Up and Verification
	1.3.3.3. Test Link Signal Integrity with Transceiver Toolkit

	1.4. Virtual JTAG Interface Intel FPGA IP
	1.5. System-Level Debug Fabric
	1.6. System Debugging Tools Overview Revision History

	2. Analyzing and Debugging Designs with System Console
	2.1. Introduction to System Console
	2.2. System Console Debugging Flow
	2.3. IP Cores that Interact with System Console
	2.3.1. Services Provided through Debug Agents

	2.4. Starting System Console
	2.4.1. Starting System Console from Nios II Command Shell
	2.4.2. Starting Stand-Alone System Console
	2.4.3. Starting System Console from Platform Designer (Standard)
	2.4.4. Starting System Console from Intel Quartus Prime
	2.4.5. Customizing Startup

	2.5. System Console GUI
	2.5.1. System Explorer Pane

	2.6. System Console Commands
	2.7. Running System Console in Command-Line Mode
	2.8. System Console Services
	2.8.1. Locating Available Services
	2.8.2. Opening and Closing Services
	2.8.3. SLD Service
	2.8.3.1. SLD Commands

	2.8.4. In-System Sources and Probes Service
	2.8.4.1. In-System Sources and Probes Commands

	2.8.5. Monitor Service
	2.8.5.1. Monitor Commands

	2.8.6. Device Service
	2.8.6.1. Device Commands

	2.8.7. Design Service
	2.8.7.1. Design Service Commands

	2.8.8. Bytestream Service
	2.8.8.1. Bytestream Commands

	2.8.9. JTAG Debug Service
	2.8.9.1. JTAG Debug Commands

	2.9. Working with Toolkits
	2.9.1. Convert your Dashboard Scripts to Toolkit API
	2.9.2. Creating a Toolkit Description File
	2.9.3. Registering a Toolkit
	2.9.4. Launching a Toolkit
	2.9.5. Matching Toolkits with IP Cores
	2.9.6. Toolkit API
	2.9.6.1. Customizing Toolkit API Widgets
	2.9.6.2. Toolkit API Script Examples
	2.9.6.3. Toolkit API GUI Example
	2.9.6.3.1. Toolkit API GUI Example .tcl File

	2.9.6.4. Toolkit API Commands
	2.9.6.4.1. toolkit_register
	2.9.6.4.2. toolkit_open
	2.9.6.4.3. get_quartus_ini
	2.9.6.4.4. toolkit_get_context
	2.9.6.4.5. toolkit_get_types
	2.9.6.4.6. toolkit_get_properties
	2.9.6.4.7. toolkit_add
	2.9.6.4.8. toolkit_get_property
	2.9.6.4.9. toolkit_set_property
	2.9.6.4.10. toolkit_remove
	2.9.6.4.11. toolkit_get_widget_dimensions

	2.9.6.5. Toolkit API Properties
	2.9.6.5.1. Widget Types and Properties
	2.9.6.5.2. barChart Properties
	2.9.6.5.3. button Properties
	2.9.6.5.4. checkBox Properties
	2.9.6.5.5. comboBox Properties
	2.9.6.5.6. dial Properties
	2.9.6.5.7. fileChooserButton Properties
	2.9.6.5.8. group Properties
	2.9.6.5.9. label Properties
	2.9.6.5.10. led Properties
	2.9.6.5.11. lineChart Properties
	2.9.6.5.12. list Properties
	2.9.6.5.13. pieChart Properties
	2.9.6.5.14. table Properties
	2.9.6.5.15. text Properties
	2.9.6.5.16. textField Properties
	2.9.6.5.17. timeChart Properties
	2.9.6.5.18. xyChart Properties

	2.10. ADC Toolkit
	2.10.1. ADC Toolkit Terms
	2.10.2. Setting the Frequency of the Reference Signal
	2.10.3. Tuning the Signal Generator
	2.10.4. Running a Signal Quality Test
	2.10.5. Running a Linearity Test
	2.10.6. ADC Toolkit Data Views

	2.11. System Console Examples and Tutorials
	2.11.1. Nios II Processor Example
	2.11.1.1. Processor Commands

	2.12. On-Board Intel FPGA Download Cable II Support
	2.13. MATLAB and Simulink* in a System Verification Flow
	2.13.1. Supported MATLAB API Commands
	2.13.2. High Level Flow

	2.14. Deprecated Commands
	2.15. Analyzing and Debugging Designs with the System Console Revision History

	3. Debugging Transceiver Links
	3.1. Channel Manager
	3.1.1. Channel Display Modes

	3.2. Transceiver Debugging Flow Walkthrough
	3.3. Modifying the Design to Enable Transceiver Debug
	3.3.1. Adapting an Intel FPGA Design Example
	3.3.1.1. Modifying Stratix V Design Examples
	3.3.1.1.1. Generating reconfig_clk from an Internal PLL

	3.3.2. Stratix V Debug System Configuration
	3.3.2.1. Bit Error Rate Test Configuration (Stratix V)
	3.3.2.2. PRBS Signal Eye Test Configuration (Stratix V)
	3.3.2.2.1. Enabling Serial Bit Comparator Mode (Stratix V)

	3.3.2.3. Custom Traffic Signal Eye Test Configuration (Stratix V)
	3.3.2.4. Link Optimization Test Configuration (Stratix V)
	3.3.2.5. PMA Analog Setting Control Configuration (Stratix V)

	3.3.3. Instantiating and Parameterizing Intel Arria 10 Debug IP cores
	3.3.3.1. Debug Settings for Transceiver IP Cores

	3.4. Programming the Design into an Intel FPGA
	3.5. Loading the Design in the Transceiver Toolkit
	3.6. Linking Hardware Resources
	3.6.1. Linking One Design to One Device
	3.6.2. Linking Two Designs to Two Devices
	3.6.3. Linking One Design on Two Devices
	3.6.4. Linking Designs and Devices on Separate Boards
	3.6.5. Verifying Hardware Connections

	3.7. Identifying Transceiver Channels
	3.7.1. Controlling Transceiver Channels

	3.8. Creating Transceiver Links
	3.9. Running Link Tests
	3.9.1. Running BER Tests
	3.9.2. Signal Eye Margin Testing (Stratix V only)
	3.9.2.1. Running PRBS Signal Eye Tests (Stratix V only)

	3.9.3. Running Custom Traffic Tests (Stratix V only)
	3.9.4. Link Optimization Tests
	3.9.4.1. Running the Auto Sweep Test
	3.9.4.2. Determining the Best Tap Settings

	3.10. Controlling PMA Analog Settings
	3.10.1. Intel Arria 10 and Intel Cyclone 10 GX PMA Settings

	3.11. User Interface Settings Reference
	3.12. Troubleshooting Common Errors
	3.13. Scripting API Reference
	3.13.1. Transceiver Toolkit Commands
	3.13.2. Data Pattern Generator Commands
	3.13.3. Data Pattern Checker Commands

	3.14. Debugging Transceiver Links Revision History

	4. Quick Design Debugging Using Signal Probe
	4.1. Design Flow Using Signal Probe
	4.1.1. Perform a Full Compilation
	4.1.2. Reserve Signal Probe Pins
	4.1.3. Assign Signal Probe Sources
	4.1.4. Add Registers Between Pipeline Paths and Signal Probe Pins
	4.1.5. Perform a Signal Probe Compilation
	4.1.6. Analyze the Results of a Signal Probe Compilation
	4.1.7. What a Signal Probe Compilation Does
	4.1.8. Understanding the Results of a Signal Probe Compilation
	4.1.8.1. Analyzing Signal Probe Routing Failures

	4.2. Scripting Support
	4.2.1. Making a Signal Probe Pin
	4.2.2. Deleting a Signal Probe Pin
	4.2.3. Enabling a Signal Probe Pin
	4.2.4. Disabling a Signal Probe Pin
	4.2.5. Performing a Signal Probe Compilation
	4.2.5.1. Script Example

	4.2.6. Reserving Signal Probe Pins
	4.2.6.1. Common Problems When Reserving a Signal Probe Pin

	4.2.7. Adding Signal Probe Sources
	4.2.8. Assigning I/O Standards
	4.2.9. Adding Registers for Pipelining
	4.2.10. Running Signal Probe Immediately After a Full Compilation
	4.2.11. Running Signal Probe Manually
	4.2.12. Enabling or Disabling All Signal Probe Routing
	4.2.13. Allowing Signal Probe to Modify Fitting Results

	4.3. Quick Design Debugging Using Signal Probe Revision History

	5. Design Debugging with the Signal Tap Logic Analyzer
	5.1. The Signal Tap Logic Analyzer
	5.1.1. Hardware and Software Requirements
	5.1.1.1. Opening the Standalone Signal Tap Logic Analyzer GUI

	5.1.2. Signal Tap Logic Analyzer Features and Benefits
	5.1.3. Backward Compatibility with Previous Versions of Intel Quartus Prime Software

	5.2. Signal Tap Logic Analyzer Task Flow Overview
	5.2.1. Add the Signal Tap Logic Analyzer to Your Design
	5.2.2. Configure the Signal Tap Logic Analyzer
	5.2.3. Define Trigger Conditions
	5.2.4. Compile the Design
	5.2.5. Program the Target Device or Devices
	5.2.6. Run the Signal Tap Logic Analyzer
	5.2.7. View, Analyze, and Use Captured Data

	5.3. Configuring the Signal Tap Logic Analyzer
	5.3.1. Assigning an Acquisition Clock
	5.3.2. Adding Signals to the Signal Tap File
	5.3.2.1. Pre-Synthesis Signals
	5.3.2.2. Post-Fit Signals
	5.3.2.2.1. Assigning Data Signals with the Technology Map Viewer

	5.3.2.3. Signal Preservation
	5.3.2.4. Node List Signal Use Options
	5.3.2.4.1. Disabling and Enabling a Signal Tap Instance

	5.3.2.5. Signals Unavailable for Signal Tap Debugging

	5.3.3. Adding Signals with a Plug-In
	5.3.4. Adding Finite State Machine State Encoding Registers
	5.3.4.1. Modify and Restore Mnemonic Tables for State Machines
	5.3.4.2. Additional Considerations for State Machines in Signal Tap

	5.3.5. Specifying Sample Depth
	5.3.6. Capture Data to a Specific RAM Type
	5.3.7. Select the Buffer Acquisition Mode
	5.3.7.1. Non-Segmented Buffer
	5.3.7.2. Segmented Buffer

	5.3.8. Specifying Pipeline Settings
	5.3.8.1. Specifying Pipeline Settings from Platform Designer (Standard)

	5.3.9. Filtering Relevant Samples
	5.3.9.1. Input Port Mode
	5.3.9.2. Transitional Mode
	5.3.9.3. Conditional Mode
	5.3.9.4. Start/Stop Mode
	5.3.9.5. State-Based
	5.3.9.6. Showing Data Discontinuities
	5.3.9.7. Disable Storage Qualifier

	5.3.10. Manage Multiple Signal Tap Files and Configurations
	5.3.10.1. Data Log Pane
	5.3.10.2. SOF Manager

	5.4. Defining Triggers
	5.4.1. Basic Trigger Conditions
	5.4.1.1. Using the Basic OR Trigger Condition with Nested Groups

	5.4.2. Comparison Trigger Conditions
	5.4.2.1. Specifying the Comparison Trigger Conditions

	5.4.3. Advanced Trigger Conditions
	5.4.3.1. Examples of Advanced Triggering Expressions

	5.4.4. Custom Trigger HDL Object
	5.4.4.1. Using the Custom Trigger HDL Object
	5.4.4.2. Required Inputs and Outputs of Custom Trigger HDL Module
	5.4.4.3. Custom Trigger HDL Module Properties

	5.4.5. Trigger Condition Flow Control
	5.4.5.1. Sequential Triggering
	5.4.5.1.1. Configuring the Sequential Triggering Flow
	5.4.5.1.2. Trigger that Skips Clock Cycles after Hitting Condition
	5.4.5.1.3. Storage Qualification with Post-Fill Count Value Less than m

	5.4.5.2. State-Based Triggering
	5.4.5.2.1. State-Based Triggering Flow Tab
	State Diagram Pane
	State Machine Pane
	Resources Pane

	5.4.5.2.2. Trigger Lock Mode

	5.4.5.3. Signal Tap Trigger Flow Description Language
	5.4.5.3.1. <state_label>
	5.4.5.3.2. <boolean_expression>
	5.4.5.3.3. <action_list>
	Resource Manipulation Action
	Buffer Control Actions
	State Transition Action

	5.4.5.4. State-Based Storage Qualifier Feature
	5.4.5.4.1. Storage Qualification Feature for the State-Based Trigger Flow.

	5.4.6. Specify Trigger Position
	5.4.6.1. Post-fill Count

	5.4.7. Power-Up Triggers
	5.4.7.1. Enabling a Power-Up Trigger
	5.4.7.2. Configuring Power-Up Trigger Conditions
	5.4.7.3. Managing Signal Tap Instances with Run-Time and Power-Up Trigger Conditions

	5.4.8. External Triggers
	5.4.8.1. Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer

	5.5. Compiling the Design
	5.5.1. Faster Compilations with Intel Quartus Prime Incremental Compilation
	5.5.1.1. Enabling Incremental Compilation for Your Design
	5.5.1.2. Using Incremental Compilation with the Signal Tap Logic Analyzer

	5.5.2. Prevent Changes Requiring Recompilation
	5.5.3. Verify Whether You Need to Recompile Your Project
	5.5.4. Incremental Route with Rapid Recompile
	5.5.4.1. Using the Incremental Route Flow
	5.5.4.2. Tips to Achieve Maximum Speedup

	5.5.5. Timing Preservation with the Signal Tap Logic Analyzer
	5.5.6. Performance and Resource Considerations
	5.5.6.1. Signal Tap Logic in Critical Path
	5.5.6.2. Signal Tap Logic Using Critical Resources

	5.6. Program the Target Device or Devices
	5.6.1. Ensure Setting Compatibility Between .stp and .sof Files

	5.7. Running the Signal Tap Logic Analyzer
	5.7.1. Runtime Reconfigurable Options
	5.7.2. Signal Tap Status Messages

	5.8. View, Analyze, and Use Captured Data
	5.8.1. Capturing Data Using Segmented Buffers
	5.8.2. Differences in Pre-Fill Write Behavior Between Different Acquisition Modes
	5.8.2.1. Example

	5.8.3. Creating Mnemonics for Bit Patterns
	5.8.4. Automatic Mnemonics with a Plug-In
	5.8.5. Locating a Node in the Design
	5.8.6. Saving Captured Data
	5.8.7. Exporting Captured Data to Other File Formats
	5.8.8. Creating a Signal Tap List File

	5.9. Other Features
	5.9.1. Creating Signal Tap File from Design Instances
	5.9.1.1. Creating a .stp File from a Design Instance

	5.9.2. Using the Signal Tap MATLAB MEX Function to Capture Data
	5.9.3. Using Signal Tap in a Lab Environment
	5.9.4. Remote Debugging Using the Signal Tap Logic Analyzer
	5.9.4.1. Debugging Using a Local PC and an SoC
	5.9.4.2. Debugging Using a Local PC and a Remote PC
	5.9.4.2.1. Equipment Setup

	5.9.5. Using the Signal Tap Logic Analyzer in Devices with Configuration Bitstream Security
	5.9.6. Monitor FPGA Resources Used by the Signal Tap Logic Analyzer

	5.10. Design Example: Using Signal Tap Logic Analyzers
	5.11. Custom Triggering Flow Application Examples
	5.11.1. Design Example 1: Specifying a Custom Trigger Position
	5.11.2. Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and triggercond3

	5.12. Signal Tap Scripting Support
	5.12.1. Signal Tap Command-Line Options
	5.12.2. Data Capture from the Command Line

	5.13. Design Debugging with the Signal Tap Logic Analyzer Revision History

	7. In-System Debugging Using External Logic Analyzers
	7.1. About the Intel Quartus Prime Logic Analyzer Interface
	7.2. Choosing a Logic Analyzer
	7.2.1. Required Components

	7.3. Flow for Using the LAI
	7.3.1. Defining Parameters for the Logic Analyzer Interface
	7.3.2. Mapping the LAI File Pins to Available I/O Pins
	7.3.3. Mapping Internal Signals to the LAI Banks
	7.3.4. Compiling Your Intel Quartus Prime Project
	7.3.5. Programming Your Intel-Supported Device Using the LAI

	7.4. Controlling the Active Bank During Runtime
	7.4.1. Acquiring Data on Your Logic Analyzer

	7.5. Using the LAI with Incremental Compilation
	7.6. LAI Core Parameters
	7.7. In-System Debugging Using External Logic Analyzers Revision History

	8. In-System Modification of Memory and Constants
	8.1. Setting Up In-System Modifiable Memories and Constants
	8.2. Running the In-System Memory Content Editor
	8.2.1. Instance Manager
	8.2.2. Editing Data Displayed in the Hex Editor Pane
	8.2.3. Importing and Exporting Memory Files
	8.2.4. Scripting Support
	8.2.5. Programming the Device with the In-System Memory Content Editor
	8.2.6. Example: Using the In-System Memory Content Editor with the Signal Tap Logic Analyzer

	8.3. In-System Modification of Memory and Constants Revision History

	9. Design Debugging Using In-System Sources and Probes
	9.1. Hardware and Software Requirements
	9.2. Design Flow Using the In-System Sources and Probes Editor
	9.2.1. Instantiating the In-System Sources and Probes IP Core
	9.2.2. In-System Sources and Probes IP Core Parameters

	9.3. Compiling the Design
	9.4. Running the In-System Sources and Probes Editor
	9.4.1. In-System Sources and Probes Editor GUI
	9.4.2. Programming Your Device With JTAG Chain Configuration
	9.4.3. Instance Manager
	9.4.4. In-System Sources and Probes Editor Pane
	9.4.4.1. Reading Probe Data
	9.4.4.2. Writing Data
	9.4.4.3. Organizing Data

	9.5. Tcl interface for the In-System Sources and Probes Editor
	9.6. Design Example: Dynamic PLL Reconfiguration
	9.7. Design Debugging Using In-System Sources and Probes Revision History

	A. Intel Quartus Prime Standard Edition User Guides

	Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
	Contents
	1. Timing Analysis Introduction
	1.1. Timing Analysis Basic Concepts
	1.1.1. Timing Path and Clock Analysis
	1.1.1.1. The Timing Netlist
	1.1.1.2. Timing Paths
	1.1.1.3. Data and Clock Arrival Times
	1.1.1.4. Launch and Latch Edges

	1.1.2. Clock Setup Analysis
	1.1.3. Clock Hold Analysis
	1.1.4. Recovery and Removal Analysis
	1.1.5. Multicycle Path Analysis
	1.1.5.1. Multicycle Clock Hold
	1.1.5.2. Multicycle Clock Setup

	1.1.6. Metastability Analysis
	1.1.7. Timing Pessimism
	1.1.8. Clock-As-Data Analysis
	1.1.9. Multicorner Analysis

	1.2. Document Revision History

	2. Using the Intel Quartus Prime Timing Analyzer
	2.1. Enhanced Timing Analysis for Intel Arria® 10 Devices
	2.2. Basic Timing Analysis Flow
	2.2.1. Step 1: Open a Project and Run the Fitter
	2.2.2. Step 2: Specify Timing Constraints
	2.2.3. Step 3: Specify General Timing Analyzer Settings
	2.2.4. Step 4: Run Timing Analysis
	2.2.5. Step 5: Analyze Timing Analysis Results
	2.2.5.1. Timing Report Commands
	2.2.5.2. Set Operating Conditions
	2.2.5.3. Fmax Summary Report
	2.2.5.4. Report Timing Command
	2.2.5.5. Correlating Constraints to the Timing Report
	2.2.5.6. Locating Timing Paths in Other Tools

	2.3. Using Timing Constraints
	2.3.1. Recommended Initial SDC Constraints
	2.3.1.1. Create Clock (create_clock)
	2.3.1.2. Derive PLL Clocks (derive_pll_clocks)
	2.3.1.3. Derive Clock Uncertainty (derive_clock_uncertainty)
	2.3.1.4. Set Clock Groups (set_clock_groups)

	2.3.2. SDC File Precedence
	2.3.3. Iterative Constraint Modification
	2.3.4. Creating Clocks and Clock Constraints
	2.3.4.1. Creating Base Clocks
	2.3.4.1.1. Automatic Clock Detection and Constraint Creation

	2.3.4.2. Creating Virtual Clocks
	2.3.4.2.1. Specifying I/O Interface Uncertainty
	2.3.4.2.2. I/O Interface Clock Uncertainty Example

	2.3.4.3. Creating Generated Clocks (create_generated_clock)
	2.3.4.3.1. Clock Divider Example (-divide_by)
	2.3.4.3.2. Clock Multiplexor Example

	2.3.4.4. Deriving PLL Clocks
	2.3.4.5. Creating Clock Groups (set_clock_groups)
	2.3.4.5.1. Exclusive Clock Groups (-exclusive)
	2.3.4.5.2. Asynchronous Clock Groups (-asynchronous)
	2.3.4.5.3. set_clock_groups Constraint Tips

	2.3.4.6. Accounting for Clock Effect Characteristics
	2.3.4.6.1. Set Clock Latency (set_clock_latency)
	2.3.4.6.2. Clock Uncertainty

	2.3.5. Creating I/O Constraints
	2.3.5.1. Input Constraints (set_input_delay)
	2.3.5.2. Output Constraints (set_output_delay)

	2.3.6. Creating Delay and Skew Constraints
	2.3.6.1. Advanced I/O Timing and Board Trace Model Delay
	2.3.6.2. Maximum Skew (set_max_skew)
	2.3.6.3. Net Delay (set_net_delay)
	2.3.6.4. Create Timing Netlist

	2.3.7. Creating Timing Exceptions
	2.3.7.1. Timing Constraint Precedence
	2.3.7.2. False Paths (set_false_path)
	2.3.7.3. Minimum and Maximum Delays
	2.3.7.4. Multicycle Paths
	2.3.7.4.1. Common Multicycle Applications
	2.3.7.4.2. Relaxing Setup with Multicycle (set_multicyle_path)
	2.3.7.4.3. Accounting for a Phase Shift (-phase)

	2.3.7.5. Multicycle Exception Examples
	2.3.7.5.1. Default Multicycle Analysis
	2.3.7.5.2. End Multicycle Setup = 2 and End Multicycle Hold = 0
	2.3.7.5.3. End Multicycle Setup = 2 and End Multicycle Hold = 1
	2.3.7.5.4. Same Frequency Clocks with Destination Clock Offset
	2.3.7.5.5. Destination Clock Frequency is a Multiple of the Source Clock Frequency
	2.3.7.5.6. Destination Clock Frequency is a Multiple of the Source Clock Frequency with an Offset
	2.3.7.5.7. Source Clock Frequency is a Multiple of the Destination Clock Frequency
	2.3.7.5.8. Source Clock Frequency is a Multiple of the Destination Clock Frequency with an Offset

	2.3.7.6. Delay Annotation

	2.3.8. Example Circuit and SDC File

	2.4. Timing Analyzer Tcl Commands
	2.4.1. The quartus_sta Executable
	2.4.2. Collection Commands
	2.4.2.1. Wildcard Characters
	2.4.2.2. Adding and Removing Collection Items
	2.4.2.3. Query of Collections
	2.4.2.4. Using the get_pins Command

	2.4.3. Identifying the Intel Quartus Prime Software Executable from the SDC File

	2.5. Timing Analysis of Imported Compilation Results
	2.6. Using the Intel Quartus Prime Timing Analyzer Document Revision History

	A. Intel Quartus Prime Standard Edition User Guides

	Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
	Contents
	1. Power Analysis
	1.1. Comparison of the EPE and the Intel Quartus Prime Power Analyzer
	1.2. Power Estimations and Design Requirements
	1.3. Power Analyzer Walkthrough
	1.4. Inputs for the Power Analyzer
	1.4.1. Operating Settings and Conditions
	1.4.2. Sources for Signal Activity Data
	1.4.2.1. Waveforms from Supported Simulators
	1.4.2.2. .vcd Files from Third-Party Simulation Tools
	1.4.2.2.1. Generating a .vcd in a EDA Simulation Tool
	1.4.2.2.2. Generating a .vcd from ModelSim Software

	1.4.2.3. Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation
	1.4.2.3.1. RTL Simulation Limitation

	1.4.2.4. Signal Activities from Vectorless Estimation and User-Supplied Input Pin Activities
	1.4.2.5. Signal Activities from User Defaults Only

	1.5. Power Analysis in Modular Design Flows
	1.5.1. Complete Design Simulation
	1.5.2. Modular Design Simulation
	1.5.3. Multiple Simulations on the Same Entity
	1.5.4. Overlapping Simulations
	1.5.5. Partial Simulations
	1.5.5.1. Specifying Start and End Time when Performing Signal-Activity Calculations using the Limit VCD Period Option

	1.5.6. Node Name Matching Considerations
	1.5.7. Glitch Filtering
	1.5.7.1. Enabling Tool Based Glitch Filtering
	1.5.7.2. Enabling Glitch Filtering During Power Analysis

	1.5.8. Node and Entity Assignments
	1.5.8.1. Timing Assignments to Clock Nodes

	1.5.9. Default Toggle Rate Assignment
	1.5.10. Vectorless Estimation

	1.6. Power Analyzer Compilation Report
	1.7. Scripting Support
	1.7.1. Running the Power Analyzer from the Command–Line

	1.8. Power Analysis Revision History

	2. Power Optimization
	2.1. Factors Affecting Power Consumption
	2.1.1. Design Activity and Power Analysis
	2.1.2. Device Selection
	2.1.3. Environmental Conditions
	2.1.4. Device Resource Usage
	2.1.4.1. Number, Type, and Loading of I/O Pins
	2.1.4.2. Number and Type of Hard Logic Blocks
	2.1.4.3. Number and Type of Global Signals

	2.1.5. Signal Activity
	2.1.5.1. Toggle Rate
	2.1.5.2. Static Probability

	2.2. Power Dissipation
	2.3. Design Space Explorer II for Power-Driven Optimization
	2.4. Power-Driven Compilation
	2.4.1. Power-Driven Synthesis
	2.4.1.1. Memory Block Optimization
	2.4.1.2. Power-Aware Logic Mapping
	2.4.1.3. Power-Aware Memory Balancing

	2.4.2. Power-Driven Fitter
	2.4.3. Area-Driven Synthesis
	2.4.4. Gate-Level Register Retiming
	2.4.5. Intel Quartus Prime Compiler Settings
	2.4.6. Assignment Editor Options

	2.5. Design Guidelines
	2.5.1. Clock Power Management
	2.5.1.1. Clock Enable in Memory Blocks
	2.5.1.1.1. Memory Power Reduction Example

	2.5.1.2. LAB Clock Power
	2.5.1.2.1. LAB-Wide Clock Enable Example

	2.5.1.3. Clock Enables
	2.5.1.4. Global Signals
	2.5.1.4.1. Viewing Clock Details in the Chip Planner

	2.5.1.5. Merge Clocks

	2.5.2. Pipelining and Retiming
	2.5.3. Architectural Optimization
	2.5.4. I/O Power Guidelines
	2.5.5. Memory Optimization (M20K/MLAB)
	2.5.5.1. Implementation
	2.5.5.2. Rd/Wr Enables

	2.5.6. DDR Memory Controller Settings
	2.5.7. DSP Implementation
	2.5.8. Reducing High-Speed Tile (HST) Usage
	2.5.9. Unused Transceiver Channels
	2.5.10. Periphery Power reduction XCVR Settings
	2.5.10.1. Transceiver Settings
	2.5.10.2. I/O Current Strength

	2.6. Power Optimization Advisor
	2.6.1. Set Realistic Timing Constraints
	2.6.1.1. Find Timing Information

	2.6.2. Appropriate Device Family
	2.6.3. Dynamic Power
	2.6.4. Static Power
	2.6.5. Appropriate I/O Standards
	2.6.6. Use RAM Blocks
	2.6.7. Shut Down RAM Blocks
	2.6.8. Clock Enables on Logic
	2.6.9. Pipeline Logic to Reduce Glitching

	2.7. Power Optimization Revision History

	A. Intel Quartus Prime Standard Edition User Guides

	Intel Quartus Prime Standard Edition User Guide: Design Constraints
	Contents
	1. Constraining Designs
	1.1. Specifying Design Constraints Designs in the GUI
	1.1.1. Global Constraints and Assignments
	1.1.2. Node, Entity, and Instance-Level Constraints
	1.1.2.1. Specify Instance-Specific Constraints in Assignment Editor
	1.1.2.2. Specify I/O Constraints in Pin Planner
	1.1.2.3. Adjust Constraints with the Chip Planner
	1.1.2.4. Constraining Designs with the Design Partition Planner

	1.1.3. Probing Between Components of the Intel Quartus Prime GUI
	1.1.4. Specifying Timing Constraints in the GUI

	1.2. Constraining Designs with Tcl Scripts
	1.2.1. Create a Project and Apply Constraints
	1.2.2. Assigning a Pin
	1.2.3. Generating Intel Quartus Prime Settings Files
	1.2.4. Synopsys Design Constraint (.sdc) Files
	1.2.5. Tcl-only Script Flows
	1.2.5.1. Tcl-only Timing Analysis

	1.3. A Fully Iterative Scripted Flow
	1.4. Constraining Designs Revision History

	2. Managing Device I/O Pins
	2.1. I/O Planning Overview
	2.1.1. Basic I/O Planning Flow
	2.1.2. Integrating PCB Design Tools
	2.1.3. Intel Device Terms

	2.2. Assigning I/O Pins
	2.2.1. Assigning to Exclusive Pin Groups
	2.2.2. Assigning Slew Rate and Drive Strength
	2.2.3. Assigning Differential Pins
	2.2.3.1. Overriding I/O Placement Rules on Differential Pins

	2.2.4. Entering Pin Assignments with Tcl Commands
	2.2.5. Entering Pin Assignments in HDL Code
	2.2.5.1. Using Synthesis Attributes
	2.2.5.2. Using Low-Level I/O Primitives

	2.3. Importing and Exporting I/O Pin Assignments
	2.3.1. Importing and Exporting for PCB Tools
	2.3.2. Migrating Assignments to Another Target Device

	2.4. Validating Pin Assignments
	2.4.1. I/O Assignment Validation Rules
	2.4.2. Checking I/O Pin Assignments in Real-Time
	2.4.3. I/O Assignment Analysis
	2.4.3.1. Early I/O Assignment Analysis Without Design Files
	2.4.3.2. I/O Assignment Analysis With Design Files
	2.4.3.3. Overriding Default I/O Pin Analysis

	2.4.4. Understanding I/O Analysis Reports

	2.5. Verifying I/O Timing
	2.5.1. Running Advanced I/O Timing
	2.5.1.1. Board Trace Models
	2.5.1.2. Defining the Board Trace Model
	2.5.1.3. Modifying the Board Trace Model
	2.5.1.4. Specifying Near-End vs Far-End I/O Timing Analysis
	2.5.1.5. Advanced I/O Timing Analysis Reports

	2.5.2. Adjusting I/O Timing and Power with Capacitive Loading

	2.6. Viewing Routing and Timing Delays
	2.7. Analyzing Simultaneous Switching Noise
	2.8. Scripting API
	2.8.1. Generate Mapped Netlist
	2.8.2. Reserve Pins
	2.8.3. Set Location
	2.8.4. Exclusive I/O Group
	2.8.5. Slew Rate and Current Strength

	2.9. Managing Device I/O Pins Revision History

	A. Intel Quartus Prime Standard Edition User Guides

	Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
	Contents
	1. Simultaneous Switching Noise (SSN) Analysis and Optimizations
	1.1. Simultaneous Switching Noise (SSN) Analysis and Optimizations
	1.2. Definitions
	1.3. Understanding SSN
	1.4. SSN Estimation Tools
	1.5. SSN Analysis Overview
	1.5.1. Performing Early Pin-Out SSN Analysis
	1.5.1.1. Performing Early Pin-Out SSN Analysis with the SSN Analyzer

	1.5.2. Performing Final Pin-Out SSN Analysis

	1.6. Design Factors Affecting SSN Results
	1.7. Optimizing Your Design for SSN Analysis
	1.7.1. Optimizing Pin Placements for Signal Integrity
	1.7.2. Specifying Board Trace Model Settings
	1.7.3. Defining PCB Layers and PCB Layer Thickness
	1.7.4. Specifying Signal Breakout Layers
	1.7.5. Creating I/O Assignments
	1.7.6. Decreasing Pessimism in SSN Analysis
	1.7.7. Excluding Pins as Aggressor Signals

	1.8. Performing SSN Analysis and Viewing Results
	1.8.1. Understanding the SSN Reports
	1.8.1.1. Summary Report
	1.8.1.2. Output Pins Report and Input Pins Report
	1.8.1.3. Unanalyzed Pins Report
	1.8.1.4. Confidence Metric Details

	1.8.2. Viewing SSN Analysis Results in the Pin Planner

	1.9. Decreasing Processing Time for SSN Analysis
	1.10. Scripting Support
	1.10.1. Optimizing Pin Placements for Signal Integrity
	1.10.2. Defining PCB Layers and PCB Layer Thickness
	1.10.3. Specifying Signal Breakout Layers
	1.10.4. Decreasing Pessimism in SSN Analysis
	1.10.5. Performing SSN Analysis

	1.11. Document Revision History

	2. Signal Integrity Analysis with Third-Party Tools
	2.1. Signal Integrity Analysis with Third-Party Tools
	2.1.1. Signal Integrity Simulations with HSPICE and IBIS Models

	2.2. I/O Model Selection: IBIS or HSPICE
	2.3. FPGA to Board Signal Integrity Analysis Flow
	2.3.1. Create I/O and Board Trace Model Assignments
	2.3.2. Output File Generation
	2.3.3. Customize the Output Files
	2.3.4. Set Up and Run Simulations in Third-Party Tools
	2.3.5. Interpret Simulation Results

	2.4. Simulation with IBIS Models
	2.4.1. Elements of an IBIS Model
	2.4.2. Creating Accurate IBIS Models
	2.4.2.1. Download IBIS Models
	2.4.2.2. Generate Custom IBIS Models with the IBIS Writer

	2.4.3. Design Simulation Using the Mentor Graphics HyperLynx Software
	2.4.4. Configuring LineSim to Use Intel IBIS Models
	2.4.5. Integrating Intel IBIS Models into LineSim Simulations
	2.4.6. Running and Interpreting LineSim Simulations

	2.5. Simulation with HSPICE Models
	2.5.1. Supported Devices and Signaling
	2.5.2. Accessing HSPICE Simulation Kits
	2.5.3. The Double Counting Problem in HSPICE Simulations
	2.5.3.1. Defining the Double Counting Problem
	2.5.3.2. The Solution to Double Counting

	2.5.4. HSPICE Writer Tool Flow
	2.5.4.1. Applying I/O Assignments
	2.5.4.2. Enabling HSPICE Writer
	2.5.4.3. Enabling HSPICE Writer Using Assignments
	2.5.4.4. Naming Conventions for HSPICE Files
	2.5.4.5. Invoking HSPICE Writer
	2.5.4.6. Invoking HSPICE Writer from the Command Line
	2.5.4.7. Customizing Automatically Generated HSPICE Decks

	2.5.5. Running an HSPICE Simulation
	2.5.6. Interpreting the Results of an Output Simulation
	2.5.7. Interpreting the Results of an Input Simulation
	2.5.8. Viewing and Interpreting Tabular Simulation Results
	2.5.9. Viewing Graphical Simulation Results
	2.5.10. Making Design Adjustments Based on HSPICE Simulations
	2.5.11. Sample Input for I/O HSPICE Simulation Deck
	2.5.11.1. Header Comment
	2.5.11.2. Simulation Conditions
	2.5.11.3. Simulation Options
	2.5.11.4. Constant Definition
	2.5.11.5. Buffer Netlist
	2.5.11.6. Drive Strength
	2.5.11.7. I/O Buffer Instantiation
	2.5.11.8. Board Trace and Termination
	2.5.11.9. Stimulus Model
	2.5.11.10. Simulation Analysis

	2.5.12. Sample Output for I/O HSPICE Simulation Deck
	2.5.12.1. Header Comment
	2.5.12.2. Simulation Conditions
	2.5.12.3. Simulation Options
	2.5.12.4. Constant Definition
	2.5.12.5. I/O Buffer Netlist
	2.5.12.6. Drive Strength
	2.5.12.7. Slew Rate and Delay Chain
	2.5.12.8. I/O Buffer Instantiation
	2.5.12.9. Board and Trace Termination
	2.5.12.10. Double-Counting Compensation Circuitry
	2.5.12.11. Simulation Analysis

	2.5.13. Advanced Topics
	2.5.13.1. PVT Simulations
	2.5.13.2. Hold Time Analysis
	2.5.13.3. I/O Voltage Variations
	2.5.13.4. Correlation Report

	2.6. Document Revision History

	3. Mentor Graphics PCB Design Tools Support
	3.1. FPGA-to-PCB Design Flow
	3.2. Integrating with I/O Designer
	3.2.1. Generating Pin Assignment Files
	3.2.2. I/O Designer Settings
	3.2.3. Transferring I/O Assignments
	3.2.4. Updating I/O Designer with Intel Quartus Prime Pin Assignments
	3.2.5. Updating Intel Quartus Prime with I/O Designer Pin Assignments
	3.2.6. Generating Schematic Symbols in I/O Designer
	3.2.6.1. Generating Schematic Symbols

	3.2.7. Exporting Schematic Symbols to DxDesigner

	3.3. Integrating with DxDesigner
	3.3.1. DxDesigner Project Settings
	3.3.2. Creating Schematic Symbols in DxDesigner

	3.4. Analyzing FPGA Simultaneous Switching Noise (SSN)
	3.5. Scripting API
	3.6. Document Revision History

	4. Cadence PCB Design Tools Support
	4.1. Cadence PCB Design Tools Support
	4.2. Product Comparison
	4.3. FPGA-to-PCB Design Flow
	4.3.1. Integrating Intel FPGA Design
	4.3.2. Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA

	4.4. Setting Up the Intel Quartus Prime Software
	4.4.1. Generating a .pin File

	4.5. FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
	4.5.1. Creating Symbols
	4.5.1.1. Cadence Allegro PCB Librarian Part Developer Tool
	4.5.1.1.1. Cadence Allegro PCB Librarian Part Developer Tool in the Design Flow
	4.5.1.1.2. Import and Export Wizard
	4.5.1.1.3. Editing and Fracturing Symbol
	4.5.1.1.4. Updating FPGA Symbols

	4.5.2. Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software

	4.6. FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
	4.6.1. Creating a Cadence Allegro Design Entry CIS Project
	4.6.2. Generating a Part
	4.6.3. Generating Schematic Symbol
	4.6.4. Splitting a Part
	4.6.5. Instantiating a Symbol in a Design Entry CIS Schematic
	4.6.6. Intel Libraries for the Cadence Allegro Design Entry CIS Software
	4.6.6.1. Using the Intel-provided Libraries with your Cadence Allegro Design Entry CIS Project

	4.7. Document Revision History

	5. Reviewing Printed Circuit Board Schematics with the Intel Quartus Prime Software
	5.1. Reviewing Intel Quartus Prime Software Settings
	5.1.1. Device and Pins Options Dialog Box Settings
	5.1.1.1. Configuration Settings
	5.1.1.2. Unused Pin Settings
	5.1.1.3. Dual-Purpose Pins Settings
	5.1.1.4. Voltage Settings
	5.1.1.5. Error Detection CRC Settings

	5.2. Reviewing Device Pin-Out Information in the Fitter Report
	5.3. Reviewing Compilation Error and Warning Messages
	5.4. Using Additional Intel Quartus Prime Software Features
	5.5. Using Additional Intel Quartus Prime Software Tools
	5.5.1. Pin Planner
	5.5.2. SSN Analyzer

	5.6. Document Revision History

	A. Intel Quartus Prime Standard Edition User Guides

	Intel Quartus Prime Standard Edition User Guide: Scripting
	Contents
	1. Command Line Scripting
	1.1. Benefits of Command-Line Executables
	1.2. Introductory Example
	1.3. Command-Line Scripting Help
	1.4. Project Settings with Command-Line Options
	1.4.1. Option Precedence

	1.5. Compilation with quartus_sh --flow
	1.6. Text-Based Report Files
	1.7. Using Command-Line Executables in Scripts
	1.8. Common Scripting Examples
	1.8.1. Create a Project and Apply Constraints
	1.8.2. Check Design File Syntax
	1.8.3. Create a Project and Synthesize a Netlist Using Netlist Optimizations
	1.8.4. Archive and Restore Projects
	1.8.5. Perform I/O Assignment Analysis
	1.8.6. Update Memory Contents Without Recompiling
	1.8.7. Create a Compressed Configuration File
	1.8.8. Fit a Design as Quickly as Possible
	1.8.9. Fit a Design Using Multiple Seeds

	1.9. The QFlow Script
	1.10. Document Revision History

	2. Tcl Scripting
	2.1. Tool Command Language
	2.2. Intel Quartus Prime Tcl Packages
	2.2.1. Loading Packages

	2.3. Intel Quartus Prime Tcl API Help
	2.3.1. Command-Line Options
	2.3.1.1. Run a Tcl Script
	2.3.1.2. Interactive Shell Mode
	2.3.1.3. Evaluate as Tcl

	2.3.2. The Intel Quartus Prime Tcl Console Window

	2.4. End-to-End Design Flows
	2.5. Creating Projects and Making Assignments
	2.6. Compiling Designs
	2.6.1. The flow Package
	2.6.2. Compile All Revisions

	2.7. Reporting
	2.7.1. Saving Report Data in csv Format

	2.8. Timing Analysis
	2.9. Automating Script Execution
	2.9.1. Execution Example
	2.9.2. Controlling Processing
	2.9.3. Displaying Messages

	2.10. Other Scripting Features
	2.10.1. Natural Bus Naming
	2.10.2. Short Option Names
	2.10.3. Collection Commands
	2.10.3.1. The foreach_in_collection Command
	2.10.3.2. The get_collection_size Command

	2.10.4. The post_message Command
	2.10.5. Accessing Command-Line Arguments
	2.10.5.1. The cmdline Package

	2.10.6. The quartus() Array

	2.11. The Intel Quartus Prime Tcl Shell in Interactive Mode Example
	2.12. The tclsh Shell
	2.13. Tcl Scripting Basics
	2.13.1. Hello World Example
	2.13.2. Variables
	2.13.3. Substitutions
	2.13.3.1. Variable Value Substitution
	2.13.3.2. Nested Command Substitution
	2.13.3.3. Backslash Substitution

	2.13.4. Arithmetic
	2.13.5. Lists
	2.13.6. Arrays
	2.13.7. Control Structures
	2.13.8. Procedures
	2.13.9. File I/O
	2.13.10. Syntax and Comments
	2.13.11. External References

	2.14. Tcl Scripting Revision History

	A. Intel Quartus Prime Standard Edition User Guides

