

White paper
Intel® CoFluent™ Studio
Intel® CoFluent™ Technology for Big Data

Authors

Kebing Wang

Intel Corporation

kebing.wang@intel.com

Bianny Bian

Intel Corporation

bianny.bian@intel.com

Antonio Cisternino

Dell Innovation Center

at the University of Pisa

cisterni@di.unipi.it

Mike Riess

Intel Corporation

mike.riess@intel.com

Introduction

The TPCx-BB Express Benchmark (TPCx-BB)*1 is designed to measure the

performance of big data analytics systems. The benchmark contains 30 use cases

(queries) that simulate big data processing, big data storage, big data analytics, and

reporting. The benchmark allows developers to explore efficient ways to optimize

configuration parameters for those 30 representative workloads. Better optimizations

could help developers speed up analyses of scaling clusters. Such optimizations could

also help them select the best components earlier in the development cycle for business

needs; and predict the best parameter optimizations for future generations of hardware

and software.

The project team for our optimization research was a collaboration between Intel and

Dell. For this optimization project, our team used the TPCx-BB benchmark to evaluate

the performance of both software and hardware components for big data clusters. We

used the TPCx-BB benchmark because we find that it has good coverage for different

data types. The benchmark also provides enough scalability to address challenges of

scaling data size and nodes. We have gained key insights into designing big data

analytic systems by using TPCx-BB.

Optimize configuration parameters
faster and more accurately, and
speed up analyses of scaling
big-data clusters

Intel and Dell have collaborated on research to help developers better optimize big data

clusters. Our research shows that the workload performance is CPU-sensitive and sensitive to

scaling the number of nodes in a cluster. Accurate simulations of these workloads provide a

development tool for choosing better values for configuration parameters. This can help both

expert and less experienced developers save development time, improve capacity planning,

and accurately tune big data clusters for business needs.

mailto:kebing.wang@intel.com
mailto:bianny.bian@intel.com
mailto:cisterni@di.unipi.it
mailto:mike.riess@intel.com

Optimize configuration parameters faster and more accurately, and speed up analyses of scaling big-data clusters 2

We do need more than TPCx-BB to

evaluate and design complete, end-to-

end big data systems. This is because

there is a difference between an analytics

system and a real-world, end-to-end

system. For example, the data flow of an

end-to-end system should include data

ingestion.

Data ingestion moves data from where it

originates in a system (such as Apache

Hadoop*) to where it can be stored and

analyzed. Importing that data at a

reasonable speed can be challenging for

businesses that want to maintain a

competitive advantage.

However, TPCx-BB was not designed to

evaluate the performance of software and

hardware for data ingestion.

Unfortunately, with TPCx-BB, there is a

strict limitation on bandwidth and latency

for real-time processing.

This paper discusses our experiences

and lessons learned using TPCx-BB to

evaluate the performance of software and

hardware for real-time processing. We

then offer advice on how to extend TPCx-

BB to evaluate data ingestion and real-

time processing. Finally, we share some

ideas on how to implement fuller TPCx-

BB coverage for end-to-end big data

clusters.

In this project, we compared the

optimized parameter values suggested by

Intel® CoFluent™ Technology for Big

Data (Intel® CoFluent™), to the settings

chosen by big-data experts. Results

showed that Intel CoFluent delivered a

32% gain in the benchmark performance

score over the parameter choices of

expert human developers. This is an

improvement equivalent to the

performance gain typically seen from a

new processor generation.

A scaled analysis of benchmark

workloads shows that TPCx-BB queries

are definitely sensitive to processor

performance. For example, the scaled

analysis showed that upgrading the

processor resulted in an average

decrease in execution time of 20%. The

analysis also showed that queries with a

large input size can benefit from having

more nodes in the design. For example,

scaling by a factor of 2 resulted in an

average 33% decrease in execution time

for those types of workloads.

These and other workload-specific results

show that expert developers can use

simulations to better optimize the values

of configuration parameters for big data

clusters. Accurate optimizations can also

help less experienced developers

understand design options better, and

gain confidence in optimizing their

clusters for specific workloads. With

better optimizations, all developers can

choose better values for configuration

parameters, save development time,

improve capacity planning, and optimize

their big data clusters more accurately for

specific workloads.

This paper describes our test

environment, results, and insights for

optimizing big data clusters. We also

provide our data on the performance of

specific workloads, based on upgrading

the processor, upgrading the Ethernet, or

scaling the number of nodes in the

configuration.

Table of Contents

Introduction .. 1

Project scope and tools 3

Intel® CoFluent™ Studio 3

Big data clusters and Apache

Hadoop* ... 3

TPCx-BB Express Benchmark as an

industry standard 3

Intel® CoFluent™ Technology for

Big Data ... 4

Experiment environment 5

Software parameter optimizations 5

Challenges in optimizations 5

Modeling a workload with

Intel CoFluent .. 5

Establishing the accuracy of our

model ... 6

Adjusting and testing the model 6

Results .. 7

Execution times for different

processors ... 7

Execution times when the Ethernet

is upgraded .. 8

Execution times when nodes are

scaled .. 8

Summary .. 9

Appendix A

Optimized parameter settings for

benchmark queries 10

file:///C:/Freelanc_INTEL/bh%20__%20S%20-%20Dell-Intel%20WP/NEW%20__%20Dell-Intel%20Cofluent%20WP%20__%20d73%20__%20Waiting%20on%20appndx.docx%23_Toc520437813

Optimize configuration parameters faster and more accurately, and speed up analyses of scaling big-data clusters 3

Project scope and tools

Our project had three main elements: the

physical big-data test setup, the industry-

standard TPCx-BB benchmark with its 30

queries (workloads), and the Intel

CoFluent modeling and simulation tool.

With these project elements in place, we

addressed the issue of helping

developers optimize the hundreds or even

thousands of configuration parameters

they often face when configuring a big

data cluster.

Big data clusters and

Apache Hadoop*

Optimizing software parameters for big

data clusters is a complex challenge. A

major reason for this challenge is Apache

Hadoop,* which is a complex open

system used to drive many big data

projects. Already, big data is becoming a

synonym for Hadoop.

As a complex system, Hadoop has many

software modules that process large

quantities of data in a distributed way. A

critical issue in using Hadoop is that each

Hadoop software module has hundreds of

configuration parameters. For example,

Apache Hadoop YARN* has almost 400

parameters in its default configuration file.

The performance of a big data cluster can

depend significantly on the values chosen

for these thousands of parameters.

However, for convenience, developers

often simply use default parameter

values. This is because it takes a high

degree of experience and skill, as well as

time and resources, to identify cluster-

specific values that would provide better,

optimized performance.

TPCx-BB Express Benchmark*

as an industry standard

As big data technologies become widely

adopted, there is a growing need for an

industry-standard benchmark to evaluate

and compare the performance of these

systems. Such a benchmark should

address the entire data flow. It should

also cover as many big data use cases as

possible. Based on our research into big

data cluster deployment, optimization,

and performance, we propose using

TPCx-BB as a performance benchmark.

TPCx-BB is based on TPC BigBench*2,

which is a framework for end-to-end big

data analytics. TPCx-BB is designed to

measure the performance of big data

systems. In particular, TPCx-BB

addresses the variety, velocity, and

volume aspects of big data systems that

contain structured, semi-structured, and

unstructured data.

One of the advantages of TPCx-BB is that

it contains 30 queries (use cases, or

workloads) that simulate big data

processing, big data storage, big data

analytics, and reporting. These use cases

cover different but representative

categories of big data analytics from a

business perspective. Developers can

use this benchmark to evaluate the

performance of both software and

hardware components for their big data

systems.

Based on our research, we suggest

TPCx-BB as an industry standard

because TPCx-BB has good coverage of

these different data types. In addition,

TPCx-BB provides enough scalability to

address big data issues typically seen

with data size and node scaling. Also, the

benchmark has enough workloads so

that, in this project, we were able to

identify the best optimizations for use

cases based on workload category.

Intel® CoFluent™

Studio

Intel® CoFluent™ Studio is a

powerful software package for

modeling and simulation. Intel®

CoFluent™ Technology for Big

Data is a customized version of

Intel CoFluent Studio.

For big data workloads, Intel

CoFluent Technology for Big Data

defines a big data workload and

software stack, including tables,

schema, indexing, distribution,

operations, and other aspects of a

big data model.

This customized version of Intel

CoFluent Studio maps that big data

software stack and workload to a

hardware-based model. The

customized tool then defines a big

data cloud-based topology,

including network, processors,

memory, disk type, and so on.

The customizations of Intel

CoFluent Technology for Big Data

make it easier for developers to

model and simulate their big data

workloads, and identify optimal

configurations for their business

needs.

Optimize configuration parameters faster and more accurately, and speed up analyses of scaling big-data clusters 4

Intel® CoFluent™ Technology

for Big Data

Intel CoFluent is a customized modeling

and simulation tool for analyzing the

performance of big data clusters (see

Figure 1). One of the ways Intel CoFluent

delivers a high degree of accuracy in its

simulations is by acquiring the execution

time of workloads. Intel CoFluent acquires

these execution times by mapping

software behaviors to hardware

components. This information can help

both expert and less experienced

developers optimize and better design big

data clusters according to their business

needs.

Basically, Intel CoFluent helps developers

deploy clusters faster, optimize software

parameters more accurately for their use

cases, and scale with greater confidence

by predicting cluster performance and

behavior. Predictions no longer need to

be a best guess that can be made only by

a highly experienced developer.

With Intel CoFluent, optimization and

other predictions can be based on:

 Highly accurate analyses of various

nodes and disk configurations

 Optimizations of the software stack to

more fully leverage hardware

resources

 Conducting more accurate what-if

analyses for big data clusters

 Exploring performance against the

number of cluster users and cluster

size

For these reasons, we chose Intel

CoFluent as the modeling and simulation

tool for our research.

Figure 1. Model of Intel® CoFluentTM Technology for Big Data (Intel® CoFluent™).

Optimize configuration parameters faster and more accurately, and speed up analyses of scaling big-data clusters 5

Experiment environment

In this experiment, we ran TPCx-BB

version 1.0 on a cluster of 1 master node

and 7 slave nodes. (Table 1 provides an

overview of the hardware components for

the test cluster.) Each node is a Dell

PowerEdge R730xd Rack Server*

(R730xd* server), which is the new,

thirteenth generation of Dell PowerEdge*

servers. The R730xd servers offer an

optimal balance of storage utilization,

performance, and cost. These servers

also offer an optional in-server hybrid

storage configuration.

In this research project, we used an

Apache Hadoop* software stack based

on the Apache Cloudera Hadoop*

distribution (CDH 5.12.0). We executed

the 30 hive queries of TPCx-BB on an

Apache Hadoop MapReduce* engine.

Some queries used Apache Spark MLlib*

and Apache Spark Mathout* libraries.

Software parameter

optimizations

Because of the scale of big data clusters,

it is crucial that developers make the best

use of a cluster’s hardware resources.

However, even for expert developers, it is

extremely challenging to figure out the

best parameter settings for an entire big

data software stack.

Our Intel-Dell collaboration in research

was focused on making it easier for

developers to identify the optimizations

they need. This could reduce

development time. It could also allow

developers to optimize many more

parameters more accurately during the

development cycle, to meet specific

workload needs. With more workload-

specific optimizations, businesses can

better focus the offerings of their big data

clusters. This includes using virtualization

and use case profiles to dynamically

adapt the cluster to different workloads

based on user needs.

Challenges in optimizations

Consider the challenge of optimizing a big

data workload. The operating system

(OS), Oracle Java* virtual machine (JVM),

and Hadoop software stacks have many

parameters that can have a huge impact

on performance.

First, the OS kernel includes parameters

that configure Huge Page, Transparent

Huge Page, flush intervals, and other

kernel features. Then there is the JVM,

which includes parameters that configure

heap size; the ratio of old versus young

generation parts of the heap; and the

garbage collection (GC) algorithms. Also,

the Hadoop software stack includes the

largest number of parameters that are

sensitive to the hardware performance of

the system. These software stack

parameters include settings for resource

management, the execution engine, and

various libraries.

It’s common to gain a performance

increase of several full factors just by

optimizing software parameters in a big

data cluster. However, it’s still difficult

even for highly experienced developers to

figure out the best settings for all

parameters in the workload.

One of the things that makes the process

so challenging is that the best overall

settings often change with different

workload characteristics. For example, a

CPU-intensive workload could require

different optimal settings than an I/O-

intensive workload. Optimal settings can

also change with different hardware

platforms. For example, a platform might

be configured for CPU optimization,

versus storage optimization, versus

network optimization. In addition,

parameters from different software layers

can have tricky interactions. There is

simply no general rule to follow that can

determine the best parameter settings for

a full software stack.

Modeling a workload with

Intel CoFluent

Intel CoFluent is designed to help

developers find the optimal software

parameter settings faster, more easily,

and more accurately for any given

configuration. Since Intel CoFluent can

simulate all software layers of a big data

Table 1. Cluster settings for our big data experiment

Cluster component Quantity Description

Node count 8 1 master and 7 slaves

Processor 2 Intel® Xeon® processor E5-2660 v3 2.60GHz

Disk 12
Seagate Constellation* hard drive SATA 1TB 2 6Gbps

1TB 7.2K

DRAM memory 1 SK Hynix Ram Hynix* 16GB 2Rx4 PC4-2133P

Network 2 Intel® Ethernet Converged Network Adapter X520

Operating system 1 Red Hat, Inc., CentOS* 7.3

Software framework 1 Apache Hadoop* version CDH 5.12.0

Workload 1 TPCx-BB Express Benchmark (TPCx-BB)*1

Optimize configuration parameters faster and more accurately, and speed up analyses of scaling big-data clusters 6

ecosystem, it can not only analyze

software parameter settings, but also

identify the best settings for various

configurations.

In our experiment, the software

parameters could be divided into two

types. One group of parameters consists

of the 30 benchmark queries, all having

the same setting. The other group

consists of different queries, each having

different settings.

In our experiment, we optimized values

for parameters from the YARN,

MapReduce, and Hive layers of the

Hadoop software stack. Table 2 shows

the values used for optimized settings for

these parameters. Appendix A shows the

values for the group of different queries

that have different settings.

Establishing the accuracy of our

model

We built our hardware model based on a

known-good big data cluster used by the

Dell Innovation Center,* located at the

University of Pisa,* in Italy. The university

provided us with the details of their

hardware components, as well as the

optimal big data settings which they had

determined for that cluster.

To establish the accuracy of our model,

we first built a hardware cluster

(described previously in Table 1) similar

to the University of Pisa’s server system.

We then simulated the cluster using

Intel CoFluent. We compared the

performance of the Intel CoFluent

simulation against that of our hardware

cluster. Our Intel CoFluent simulation

achieved a performance accuracy of

96%, as compared to the performance of

our physical hardware cluster.

We wanted to verify those performance

results, for both our physical cluster and

our simulations. To help with this, the Dell

Innovation Center in Italy copied our

optimizations and analyzed the resulting

performance on their known-good

physical cluster. They then provided our

team with logs and feedback on the

accuracy of our model.

Their results confirmed that our

Intel CoFluent simulation delivered an

accuracy of 96% when compared to

performance of the university’s known-

good cluster. This accuracy impressed

the university developer experts, as well

as the Dell* developers.

Adjusting and testing the model

For our experiment, we first obtained a

set of software parameter settings for our

test configuration. These settings came

from expert Intel developers based on

their extensive experience in optimizing

big data clusters. With their input, we

adjusted our model, tested it, and

achieved a TPCx-BB score of 85 (see

Table 3).

We then used Intel CoFluent to simulate,

analyze, and optimize all potential

software parameter settings for our test

configuration. This yielded a list of

parameter settings which gave us a

benchmark score of 112 (higher is better).

That’s a 32% increase compared to the

expert-optimized settings. Table 3 lists

the scores from the experts versus our

simulation, using a 1TB workload

input size.

Table 3. TPCx-BB scores of expert developers versus simulation results

 Optimized settings

Benchmark score

BBQpm@1000

(higher is better)

Optimized by expert developer 85

Optimized by Intel® CoFluent™ Technology for Big Data 112

Table 2. Simulation values for optimized settings of benchmark parameters

Parameter Setting

yarn.nodemanager.resource.cpu-vcores 40

yarn.nodemanager.resource.memory-mb 160 GB

mapreduce.map.memory.mb 4 GB

mapreduce.reduce.memory.mb 4 GB

yarn.app.mapreduce.am.resource.mb 4GB

mapreduce.map.java.opts.max.heap 3072 MB

mapreduce.reduce.java.opts.max.heap 3027 MB

yarn.app.mapreduce.am.command-opts 3027 MB

Optimize configuration parameters faster and more accurately, and speed up analyses of scaling big-data clusters 7

Results

Once we had verified both our physical

model and the accuracy of our

simulations, we were ready to perform an

analysis of optimizations chosen by

human experts, versus options

recommended by our simulation. Using

both groups of settings, we analyzed the

execution times for three types of

upgrades or scaling:

 Upgrade the processor

 Upgrade the Ethernet

 Scale the number of nodes in the

system

Based on data type, the TPCx-BB queries

(workloads) can be grouped into three

categories. Our results showed that

specific groups or even specific queries

were particularly sensitive to the biggest

improvements, depending on the test

component that was scaled.

POC results are summarized in Table 4.

The data, query by query, are shown in

figures 2, 3, and 4. In each of the graphs,

the data is normalized to 1 for the

baseline model, which was measured

before any upgrade or scale analysis was

performed.

Execution times

for different processors

In our research, we changed usage

scenarios (including input size and

response time requests) in order to

explore the challenge of scaling a cluster.

In these scenarios, users typically need to

scale their big data cluster to meet new

requests. Our research shows that Intel

CoFluent can provide highly effective

scale-up and scale-out prediction

analyses for big data clusters.

Figure 2 (next page) shows the results,

as measured by TPCx-BB, of upgrading

the processor.

For this test, we upgraded the

processor from an Intel® Xeon®

processor E5-2660 v3 to an

Intel® Xeon® processor E5-2667 v4. The

upgrade resulted in an average decrease

in execution time of 20%.

As you can see in Figure 2, all 30

TPCx-BB queries showed similar

reductions in execution time when the

processor is upgraded. One query

showed the greatest reduction in

execution time, a 44% reduction.

Upgrading the processor to reduce

execution times gives developers two

options. They can run workloads on the

existing cluster configuration with reduced

power consumption. This can save

energy and still make resources available

for unexpected loads. Or, developers can

recommend that cluster size be reduced

while still providing competitive

performance.

Table 4. Summary of results by workload category

Performance

improvement is

sensitive to...

Query categories

Structured queries Semi-structured queries Unstructured queries

1, 6, 7, 9, 11, 13 — 17,

20 — 26, 29
2, 3, 4, 5, 8, 12, 30 10, 18, 19, 27, 28

Scaling the processor
Average 20% decrease in

execution time

Average 18% decrease in

execution time

Average 23% decrease in

execution time

Increasing network

bandwidth

Small average 6% decrease in

execution time

Minimal average 3% decrease in

execution time

Minimal average 1% decrease in

execution time

Scaling the number of nodes

by a factor of 2

Average 47% decrease in

execution time

Average 33% decrease in

execution time

Average 12% decrease in

execution time

Optimize configuration parameters faster and more accurately, and speed up analyses of scaling big-data clusters 8

Execution times when

the Ethernet is upgraded

Figure 3 shows how changes in network

bandwidth affected our test configuration.

As you can see in the figure, when

upgrading the network bandwidth from

10 GbE to 25 GbE, execution time

decreased an average of only 1%. Only a

few queries (2, 4, 16, 18, and 30) with

large-sized intermediate results achieved

a larger decrease in execution time.

(Intermediate results are the output of

map tasks and the input of reduce tasks;

and are transferred on the network from

map to reduce.)

This information could be significant when

identifying the best bandwidth parameters

for a specific type of workload.

Execution times

when nodes are scaled

Figure 4 shows the results of scaling the

test configuration nodes by a factor of 2,

from 7 slave nodes to 14 slave nodes.

Scaling by a factor of 2 resulted in an

average 33% decrease in execution time.

Based on our analysis, we believe that

workloads similar to queries 2, 4, and 30

on large input tables will benefit more

from the higher parallelism provided by

additional nodes. We do not believe that

workloads similar to queries 1, 10, 18, 27,

and 28, on smaller input tables will be

able to make full use of the resources

made available by additional nodes.

Figure 2. TPCx-BB analysis when the processor is upgraded from the

Intel® Xeon® processor E5-2660 v3 to Intel® Xeon® processor E5-2667 v4.

Data is normalized to 1 for the baseline configuration with the

Intel Xeon processor E5-2660.

Figure 3. TPCx-BB results for execution times when the network is upgraded from

10 GbE to 25 GbE. Data is normalized to 1 for the baseline configuration

with the 10 GbE network.

Figure 4. TPCx-BB results when nodes are scaled by a factor of two, from 7 to 14 slave

nodes. Data is normalized to 1 for the baseline configuration with 7 slave nodes.

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Query…

Execution time
When the Intel® Xeon® processor E5-2660 v3 is scaled up to the

Intel® Xeon® processor E5-2667 v4

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Query

Execution time
When a 10GbE network is scaled up to 25GbE

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Query

Execution time
When 7 slave nodes are scaled up to 14 nodes

Optimize configuration parameters faster and more accurately, and speed up analyses of scaling big-data clusters 9

Summary

For big data clusters, the values of

thousands of configuration parameters

can have a significant impact on

performance. However, for convenience,

developers often use default values.

Choosing specific, optimal values for any

given workload requires a developer with

a high degree of experience and skill.

Our research project was a collaboration

of Intel and Dell teams, via the Dell

Innovation Center at the University of

Pisa. Working together, our combined

research team focused on how to use

modeling and simulation — through the

use of Intel CoFluent Technology for Big

Data — to address the challenge of

identifying optimal parameter values for

big data clusters. We also used the

TPCx-BB benchmark to help analyze the

best way to scale big data systems for

specific workloads.

Our results show that Intel CoFluent

simulations can be an average of 32%

more effective than the manual choices of

expert developers. Such simulations can

help experts significantly improve upon

their hard-won software experience and

optimize even more quickly for specific

workloads, or simply optimize many more

configuration parameters during a

development cycle.

In this paper, we used a small cluster as a

model, but Intel CoFluent is not limited by

cluster size. Developers can use Intel

CoFluent effectively to simulate and

analyze medium- and large-sized clusters

with more than 1000 nodes. For example,

our experiment showed that big data

workloads are sensitive to the number of

nodes in a configuration. When scaling

the system, queries with larger input sizes

can see a much greater performance gain

from having more cluster nodes.

Storage, network bandwidth, and other

components can also create performance

bottlenecks. Our research shows that big

data workloads see little to no

improvement when the Ethernet

bandwidth is doubled, but they are

definitely CPU-sensitive. To see better

performance across a big data cluster, a

priority could be to focus not on network

bandwidth, but simply to upgrade the

cluster’s processors.

The results of our research show that, for

the 30 workloads of the TPCx-BB

benchmark, Intel CoFluent is a tool with a

96% accuracy when compared to

physical clusters. With this kind of

accuracy, Intel CoFluent can be an

excellent tool to help developers address

the significant challenge of identifying

optimal parameters for big data clusters.

With better optimizations, developers can

choose between maximum performance

or reducing the energy consumption

required for specific workloads.

The results of our study also indicate that

TPCx-BB is an effective standard for

measuring CPU-sensitive workloads.

Using TPCx-BB along with Intel CoFluent

can help developers make full use of their

expertise to tune big data clusters to

make better use of resources. This can

help reduce development time and

improve the accuracy of early architecture

designs; as well as reduce the total cost

of ownership of big data clusters.

 10

Appendix A

Optimized parameter settings for benchmark queries

In our experiment, the software parameters we optimized could be divided into two types. One type of parameter consisted of the 30

benchmark queries, all having the same setting. The other type consisted of different queries, each having different settings. This

appendix shows the optimized values for parameters for different benchmark queries that had different settings.

#!/bin/bash

echo "*********************set parameters for Query 01 ****************************"

echo -e "set hive.exec.reducers.max=280;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

set mapreduce.task.io.sort.mb=512;

set hive.exec.compress.intermediate=false;

set mapreduce.input.fileinputformat.split.maxsize=134217728;" >&

./engines/hive/queries/q01/engineLocalSettings.sql

echo "*********************set parameters for Query 02 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.mapjoin.smalltable.filesize=400000000;

set mapreduce.input.fileinputformat.split.maxsize=134217728;

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set hive.auto.convert.join.noconditionaltask.size=100000000;

set mapreduce.output.fileoutputformat.compress=true;

set hive.exec.reducers.bytes.per.reducer=8388608;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

set hive.exec.compress.intermediate=true;" >& ./engines/hive/queries/q02/engineLocalSettings.sql

echo "*********************set parameters for Query 03 ****************************"

echo -e "set hive.exec.reducers.max=280;

set mapreduce.task.io.sort.mb=512;

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set hive.auto.convert.join.noconditionaltask.size=100000000;

set mapreduce.input.fileinputformat.split.maxsize=134217728;

set hive.exec.reducers.bytes.per.reducer=8388608;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

set hive.mapjoin.smalltable.filesize=400000000;" >& ./engines/hive/queries/q03/engineLocalSettings.sql

echo "*********************set parameters for Query 04 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set hive.auto.convert.join.noconditionaltask.size=100000000;

set hive.mapjoin.smalltable.filesize=400000000;

set mapreduce.input.fileinputformat.split.maxsize=134217728;

set mapreduce.output.fileoutputformat.compress=true;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

set hive.exec.compress.intermediate=true;" >& ./engines/hive/queries/q04/engineLocalSettings.sql

echo "*********************set parameters for Query 05 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set hive.auto.convert.join.noconditionaltask.size=100000000;

set hive.mapjoin.smalltable.filesize=400000000;

set mapreduce.output.fileoutputformat.compress=true;

set mapreduce.input.fileinputformat.split.maxsize=134217728;

set hive.exec.reducers.bytes.per.reducer=8388608;

set mapreduce.job.reduce.slowstart.completedmaps=0.01;

set hive.exec.compress.intermediate=true;" >& ./engines/hive/queries/q05/engineLocalSettings.sql

Optimize configuration parameters faster and more accurately, and speed up analyses of scaling big-data clusters 11

echo "*********************set parameters for Query 06 ****************************"

echo -e "set hive.optimize.correlation=true;

set hive.exec.compress.intermediate=true;

set hive.exec.compress.output=false;

set hive.exec.reducers.max=280;

set hive.optimize.sampling.orderby=true;

set mapreduce.input.fileinputformat.split.maxsize=67108864;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

set hive.optimize.ppd=true;

set hive.optimize.ppd.storage=true;

set hive.ppd.recognizetransivity=true;

set hive.optimize.index.filter=true;

set hive.optimize.sampling.orderby.percent=0.2;" >& ./engines/hive/queries/q06/engineLocalSettings.sql

echo "*********************set parameters for Query 07 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.auto.convert.join.noconditionaltask=true;

set hive.auto.convert.join.noconditionaltask.size=100000000;

set mapreduce.input.fileinputformat.split.maxsize=67108864;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

" >& ./engines/hive/queries/q07/engineLocalSettings.sql

echo "*********************set parameters for Query 08 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.mapjoin.smalltable.filesize=400000000;

set hive.exec.compress.intermediate=false;

set hive.exec.compress.output=false;

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set mapreduce.input.fileinputformat.split.maxsize=134217728;

set hive.exec.reducers.bytes.per.reducer=8388608;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

set hive.exec.parallel=true;

set hive.exec.parallel.thread.number=8;

set hive.auto.convert.join.noconditionaltask.size=100000000;" >&

./engines/hive/queries/q08/engineLocalSettings.sql

echo "*********************set parameters for Query 09 ****************************"

echo -e "set hive.auto.convert.join.noconditionaltask=true;

set mapreduce.input.fileinputformat.split.maxsize=67108864;

set mapreduce.job.reduce.slowstart.completedmaps=0.01;

set hive.exec.compress.intermediate=false;

set hive.exec.mode.local.auto=true;

set hive.exec.mode.local.auto.inputbytes.max=1500000000;

set hive.mapjoin.smalltable.filesize=25000000;

set hive.exec.reducers.max=280;" >& ./engines/hive/queries/q09/engineLocalSettings.sql

echo "*********************set parameters for Query 10 ****************************"

echo -e "set hive.exec.reducers.max=280;

set mapreduce.input.fileinputformat.split.maxsize=4194304;

set mapreduce.job.reduce.slowstart.completedmaps=0.01;

set hive.exec.reducers.bytes.per.reducer=16777216;" >& ./engines/hive/queries/q10/engineLocalSettings.sql

echo "*********************set parameters for Query 11 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.mapjoin.smalltable.filesize=400000000;

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set mapreduce.input.fileinputformat.split.maxsize=134217728;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

set hive.auto.convert.join.noconditionaltask.size=100000000;" >&

./engines/hive/queries/q11/engineLocalSettings.sql

echo "*********************set parameters for Query 12 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.exec.compress.intermediate=false;

set hive.exec.compress.output=false;

set hive.exec.reducers.bytes.per.reducer=4194304;

set hive.mapjoin.smalltable.filesize=400000000;

Optimize configuration parameters faster and more accurately, and speed up analyses of scaling big-data clusters 12

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set mapreduce.input.fileinputformat.split.maxsize=67108864;

set mapreduce.job.reduce.slowstart.completedmaps=0.01;

set hive.auto.convert.join.noconditionaltask.size=100000000;" >&

./engines/hive/queries/q12/engineLocalSettings.sql

echo "*********************set parameters for Query 13 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.mapjoin.smalltable.filesize=400000000;

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set mapreduce.input.fileinputformat.split.maxsize=67108864;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

set hive.auto.convert.join.noconditionaltask.size=100000000;" >&

./engines/hive/queries/q13/engineLocalSettings.sql

echo "*********************set parameters for Query 14 ****************************"

echo -e "set hive.exec.reducers.max=280;

set mapreduce.input.fileinputformat.split.maxsize=134217728;

set mapreduce.job.reduce.slowstart.completedmaps=0.01;

" >& ./engines/hive/queries/q14/engineLocalSettings.sql

echo "*********************set parameters for Query 15 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.mapjoin.smalltable.filesize=400000000;

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set mapreduce.job.reduce.slowstart.completedmaps=0.01;

set mapreduce.input.fileinputformat.split.maxsize=134217728;

set hive.auto.convert.join.noconditionaltask.size=100000000;" >&

./engines/hive/queries/q15/engineLocalSettings.sql

echo "*********************set parameters for Query 16 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.mapjoin.smalltable.filesize=400000000;

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set hive.auto.convert.join.noconditionaltask.size=100000000;

set mapreduce.output.fileoutputformat.compress=true;

set hive.exec.compress.intermediate=true;

set mapreduce.input.fileinputformat.split.maxsize=67108864;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

--set hive.groupby.skewindata=true;" >& ./engines/hive/queries/q16/engineLocalSettings.sql

echo "*********************set parameters for Query 17 ****************************"

echo -e "set hive.exec.reducers.max=280;

set mapreduce.input.fileinputformat.split.maxsize=33554432;

set hive.exec.compress.intermediate=false;

set hive.exec.compress.output=false;

set hive.mapjoin.smalltable.filesize=400000000;

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

set hive.auto.convert.join.noconditionaltask.size=100000000;" >&

./engines/hive/queries/q17/engineLocalSettings.sql

echo "*********************set parameters for Query 18 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.exec.compress.intermediate=false;

set hive.exec.compress.output=false;

set hive.exec.reducers.bytes.per.reducer=8388608;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

set mapreduce.input.fileinputformat.split.maxsize=33554432;" >&

./engines/hive/queries/q18/engineLocalSettings.sql

echo "*********************set parameters for Query 19 ****************************"

echo -e "set hive.exec.reducers.max=280;

set mapreduce.task.io.sort.mb=512;

Optimize configuration parameters faster and more accurately, and speed up analyses of scaling big-data clusters 13

set hive.mapjoin.smalltable.filesize=400000000;

set hive.optimize.correlation=true;

--set hive.optimize.skewjoin.compiletime=true;

set mapreduce.input.fileinputformat.split.maxsize=16777216;

set hive.exec.reducers.bytes.per.reducer=8388608;

set hive.auto.convert.join.noconditionaltask=true;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

set hive.auto.convert.join.noconditionaltask.size=100000000;" >&

./engines/hive/queries/q19/engineLocalSettings.sql

echo "*********************set parameters for Query 20 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.exec.reducers.bytes.per.reducer=8388608;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

set mapreduce.task.io.sort.factor=100;

set mapreduce.task.io.sort.mb=512;

set hive.exec.compress.intermediate=false;

set hive.exec.compress.output=false;

set mapreduce.map.sort.spill.percent=0.99;

set mapreduce.input.fileinputformat.split.maxsize=67108864;" >&

./engines/hive/queries/q20/engineLocalSettings.sql

echo "*********************set parameters for Query 21 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.exec.reducers.bytes.per.reducer=8388608;

set hive.optimize.correlation=true;

set hive.exec.compress.intermediate=false;

set hive.exec.compress.output=false;

set hive.auto.convert.join.noconditionaltask=true;

set hive.auto.convert.join.noconditionaltask.size=100000000;

set mapreduce.input.fileinputformat.split.maxsize=67108864;

set mapreduce.job.reduce.slowstart.completedmaps=0.01;" >& ./engines/hive/queries/q21/engineLocalSettings.sql

echo "*********************set parameters for Query 22 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.mapjoin.smalltable.filesize=400000000;

set mapreduce.input.fileinputformat.split.maxsize=67108864;

set hive.exec.compress.intermediate=false;

set hive.exec.compress.output=false;

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set mapreduce.job.reduce.slowstart.completedmaps=0.01;

set hive.auto.convert.join.noconditionaltask.size=100000000;" >&

./engines/hive/queries/q22/engineLocalSettings.sql

echo "*********************set parameters for Query 23 ****************************"

echo -e "set mapreduce.input.fileinputformat.split.maxsize=16777216;

set hive.exec.compress.intermediate=false;

set hive.exec.compress.output=false;

set hive.exec.reducers.bytes.per.reducer=67108864;

set hive.auto.convert.join.noconditionaltask.size=100000000;

set hive.exec.mode.local.auto=true;

set hive.exec.max.created.files=1000000;

set hive.exec.reducers.max=280;

set hive.exec.mode.local.auto.input.files.max=900;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;" >& ./engines/hive/queries/q23/engineLocalSettings.sql

echo "*********************set parameters for Query 24 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.mapjoin.smalltable.filesize=400000000;

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set mapreduce.input.fileinputformat.split.maxsize=134217728;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

set hive.auto.convert.join.noconditionaltask.size=100000000;" >&

./engines/hive/queries/q24/engineLocalSettings.sql

echo "*********************set parameters for Query 25 ****************************"

echo -e "set hive.exec.reducers.max=280;

Optimize configuration parameters faster and more accurately, and speed up analyses of scaling big-data clusters 14

set hive.mapjoin.smalltable.filesize=400000000;

set hive.optimize.correlation=true;

set mapreduce.input.fileinputformat.split.maxsize=134217728;

set hive.exec.reducers.bytes.per.reducer=8388608;

set hive.auto.convert.join.noconditionaltask=true;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

set hive.auto.convert.join.noconditionaltask.size=100000000;" >&

./engines/hive/queries/q25/engineLocalSettings.sql

echo "*********************set parameters for Query 26 ****************************"

echo -e "set hive.exec.reducers.max=280;

set hive.mapjoin.smalltable.filesize=400000000;

set mapreduce.input.fileinputformat.split.maxsize=134217728;

set hive.exec.reducers.bytes.per.reducer=8388608;

set mapreduce.job.reduce.slowstart.completedmaps=0.01;

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set hive.auto.convert.join.noconditionaltask.size=100000000;" >&

./engines/hive/queries/q26/engineLocalSettings.sql

echo "*********************set parameters for Query 27 ****************************"

echo -e "set hive.exec.reducers.max=280;

set mapreduce.input.fileinputformat.split.maxsize=8388608;

set mapreduce.job.reduce.slowstart.completedmaps=0.01;" >& ./engines/hive/queries/q27/engineLocalSettings.sql

echo "*********************set parameters for Query 28 ****************************"

echo -e "set hive.exec.reducers.max=280;

set bigbench.hive.optimize.sampling.orderby=false;" >& ./engines/hive/queries/q28/engineLocalSettings.sql

echo "*********************set parameters for Query 29 ****************************"

echo -e "set hive.exec.reducers.max=280;

set mapreduce.job.reduce.slowstart.completedmaps=0.5;

set hive.mapjoin.smalltable.filesize=400000000;

set hive.exec.compress.intermediate=false;

set hive.exec.compress.output=false;

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set mapreduce.input.fileinputformat.split.maxsize=134217728;

set hive.auto.convert.join.noconditionaltask.size=100000000;" >&

./engines/hive/queries/q29/engineLocalSettings.sql

echo "*********************set parameters for Query 30 ****************************"

echo -e "set hive.exec.compress.intermediate=true;

set hive.exec.reducers.max=280;

set hive.mapjoin.smalltable.filesize=400000000;

set hive.optimize.correlation=true;

set hive.auto.convert.join.noconditionaltask=true;

set mapreduce.input.fileinputformat.split.maxsize=134217728;

set mapreduce.job.reduce.slowstart.completedmaps=0.9;

set hive.groupby.skewindata=false;

set hive.exec.parallel=true;

set hive.exec.parallel.thread.number=8;

set hive.auto.convert.join.noconditionaltask.size=100000000;" >&

./engines/hive/queries/q30/engineLocalSettings.sql

Optimize configuration parameters faster and more accurately, and speed up analyses of scaling big-data clusters 15

For more information about Intel CoFluent technology, visit cofluent.intel.com

For more information about the TPCx-BB benchmark, visit

www.tpc.org/tpcx-bb/default.asp/

1 TPCx-BB source: http://www.tpc.org/tpcx-bb/default.asp/

2 BigBench: Towards an Industry Standard Benchmark for Big Data Analytics; Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel

Poess, Alain Crolotte, Hans-Arno Jacobsen; SIGMOD13, June 22, 2013, New York, New York, USA.

Performance results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as
"Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

Results have been estimated or simulated using internal Intel analyses or architecture simulation or modeling, and are provided for informational
purposes only. Any differences in system hardware, software, or configuration may affect actual performance.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with
this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest
specifications and before placing your product order.

Information in this document is provided as-is. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by
this document. Intel assumes no liability whatsoever, and Intel disclaims all express or implied warranty relating to this information, including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark* and MobileMark*, are measured using specific computer systems, components, software, operations, and functions. Any change to any of

file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/cofluent.intel.com
http://www.tpc.org/tpcx-bb/default.asp/
http://www.tpc.org/tpcx-bb/default.asp/

Optimize configuration parameters faster and more accurately, and speed up analyses of scaling big-data clusters 16

those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in
this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered
by this notice.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm.

Intel, the Intel logo, Xeon, and CoFluent are trademarks of Intel Corporation in the U.S. and/or other countries.

Dell and the Dell logo are trademarks of Dell, Inc., in the U.S. and/or other countries.

Copyright © 2018 Intel Corporation. All rights reserved.

Copyright © 2018 Dell, Inc. All rights reserved.

*Other names and brands may be claimed as the property of others.

Printed in USA.

http://www.intel.com/design/literature.htm

