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Introduction 

The TPCx-BB Express Benchmark (TPCx-BB)*1 is designed to measure the 

performance of big data analytics systems. The benchmark contains 30 use cases 

(queries) that simulate big data processing, big data storage, big data analytics, and 

reporting. The benchmark allows developers to explore efficient ways to optimize 

configuration parameters for those 30 representative workloads. Better optimizations 

could help developers speed up analyses of scaling clusters. Such optimizations could 

also help them select the best components earlier in the development cycle for business 

needs; and predict the best parameter optimizations for future generations of hardware 

and software. 

The project team for our optimization research was a collaboration between Intel and 

Dell. For this optimization project, our team used the TPCx-BB benchmark to evaluate 

the performance of both software and hardware components for big data clusters. We 

used the TPCx-BB benchmark because we find that it has good coverage for different 

data types. The benchmark also provides enough scalability to address challenges of 

scaling data size and nodes. We have gained key insights into designing big data 

analytic systems by using TPCx-BB. 

 

 

 

Optimize configuration parameters 
faster and more accurately, and 
speed up analyses of scaling  
big-data clusters 

 

Intel and Dell have collaborated on research to help developers better optimize big data 

clusters. Our research shows that the workload performance is CPU-sensitive and sensitive to 

scaling the number of nodes in a cluster. Accurate simulations of these workloads provide a 

development tool for choosing better values for configuration parameters. This can help both 

expert and less experienced developers save development time, improve capacity planning, 

and accurately tune big data clusters for business needs.  
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We do need more than TPCx-BB to 

evaluate and design complete, end-to-

end big data systems. This is because 

there is a difference between an analytics 

system and a real-world, end-to-end 

system. For example, the data flow of an 

end-to-end system should include data 

ingestion.  

Data ingestion moves data from where it 

originates in a system (such as Apache 

Hadoop*) to where it can be stored and 

analyzed. Importing that data at a 

reasonable speed can be challenging for 

businesses that want to maintain a 

competitive advantage.  

However, TPCx-BB was not designed to 

evaluate the performance of software and 

hardware for data ingestion. 

Unfortunately, with TPCx-BB, there is a 

strict limitation on bandwidth and latency 

for real-time processing.  

This paper discusses our experiences 

and lessons learned using TPCx-BB to 

evaluate the performance of software and 

hardware for real-time processing. We 

then offer advice on how to extend TPCx-

BB to evaluate data ingestion and real-

time processing. Finally, we share some 

ideas on how to implement fuller TPCx-

BB coverage for end-to-end big data 

clusters. 

In this project, we compared the 

optimized parameter values suggested by 

Intel® CoFluent™ Technology for Big 

Data (Intel® CoFluent™), to the settings 

chosen by big-data experts. Results 

showed that Intel CoFluent delivered a 

32% gain in the benchmark performance 

score over the parameter choices of 

expert human developers. This is an 

improvement equivalent to the 

performance gain typically seen from a 

new processor generation. 

 

 

A scaled analysis of benchmark 

workloads shows that TPCx-BB queries 

are definitely sensitive to processor 

performance. For example, the scaled 

analysis showed that upgrading the 

processor resulted in an average 

decrease in execution time of 20%. The 

analysis also showed that queries with a 

large input size can benefit from having 

more nodes in the design. For example, 

scaling by a factor of 2 resulted in an 

average 33% decrease in execution time 

for those types of workloads. 

These and other workload-specific results 

show that expert developers can use 

simulations to better optimize the values 

of configuration parameters for big data 

clusters. Accurate optimizations can also 

help less experienced developers 

understand design options better, and 

gain confidence in optimizing their 

clusters for specific workloads. With 

better optimizations, all developers can 

choose better values for configuration 

parameters, save development time, 

improve capacity planning, and optimize 

their big data clusters more accurately for 

specific workloads. 

This paper describes our test 

environment, results, and insights for 

optimizing big data clusters. We also 

provide our data on the performance of 

specific workloads, based on upgrading 

the processor, upgrading the Ethernet, or 

scaling the number of nodes in the 

configuration. 
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Project scope and tools 

Our project had three main elements: the 

physical big-data test setup, the industry-

standard TPCx-BB benchmark with its 30 

queries (workloads), and the Intel 

CoFluent modeling and simulation tool. 

With these project elements in place, we 

addressed the issue of helping 

developers optimize the hundreds or even 

thousands of configuration parameters 

they often face when configuring a big 

data cluster. 

Big data clusters and  

Apache Hadoop* 

Optimizing software parameters for big 

data clusters is a complex challenge. A 

major reason for this challenge is Apache 

Hadoop,* which is a complex open 

system used to drive many big data 

projects. Already, big data is becoming a 

synonym for Hadoop.  

As a complex system, Hadoop has many 

software modules that process large 

quantities of data in a distributed way. A 

critical issue in using Hadoop is that each 

Hadoop software module has hundreds of 

configuration parameters. For example, 

Apache Hadoop YARN* has almost 400 

parameters in its default configuration file.  

The performance of a big data cluster can 

depend significantly on the values chosen 

for these thousands of parameters. 

However, for convenience, developers 

often simply use default parameter 

values. This is because it takes a high 

degree of experience and skill, as well as 

time and resources, to identify cluster-

specific values that would provide better, 

optimized performance.  

TPCx-BB Express Benchmark* 

as an industry standard 

As big data technologies become widely 

adopted, there is a growing need for an 

industry-standard benchmark to evaluate 

and compare the performance of these 

systems. Such a benchmark should 

address the entire data flow. It should 

also cover as many big data use cases as 

possible. Based on our research into big 

data cluster deployment, optimization, 

and performance, we propose using 

TPCx-BB as a performance benchmark. 

TPCx-BB is based on TPC BigBench*2, 

which is a framework for end-to-end big 

data analytics. TPCx-BB is designed to 

measure the performance of big data 

systems. In particular, TPCx-BB 

addresses the variety, velocity, and 

volume aspects of big data systems that 

contain structured, semi-structured, and 

unstructured data.  

One of the advantages of TPCx-BB is that 

it contains 30 queries (use cases, or 

workloads) that simulate big data 

processing, big data storage, big data 

analytics, and reporting. These use cases 

cover different but representative 

categories of big data analytics from a 

business perspective. Developers can 

use this benchmark to evaluate the 

performance of both software and 

hardware components for their big data 

systems.  

Based on our research, we suggest 

TPCx-BB as an industry standard 

because TPCx-BB has good coverage of 

these different data types. In addition, 

TPCx-BB provides enough scalability to 

address big data issues typically seen 

with data size and node scaling. Also, the 

benchmark has enough workloads so 

that, in this project, we were able to 

identify the best optimizations for use 

cases based on workload category.  

  

 

Intel® CoFluent™ 

Studio 

Intel® CoFluent™ Studio is a 

powerful software package for 

modeling and simulation. Intel® 

CoFluent™ Technology for Big 

Data is a customized version of 

Intel CoFluent Studio.  

For big data workloads, Intel 

CoFluent Technology for Big Data 

defines a big data workload and 

software stack, including tables, 

schema, indexing, distribution, 

operations, and other aspects of a 

big data model.  

This customized version of Intel 

CoFluent Studio maps that big data 

software stack and workload to a 

hardware-based model. The 

customized tool then defines a big 

data cloud-based topology, 

including network, processors, 

memory, disk type, and so on. 

The customizations of Intel 

CoFluent Technology for Big Data 

make it easier for developers to 

model and simulate their big data 

workloads, and identify optimal 

configurations for their business 

needs. 
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Intel® CoFluent™ Technology  

for Big Data  

Intel CoFluent is a customized modeling 

and simulation tool for analyzing the 

performance of big data clusters (see 

Figure 1). One of the ways Intel CoFluent 

delivers a high degree of accuracy in its 

simulations is by acquiring the execution 

time of workloads. Intel CoFluent acquires 

these execution times by mapping 

software behaviors to hardware  

components. This information can help 

both expert and less experienced 

developers optimize and better design big 

data clusters according to their business 

needs.  

Basically, Intel CoFluent helps developers 

deploy clusters faster, optimize software 

parameters more accurately for their use 

cases, and scale with greater confidence 

by predicting cluster performance and 

behavior. Predictions no longer need to 

be a best guess that can be made only by 

a highly experienced developer.  

With Intel CoFluent, optimization and 

other predictions can be based on: 

 Highly accurate analyses of various 

nodes and disk configurations 

 Optimizations of the software stack to 

more fully leverage hardware 

resources 

 Conducting more accurate what-if 

analyses for big data clusters  

 Exploring performance against the 

number of cluster users and cluster 

size 

For these reasons, we chose Intel 

CoFluent as the modeling and simulation 

tool for our research. 

Figure 1. Model of Intel® CoFluentTM Technology for Big Data (Intel® CoFluent™). 
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Experiment environment 

In this experiment, we ran TPCx-BB 

version 1.0 on a cluster of 1 master node 

and 7 slave nodes. (Table 1 provides an 

overview of the hardware components for 

the test cluster.) Each node is a Dell 

PowerEdge R730xd Rack Server* 

(R730xd* server), which is the new, 

thirteenth generation of Dell PowerEdge* 

servers. The R730xd servers offer an 

optimal balance of storage utilization, 

performance, and cost. These servers 

also offer an optional in-server hybrid 

storage configuration.  

In this research project, we used an 

Apache Hadoop* software stack based 

on the Apache Cloudera Hadoop* 

distribution (CDH 5.12.0). We executed 

the 30 hive queries of TPCx-BB on an 

Apache Hadoop MapReduce* engine. 

Some queries used Apache Spark MLlib* 

and Apache Spark Mathout* libraries. 

Software parameter 

optimizations 

Because of the scale of big data clusters, 

it is crucial that developers make the best 

use of a cluster’s hardware resources. 

However, even for expert developers, it is 

extremely challenging to figure out the 

best parameter settings for an entire big 

data software stack.  

Our Intel-Dell collaboration in research 

was focused on making it easier for 

developers to identify the optimizations 

they need. This could reduce 

development time. It could also allow 

developers to optimize many more 

parameters more accurately during the 

development cycle, to meet specific 

workload needs. With more workload-

specific optimizations, businesses can 

better focus the offerings of their big data 

clusters. This includes using virtualization 

and use case profiles to dynamically 

adapt the cluster to different workloads 

based on user needs. 

Challenges in optimizations 

Consider the challenge of optimizing a big 

data workload. The operating system 

(OS), Oracle Java* virtual machine (JVM), 

and Hadoop software stacks have many 

parameters that can have a huge impact 

on performance.  

First, the OS kernel includes parameters 

that configure Huge Page, Transparent 

Huge Page, flush intervals, and other 

kernel features. Then there is the JVM, 

which includes parameters that configure 

heap size; the ratio of old versus young 

generation parts of the heap; and the 

garbage collection (GC) algorithms. Also, 

the Hadoop software stack includes the 

largest number of parameters that are 

sensitive to the hardware performance of 

the system. These software stack 

parameters include settings for resource 

management, the execution engine, and 

various libraries.  

It’s common to gain a performance 

increase of several full factors just by 

optimizing software parameters in a big 

data cluster. However, it’s still difficult 

even for highly experienced developers to 

figure out the best settings for all 

parameters in the workload.  

One of the things that makes the process 

so challenging is that the best overall 

settings often change with different 

workload characteristics. For example, a 

CPU-intensive workload could require 

different optimal settings than an I/O-

intensive workload. Optimal settings can 

also change with different hardware 

platforms. For example, a platform might 

be configured for CPU optimization, 

versus storage optimization, versus 

network optimization. In addition, 

parameters from different software layers 

can have tricky interactions. There is 

simply no general rule to follow that can 

determine the best parameter settings for 

a full software stack. 

Modeling a workload with  

Intel CoFluent 

Intel CoFluent is designed to help 

developers find the optimal software 

parameter settings faster, more easily, 

and more accurately for any given 

configuration. Since Intel CoFluent can 

simulate all software layers of a big data 

 

Table 1. Cluster settings for our big data experiment 

Cluster component Quantity Description 

Node count 8 1 master and 7 slaves 

Processor 2 Intel® Xeon® processor E5-2660 v3 2.60GHz  

Disk 12 
Seagate Constellation* hard drive SATA 1TB 2 6Gbps 

1TB 7.2K 

DRAM memory 1 SK Hynix Ram Hynix* 16GB 2Rx4 PC4-2133P 

Network 2 Intel® Ethernet Converged Network Adapter X520 

Operating system 1 Red Hat, Inc., CentOS* 7.3 

Software framework 1 Apache Hadoop* version CDH 5.12.0 

Workload 1 TPCx-BB Express Benchmark (TPCx-BB)*1 
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ecosystem, it can not only analyze 

software parameter settings, but also 

identify the best settings for various 

configurations.  

In our experiment, the software 

parameters could be divided into two 

types. One group of parameters consists 

of the 30 benchmark queries, all having 

the same setting. The other group 

consists of different queries, each having 

different settings. 

In our experiment, we optimized values 

for parameters from the YARN, 

MapReduce, and Hive layers of the 

Hadoop software stack. Table 2 shows 

the values used for optimized settings for 

these parameters. Appendix A shows the 

values for the group of different queries 

that have different settings.  

Establishing the accuracy of our 

model 

We built our hardware model based on a 

known-good big data cluster used by the 

Dell Innovation Center,* located at the 

University of Pisa,* in Italy. The university 

provided us with the details of their 

hardware components, as well as the 

optimal big data settings which they had 

determined for that cluster. 

To establish the accuracy of our model, 

we first built a hardware cluster 

(described previously in Table 1) similar 

to the University of Pisa’s server system. 

We then simulated the cluster using  

Intel CoFluent. We compared the 

performance of the Intel CoFluent 

simulation against that of our hardware 

cluster. Our Intel CoFluent simulation  

achieved a performance accuracy of 

96%, as compared to the performance of 

our physical hardware cluster.  

We wanted to verify those performance 

results, for both our physical cluster and 

our simulations. To help with this, the Dell 

Innovation Center in Italy copied our 

optimizations and analyzed the resulting 

performance on their known-good 

physical cluster. They then provided our 

team with logs and feedback on the 

accuracy of our model.  

Their results confirmed that our  

Intel CoFluent simulation delivered an 

accuracy of 96% when compared to 

performance of the university’s known-

good cluster. This accuracy impressed 

the university developer experts, as well 

as the Dell* developers. 

Adjusting and testing the model 

For our experiment, we first obtained a 

set of software parameter settings for our 

test configuration. These settings came 

from expert Intel developers based on 

their extensive experience in optimizing 

big data clusters. With their input, we 

adjusted our model, tested it, and 

achieved a TPCx-BB score of 85 (see 

Table 3).  

We then used Intel CoFluent to simulate, 

analyze, and optimize all potential 

software parameter settings for our test 

configuration. This yielded a list of 

parameter settings which gave us a 

benchmark score of 112 (higher is better). 

That’s a 32% increase compared to the 

expert-optimized settings. Table 3 lists 

the scores from the experts versus our 

simulation, using a 1TB workload  

input size. 

  
Table 3. TPCx-BB scores of expert developers versus simulation results 

 Optimized settings 

Benchmark score 

BBQpm@1000  

(higher is better) 

Optimized by expert developer 85 

Optimized by Intel® CoFluent™ Technology for Big Data 112 

 

Table 2. Simulation values for optimized settings of benchmark parameters 

Parameter Setting 

yarn.nodemanager.resource.cpu-vcores 40 

yarn.nodemanager.resource.memory-mb 160 GB 

mapreduce.map.memory.mb 4 GB 

mapreduce.reduce.memory.mb 4 GB 

yarn.app.mapreduce.am.resource.mb 4GB 

mapreduce.map.java.opts.max.heap 3072 MB 

mapreduce.reduce.java.opts.max.heap 3027 MB 

yarn.app.mapreduce.am.command-opts 3027 MB 
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Results 

Once we had verified both our physical 

model and the accuracy of our 

simulations, we were ready to perform an 

analysis of optimizations chosen by 

human experts, versus options 

recommended by our simulation. Using 

both groups of settings, we analyzed the 

execution times for three types of 

upgrades or scaling: 

 Upgrade the processor 

 Upgrade the Ethernet 

 Scale the number of nodes in the 

system 

Based on data type, the TPCx-BB queries 

(workloads) can be grouped into three 

categories. Our results showed that 

specific groups or even specific queries 

were particularly sensitive to the biggest 

improvements, depending on the test 

component that was scaled. 

POC results are summarized in Table 4. 

The data, query by query, are shown in 

figures 2, 3, and 4. In each of the graphs, 

the data is normalized to 1 for the 

baseline model, which was measured 

before any upgrade or scale analysis was 

performed. 

Execution times  

for different processors 

In our research, we changed usage 

scenarios (including input size and 

response time requests) in order to 

explore the challenge of scaling a cluster. 

In these scenarios, users typically need to 

scale their big data cluster to meet new 

requests. Our research shows that Intel 

CoFluent can provide highly effective 

scale-up and scale-out prediction 

analyses for big data clusters.  

Figure 2 (next page) shows the results,  

as measured by TPCx-BB, of upgrading 

the processor.  

For this test, we upgraded the  

processor from an Intel® Xeon®  

processor E5-2660 v3 to an  

Intel® Xeon® processor E5-2667 v4. The 

upgrade resulted in an average decrease 

in execution time of 20%.  

As you can see in Figure 2, all 30  

TPCx-BB queries showed similar 

reductions in execution time when the 

processor is upgraded. One query 

showed the greatest reduction in 

execution time, a 44% reduction. 

Upgrading the processor to reduce 

execution times gives developers two 

options. They can run workloads on the 

existing cluster configuration with reduced 

power consumption. This can save 

energy and still make resources available 

for unexpected loads. Or, developers can 

recommend that cluster size be reduced 

while still providing competitive 

performance.  

Table 4. Summary of results by workload category 

Performance 

improvement is 

sensitive to... 

Query categories 

Structured queries Semi-structured queries Unstructured queries 

1, 6, 7, 9, 11, 13 — 17,  

20 — 26, 29 
2, 3, 4, 5, 8, 12, 30 10, 18, 19, 27, 28 

Scaling the processor 
Average 20% decrease in 

execution time 

Average 18% decrease in 

execution time 

Average 23% decrease in 

execution time 

Increasing network 

bandwidth 

Small average 6% decrease in 

execution time 

Minimal average 3% decrease in 

execution time 

Minimal average 1% decrease in 

execution time 

Scaling the number of nodes 

by a factor of 2 

Average 47% decrease in 

execution time 

Average 33% decrease in 

execution time 

Average 12% decrease in 

execution time 
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Execution times when  

the Ethernet is upgraded 

Figure 3 shows how changes in network 

bandwidth affected our test configuration. 

As you can see in the figure, when 

upgrading the network bandwidth from  

10 GbE to 25 GbE, execution time 

decreased an average of only 1%. Only a 

few queries (2, 4, 16, 18, and 30) with 

large-sized intermediate results achieved 

a larger decrease in execution time. 

(Intermediate results are the output of 

map tasks and the input of reduce tasks; 

and are transferred on the network from 

map to reduce.)  

This information could be significant when 

identifying the best bandwidth parameters 

for a specific type of workload. 

Execution times  

when nodes are scaled 

Figure 4 shows the results of scaling the 

test configuration nodes by a factor of 2, 

from 7 slave nodes to 14 slave nodes. 

Scaling by a factor of 2 resulted in an 

average 33% decrease in execution time.  

Based on our analysis, we believe that 

workloads similar to queries 2, 4, and 30 

on large input tables will benefit more 

from the higher parallelism provided by 

additional nodes. We do not believe that 

workloads similar to queries 1, 10, 18, 27, 

and 28, on smaller input tables will be 

able to make full use of the resources 

made available by additional nodes.  

 

Figure 2. TPCx-BB analysis when the processor is upgraded from the  

Intel® Xeon® processor E5-2660 v3 to Intel® Xeon® processor E5-2667 v4.  

Data is normalized to 1 for the baseline configuration with the  

Intel Xeon processor E5-2660. 

 

Figure 3. TPCx-BB results for execution times when the network is upgraded from 

10 GbE to 25 GbE. Data is normalized to 1 for the baseline configuration  

with the 10 GbE network. 

 

Figure 4. TPCx-BB results when nodes are scaled by a factor of two, from 7 to 14 slave 

nodes. Data is normalized to 1 for the baseline configuration with 7 slave nodes. 
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Summary 

For big data clusters, the values of 

thousands of configuration parameters 

can have a significant impact on 

performance. However, for convenience, 

developers often use default values. 

Choosing specific, optimal values for any 

given workload requires a developer with 

a high degree of experience and skill.  

Our research project was a collaboration 

of Intel and Dell teams, via the Dell 

Innovation Center at the University of 

Pisa. Working together, our combined 

research team focused on how to use 

modeling and simulation — through the 

use of Intel CoFluent Technology for Big 

Data — to address the challenge of 

identifying optimal parameter values for 

big data clusters. We also used the 

TPCx-BB benchmark to help analyze the 

best way to scale big data systems for 

specific workloads.  

Our results show that Intel CoFluent 

simulations can be an average of 32% 

more effective than the manual choices of 

expert developers. Such simulations can 

help experts significantly improve upon 

their hard-won software experience and  

optimize even more quickly for specific 

workloads, or simply optimize many more 

configuration parameters during a 

development cycle. 

In this paper, we used a small cluster as a 

model, but Intel CoFluent is not limited by 

cluster size. Developers can use Intel 

CoFluent effectively to simulate and 

analyze medium- and large-sized clusters 

with more than 1000 nodes. For example, 

our experiment showed that big data 

workloads are sensitive to the number of 

nodes in a configuration. When scaling 

the system, queries with larger input sizes 

can see a much greater performance gain 

from having more cluster nodes.  

Storage, network bandwidth, and other 

components can also create performance 

bottlenecks. Our research shows that big 

data workloads see little to no 

improvement when the Ethernet 

bandwidth is doubled, but they are 

definitely CPU-sensitive. To see better 

performance across a big data cluster, a 

priority could be to focus not on network 

bandwidth, but simply to upgrade the 

cluster’s processors. 

The results of our research show that, for 

the 30 workloads of the TPCx-BB 

benchmark, Intel CoFluent is a tool with a 

96% accuracy when compared to 

physical clusters. With this kind of 

accuracy, Intel CoFluent can be an 

excellent tool to help developers address 

the significant challenge of identifying 

optimal parameters for big data clusters. 

With better optimizations, developers can 

choose between maximum performance 

or reducing the energy consumption 

required for specific workloads.  

The results of our study also indicate that 

TPCx-BB is an effective standard for 

measuring CPU-sensitive workloads. 

Using TPCx-BB along with Intel CoFluent 

can help developers make full use of their 

expertise to tune big data clusters to 

make better use of resources. This can 

help reduce development time and 

improve the accuracy of early architecture 

designs; as well as reduce the total cost 

of ownership of big data clusters. 
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Appendix A 

Optimized parameter settings for benchmark queries 
 

In our experiment, the software parameters we optimized could be divided into two types. One type of parameter consisted of the 30 

benchmark queries, all having the same setting. The other type consisted of different queries, each having different settings. This 

appendix shows the optimized values for parameters for different benchmark queries that had different settings. 

 
#!/bin/bash 

 

echo "*********************set parameters for Query 01 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

set mapreduce.task.io.sort.mb=512; 

set hive.exec.compress.intermediate=false; 

set mapreduce.input.fileinputformat.split.maxsize=134217728;" >& 

./engines/hive/queries/q01/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 02 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.mapjoin.smalltable.filesize=400000000; 

set mapreduce.input.fileinputformat.split.maxsize=134217728; 

set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set hive.auto.convert.join.noconditionaltask.size=100000000; 

set mapreduce.output.fileoutputformat.compress=true; 

set hive.exec.reducers.bytes.per.reducer=8388608; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

set hive.exec.compress.intermediate=true;" >& ./engines/hive/queries/q02/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 03 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set mapreduce.task.io.sort.mb=512; 

set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set hive.auto.convert.join.noconditionaltask.size=100000000; 

set mapreduce.input.fileinputformat.split.maxsize=134217728; 

set hive.exec.reducers.bytes.per.reducer=8388608; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

set hive.mapjoin.smalltable.filesize=400000000;" >& ./engines/hive/queries/q03/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 04 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set hive.auto.convert.join.noconditionaltask.size=100000000; 

set hive.mapjoin.smalltable.filesize=400000000; 

set mapreduce.input.fileinputformat.split.maxsize=134217728; 

set mapreduce.output.fileoutputformat.compress=true; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

set hive.exec.compress.intermediate=true;" >& ./engines/hive/queries/q04/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 05 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set hive.auto.convert.join.noconditionaltask.size=100000000; 

set hive.mapjoin.smalltable.filesize=400000000; 

set mapreduce.output.fileoutputformat.compress=true; 

set mapreduce.input.fileinputformat.split.maxsize=134217728; 

set hive.exec.reducers.bytes.per.reducer=8388608; 

set mapreduce.job.reduce.slowstart.completedmaps=0.01; 

set hive.exec.compress.intermediate=true;" >& ./engines/hive/queries/q05/engineLocalSettings.sql 
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echo "*********************set parameters for Query 06 ****************************" 

echo -e "set hive.optimize.correlation=true; 

set hive.exec.compress.intermediate=true; 

set hive.exec.compress.output=false;   

set hive.exec.reducers.max=280; 

set hive.optimize.sampling.orderby=true; 

set mapreduce.input.fileinputformat.split.maxsize=67108864; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

set hive.optimize.ppd=true; 

set hive.optimize.ppd.storage=true; 

set hive.ppd.recognizetransivity=true; 

set hive.optimize.index.filter=true; 

set hive.optimize.sampling.orderby.percent=0.2;" >& ./engines/hive/queries/q06/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 07 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.auto.convert.join.noconditionaltask=true; 

set hive.auto.convert.join.noconditionaltask.size=100000000; 

set mapreduce.input.fileinputformat.split.maxsize=67108864; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

" >& ./engines/hive/queries/q07/engineLocalSettings.sql  

 

echo "*********************set parameters for Query 08 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.mapjoin.smalltable.filesize=400000000; 

set hive.exec.compress.intermediate=false; 

set hive.exec.compress.output=false;   

set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set mapreduce.input.fileinputformat.split.maxsize=134217728; 

set hive.exec.reducers.bytes.per.reducer=8388608; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

set hive.exec.parallel=true; 

set hive.exec.parallel.thread.number=8; 

set hive.auto.convert.join.noconditionaltask.size=100000000;" >& 

./engines/hive/queries/q08/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 09 ****************************" 

echo -e "set hive.auto.convert.join.noconditionaltask=true; 

set mapreduce.input.fileinputformat.split.maxsize=67108864; 

set mapreduce.job.reduce.slowstart.completedmaps=0.01; 

set hive.exec.compress.intermediate=false; 

set hive.exec.mode.local.auto=true; 

set hive.exec.mode.local.auto.inputbytes.max=1500000000; 

set hive.mapjoin.smalltable.filesize=25000000; 

set hive.exec.reducers.max=280;" >& ./engines/hive/queries/q09/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 10 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set mapreduce.input.fileinputformat.split.maxsize=4194304; 

set mapreduce.job.reduce.slowstart.completedmaps=0.01; 

set hive.exec.reducers.bytes.per.reducer=16777216;" >& ./engines/hive/queries/q10/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 11 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.mapjoin.smalltable.filesize=400000000; 

set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set mapreduce.input.fileinputformat.split.maxsize=134217728; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

set hive.auto.convert.join.noconditionaltask.size=100000000;" >& 

./engines/hive/queries/q11/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 12 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.exec.compress.intermediate=false; 

set hive.exec.compress.output=false;   

set hive.exec.reducers.bytes.per.reducer=4194304; 

set hive.mapjoin.smalltable.filesize=400000000; 
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set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set mapreduce.input.fileinputformat.split.maxsize=67108864; 

set mapreduce.job.reduce.slowstart.completedmaps=0.01; 

set hive.auto.convert.join.noconditionaltask.size=100000000;" >& 

./engines/hive/queries/q12/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 13 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.mapjoin.smalltable.filesize=400000000; 

set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set mapreduce.input.fileinputformat.split.maxsize=67108864; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

set hive.auto.convert.join.noconditionaltask.size=100000000;" >& 

./engines/hive/queries/q13/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 14 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set mapreduce.input.fileinputformat.split.maxsize=134217728; 

set mapreduce.job.reduce.slowstart.completedmaps=0.01; 

" >& ./engines/hive/queries/q14/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 15 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.mapjoin.smalltable.filesize=400000000; 

set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set mapreduce.job.reduce.slowstart.completedmaps=0.01; 

set mapreduce.input.fileinputformat.split.maxsize=134217728; 

set hive.auto.convert.join.noconditionaltask.size=100000000;" >& 

./engines/hive/queries/q15/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 16 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.mapjoin.smalltable.filesize=400000000; 

set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set hive.auto.convert.join.noconditionaltask.size=100000000; 

set mapreduce.output.fileoutputformat.compress=true; 

set hive.exec.compress.intermediate=true; 

set mapreduce.input.fileinputformat.split.maxsize=67108864; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

--set hive.groupby.skewindata=true;" >& ./engines/hive/queries/q16/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 17 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set mapreduce.input.fileinputformat.split.maxsize=33554432; 

set hive.exec.compress.intermediate=false; 

set hive.exec.compress.output=false;   

set hive.mapjoin.smalltable.filesize=400000000; 

set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

set hive.auto.convert.join.noconditionaltask.size=100000000;" >& 

./engines/hive/queries/q17/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 18 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.exec.compress.intermediate=false; 

set hive.exec.compress.output=false;   

set hive.exec.reducers.bytes.per.reducer=8388608; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

set mapreduce.input.fileinputformat.split.maxsize=33554432;" >& 

./engines/hive/queries/q18/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 19 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set mapreduce.task.io.sort.mb=512; 
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set hive.mapjoin.smalltable.filesize=400000000; 

set hive.optimize.correlation=true; 

--set hive.optimize.skewjoin.compiletime=true; 

set mapreduce.input.fileinputformat.split.maxsize=16777216; 

set hive.exec.reducers.bytes.per.reducer=8388608; 

set hive.auto.convert.join.noconditionaltask=true; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

set hive.auto.convert.join.noconditionaltask.size=100000000;" >& 

./engines/hive/queries/q19/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 20 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.exec.reducers.bytes.per.reducer=8388608; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

set mapreduce.task.io.sort.factor=100; 

set mapreduce.task.io.sort.mb=512; 

set hive.exec.compress.intermediate=false; 

set hive.exec.compress.output=false;   

set mapreduce.map.sort.spill.percent=0.99; 

set mapreduce.input.fileinputformat.split.maxsize=67108864;" >& 

./engines/hive/queries/q20/engineLocalSettings.sql  

 

echo "*********************set parameters for Query 21 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.exec.reducers.bytes.per.reducer=8388608; 

set hive.optimize.correlation=true; 

set hive.exec.compress.intermediate=false; 

set hive.exec.compress.output=false;  

set hive.auto.convert.join.noconditionaltask=true; 

set hive.auto.convert.join.noconditionaltask.size=100000000; 

set mapreduce.input.fileinputformat.split.maxsize=67108864; 

set mapreduce.job.reduce.slowstart.completedmaps=0.01;" >& ./engines/hive/queries/q21/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 22 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.mapjoin.smalltable.filesize=400000000; 

set mapreduce.input.fileinputformat.split.maxsize=67108864; 

set hive.exec.compress.intermediate=false; 

set hive.exec.compress.output=false; 

set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set mapreduce.job.reduce.slowstart.completedmaps=0.01; 

set hive.auto.convert.join.noconditionaltask.size=100000000;" >& 

./engines/hive/queries/q22/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 23 ****************************" 

echo -e "set mapreduce.input.fileinputformat.split.maxsize=16777216; 

set hive.exec.compress.intermediate=false; 

set hive.exec.compress.output=false; 

set hive.exec.reducers.bytes.per.reducer=67108864; 

set hive.auto.convert.join.noconditionaltask.size=100000000; 

set hive.exec.mode.local.auto=true; 

set hive.exec.max.created.files=1000000; 

set hive.exec.reducers.max=280; 

set hive.exec.mode.local.auto.input.files.max=900; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9;" >& ./engines/hive/queries/q23/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 24 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.mapjoin.smalltable.filesize=400000000; 

set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set mapreduce.input.fileinputformat.split.maxsize=134217728; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

set hive.auto.convert.join.noconditionaltask.size=100000000;" >& 

./engines/hive/queries/q24/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 25 ****************************" 

echo -e "set hive.exec.reducers.max=280; 
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set hive.mapjoin.smalltable.filesize=400000000; 

set hive.optimize.correlation=true; 

set mapreduce.input.fileinputformat.split.maxsize=134217728; 

set hive.exec.reducers.bytes.per.reducer=8388608; 

set hive.auto.convert.join.noconditionaltask=true; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

set hive.auto.convert.join.noconditionaltask.size=100000000;" >& 

./engines/hive/queries/q25/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 26 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set hive.mapjoin.smalltable.filesize=400000000; 

set mapreduce.input.fileinputformat.split.maxsize=134217728; 

set hive.exec.reducers.bytes.per.reducer=8388608; 

set mapreduce.job.reduce.slowstart.completedmaps=0.01; 

set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set hive.auto.convert.join.noconditionaltask.size=100000000;" >& 

./engines/hive/queries/q26/engineLocalSettings.sql  

 

echo "*********************set parameters for Query 27 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set mapreduce.input.fileinputformat.split.maxsize=8388608; 

set mapreduce.job.reduce.slowstart.completedmaps=0.01;" >& ./engines/hive/queries/q27/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 28 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set bigbench.hive.optimize.sampling.orderby=false;" >& ./engines/hive/queries/q28/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 29 ****************************" 

echo -e "set hive.exec.reducers.max=280; 

set mapreduce.job.reduce.slowstart.completedmaps=0.5; 

set hive.mapjoin.smalltable.filesize=400000000; 

set hive.exec.compress.intermediate=false; 

set hive.exec.compress.output=false; 

set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set mapreduce.input.fileinputformat.split.maxsize=134217728; 

 

set hive.auto.convert.join.noconditionaltask.size=100000000;" >& 

./engines/hive/queries/q29/engineLocalSettings.sql 

 

echo "*********************set parameters for Query 30 ****************************" 

echo -e "set hive.exec.compress.intermediate=true; 

set hive.exec.reducers.max=280; 

set hive.mapjoin.smalltable.filesize=400000000; 

set hive.optimize.correlation=true; 

set hive.auto.convert.join.noconditionaltask=true; 

set mapreduce.input.fileinputformat.split.maxsize=134217728; 

set mapreduce.job.reduce.slowstart.completedmaps=0.9; 

set hive.groupby.skewindata=false; 

set hive.exec.parallel=true; 

set hive.exec.parallel.thread.number=8; 

set hive.auto.convert.join.noconditionaltask.size=100000000;" >& 

./engines/hive/queries/q30/engineLocalSettings.sql 
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2 BigBench: Towards an Industry Standard Benchmark for Big Data Analytics; Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel 
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those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your 
contemplated purchases, including the performance of that product when combined with other products. 

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel 
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the 
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in 
this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel 
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered 
by this notice. 

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting 
www.intel.com/design/literature.htm. 
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